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Abstract  

The purpose of this simulation study was to understand the Exact Tree algorithm and how 

different methods of discretization and changes in data, such as adding skewness and more 

systematic error (noise), affect its predictive accuracy. Furthermore, the second aim was to 

understand the effect of discretization on the measurement agreement (Spearman rho 

correlation coefficient) between discretized data and the original simulated data with varying 

levels of skewness and noise. The simulation included 600 data sets with a binary outcome 

variable and ten continuous predictor variables. The discretization methods compared in this 

study were Equal Frequency discretization, Optimal Binning and rounding. The predictors 

were varied at 3 levels of skewness (skewness = 0, -0.2 and -0.9) and the noise that the 

predictive model used for generating the outcome variable was varied at two levels. The 

results suggest the discretization methods differ in the Exact Tree predictive accuracy, but 

only by a small difference (𝜂2= 0.008) and do not seem to affect the overall performance of 

Exact Tree. The effect of the discretization methods on the accuracy depended on the level of 

skewness, with a significant interaction effect but small effect size (𝜂2= 0.003). The best 

predictive accuracy and least difference between methods was seen in the more severe 

condition (skewness = -0-9). The Optimal Binning method had the poorest accuracy in the 

mild and no skewness conditions. Furthermore, the Optimal Binning method resulted in better 

measurement agreement between the non-discretized data and the discretized data compared 

to Equal Frequency and rounding. Overall, the small effects sizes suggest that the choice 

between Equal Frequency, Optimal binning or rounding does not affect the overall 

performance of the Exact Tree. Moreover, future research directions are suggested, such as 

comparing more discretization method with the Exact Tree.  
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1. Introduction  

In scientific research and other fields data can become very large and complex, this is 

especially the case with the rise of the “big data” industry. Combined with current 

technological advances in computation power, gathering large amounts of data and 

performing complex calculations have become far easier. With technological progress on the 

hardware part there has also been progress on data analysis methods. Many machine learning 

tools have been introduced to the public and are used in many areas of life. One of the many 

machine learning tools that have been popularized are decision trees. These decision trees, in 

contrast to other machine learning tools are far easier to interpret due to their ability to be 

visualized into a tree structure. Generally, machine learning tools need to be trained on data, 

usually the more data the better the algorithm will perform in terms of predictive accuracy. 

However, as mentioned before the more data the more computation power is needed. 

Furthermore, as methods have become more available to use for the general public it is 

beneficial that users can interpret the results well. Therefore, it is relevant to further study 

decisions tree algorithms due to their usefulness regarding interpretability and wide use. Yet 

there are ways to take full use of larger amounts of data and transform it into a less 

computationally intensive state, such as discretization.  

Decision trees are a common tool in machine learning and one of the most used are 

classification and regression trees (CART). CART are divided into regression trees which are 

for continuous outcome variables and classification trees that are used for categorical outcome 

variables. The trees themselves use the same recursive partitioning algorithm but the outcome 

variables they predict determine the type of problem the tree is meant to answer. CART have 

become widely used especially due to their useful qualities such as allowing for selection of 

predictors automatically, discovering interaction effects and they can be considered non-

parametric (Ma, 2018). Furthermore, they are useful due to the ease at which they can be 

interpreted, but only when trees are not too large (James, Witten, Hastie & Tibshirani, 2014). 

Exact Tree is a decision tree algorithm that unlike many other tree algorithms is not a greedy 

algorithm. Instead, the Exact Tree is characterized by its ability to find the guaranteed optimal 

tree with the use of dynamic programming (Meulman, Dusseldorp & Van Os, 2011). The 

Exact Tree algorithm is computationally intensive and requires a lot of time when predictor 

variables have many unique values.  

Discretization methods are used in a large range of fields from finance (Wang, Shang, 

Huang & Feng, 2013) to medical research (Sahni, Müller, Jansen, Shephard & Taylor, 2006).  
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Discretization methods have the goal of reducing the search space. This reduction is realized 

by taking a continuous variable and transforming it into a nominal variable with a set amount 

of categories, which means it is a data reduction method. Generally, this is beneficial for 

algorithms since it makes the computation faster and more efficient. Furthermore, the nominal 

variables that discretization results in can be better suited for interpretation compared to non-

discretized continuous variables (Liu, Hussain, Tan & Dash , 2002). With the benefit of faster 

computation, it is a very useful method but there is a trade-off between the computation and 

the loss of data that comes with discretization (Kliegr, 2017). On the one hand, using 

discretization can improve the speed of computation as there are less unique data points, but it 

also reduces all data points in a prespecified interval to a single value.    

Two of the most common ways different discretization methods are grouped by are 

static to dynamic and supervised to unsupervised methods. Static methods refer to when the 

discretization is performed before the machine learning method is applied. Dynamic in turn, 

means the discretization is performed in conjunction with the learning (Ramirez-Gallego et 

al., 2015). In supervised discretization methods information about the outcome variable, often 

referred to as the class label, is used in the process of choosing the categories into which the 

predictor is discretized. Unsupervised methods in turn does not use information about the 

class label (Ramirez-Gallego et al., 2015). In unsupervised discretization the data is 

discretized into categories based on a pre-set criteria. Example of such criteria is dividing a 

variable into categories that have an equal frequency of observations. There are more ways to 

divide the different discretization methods, but these two are the most relevant for the current 

research.  

The research so far on the Exact Tree method did not examine the issue of how well 

the algorithm and the chosen method of discretization works on skewed data. Furthermore, 

after a literature search, research on this area is very limited and therefore it is interesting to 

focus on skewness and its effects of the algorithm’s accuracy. Moreover, in psychological 

research it has been shown that distributions often have quite varying levels of skewness 

(Cain, Zhang & Yuan, 2017). Therefore, it is important to understand what effect skewness 

has on different statistical tools that researchers have at their disposal. The primary objective 

of this paper is the investigation of two factors: skewness and systematic error (noise) on the 

discretization methods used in combination with Exact Tree. Prior research made on the 

impact of discretization on common data distributions developed a heuristic according to 

which generally classification error rates increase as the level of kurtosis and skewness grows 
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(Ismail & Ciesielski, 2003). This collection of common data distributions included various 

levels of skewness and kurtosis; in our study, we focused on varying the skewness but 

kurtosis was kept at a constant. In our analysis we also examined the level of agreement 

between the original non-discretized data and the discretized data. The discretization methods 

which were examined were the Optimal binning method, developed concurrently with Exact 

Tree, Equal Frequency discretization and rounding. Rounding is not considered an actual 

discretization method, but it reduces the data and makes computation faster but to a far lesser 

extent than discretization. Furthermore, it is unclear how generalizable the findings from 

previous research are to the Exact Tree, which justifies further research on the topic of the 

effects of discretization on skewed data.   

To evaluate the accuracy of the algorithm the misclassification rate (MCR) was taken 

for both the train data and test data predictions. The choice was made because the 

optimization method that is implemented in Exact Tree uses as default the training data  

However, we do not know the effect this optimization has on the predictive accuracy thus 

collecting the misclassification rate (MCR) for the training data was a relevant choice.  

Moreover, Brier scores were calculated as an alternative method of evaluating predictive 

accuracy. 

The first research question was to determine how the combination of different methods 

of discretization and changes in data, such as adding skewness and more systematic error 

(noise), affect the predictive accuracy of Exact Tree. The second research question was to 

determine the effect of discretization on the measurement agreement between discretized data 

and the original simulated data with varied levels of skewness and noise.  

 

2. Theoretical framework  

CART  

The CART method, which was developed by Breiman et al. in 1984, is used to build highly 

interpretable decision trees. In CART objects are split based on how they relate to the 

outcome variable (regression and classification). The tree starts at the root node as one group 

containing all objects. Further down, smaller groups are created and these only contain a few 

objects.  
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 For regression trees CART works by partitioning the data in a way that minimizes the 

relative sum of squared errors in the nodes, this is the index used to measure the purity of a 

node in regression trees. For classification trees a purity index that is often used is the Gini 

index, this splitting criterion states that the cut-point and splitting variable that bring the 

largest reduction to impurity are chosen for the next split (James, Witten, Hastie & Tibshirani, 

2014). However, this method is also vulnerable to selection bias, as the Gini index tends to 

give more weight for variables with more categories (Strobl, Boulesteix & Augustin, 2007). 

Classification trees can use other impurity measures, often times a misclassification rate or 

entropy is used. For example, in the case of the Exact Tree the misclassification rate is used.    

 Splits occur first at the parent node, in the example this is the highest split with Petal 

length in Figure 1. Then the splits occur iteratively lower at daughter nodes until finally the 

terminal node, which separates a group of observations by how they are predicted on the 

outcome variable. The splitting rules aim at dividing the objects based on increasing the 

homogeneity of the objects to the outcome variable (Breiman, Friedman, Olshen & Stone, 

1984). Stopping rules also determine when and how a split occurs, one rule that is often used 

is to set a minimum number of objects in any given node.  

Furthermore, there are rules on how object or subjects are assigned to the terminal 

node or leaf, these rules are different for classification and regression trees. For classification 

trees the rule is called the “majority vote”, this works by assigning each object in a node to the 

most frequently occurring category of the outcome. For regression trees it is determined by 

taking the mean value of the outcome variable for all objects within a node (James, Witten, 

Hastie & Tibshirani, 2014).  

The Exact Tree  

The Exact Tree algorithm developed by Van Os uses dynamic programming to build a 

globally optimal decision tree (Van Os, 2000). The algorithm delivers the optimal tree given 

the sample size stays under 500, and the number of predictor variables is not too large and the 

depth of the tree is under or equal to seven. The general aim of the algorithm is to improve the 

accuracy, stability and interpretability without increasing the complexity of the decision tree 

(Meulman, Dusseldorp & Van Os, 2011).  

The dynamic programming method works by searching every possible split at a single 

node, and then finding the optimal subtree for both nodes at each split. This search is repeated 

at every split and nodes of the tree. At each next step when the algorithm moves to the 
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subsequent node, the best group of subtrees is evaluated and picked. The purity index, which 

is a criterion that decides when splitting should stop, for the Exact Tree in the case of 

regression is measured by what split minimizes the sum of squared error. In the case of 

classification trees purity is measured by what split minimizes the misclassification rate 

(Meulman, Dusseldorp & Van Os, 2011). To demonstrate the Exact Tree method, it was run 

on the Iris data, which is commonly used in statistical analyses as an example (Fisher, 1936). 

The data includes different species of the Iris flower and their plant characteristics (Anderson, 

1936). In this example we predicted species of Iris flowers based on four variables, the plants’ 

petal length, petal width, sepal width and sepal length. Figure 1 shows the result of the Exact 

Tree method for the Iris data. The terminal nodes (gray boxes) show how the objects divide 

on the outcome variable, the species of Iris by: 1(Setosa), 2 (Versicolor) and 3(Virginica). The 

circles show which variables determined the splits at each node. Based on this example the 

most important variable in predicting species was Petal width.  In this paper we created 600 

Exact Tree models each of them was a unique tree such as the tree diagram shown in the 

Figure 1.  

Figure 1 Results of Exact Tree for the Iris data. Predicting species of flower based on plant 

variables: petal width, petal length, sepal length and sepal width. Model settings were the 

same as with the other Exact Tree analyses in this paper, but the Iris data was not discretized. 

 

Discretization methods  

In this study, we compared three discretization methods. The first discretization 

method is called Optimal Binning, which was developed in conjunction with the Exact Tree 

algorithm (Meulman, Dusseldorp & Van Os, 2011). The method finds a way to distribute the 

discretized observations in an optimal way for a pre-defined number of categories. The 

method does this by first ordering the observations on a predictor variable from low to high 
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and then dividing the observations in a sequence of categories so that the squared error 

between the observations and their respective category means is minimal. Moreover, the 

method is implemented using the Exact Tree package developed for R (Meulman, Dusseldorp 

& Van Os, 2011). 

The second method was Equal Frequency discretization where the data is discretized 

so that all of the desired number of categories have and equal number of observations, 

forming a uniform distribution. This method is quite arbitrary and does not reveal new 

information about the data, however its strength is in its simplicity to understand. Equal 

Frequency discretization is a part of the unsupervised discretization methods, meaning it does 

not use category information when transforming continuous variables into nominal variables. 

Generally, this method has been shown to be less sensitive to outliers. However, a weakness 

of Equal Frequency method is that in some cases observations with same value can be placed 

in different categories. Moreover, a drawback is that it can be challenging to determine the 

best amount categories to discretize the data into, resulting in the choice being largely 

arbitrary often (Hacibeyoglu & Ibrahim, 2018). To perform equal frequency discretization the 

package funModeling is used in R (Casas, 2020).  

The third method used was rounding; here the observations are not divided into 

categories that are set before the procedure, but the observations are rounded to a certain 

decimal. This method was chosen as an alternative to no discretization, since it does speed up 

the process but without high amount of data reduction that the above-mentioned methods 

have. Rounding off values can often improve the performance of machine learning model 

because it reduces noise and prevents overfitting. Therefore, rounding can result in the model 

being more generalizable (Senavirathne & Torra, 2019).  

 

3. Evaluation Criteria  

Predictive accuracy 

To evaluate the performance of classification methods, the Area under the ROC curve (AUC) 

and Brier score were calculated. The ROC refers to the receiving operating characteristic, 

which is a term first used to classify signals in combat. The curve plots a model’s rate of 

false-positives to true-positives. Generally, an area under the ROC curve of 1 is perfect, that it 

misses all the false positives, but also all of the true positives. Likewise, a rate of 0 is very 
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weak and it picks all the false positives as true positives. A “guessing model”, that for 

example randomly predicts either 1 or 2 would have exactly 0.50 as its area on both sides of 

the curve. Therefore, the evaluation of an AUC value returned suggests that a binary outcome 

value is sampled randomly with the probability of P(Y= 1) of 0.5 (Goldstein-Greenwood, 

2022). 

The Brier score is a metric developed by Glen Brier in 1950 to verify weather forecast 

predictions (Brier, 1950). The Brier score can be used as a metric to evaluate predictive 

accuracy of a model. A Brier score that is lower indicates better model accuracy, and higher 

score indicates poorer accuracy; the scores range from 0 to 1, with 0 being perfect accuracy 

(Rufibach, 2010).  In this study of Exact Tree the Brier score is calculated by the mean square 

error between the outcomes and the predicted class probability of classifying the object as 1 

instead of 0  (Harrison, Brady, Parry, Carpenter & Rowan, 2006).  

In addition, we used the misclassification rate (MCR) as a measure of predictive 

accuracy. The misclassification rate is often used to predict model prediction accuracy in 

classification trees, which is why it is used in this paper.  

Measurement Agreement 

The measurement agreement between the discretized data and the original data was 

evaluated using the Spearman rho correlation coefficient. The Spearman rho is known to be 

better suited when the predictors that are examined are skewed compared to other correlation 

measures (Mukaka, 2012).  

 

4.  Simulation 

For this study several scenarios of skewed distributions were simulated that were discretized 

with the three different discretization methods. The Exact Tree algorithm was then performed 

on the binned data predicting a binary outcome variable. The methods for this simulation are 

inspired by Csorba (2020) where the simulated data was based on properties seen in empirical 

datasets in psychology that are often skewed (Csorba, 2020). To simulate the skewed data the 

package PearsonDS was used in R (Becker & Klößner, 2022). 

For the simulation we examined two design factors, the first one was skewness, varied 

on three levels and the second factor is systematic error (or noise), varied on two levels. To 

visualize the design factors, Figure 2 shows how they are combined per cell of the design. 
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Skewness was varied by, skewness = 0 (no skewness), skewness = -0.2 (mild skewness) and 

skewness = -0.9 (more severe skewness). The levels of systematic were two-fold, in the first 

condition there were no predictors that were noise variables and in the high noise condition 

five of the ten predictors were noise variables (see below for the details).  

The dataset had a training sample size of 250 and the test data sample size was 1750. 

The training dataset should not be too large since it slows down the analysis significantly, as 

the algorithm is trained based on it. The test dataset can be far larger since it doesn’t require 

the Exact tree algorithm to be used on it. Furthermore, a larger test dataset allows for a better 

evaluation of how well the algorithm can predict the outcome. However, in this analysis 

having a larger test dataset still slows down the iterations since the discretization procedures 

is slower for larger data. The size of the train and test datasets were set following the 

limitations mentioned by the creators of the Exact Tree method to keep the computation time 

feasible. The predictor variables were all continuous and were discretized whereas the 

outcome variable was a binary variable. 

The population model for the outcome variable with low noise was a logistic 

regression model, the model is seen in Equation 1. The model predicted a binary outcome 

variable, with 10 predictors drawn from three types of distributions, two of which were 

skewed and one was normally distributed. More detail of these distributions are given below. 

Furthermore, two interaction terms were added into the model between the variables 𝑥2, 𝑥3 

and 𝑥3, 𝑥4. The Beta values or weights were determined so that some have lower and higher 

weights and the interaction terms were chosen for those with higher weights so that its effect 

would be more noticeable.  

 The population model for the high noise condition in the simulation can be seen in 

Equation 2. In this condition only five of the ten predictors were used to create the binary 

outcome variable but the same interaction terms were kept as in the low noise condition. 

Furthermore, to generate the binary outcome variable in the high noise condition error was 

added to the model. The error was added so that the signal to noise ratio would be 1:2. The 

error (e) was drawn form a normal distribution with the standard deviation determined by 

Equation 3, which caused the signal to noise ratio to be 1:2.  
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Equation 1 

𝑙𝑜𝑔(
𝑝𝑖

1 −𝑝𝑖
) = −1 + 0.1𝑥1 + 3.5𝑥2 + −0.5𝑥3 + 3.1𝑥4 +−0.1𝑥5 + 0.3𝑥6 +−0.5𝑥7

+−0.6𝑥8 + 0.3𝑥9 + −0.4𝑥10 + 3.5𝑥2𝑥3 + 3.1𝑥3𝑥4 + 𝑒 

 

Equation 2  

 𝑙𝑜𝑔(
𝑝𝑖

1−𝑝𝑖
) = −1 + 0.1𝑥1 + 3.5𝑥2 + −0.5𝑥3 + 3.1𝑥4 + −0.1𝑥5 +3.5𝑥2𝑥3 +

3.1𝑥3𝑥4 + 𝑒   

Equation 3 

𝑠𝑑 = √2𝑉𝑎𝑟(𝑙𝑜𝑔(
𝑝𝑖

1 −𝑝𝑖
)) 

In each simulation the skewness was the same for all predictor variables in the dataset.  

To generate a predictor in the more severe skewness condition a random sample was drawn 

from a Pearson distribution with a mean of 0, variance = 1, skewness = -.9 and kurtosis = 3. 

For the mild skewness condition the random sample was drawn from a Pearson distribution 

with a mean = 0, variance = 1, skewness = -.2 and kurtosis = 3. The last condition of no 

skewness was drawn from a normal distribution with a mean = 0, standard deviation = 1. It is 

to be noted that kurtosis was not varied and was kept at 3, which is what it is for a normal 

distribution. This process is repeated until 10 predictors were generated, which means that the 

intercorrelation between predictors was approximately zero.  

 

 

 

 

 

 

 



14 
 

 
 

Table 1 The table of the 3 x2 simulation design. The table shows which simulation conditions 

are used per cell of the design.   

Low noise conditions High noise conditions 

No skewness + Low 

noise  

No skewness + High 

noise  

Mild skewness + Low 

noise  

Mild skewness + High 

noise 

Severe skewness + 

Low noise 

Severe skewness + 

High noise 

 .  

 Within each cell of the simulation study, which can be seen in Table 1, all three of the 

discretization methods were applied to the predictors. In each cell of the design, we also 

evaluated the goodness of fit measures AUC and Brier score, this was done to determine if the 

data generation process went according to the simulation plan.   

The number of categories the simulated datasets are discretized into was determined 

by previous research on the Exact Tree algorithm and its predictive accuracy. The results 

suggest that using 25 categories results in the best prediction accuracy (Meulman, Dusseldorp 

& Van Os, 2011). Therefore, 25 categories were used for the two compared discretization 

methods. Moreover, the simulated data was rounded to one decimal place in the rounding 

condition. This choice was taken due to the simulated data having small values where 

rounding to higher decimal places does not reduce the data by much. 

 Implementation of Evaluation Criteria 

To evaluate if the data generation process went as planned, we checked whether the 

high noise condition actually results in a model having more noise than in the low noise 

condition. Therefore, the true AUC per repetition of the simulation was computed. For the 

estimated models, as mentioned before, we used the Brier score and the MCR to evaluate the 

accuracy of the Exact Tree algorithm. The MCR and the Brier score was evaluated for both 

the test and train datasets in each repetition of the simulation. The AUC was calculated using 

the package pRoc in R (Robin, et al., 2011). To calculate the MCR and the Brier score the 

predict function of a beta-version of the Exact Tree R package was used. 
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Moreover, to answer the second research question, the spearman rho was evaluated for 

each of the discretization methods and the rounding method for every repetition. Since, the 

correlation coefficient was examined per predictor there would be 10 measures for each 

repetition. However, for the sake of clarity, the decision was made to only collect the range of 

the correlation coefficients of the 10 predictors from lowest to highest and the mode. The 

range was used in the descriptive analysis and the mode will be used for the statistical 

analysis as well. 

Moreover, the first research question was answered with the use of ANOVA (see next 

section) and the resulting p-values and effect sizes were reported, specifically the generalized 

Eta-squared measure of effect size (ges).  For the second research question the Kruskal Wallis 

test was performed.  

 Statistical Analysis 

To determine how the systematic error and skewness in combination with the 

discretization methods affect accuracy, an ANOVA was applied. In the ANOVA analysis the 

MCR of the test sets was the dependent variable. We examined the between subject effects of 

the systematic noise and the skewness variables, and the within subject effect of the 

discretization method. Furthermore, the interaction effects between the discretization method 

and skewness and discretization method and systematic error were examined. The ANOVA 

was performed with the use of the ez package in R (Lawrence, 2016).   

  To determine the effect of discretization on the measurement agreement between 

discretized data and the original simulated data with varied levels of skewness and noise, a 

Kruskal Wallis Rank Sum test was performed. The test was performed on the mode values of 

the Spearman rho correlation coefficients. To further examine which groups differed from 

each other a pairwise Wilcoxon test was performed. 

Computational Note  

All the necessary programming and simulation was performed in the programming 

language R and the R-code is provided on the following GitHub page for reproducibility: 

https://github.com/RobertRou/MSC-Thesis.git .  Furthermore, the simulation was performed 

on the Shark cluster computer provided by Leiden University.   

 

 

https://github.com/RobertRou/MSC-Thesis.git
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5. Results  

Descriptive Results 

To check whether the data simulation went according to plan a manipulation check was 

performed. The simulation study was designed to create two distinct groups of datasets with 

one having high systematic error (high noise), and the other with low systematic error (low 

noise). The manipulation check was evaluated using the AUC. The results of the manipulation 

check can be seen from Figure 2 which shows a histogram of AUC scores that are divided 

into two groups one with higher predictive accuracies and the other with lower predictive 

accuracies. The AUC evaluated the predictive accuracy of either the low noise (Equation 1) or 

high noise (Equation 2) model on the actual simulated outcome variables. The AUC shows 

whether there was a fall in predictive accuracy in the high noise condition when the outcome 

variable was generated using the model that had more systematic error and vice versa. In the 

high noise condition, the model was not as accurate as in the low noise condition, because the 

generation of the outcome variable involved more error. The AUC calculation was performed 

once for the entire dataset N = 2000 and this calculation was repeated 600 times in the 

complete simulation using the true models given by Equation 1 and 2.  

Figure 2 Histogram shows the frequency distribution of the Area Under the Curve values (N 

= 600).   
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When using the MCR as the indicator for predictive accuracy, the descriptive analysis 

suggested that accuracy across all discretization methods differed mostly with changes in 

noise. The Figure 3b shows a far higher MCR for the Exact trees that were performed in the 

high noise condition compared to the low noise condition. In contrast, Figure 3a shows that 

the influence of the changes in skewness on the accuracy of Exact Tree measured with MCR 

was quite small.   

The descriptive analysis did not show that the three discretization methods examined 

had large differences in terms of the accuracy. The box plots of Figure 3b show that what 

differentiated the MCR scores the most was whether the prediction was performed on data 

which was generated using different levels of noise.   

 

Figure 3 Box plots show effect of discretization method, skewness and noise on the 

misclassification rate. 

 

Note. Noise = yes is the high noise condition and Noise = no is the low noise condition 

Since the Brier score can also be used to answer the first research question the same 

descriptive analysis was performed for the Brier scores. The Figure 4 show violin plots that 

display the relationship between the different discretization methods and simulation 

conditions – level of skewness and noise. Figure 4a shows that the discretization methods did 

not differ much in terms of Brier scores and the scores had a similar trend when differentiated 

by the level of skewness in the data. Figure 4b shows how the Brier scores of each 

discretization method are differentiated by the level of noise in the data generation; the plot 

shows that both the high and low noise conditions have quite different Brier scores where the 
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low noise condition has Brier scores that are lower, which indicates better predictive 

accuracy.  

Figure 4 Box plots show effect of discretization method, skewness and noise on the Brier 

score 

 

Note. Noise = yes is the high noise condition and Noise = no is the low noise condition 

Figure 5 Diagram shows interaction effect between the discretization methods and levels of 

skewness in the data on the misclassification rate of the Exact Tree. It is to be noted that the 

range of the y-axis is very small.  

 

To understand the effect of discretization on the measurement agreement between 

discretized data and the original simulated data with varied levels of skewness and noise. The 

range of the spearman rho correlation coefficients for the predictor variables was calculated 
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and the mode value was taken. The average of the lower range was 0.9989 and the average of 

the upper range was 0.9995. Figure 6 shows boxplots for each discretization method and the 

range (difference between highest and lowest spearman rho for each simulated dataset) of 

spearman rho coefficients. The boxplot suggests that the Optimal Binning method shows the 

highest amount of variation in the measurement agreement as the lowest and highest 

Spearman rho differed the most. Moreover, Figure 7a displays boxplots that show how the 

discretization methods compared on the mode spearman rho value. Here all three methods 

showed a good measurement agreement by looking the Y-axis, as it ranges from 0.99 to 1. Of 

the three methods however, the Optimal Binning method had the best performance when 

looking at the mode. In Figure 7b the boxplots display the mode Spearman rho Values for 

each level of skewness, it can be seen that both the mild skewness and no skewness conditions 

were higher than severe skewness in terms of the median of Spearman rho mode values.  

Figure 6 Boxplot showing the computed range of Spearman rho correlation coefficients 

(difference between the largest and smallest predictor variable per simulated dataset) for each 

discretization method. 
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Figure 7 Box plots show the mode Spearman rho values for each method of discretization in 

(a) and for each level of skewness in (b). It is to be noted that the Y-axis is quite small. 

 

Testing the Differences Between Methods 

  The ANOVA using the MCR resulted in significant main effect for discretization 

method with a very small effect size (F(2,1188) = 14.1, p < .05 and 𝜂2= 0.008). The 

interaction effect between discretization methods and skewness (F(4, 1188) = 2.4,  p <.05 and 

𝜂2= 0.003) was significant but with a very small effect size. The direction of the effect is 

further examined in Figure 5 with an interaction diagram. The effect of the discretization 

methods on the MCR depended on the level of skewness, the diagram shows that with less 

skewness the discretization methods resulted in higher MCR .  Furthermore, the interaction 

between discretization methods and noise was not significant (F(2,1188) = 0.67,  p = .51 and 

𝜂2= 0.0004). Moreover, there were significant main effects for noise and with a very large 

effect size, (F(1,594)= 8263 , p <.05 and 𝜂2= 0.902), and skewness with a medium effect size 

( F(2,594) = 51.9 , p<.05 and 𝜂2= 0.103).  

 Secondly, we performed a similar ANOVA using the Brier scores. The ANOVA 

resulted in a main effect for discretization method that was not significant with a very small 

effect size (F(2,1188) = 0.59 , p = .55 and 𝜂2= 0.0004). The interaction effects between noise 

and discretization method was not significant and had a very small effect size (F(2,1188) = 

1.29,  p = .27 and 𝜂2= 0.001) and between skewness and discretization method was not 

significant and also had a very small effect size (F(4,1188) = 0.14, p = .96 and 𝜂2= 0.0002). 

Moreover, the main effect for noise was significant with a large effect size (F(1,594) = 205.1,  

p < .05 and 𝜂2= 0.15). The main effect for skewness was not significant with a very small 

effect size (F(2,594) = 0.13 p = .87 and 𝜂2= 0.0002). 
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 As mentioned before, to understand the effect of discretization on the measurement 

agreement between discretized data and the original simulated data with varied skewness and 

noise we computed a spearman rho correlation coefficient. To determine whether there were 

differences between methods of discretization in measurement agreement a Kruskal Wallis 

test was performed on the mode Spearman rhos. The results of the Kruskal Wallis test for the 

different methods showed a significant difference between the methods of discretization on 

the mode (Chi-squared(2) = 1343.3. p < .05). The results of the Kruskal Wallis test examining 

the differences in Spearman rhos by the three levels of skewness also showed a significant 

difference (Chi-squared(2) = 143.92 , p < .05). The Kruskal Wallis test for examining the 

difference in spearman rho between the two levels of noise did not show a significant 

difference between the groups (Chi-squared(1) = 0.019, p = .88).  

To determine which groups in particular differed from each other we used a pairwise 

Wilcoxon rank sum test. The results showed the discretization methods all differed from each 

other significantly on the mode Spearman rho (p < .05). The direction of the effect was 

explored in Figure 7a which shows that Optimal Binning had a higher mode Spearman rho 

than the other methods. Examining the difference between the three levels of skewness show 

a significant difference between the non-skewed data and the more severely skewed data (p < 

.05) as well as between the mild skewness and the severe skewness data ( p<.05). The 

difference between the non-skewed data and the mild skewness data was not significant (p = 

.97).  The direction of the difference can be seen in Figure 7b which shows that in both mild 

skewness and no skewness the median mode Spearman rho was higher than for the more 

severely skewed condition.  

 Furthermore, due to many observations of the Spearman rho correlation coefficient 

were 1, so perfect correlation, the decision was made to perform the analysis on the non-

perfect correlation subset of the mode values. The results were similar to the ones reported 

above. The Kruskal Wallis resulted in a significant difference between the discretization 

methods (Chi-squared(1) = 114 , p < .05). The Kruskal Wallis test between the three levels of 

skewness also resulted in a significant difference (Chi-squared (2)= 513, p < .05).  The 

difference between the two levels of noise was not significant (Chi-squared(1)= 0.07, p = 

0.78). To examine which group in particular differed from each other the pairwise Wilcoxon 

rank sum test was only examined on the groups of skewness. The test shows a significant 

difference between the non-skewed data and the severely skewed data (p < .05) as well as 

between the mild skewness and the severe skewness data (p <.05). The difference between the 
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non-skewed data and the mild skewness data was not significant (p = .95). The direction of 

the effect are shown in Figure 8, the direction is mostly the same as without removing the 

perfect correlation.  

Figure 8 Box plots show the mode Spearman rho values for each level of skewness when the 

perfect correlation has been removed. It is to be noted that the Y-axis is quite small. 

 

 

6. Discussion  

The purpose of this simulation study was to gain a better understanding of the Exact Tree 

algorithm and how different methods of discretization and changes in data, such as adding 

skewness and more noise, affect its predictive accuracy. The second aim was to understand 

the effect of discretization on the measurement agreement between discretized data and the 

original simulated data with varied skewness and noise. The results suggest that the choice of 

discretization method does affect the accuracy of the Exact Tree. However, the main effect of 

type of discretization had a small effect size of Eta-squared = 0.008 (generalized eta-squared) 

suggesting that the choice of processing the data with Equal Frequency discretization, 

Optimal Binning or rounding does not have a large influence on the resulting miss 

classification rates. However, the significant interaction effect between the discretization 

method and the level of skewness when MCR was used suggests that when making the 

decision to discretize, skewness should be taken into account (but the effect size was small, 

Eta-squared= 0.003). In a closer look, the Optimal Binning method had a higher MCR in the 

mild skewness and non-skewed conditions. This would suggest that when there is less 

skewness in the data, rounding and Equal Frequency discretization should be preferred to 
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Optimal Binning. In this study the MCR was lowest at the more severe skewness condition 

for all three methods, which differed from previous literature where skewness and kurtosis 

had a positive relationship with classification error (Ismail & Ciesielski, 2003). However, we 

only manipulated skewness and kept kurtosis at a constant, which could explain the difference 

in results. Moreover, Equal Frequency discretization was found to be less vulnerable to 

changes in the distribution of the data, which could also explain why the error rate decreased 

when it was used in the severe skewness condition (Ismail & Ciesielski, 2003). Moreover, 

when the same analysis was performed using the Brier scores as a measure of predictive 

accuracy the choice of discretization method did not have a significant effect on the predictive 

accuracy. 

The second research question was to determine the effect of discretization on the 

measurement agreement between discretized data and the original simulated data with varied 

skewness and noise.  The results show that all three discretization methods resulted in 

discretized data which had high measurement agreement with the original non-discretized 

variables. The measurement agreement was measured using the Spearman rho correlation 

coefficient between each of the ten discretized predictor variables and original non-discretized 

variables. The result was summarized as the mode Spearman rho between the ten discretized 

and the ten non-discretized predictor variables for each of the discretization methods for all 

600 simulated datasets. The results suggest that the methods all differed from each other 

significantly, with the Optimal Binning method having the highest mode of Spearman rho 

suggesting that on average it resulted in a higher correlation than the other methods. 

Furthermore, measurement agreement differed significantly between the three levels of 

skewness, but not between the two levels of systematic error. The results also show that 

measurement agreement varied a lot more in the rounding method which is not surprising 

since it is not an actual discretization method and does not reduce the data to the same extent 

as the two other methods compared. When looking closer at how the three levels of skewness 

differed from each other, the results showed that the non-skewed and mildly skewed levels 

did not differ significantly in measurement agreement, but both differed from the severe 

skewness level. 

As a sensitivity analysis, the ANOVA was performed again the mode values which 

showed perfect correlation because generally having perfect correlation does not add new 

information. The results without the perfect correlation values also show that there was a 

significant difference between the discretization methods. Furthermore, the three levels of 
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skewness differed significantly on the mode values but the two levels of noise did not, which 

was the same results as in the analysis that included the perfect correlation values.  

Certain limitations of this study are that only three methods were compared and a 

larger amount of discretization methods would provide more information, for example in the 

research by Ismael and Ciesielski (2003) six discretization methods were compared (Ismail & 

Ciesielski, 2003).  Moreover, the trend seen in the interaction between skewness and 

discretization method suggested that in the most skewed condition the MCR was lowest for 

each of the methods, and there was no difference between the methods. In psychological 

research -0.9 skewness (most skewed condition of this study) is not most severe and higher 

levels are seen, such as one study found that overall at the 95th percentile of skewness levels 

in psychological research variables had skewness of 2.77 (Cain, Zhang & Yuan, 2017). 

Furthermore, in this study the choice was made to discretize the simulated data in to 25 

categories, the choice was based on research that used Exact Tree and found using 25 

categories to generally have to best accuracy (Meulman, Dusseldorp & Van Os, 2011). As 

currently the decision to how many categories the data was discretized was quite arbitrary, we 

suggest future research towards finding a method by which to decide the number of categories 

data is discretized to.  Finally, it should be noted, that we worked with a beta version of the 

Exact Tree R-package. After the whole simulation study was performed, we found out that the 

estimated predicted probability (by the predict function of Exact Tree) was only correct for 

regression problems not for classification problems (such as the ones in this study). Therefore, 

the results for the Brier score should be interpreted with caution. 

In regards to future research we propose incorporating more discretization methods 

and comparing their predictive accuracy with the Exact Tree algorithm. Furthermore, we 

suggest that future simulations include more extreme levels of skewness such as 2.77, which 

are still realistic in psychological research.  

In conclusion, with regard to predictive accuracy the Optimal Binning performed 

worse than the equal frequency and rounding methods, except for situations with severe 

skewness in which there was no difference in performance between the methods. And with 

regard to measurement agreement, the Optimal Binning performed a bit better than the other 

two. The results suggest that different discretization methods produce data that can vary in 

how well they correlate with the original data.  In this case the discretization methods (Equal 

Frequency and Optimal Binning) produce less variation in the measurement agreement than 

rounding. However, in this study all three methods still returned high measurement agreement 
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between the non-discretized and discretized data. Overall, the results of this study suggest that 

there were only small differences between the methods, therefore the choice of discretization 

method is not that important to the performance of the Exact Tree. 
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Appendix 

 

Table 2 Mean misclassification rate of each combination of the simulation factors on test 

data. 

  Low Noise   High Noise   

Skewness Equal Optimal Round Equal Optimal Round 

-0.2  0.274 0.286 0.275 0.432 0.436 0.431 

-0.9 0.248 0.246 0.244 0.425 0.429 0.428 

0 0.277 0.285 0.278 0.433 0.436 0.429 

 

 

 


