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Abstract 

Objective: The purpose of this project was to find a way to tackle the problem of unfair prediction 

with respect to group membership. I wanted to achieve predictive invariant prediction and 

recognize variables where predictive invariance (PI) of linear regression across groups held. 

Method: Simulation study: I applied LASSO and MCP penalization methods to penalize 

intercepts, slopes, and their group differences towards zero. Simulation factors included sample 

size, PI-status of intercept, and number of PI-slopes. The goal was to correctly recognize the PI-

status of intercepts and slopes. Outcomes such as proportion of correctly identified PI-status of 

parameters as well as sensitivity and specificity were inspected. Empirical study: Life Satisfaction 

was predicted from 11 separate predictors. Sex was used as a grouping variable. LASSO and MCP 

were used to penalize slopes as well as their difference between groups. Results: PI intercepts are 

more often recognized compared to Not PI intercepts. The most influential factors are 1) number 

of coefficients in the model with the same PI-status and 2) sample size. MCP is found to be more 

accurate than LASSO in recognizing PI slopes and intercepts. The opposite is true for the 

recognition of Not PI coefficients. Conclusion: The methods can be used improve the fairness of 

predictions with respect to groups.  

 

Keywords: Predictive Invariance, Multi-Group Multiple Regression, Penalizing group 

differences. 
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   Seeking Predictive Invariance in Multi-Group Multiple Regression 

A lot of research concerns group differences and numerous articles are written on the topic. 

Some studies have looked at differences between patients and controls to analyze if certain 

treatment methods are effective (see Lafeuille et al., 2015; Smits et al., 2020). Other research has 

studied people with different blood types and if they were prone to specific health outcomes (see 

Latz et al., 2020; Leonard et al., 2010). Some have investigated how being a part of different 

groups of society may have had an impact on well-being, so be it, gender, ethnic- or socio-

economic background, religious groups, etc. (see Cortès-Franch et al., 2019; Hanif et al., 2021; 

Hetelekides et al., 2021; Wood et al., 2017). Thus, it is only fair to say that how group membership 

influences prediction can be a major topic.  

In this study I investigated the prediction of life satisfaction from a set of independent 

variables1, using sex as a grouping variable – a multigroup multiple regression analysis.  Previous 

literature regarding the prediction of life satisfaction has found differences between male and 

female subjects for some of the predictive variables used in this analysis as well as a difference in 

life satisfaction scores overall. Females have higher average life satisfaction scores than men (Al-

Attiyah & Nasser, 2016; Joshanloo & Jovanović, 2020). Thus, if we were to assume two multiple 

regressions, one would expect the intercept for the regression performed on female subjects to 

have a greater intercept. Moreover, in a recent study by Becchetti and Conzo (2022), they discussed 

the Gender Life satisfaction / Depression Paradox. They found that despite women having more 

life satisfaction overall, they were significantly more influenced by their (negative) emotional 

states than men. As a result, I assume that for variables related to emotional states (i.e., euphoria, 

dysphoria, and general psychological health) slopes are larger for female subjects, than for male 

 
1 For a full list as well as abbreviations and statistics, see Table A1. 
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subjects. Moreover, according to recent research by Joshanloo and Jovanović (2020) women 

scored higher on life satisfaction across employment groups, suggesting that status of employment 

was less relevant for women. Joshanloo (2018) had found the same results. In addition, they found 

evidence that variables related to education were of greater importance when predicting life 

satisfaction in men. Thus, looking back at our multiple regressions, men should have larger slopes 

on variables related to unemployment and potentially also study delay.  

In addition to these variables where group differences are evident, there are some variables 

where the prediction of life satisfaction appears independent of group membership or where a 

difference has yet to be found. For example, research performed on the prediction of life 

satisfaction from measures of (positive- and negative-) self-esteem, and personality traits (i.e., 

impulsivity, neuroticism) suggest that life satisfaction could be predicted consistently across 

groups (Suldo et al., 2015; Ye et al., 2012). Moreover, Radošević et al. (2018) found that need for 

change influences life satisfaction. Here a group difference has not been properly investigated and 

consequently has also not been found. Looking at disinhibition, research has, just like with our 

need for change variable, found a link with life satisfaction (Bourbonnais & Durand, 2018). The 

same researchers found women to display higher levels of disinhibition, yet an investigation of 

how the disinhibition differs for men and women concerning life satisfaction was not present and 

thus again, one cannot assume differences to be present.  

Using these variables as predictors of life satisfaction, where some clearly depend on 

group-membership, one could choose to make two separate models for each group. Alternatively, 

one could make one single prediction that is biased with respect to group membership. However, 

both methods have their downside. Having separate analyses make it troublesome to say something 

about the whole population, and a single prediction function could end up being unfair to certain 
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subgroups when group membership is not considered (see Cleary, 1968). It would be of interest to 

investigate an alternative. 

Optimally, one would make a multiple regression prediction that is 1) not two different 

regressions, and 2) is not generalizing. That is, one would want to be able to include all the 

variables mentioned, in one large prediction function without disregarding group membership. 

This is where the topic of predictive invariance (PI)2 becomes relevant, where prediction does not 

depend on group membership yet also does not exclude it from the analysis.3  

Lately, little research has been conducted on the topic of PI, especially considering multiple 

regression, as compared to latent variable modeling. Millsap (1997) has written about PI and 

compared it to measurement invariance – a topic revisited both by Borsboom (2006) as well as 

Millsap (2007) himself. These studies have focused on how PI relates to measurement invariance 

and how they are comparable but not the same. Partly the reason for this lack of recent research 

on PI could be found in the discussion by Hunter and Schmidt (2000), as mentioned by Millsap 

(2007). In short, they argue that one can trust the research done on this topic and it thus needs no 

further exploration. This has led to there being little enthusiasm regarding the investigation of PI, 

and if discussed, it has always been linked to measurement invariance. Until the present day, there 

has been a lack of research that looks at unbiased prediction through the means of PI. This is where 

this study becomes relevant. It was of interest to investigate how PI could be analyzed in multi-

group multiple regression (MGMR). The goal of this research was to answer the following 

questions:  

Considering MGMR: Under what conditions can one a) correctly recognize predictive 

invariance, and b) make prediction that is fair with respect to multiple groups? 

 
2 For a full list of abbreviations, see Table A2. 
3 The term PI is elaborated on in the Theoretical Framework section. 
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In the upcoming theoretical chapter, the theory behind this problem and how to investigate 

it is presented. More specifically the chapter concerns: How PI is linked to other more familiar 

concepts, how I intend to be referring to PI throughout the paper, how PI translates to multiple 

linear regression, and in what way one can investigate PI.  
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Theoretical Framework 

In this chapter, the theoretical framework is presented. In detail, I discuss how PI links to 

other forms of invariance and how it can be applied to linear regression. Moreover, I discuss the 

use of penalties and how one can approach PI through penalized regression.  

PI as a Concept 

Let Y be a continuous criterion measure of interest, X - a vector of predictor variables, and 

G - a discrete group identifier, a general definition of PI is 

 

 

 𝑃(𝑌|𝑋, 𝐺) =  𝑃(𝑌|𝑋), (1) 

 

 

for all relevant Y, X, and G (Millsap, 2007). 

Consider the example from the introduction and let Y represent life satisfaction, X the 

predicting variables euphoria, general mental health, neuroticism, etc., and G the dichotomous 

grouping variable sex. Using Millsap’s way of phrasing, PI holds for the model when the 

probability of life satisfaction, given the scores on its predictors, is independent of sex. That is not 

to say that group differences in the distributions of the predictors do not exist. 

When discussing PI of parameters Huang (2020) used a different terminology than Millsap. 

They use the terms homogeneity and heterogeneity. Conversely, if PI held for the slopes of 

euphoria, the parameters were homogenous. Likewise, if PI did not hold, they called parameters 

heterogeneous. In this study, I will be introducing a new term, namely PI-status.4 PI-status has two 

 
4 It may seem redundant to introduce yet another term for the same concept, yet with respect to abbreviations and to 

make the text easier to read this is a necessary detail. 
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possible states; “PI” – where PI holds and thus parameters are homogeneous, and “Not PI” – where 

PI does not hold, and parameters are heterogeneous. The parameters that have “PI-status PI” are 

also referred to as “PI parameters”. Likewise, the parameters with PI-status Not PI are also referred 

to as Not PI parameters.  

PI is seen as an analogy to other types of invariances. Specifically, measurement- and 

structural invariance in structural equation modeling (SEM). For example, in measurement 

invariance, Equation 1 is applied to the probability of vector of manifest indicators (Y) of latent 

factors (X) and a grouping variable (G). The difference lies in that measurement invariance ensures 

the meaningful comparison of factor scores or their distributions of latent factors across groups 

whereas PI ensures the fairness of prediction concerning groups. 

PI in Regression 

Considering PI in linear regression, Millsap (2007) mentioned that there are multiple types 

of PI. First, there is slope invariance. This is the simplest type of PI. If one faces slope invariance, 

the variables overall yield the same linear predictor in each group, except that the scores on the 

outcome variable may still be systematically higher and have higher variance in one group than 

the other. The second type of PI is what Millsap (2007) coined as strong regression invariance. 

When strong regression invariance holds, both the slopes and the intercept of the model are 

invariant. Strong regression invariance is comparable to strong factorial invariance in SEM 

(Meredith, 1993, as cited by Millsap, 2007). An even more restrictive type of PI is what will be 

referred to as full predictive invariance. In the case where PI holds for the intercept, all slopes as 

well as the error variance, one has achieved full predictive invariance. In practice, the interest has 

focused on the regression intercept and -slopes and thus strong regression invariance (Millsap, 

2007).  
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Using for prediction a model where strong regression invariance does not hold will result 

in biased predictions due to group membership. Consequently, I seek a model: 

 

 𝑌𝑔 = 𝛽0𝑔 + 𝑥1𝑔𝛽1𝑔 +⋯+ 𝑥𝑃𝑔𝛽𝑃𝑔 + 𝜖𝑔 , (2)  

 

where the intercept, β0, and slopes, β1 through βP, are equal across groups, g.5  

 Knowing that the goal was to seek the model presented, figuring out how to get there would 

be the next step.  This was where penalization came into play. 

Penalizing Prediction Towards Invariance 

Ordinarily, penalization has been used for variable selection and interpretation as well as 

to improve the accuracy of prediction (Hastie et al., 2015, p. 7). The regression coefficients, 𝛽, 

were penalized towards zero. Originally, one can look at this step at which variables are good 

predictors of the outcome and which are not. In this study, it was of interest to minimize group 

differences, opting for a fair general prediction where group membership has been considered. In 

doing so one could pinpoint the PI-status of a slope and thus pinpoint what variables depended on 

group-membership. This can be done through penalized regression. Penalized regression can put 

a penalty on the group difference, minimizing the difference between 𝛽𝑝0 and 𝛽𝑝1 (p = 1, …, P). 

Below it is explained in more detail how this difference in parameter value, also referred to as the 

increment component, can be penalized.  

The Role of the Increment Component. PI-status, and thus the 

homogeneity/heterogeneity of groups, can be investigated by looking at an increment component. 

 
5 If the intercepts and the slopes are invariant over groups the means of the predictions of given values of the 
predictors are invariant over groups, if the residual variances also are equal over groups the conditional 
distribution of predictions is invariant too. The latter is considered full predictive invariance. 
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Huang (2018) suggested a reparametrized analysis with penalization. In their analysis, they 

focused on two components; a reference component, β, - defined as the common component across 

groups, and an increment component βg, - defined as the difference in parameter value between 

the reference group and a non-reference group, group g. The regression coefficient for any one 

group is then defined by the sum of the reference- and increment component: 

 

 𝛽𝑔 = 𝛽  + 𝛽𝑔. (3) 

 

By investigating the sparsity of the increment component, one can detect the PI-status of a 

parameter. If the penalized estimate of the increment parameter of a predictor is equal to zero, the 

predictor's PI-status is PI. If this increment is non-zero, the predictor’s PI-status is Not PI. 

Penalizing the increment is not per se a new method as Huang (2018) used this method 

applied to structural equation modeling (SEM). However, applying it to MGMR is new.  

Types of Penalization.  Two penalized regression methods were included in this study: 

least absolute shrinkage and selection operator (LASSO) estimation and minimax concave penalty 

(MCP) estimation. LASSO regression, introduced by Tibshirani (1996), minimizes the residual 

sum of squares to the absolute value of the coefficients that are less than the penalty parameter, λ 

(Tibshirani, 1996), truncating at zero, where a λ that gives the most parsimonious model is chosen. 

In this study, penalties were put on the increment as well as the slope parameter. To compare the 

results of LASSO, I added MCP as an alternative penalization method. MCP, introduced by Zhang 

(2010), is a shrinkage estimate that gives close to unbiased and accurate variable selection for high-

dimensional linear regression, according to Li and Yang (2019). Literature has already found MCP 
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to be a good alternative to LASSO regarding prediction accuracy and when it comes to creating 

sparse estimation (Li & Yang, 2019). I expected this to be true for increment components as well. 

Applying Penalties. Huang (2018) discuss how penalized estimates of SEM parameters 

are found by maximizing the penalized likelihood criterion for parameters, and regularization 

parameter, 𝜆. Since we focus on MGMR and not SEM, the parameters will be denoted as 𝛽. The 

penalized likelihood criterion is defined then by: 

 

 𝑈(𝛽, 𝜆) = 𝐿(𝛽) − 𝑅(𝛽, 𝜆).  (4) 

 

Here, 𝐿(𝛽) is the likelihood function for the model, and 𝑅(𝛽, 𝜆) is the function penalizing the 

parameter estimates.6 𝑅(𝛽, 𝜆) is defined by:  

 

 𝑅(𝛽, 𝜆)  =  ∑ 𝑐𝛽𝑝𝜌(|𝛽𝑝| 𝜆)

𝑃

𝑝 = 1

 +∑∑𝑐𝛽𝑝𝑔𝜌(|𝛽𝑝𝑔| 𝜆)

𝐺

𝑔=1

𝑃

𝑝=1

 , (5) 

 

where the first term on the right-hand side of the equation contains the reference parameters and 

the second refers to the increment parameters. The factor c may have a value of 0 or 1 indicating 

what parameters should be penalized. Table 1 gives the penalty function for LASSO and MCP. 

Note that the main difference between LASSO and MCP is that MCP has a convexity parameter, 

δ, and LASSO has not (Zhang, 2010). 

 

 

 
6
 For more detail on the likelihood function, see Huang (2018), p. 503. 



SEEKING PREDICTIVE INVARIANCE IN MULTI-GROUP MULTIPLE REGRESSION  14 

 

Table 1 

Mathematical Expression of Penalty put on the Component per Penalization Method 

Penalization method Mathematical expression 

LASSO  𝜌
𝐿𝐴𝑆𝑆𝑂

(|𝛽|, 𝜆)    =  𝜆|𝛽|        

MCP 𝜌
𝑀𝐶𝑃

(|𝛽|, 𝜆)      =

{
 

 𝜆|𝛽|−
𝛽2

2𝛿
, 𝑖𝑓   |𝛽| ≤ 𝜆𝛿

1

2
𝜆2𝛿, 𝑖𝑓   |𝛽| > 𝜆𝛿

 

Note. 𝜌 is the penalty function. β is the penalized model parameter (read: reference- or increment component). 𝜆 

is a non-negative penalization parameter. δ controls the convexity of MCP and thus how fast the penalization rate 

goes to zero. 

 

The goal of this study was to be able to say something about whether MCP or LASSO 

was a preferred method when it came to investigating PI, using penalization methods previously 

used in SEM. Additionally, it was interesting to know under what conditions the potential 

preference occurs. Just how this was investigated is explained in the next section.  
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Method 

In this study, I performed both a simulation study was as well as an analysis of empirical 

data. In the simulation study, I simulated the PI-status for parameter slopes and the model intercept. 

I explored to what degree the PI-status was recognized and what factors may have played a role in 

this. Concerning the empirical data, I investigated the degree to which it was possible to push PI 

to hold for the parts of the model where there was reason to believe PI held. In either study, I 

performed penalized MGMR with LASSO and with MCP – penalizing the both reference- and 

increment components.  

Penalization in practice 

 As already mentioned previously, two separate regressions with LASSO and MCP penalty 

were used to perform analysis. The model was defined, the grouping variable and reference group 

were set, and the PI restrictions were applied. The focus was on strong regression invariance. The 

regularization parameter(s) were chosen by the model based on the Bayesian Information Criterion 

and not manually selected.  

Software.  

To perform the analysis, I used the LSLX package.7 For implementation of method in 

simulation study, see Appendix B1. For code showing how the method is applied to empirical data, 

see Appendix B2. LSLX’ author Po-Hsien Huang (2020) claims that LSLX is possibly the most 

sophisticated package for penalized SEM in terms of usability, dependability, efficiency, and 

functionality.  He illustrated the use of LSLX by multi-group factor analysis, but it is sufficiently 

general to be used for multiple regression with several groups. As a part of the model specification, 

the penalization functions of Equation 4, Equation 5, and Table 1 could be applied. Within this 

 
7 R version 4.1.1 



SEEKING PREDICTIVE INVARIANCE IN MULTI-GROUP MULTIPLE REGRESSION  16 

 

package, there was a separate function where one can specify what coefficients to penalize, namely 

$penalize_coefficient(). In the simulation, I set the reference group to be group “0” and specified 

"y <-1/1", and "y<->y/1" to indicate that the increment of the model intercept and slopes were to 

be penalized. LSLX further has the benefit of having similar model specifications to the better-

known LAVAAN package, making it rather user-friendly, see Appendix C for more details.       

Simulation Study  

     Continuous data were simulated from a multivariate normal distribution. All datasets 

included 12 predicting variables, X1g through X12g, one dichotomous group variable G, and one 

estimated outcome Yg. First, the model intercept, β00, and slopes, βp0, (p = 1, …, P) for the reference 

group were simulated. After that intercepts β01, and slopes, βp1, (p = 1, …, P) for the other group 

were simulated, depending on PI-status. If a parameter’s PI-status was PI, both would be identical 

to that of the reference group. If the PI-status was Not PI, they would be equal to the reference 

component plus an added increment. Individual error terms, ϵg, were randomly distributed. Both 

the model intercept and slopes overall had a mean of 0.1 and a standard deviation of 0.25. The 

error term, with a mean of 0 and a standard deviation of 0.6, was constant across groups and 

predictors. The outcome variable was computed through a multiple linear regression model of 

mentioned predictors. Finally, all non-group variables were standardized using the pooled mean 

and standard deviation.8  

I ran a full factorial design with 32 conditions and 100 replications in each cell. The 

following three design factors were included: 

 
8
 For the simulated data this is not different than standardizing by z-scores. However, as one wants to keep the 

simulation study and empirical study close, all data sets within this study will be standardized with the same 

method, i.e., pooled standardizing.  
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• Sample size (N, with four levels: 100, 500, 1000, 4000), where both groups had 

N/2 observations. 

• PI-status of intercept (PIIntercept, with two levels: 1 [PI], 0 [Not PI]), where 1 

entailed homogeneous intercepts across groups. 0 entailed heterogeneous intercepts 

across groups. 

• The number of simulated PI slopes (#PISlopes, with four levels: 0, 4, 8, 12). The 

number indicated how many of the possible 12 slopes were equal across groups. 

For example, when #PISlopes was set to 4 it implied that 4/12 slopes were identical 

and 8/12 were not. When #PISlopes was set to 0, all simulated slopes had PI-status 

Not PI, and when set to 12, all simulated slopes had PI-status as PI, and thus the 

condition of slope invariance held for the simulated population.   

On each of the 32 cells the two penalization methods, LASSO and MCP, were applied to 

penalize both the reference- and increment components. 

By including these factors, it was possible to investigate what factors influenced the ability 

to recognize the PI-status of intercepts and slopes and in turn investigate some of the different 

levels of predictive invariance. For the eight cells where #PISlope was 12, slope invariance was 

investigated. In the four cases where both #PISlope was 12 and the PI-status of the intercept was set 

to PI, strong regression invariance was investigated.  

Using different methods, LASSO and MCP, allowed for an investigation into a preference 

of method when it comes to recognizing PI in MGMR.  Based on previous findings, I expected 

either method overall to do better with larger sample sizes and to find better results with MCP 

when it came to recognizing PI slopes. How the PI-status of the intercept and how #PISlopes would 

influence the accuracy was more explorative.  
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To investigate how well the methods managed to recognize the PI-status, several different 

evaluation criteria were analyzed. The evaluation criteria were divided both by parameter type 

(i.e., slope and intercept) and by PI-status – PI or Not PI. A detailed description of the criteria can 

be found in the next sub-chapter.   

Evaluation Criteria  

In this simulation study, the aim was to assess the accuracy of PI-status recognition, both 

for intercepts and slopes. The evaluation criteria were divided into two main parts, each with three 

subcategories:  

● PI-status in Slopes. How well the methods recognized the correct PI-status of slopes, 

across simulation factors and between methods.  

o The number correctly recognized Slopes (#TSlopes)
9: An indicator for how 

many of the 12 simulated slopes our method truly recognized the PI-status. This 

was a discrete outcome with values ranging between 0 and 12 where 12 

indicated a perfect result. Whether the PI-status was simulated to be PI or Not 

PI was not considered.  

o The number of correctly recognized PI slopes (#TPISlopes): The number of 

slopes for which the method correctly recognized PI slopes. This was a discrete 

outcome, similar to #TSlopes but in this case, the value depended on #PISlope.  

o The number of correctly recognized Not PI slopes (#TNPISlopes): The number 

of slopes where the method correctly recognized Not PI slopes. This too ranged 

 
9 T in the abbreviations stand for True and is an indicator of the PI status of the recognized coefficient being the 

same as the simulated PI status. Likewise, F stands for False – an indicator of the simulated and predicted PI-status 

being different. 
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between 0 and 12 but depended on the number of slopes that had simulated PI-

status Not PI (#NPISlopes)
10.  

● PI-status in the Intercept. How well the PI-status of the intercept was recognized 

across simulation factors and between methods. 

o Correctly recognized Intercept (TIntercept): [Factor: 1 = recognized, 0 = not 

recognized]: A dichotomous variable indicating whether our method correctly 

recognized the PI-status of the intercept, disregarding the actual status as PI or 

Not PI.  

o Correctly recognized PI Intercept (TPIIntercept): [Factor: 1 = correctly 

recognized, 0 = incorrectly recognized]: A dichotomous variable indicating 

whether the method correctly recognized the PI-status as PI. 

o Correctly recognized Not PI Intercept (TNPIIntercept): [Factor: 1 = correctly 

recognized, 0 = incorrectly recognized]: A dichotomous variable indicating 

whether the method correctly recognized the PI-status as Not PI. 

Additional Statistics. 

 In addition to the Evaluation Criteria proportion of correctly identified slopes, sensitivity, 

and specificity as well as the number of correctly identified intercepts were added to the analysis 

to give an even clearer picture of the accuracy of identification when investigating PI in slopes and 

intercepts.  

Correctly Recognizing the PI-status of Slopes. Investigation of the correctly identified 

slopes was divided into three parts, all of which were investigated across simulation factors.  

 
10

 In our analysis number of variables is equal to 12, thus #NPISlopes is equal to 12 - #PISlopes. It would also be correct 

to say it depends on #PISlopes, but in that case with a negative rather than positive relationship. 
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o Proportion of correctly recognized slopes overall [Range: 0:1]: The 

proportion of slopes where the method correctly recognized the PI-status of the 

slope,  

o Sensitivity of slopes [Range: 0:1]: The proportion of slopes where the method 

correctly recognized PI-status as PI, and; 

o Specificity of slopes [Range: 0:1]: The proportion of parameters where the 

method correctly recognized PI-status as Not PI. 

All three parts related to each other, where the proportion of correctly recognized slopes 

overall was a more general measure than sensitivity and specificity. More specifically, the 

proportion of correctly recognized was calculated as: 

 

#TSlopes

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠
 

 

…where the total number of predictor variables here is equal to 12.  

Considering sensitivity and specificity, Figure 1 displays how they are calculated, their 

components, and how they relate. The denominator of sensitivity, the sum of number of True PI 

slopes and False PI slopes, is the number of slopes given PI-status PI in the simulation (i.e., 

#PISlopes). Thus, if PI-status was set to PI for eight of the slopes and the model recognized six of 

them, the sensitivity rate equaled 6/8 = 0.75. In the same fashion, the denominator of specificity, 

the sum of number of True Not PI slopes and False Not PI slopes, was equal to #NPISlopes.
  Thus, 

if PI-status again was set to PI for eight of the slopes, and hence Not PI for four slopes and the 

model recognized two of these, the specificity rate would equal 2/4 = 0.50.   
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Figure 1 

Sensitivity and Specificity – Components, Relation, and Calculation 

  PI-status of slopes recognized by the Model  

  PI Not PI 
 

PI-status of 

slopes in 

Simulated 

Population 

PI 

Number of  

True PI slopes 

(#TPI) 

Number of 

 False Not PI slopes 

(#FNPI) 

Sensitivity 

#𝑇𝑃𝐼

#𝑇𝑃𝐼 +  #𝐹𝑁𝑃𝐼
 

Not PI 

Number of 

False PI slopes 

(#FPI) 

Number of  

True Not-PI slopes 

(#TNPI) 

Specificity 

#𝑇𝑁𝑃𝐼

#𝑇𝑁𝑃𝐼 + #𝐹𝑃𝐼
 

 

Note. Displaying how #TPI, #FNPI, #FPI, and #TNPI are all linked and how they are used to calculate Sensitivity and 

Specificity separately. PI = Prediction Invariant, #TPI = Number of slopes with True PI-status as PI, #TNPI = Number 

of slopes with True PI-status as Not PI, #FPI = Number of slopes with False PI-status as PI, #FNPI = Number of 

slopes with False PI-status as Not- PI. #TPI + #FNPI = #NPISlopes. #TNPI + #FPI = #PISlopes. True entails that the 

simulated and predicted PI-statuses are the same. False entails that they are not.  

 

Correctly Recognizing the PI-status of the Intercept. In addition to the evaluation 

criteria, the total number of recognized intercepts was added to the analysis to give a visual of the 

results. Here one could not look at proportions as there was only one intercept per model. Instead, 

I investigated the number of TIntercept per cell. In other words, investigating how many of the 

intercepts, in the 100 replications performed, were correctly recognized.  

Having defined the evaluation criteria, or outcomes, the additional statistics, and the focus 

of the study, I now continue to the part where I go about investigating the topic and seeing what 

the evaluation criteria and statistics may show. 
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Analysis of Evaluation Criteria. 

To investigate under what conditions the PI-status of slopes and intercepts were correctly 

recognized, I performed a multitude of different analyses. First off, to assess how the accuracy of 

the recognition of slopes, I performed a Quasi-Poisson Regression11. Secondly, when 

investigating the recognition of the intercept, I applied a Logistic Regression. See Table 2 for 

details on all analyses. In all analyses, I used simulation factors as independent variables setting 

a reference category per simulation factor. Each analysis was done separately for the outcomes 

extracted from the MCP- and LASSO analysis. To state how influential the levels of our 

simulation factors were, I inspected model effects, ratios12, and 95% confidence intervals (CI). 

To tell what method did better, LASSO or MCP, I performed an analysis of deviance, using the 

Akaike Information Criterion (AIC) as the selector. The lower the value the better. 

There are two things one should pay attention to when later looking at the results of these 

analyses. First, in the analyses, all coefficients and ratios were seen as a contrast to the specified 

reference categories. For example, if the Rate Ratio, or Odds Ratio, of a sample size of 500 

(versus 100) was 1.50, it entailed that the method in question did 50% better when the sample 

size was 500, compared to when it was 100. Second, not all data was used for every analysis. It 

should go without saying that analysis on PI parameters excluded the data where all slopes had 

PI-status Not PI, and analysis on Not PI parameters excluded the data where all slopes had PI-

status set to PI in the simulation. This explains why the reference category for #PISlopes in the 

analysis on PI slopes was 4 – not 0, and why the category where #PISlopes was equal to 12 was not 

 
11

 I performed a Quasi-Poisson Regression as I expected to find data where the mean was larger than the variance 

and where the ratio undoubtedly did depend on the number of slopes set to be PI. Hence, I was dealing with 

potentially over-dispersed data and Quasi Poisson Regression was appropriate.  
12

 For Quasi Poisson Regression these ratios are called Rate Ratios, for Logistic regression they are called Odds 

Ratios. 
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a part of the analysis on Not PI slopes. Moreover, the PI-status of the intercept was included in 

the analysis on TIntercept, but not in the TPIIntercept nor the TNPIIntercept analysis. 

In this part of the study, I had hoped to be able to identify what factors influence the 

correct recognition of PI in intercept and slopes as well as to test what methods could potentially 

perform this task better. 

 

Table 2 

Overview Analysis performed on Evaluation Criteria gained from Simulation Study 

Evaluation Criteria Reference category per 

simulation factor a 
Type of Analysis Offset 

Number of True Slopes  
(#TSlopes) 

● PIIntercept: PI 

● #PISlope: 0 

● Sample Size: 100 
 

Quasi-Poisson 

Regression 
- 

Number of slopes with True PI-

status: PI (#TPISlopes) 
● PIIntercept: PI 

● #PISlope: 4 

● Sample Size: 100 
 

Quasi-Poisson 

Regression 
#PISlope 

Number of slopes with True PI-

status: Not PI (#TNPISlopes) 
● PIIntercept: PI 

● #PISlope: 0 

● Sample Size: 100 
 

Quasi-Poisson 

Regression 
#NPISlope 

True Intercept (TIntercept) ● PIIntercept: PI 

● #PISlope: 0 

● Sample Size: 100 
 

Logistic Regression - 

True PI-status: PI for the 

Intercept (TPIIntercept): 
● #PISlope: 0 

● Sample Size: 100 
 

Logistic Regression - 

True PI-status: Not PI for the 

Intercept (TNPIIntercept): 
● #PISlope: 0 

● Sample Size: 100 

Logistic Regression - 

Note. Overview of type analysis done on different evaluation criteria, or outcomes, and what reference categories 

were used for each predicting factor. PI = Predictive Invariant. All analyzes are done separately for MCP and 

LASSO.  

- = offset not applicable. 

a = Simulation factors used as predictors and the value used as contrast. 
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Empirical Study 

Data 

The original data used for this project was an empirical data set consisting of 1775 

responses on several hundred questionnaire items where each item was a part of a test where the 

test score was the sum score across items. The data was part of a longitudinal study conducted 

between 1987 and 1991. Only the data from 1987 was used in this analysis as it was the most 

complete. A total of 11 tests were included and used as continuous predictor variables. The data 

consisted of 888 female- and 887 male subjects. Missing values were dealt with via LSLX’s default 

two-step method for missing data.13 In this study, the aim was to predict life satisfaction from 

different test scores related to personality, self-esteem measures, and work status.14 Additionally, 

sex was used as a grouping variable. This data set was chosen because it had a multitude of 

variables. This came in handy when studying penalization. Moreover, it was a large sample where 

the groups were of equal size which makes the study of PI more powerful. 

Analysis 

The data were analyzed similarly to one cell of the simulated data, using LASSO and MCP 

separately. Full predictive invariance was enforced, and females were used as the reference group. 

Increment components were investigated. Increments equal to zero indicated PI. Non-zero 

increments indicated Not PI. 

In this study, I had hoped to see that a) the methods recognized the PI-status of the intercept 

and slope coefficient in line with theory and b) that the methods penalized the model towards PI 

so that the prediction was fair with regards to group membership.  

 
13

 According to Huang (2020), this is a more efficient method than Listwise Deletion. 
14 For a full list, see Table A1. 
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It is important to note that unlike in the simulation study, it was of course impossible to 

know what slopes had what PI-status in the population. However, previous literature indicated 

what one could expect. In line with the theory presented in the introduction, the expected PI-status 

of the slope was PI for the following six variables:  positive- and negative self-esteem, impulsivity, 

neuroticism, need for change, and disinhibition. For the five remaining variables included in the 

analysis, namely euphoria, dysphoria, general psychological health, unemployment, and study 

delay, the theory suggested that PI-status was Not PI. For euphoria, dysphoria, and general 

psychological health the parameters’ group differences were expected to be negative. For 

unemployment, and study delay the parameters’ group differences should according to theory be 

positive. Finally, seeing that females were more satisfied with life than men, I expected PI-status 

as Not PI for the model intercept, and for the increment to be negative. 

 Having explained what both the simulation- and empirical study were based on as well as 

how I went about analyzing the different data, I now move on to the result section where I present 

the results of my analysis. Any discussion of said results is included in the Discussion section.  
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Results 

In this section, I investigated the ability of LASSO and MCP to recognize the PI-status of 

intercept- and slope coefficients. A look at simulation factors and how they affected said ability is 

presented in the following section.  

Simulations Study 

PI in Slope Parameters 

 Recognition of PI-status in Slopes.  The results supported our expectations with regards 

to sample size improving the number of recognized slopes and MCP being better at recognizing 

slopes where PI-status was set to PI rather than Not PI, see Table 3. The PI-status of the intercept 

had no effect. The #PISlopes had significant effects. Results indicated that a combination of slopes 

with PI and Not PI slopes decreased the number of correctly recognized slopes. This effect was 

larger for LASSO than for MCP. LASSO showed worse results when slope invariance was 

simulated than when PI-status was simulated to be Not PI for all slopes. For MCP, there were 

opposite results, where the best-case scenario would be where slope invariance was present in the 

data. Looking at a combination of factors, the best results were found where sample size was high 

and there were no PI slopes, see Figure 2. Both the intercept of the LASSO model, and of the MCP 

model were significant, suggesting that at the baseline level, both methods were very well able to 

recognize the PI-status of the slopes correctly. Overall, 85.3% of slopes were recognized 

correctly.15 LASSO correctly recognized 84.1% and MCP 86.5%. When comparing LASSO and 

MCP by an analysis of deviance I found residual deviance by AIC to be 618.0 for MCP and 676.5 

for LASSO – a difference of 58.5 in MCP's favor.  

 
15 The percentages of correctly recognized values are calculated excluding the missing values.  
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Table 3 

Quasi-Poisson Regression: Correct Recognition of the PI-status of Slopes Overall by Regression Estimates and Rate Ratios  

Variable LASSO MCP 

 Estimate SE p RR 95% CI Estimate SE p RR 95% CI 

     LL UL     LL UL 

(Intercept) 2.255 .007 .000*** 9.54 9.40 9.67 2.134 .007 .000*** 8.48 8.36 8.60 

PI-status Intercept a             

PI 0.000 .005 .991 1.00 0.99 1.01 -0.004 .005 .387 1.00 0.99 1.01 

# PISlopes b             

4 -0.144 .007 .000*** 0.87 0.85 0.88 -0.103 .007 .000*** 0.90 0.89 0.91 

8 -0.139 .007 .000*** 0.87 0.86 0.88 -0.021 .007 .002** 0.98 0.97 0.99 

12 -0.087 .007 .000*** 0.92 0.90 0.93 0.080 .006 .000*** 1.08 1.07 1.10 

Sample Size c             

500 0.165 .007 .000*** 1.18 1.16 1.20 0.228 .007 .000*** 1.26 1.24 1.27 

1000 0.187 .007 .000*** 1.21 1.19 1.22 0.271 .007 .000*** 1.31 1.29 1.33 

4000 0.221 .007 .000*** 1.25 1.23 1.27 0.319 .007 .000*** 1.38 1.36 1.39 

Note. Displaying the effect of simulation factors on correctly recognizing slopes, regardless of PI-status, across methods. When p < 0.05, and the 95% CI of the 

Rate Ratio is larger than 1, the method does significantly better under the category in question compared to the reference category. When p < 0.05, and the 95% 

CI of the Rate Ratio is less than 1, the method does significantly worse under the category in question compared to the reference category. N = 3178. Rate Ratios 

indicating significant effects are in bold. 

SE = Standard Error, RR = Rate Ratio, CI = confidence interval: LL = lower limit: UL = upper limit.  

a 0 = intercept not-PI, b 0 = 0 PI slopes, c 0 = sample size 100. 

* = p < 0.05, ** = p < 0.01, *** = p < 0.001. 
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Figure 2 

Proportion of Correctly Recognized Slopes 

 

Note. Displaying the proportion of slopes for which the PI-status was correctly recognized across simulation factors. PI = Predictive Invariant. N = 6356. Missing 

= 44. 
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Recognition of PI-status: PI in Slopes. In this analysis, I found that the larger #PISlope, 

the greater the chance of recognizing them as such was. PI-status of the intercept was found to be 

significant by the LASSO regression when looking at the beta coefficients, but not when looking 

at the RRs. For MCP the PI-status of the intercept was deemed irrelevant. For detailed statistics 

see Table 4. 

The intercepts for both the LASSO and the MCP model were found significant – indicating 

that PI slopes overall were correctly recognized. This is further supported when looking at the 

percent of correctly recognized slopes in this analysis. Overall, the two methods correctly 

recognized 87.5% of the slopes for which PI was set to hold. MCP correctly predicted 93.1% of 

the slopes. That is 11.4% more than LASSO, which predicted 81.7% of the PI slopes correctly. 

The analyses of deviance showed that the AIC value of residual deviance for LASSO was 675.25, 

versus 233.53 for MCP. This was a 441.72 difference indicating that MCP was favored.  

Sensitivity. To clarify the results and be able to speak of a combination of simulation 

factors, I looked at sensitivity, see Figure 3. In all scenarios presented, both methods did recognize 

slopes with PI-status correctly the majority of the time. Regarding method preference, MCP had 

higher scores of the proportion correctly recognized. This was true in all possible combinations of 

factors. In total 12.5% of all slopes were not recognized correctly. When #PISlopes was low, the 

spread of the sensitivity rate was enlarged and when combined with using LASSO as a method 

there were cases where none of the PI slopes were recognized, despite being simulated as such. 

Correctly recognizing the PI-status of slopes as PI was more likely when slope invariance held for 

the data. A combination of high #PISlope and large sample size shows the best results both for 

LASSO and MCP.  
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Table 4 

Quasi-Poisson Regression: Correct Recognition of PI slopes by Regression Estimates and Rate Ratios  

Variable LASSO MCP 

 Estimate SE p RR 95% CI Estimate SE p RR 95% CI 

     LL UL     LL UL 

(Intercept) -0.332 .013 .000*** 0.72 0.70 0.74 -0.212 .007 .000*** 0.81 0.80 0.82 

PI-status Intercept a             

PI 0.019 .008 .022* 1.02 1.00 1.04 0.004 .005 .404 1.00 0.99 1.01 

# PISlopes b             

8 0.063 .012 .000*** 1.07 1.04 1.09 0.031 .007 .000*** 1.03 1.02 1.05 

12 0.112 .012 .000*** 1.12 1.09 1.14 0.050 .006 .000*** 1.05 1.04 1.06 

Sample Size c             

500 0.035 .012 .003** 1.04 1.01 1.06 0.106 .007 .000*** 1.11 1.10 1.13 

1000 0.050 .012 .000*** 1.05 1.03 1.08 0.138 .007 .000*** 1.15 1.13 1.16 

4000 0.081 .012 .000*** 1.08 1.06 1.11 0.166 .007 .000*** 1.18 1.17 1.20 

Note. Displaying the effect of simulation factors on correctly recognizing PI slopes, across methods. When p < 0.05, and the 95% CI of the Rate Ratio is larger 

than 1, the method does significantly better under the category in question compared to the reference category. When p < 0.05, and the 95% CI of the Rate Ratio 

is less than 1, the method does significantly worse under the category in question compared to the reference category. N = 2380. Rate Ratios indicating significant 

effects are in bold. 

SE = Standard Error, RR = Rate Ratio, CI = confidence interval: LL = lower limit: UL = upper limit.  

a 0 = intercept not-PI, b 0 = 4 PI slopes, c 0 = sample size 100. 

* = p < 0.05, ** = p < 0.01, *** = p < 0.001. 



SEEKING PREDICTIVE INVARIANCE IN MULTI-GROUP MULTIPLE REGRESSION  31 

 

Figure 3 

Sensitivity: The Proportion of PI slopes Correctly Recognized  

 

Note. Displaying Sensitivity of Slopes – across simulation factor levels and methods applied.  

PI = Predictive Invariant. Higher scores of sensitivity indicate higher accuracy in correctly predicting the simulated 

PI-status of slopes as PI. #PISlopes equal to 0 is excluded as there is naturally no data on sensitivity to be found.  

Number of simulated datasets = 4760.  

 

 

 Recognition PI-status: Not PI in Slopes. Results indicated that across penalization 

methods, sample size was the most influential factor where a sample size of 4000 increased correct 
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recognition. This effect was found larger for MCP than for LASSO, see Table 5. Increasing 

#PISlopes had a negative effect on the recognition. Another way to phrase this would be to say: the 

more simulated slopes with PI-status as Not PI, the easier the recognition of such slopes were. This 

effect was again found to be stronger for MCP. PIIntercept was deemed significant when inspecting 

the regression coefficients for LASSO, yet irrelevant once RR was considered. For MCP it was 

consistently irrelevant. Overall, the methods recognized 83.1% of these slopes correctly. That is 

86.6% for LASSO and 79.7% for MCP. Moreover, the analysis of deviance showed residual 

deviance of 527.65 for LASSO and 772.64 for MCP – a 244.98 difference in the favor of LASSO. 

Specificity. In the same fashion that I previously investigated sensitivity when looking at 

#TPISlopes, I looked at specificity when dealing with #TNPISlopes, see Figure 4. Specificity had some 

features in common with sensitivity. However, regarding what method performed best and how 

#PISlopes influenced the results, I found an opposite pattern. This was in line with the Quasi-Poisson 

regression analysis regarding #TNPISlopes. In addition, LASSO outperformed MCP with higher 

rates of sensitivity in all cases, expect the ones where both were 100% accurate. Both methods did 

worse when #PISlopes was high16. Moreover, increasing sample size increased specificity. The PI-

status of the intercept seemed to have no impact. The best-case scenario entailed a large sample 

size and low #PISlopes.  

 

To summarize, correctly recognizing the PI-status of slopes depended on sample size and 

the number of slopes that had the same PI-status as the slope investigated. Regarding method 

preference, LASSO had higher rates of correct recognition of Not PI slopes. MCP had higher rates 

of correct recognition of Not PI slopes.  

 
16

 Changing the angle and looking at it from a Not-PI point of view one can deduct that an increasing number of 

Not-PI slopes is related to a bigger proportion of Not-PI slopes being identified. 
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Table 5 

Quasi-Poisson Regression: Correct Recognition of Not PI slopes by Regression Estimates and Rate Ratios 

Variable LASSO MCP 

 Estimate SE p RR 95% CI Estimate SE p RR 95% CI 

     LL UL     LL UL 

(Intercept) -0.328 .009 .000*** 0.72 0.71 0.73 -0.481 .012 .000*** 0.62 0.60 0.63 

PI-status Intercept a             

PI -0.016 .007 .017* 0.98 0.97 1.00 -0.012 .009 .162 0.99 0.97 1.00 

#PISlopes b             

4 -0.118 .008 .000*** 0.89 0.87 0.90 -0.179 .010 .000*** 0.84 0.82 0.85 

8 -0.146 .010 .000*** 0.86 0.85 0.88 -0.211 .013 .000*** 0.81 0.79 0.83 

Sample Size c             

500 0.295 .010 .000*** 1.34 1.32 1.37 0.382 .013 .000*** 1.47 1.43 1.50 

1000 0.322 .010 .000*** 1.38 1.35 1.41 0.436 .013 .000*** 1.55 1.51 1.59 

4000 0.359 .010 .000*** 1.43 1.40 1.46 0.508 .013 .000*** 1.66 1.62 1.70 

Note. Displaying the effect of simulation factors on correctly recognizing the PI-status of slopes as Not PI, across methods. When p < 0.05, and the 95% CI of the 

Rate Ratio is larger than 1, the method does significantly better under the category in question compared to the reference category. When p < 0.05, and the 95% 

CI of the Rate Ratio is less than 1, the method does significantly worse under the category in question compared to the reference category. N = 2392. Rate Ratios 

indicating significant effects are in bold. 

SE = Standard Error, RR = Rate Ratio, CI = confidence interval: LL = lower limit: UL = upper limit.  

a 0 = intercept not-PI, b 0 = 4 NPI slopes, c 0 = sample size 100. 

* = p < 0.05, ** = p < 0.01, *** = p < 0.001. 
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Figure 4 

Specificity: The Proportion of Not PI slopes Correctly Recognized 

 

Note. Displaying Specificity of Slopes – across simulation factor levels and methods applied.  

PI = Predictive Invariant.  Higher scores of specificity indicate higher accuracy in correctly predicting the simulated 

PI-status of slopes as Not PI. #PISlopes equal to 12 is excluded as there is naturally no data on specificity to be found.  

Number of simulated datasets = 4784.  

 

 

Having investigated how well PI-status could be recognized in slope parameters and how 

simulation factors influence this across different penalization methods, how well PI was 

recognized in the intercept naturally becomes the next topic.  



SEEKING PREDICTIVE INVARIANCE IN MULTI-GROUP MULTIPLE REGRESSION  35 

 

PI in the Intercept Parameter 

Logistic regression was performed on the recognition of the intercept status as a function 

of the simulation factors. This analysis was done both overall and as separate analyses for 

intercepts with PI-status PI and Not PI.  

     Recognition of PI-status in Intercept. Regarding the intercepts, correctly recognition 

of PI-status heavily depended on the sample size, improving results as sample size increased. This 

was in line with expectations. See Table 6 for details. Either method recognized intercepts with 

PI-status PI significantly better than they did Not PI intercepts. Thus, data where predictive 

invariance held for the intercept was more likely to be recognized as such than data where the PI-

status of the intercept was set to Not PI. These effects were both larger for MCP. The number of 

correctly recognized intercepts was linked to a combination of PI and Not PI slopes in the model. 

What separated LASSO and MCP was the extent to which #PISlopes influenced the results. For 

LASSO only #PISlopes equal to eight was found to significantly improve the results. For MCP both 

#PISlopes equal four and eight were found to be significant. Additionally, it was found that at the 

baseline level MCP did not correctly recognize intercepts well, showing a significant negative 

model intercept. No effect of this sort was found for LASSO.  

LASSO recognized 81.2% of the intercepts correctly, and MCP recognized 82.2%. Across 

methods that entailed an 81.7% rate of correctly recognized intercepts. An analysis of deviance 

showed an AIC value of 2684.0 for LASSO and 2202.4 for MCP, suggesting MCP was better by 

a 481.6 difference.  
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Table 6 

Logistic Regression: Correct Recognition of Intercepts by Regression Estimates and Odds Ratios – Independent of PI-status 

Variable LASSO MCP 

 Estimate SE p OR 95% CI Estimate SE p OR 95% CI 

     LL UL     LL UL 

(Intercept) -0.154 .119 .196 0.86 0.68 1.08 -0.667 .132 .000*** 0.51 0.40 0.66 

Intercept Status a             

PI 0.745 .100 .000*** 2.11 1.73 2.56 1.985 .125 .000*** 7.28 5.72 9.33 

#PISlopes b             

4 0.241 .135 .074 1.27 0.98 1.66 0.319 .152 .036* 1.38 1.02 1.86 

8 0.431 .139 .002** 1.54 1.17 2.02 0.330 .153 .031* 1.39 1.03 1.88 

12 0.083 .133 .536 1.09 0.84 1.41 -0.054 .148 .715 0.95 0.71 1.27 

Sample Size c             

500 1.279 .122 .000*** 3.59 2.83 4.58 1.434 .131 .000*** 4.20 3.25 5.44 

1000 1.577 .131 .000*** 4.84 3.76 6.28 1.892 .143 .000*** 6.64 5.04 8.82 

4000 2.351 .164 .000*** 10.50 7.68 14.62 3.786 .262 .000*** 44.07 27.15 76.37 

Note. Displaying the effect of simulation factors on correctly recognizing intercepts, regardless of PI-status, across methods. When p < 0.05, and the 95% CI of the 

Odds Ratio is larger than 1, the method does significantly better under the category in question compared to the reference category. When p < 0.05, and the 95% 

CI of the Odds Ratio is less than 1, the method does significantly worse under the category in question compared to the reference category. N = 3178. Odds Ratios 

indicating significant effects are in bold. 

 SE = Standard Error, OR = Odds Ratio, CI = confidence interval: LL = lower limit: UL = upper limit.  

a 0 = intercept not-PI, b 0 = 0 PI slopes, c 0 = sample size 100. 

* = p < 0.05, ** = p < 0.01, *** = p < 0.001. 
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Recognition of the PI-status: PI in Intercept. When investigating the correctly 

recognized intercepts with PI-status PI, TPIIntercept, results indicated that for LASSO #PISlopes was 

the most influential factor. See Table 7 for detailed results. Here recognition increased as #PISlopes 

increased. A similar size effect was found for #PISlopes using MCP. However, for MCP sample size 

remained the main factor of influence. Either method showed better results with a larger sample 

size. A finding that I hadn't seen in the overall analysis was that either method was able to 

recognize PI intercepts at the baseline level indicated by their significant positive model intercept. 

This finding, combined with that of how #PISlopes has a positive effect on the results, suggests that 

the closer to full regression invariance the data is, the more likely it is to find PI to hold for the 

model. 

Overall, 89.6 % of the intercepts with PI-status PI were correctly recognized. Looking at it 

separately for each method, LASSO and MCP recognized 86.1% and 93.1% respectively. Figure 

5 displays the number of intercepts, with PI-status PI, that were recognized per 100 replications 

across simulation factors. In the best-case scenario, the sample size was large, and more of the 

other coefficients (read: slopes) were PI in the data. Additionally, it appeared that MCP 

outperformed LASSO which proved to be even more evident after having performed an analysis 

of deviance. Results showed AIC values of 1200.90 and 707.94 for LASSO and MCP, a 492.96 

difference in MCP’s favor. This suggested a preference for MCP when looking to recognize 

intercepts where PI holds.
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Table 7 

Logistic Regression: Correct Recognition of Intercepts with PI-status PI by Regression Estimates and Odds Ratios  

Variable LASSO MCP 

 Estimate SE p OR 95% CI Estimate SE p OR 95% CI 

     LL UL     LL UL 

(Intercept) 0.688 .162 .000** 1.99 1.45 2.75 0.977 .188 .000*** 2.66 1.85 3.87 

#PISlopes a             

4 0.840 .187 .000*** 2.32 1.61 3.36 1.330 .285 .000*** 3.78 2.21 6.78 

8 1.361 .215 .000*** 3.90 2.59 6.03 1.314 .285 .000*** 3.72 2.17 6.67 

12 1.443 .222 .000*** 4.23 2.77 6.64 1.407 .297 .000*** 4.08 2.34 7.52 

Sample Size b             

500 0.499 .206 .015* 1.65 1.10 2.48 1.028 .270 .000*** 2.79 1.67 4.83 

1000 0.405 .202 .045* 1.50 1.01 2.24 0.724 .248 .004** 2.06 1.28 3.39 

4000 0.574 .209 .006** 1.77 1.18 2.69 2.389 .440 .000*** 10.90 4.97 28.78 

Note. Displaying the effect of the simulation factors on correctly recognizing intercepts, regardless of PI-status, across methods. When p < 0.05 and the 95%, CI 

of the Odds Ratio is larger than 1, the method does significantly better under the category in question compared to the reference category. When p < 0.05 and the 

95%, CI of the Odds Ratio is less than 1, the method does significantly worse under the category in question compared to the reference category. N = 1588. Odds 

Ratios indicating significant effects are in bold. 

 SE = Standard Error, OR = Odds Ratio, CI = confidence interval: LL = lower limit: UL = upper limit.  

a 0 = 0 PI slopes, b 0 = sample size 100. 

* = p < 0.05, ** = p < 0.01, *** = p < 0.001. 
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Figure 5 

Number of Correctly Recognized Intercept with PI-status PI per 100 Replications  

 

Note. Displaying the number of correctly recognized intercepts for models with PI as PI-status of the intercept, across 

simulation factors. PI = Predictive Invariant. Total number of identified intercepts: 2846. Total possible: 3200. Missing 

data: = 12.  TotalLASSO =1386. TotalMCP = 1478. 

 

Recognition of PI-status: Not PI in Intercept. Regarding the correct recognition of 

intercepts with PI-status as Not PI, TNPIIntercept, I found results like those from the analysis on 

#TNPISlopes, see Table 8 for details. For LASSO, the greater #PISlopes was, the lesser the odds were 
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of recognizing an intercept with PI-status Not PI. This effect was also present for MCP but to a 

lesser degree where the results were significantly worse only in the cases where slope invariance 

was implemented, i.e. where #PISlopes was equal to 12. Looking at Figure 6, it becomes apparent 

that this could be explained through that MCP overall correctly recognized fewer intercepts with 

PI-status Not PI than did LASSO. Having inspected the negative model intercept for MCP it was 

apparent that even at the baseline level MCP did not correctly recognize intercepts with PI-status 

Not PI. Sample size was the more influential factor for both methods, where a sample size of 4000 

compared to a sample size of 100 made it substantially more likely to correctly recognize an 

intercept with PI-status Not PI. This effect was larger for LASSO than for MCP. Both methods 

did worse with a small sample size, where in the worst-case scenario neither method correctly 

recognized so much as a fourth of the intercepts. The best-case scenario for correctly recognizing 

Not PI intercept was a low #PISlopes and large sample size. In that scenario, the type of method did 

not matter as either did well. However, in general, there was a preference for LASSO when looking 

at Not PI intercepts.  

Overall, our methods managed to recognize 73.8% of intercepts with PI-status Not PI. 

Separated, that was 76.2% for LASSO and 71.4% for MCP. The analysis of deviance showed an 

AIC value of 1236.4 for LASSO and 1409.5 for MCP. This is a deviance of 172.1 in the favor of 

LASSO. 
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Table 8 

Logistic Regression: Correct Recognition of Intercepts with PI-status Not PI by Regression Estimates and Odds Ratios  

Variable LASSO MCP 

 Estimate SE p OR 95% CI Estimate SE p OR 95% CI 

     LL UL     LL UL 

(Intercept) 0.058 .166 .725 1.06 0.77 1.47 -0.459 .158 .004** 0.63 0.46 0.86 

#PISlopes a             

4 -0.533 .210 .011* 0.59 0.39 0.88 -0.224 .191 .240 0.80 0.55 1.16 

8 -0.545 .210 .010* 0.58 0.38 0.87 -0.200 .191 .294 0.82 0.56 1.19 

12 -1.240 .208 .000*** 0.29 0.19 0.43 -0.774 .188 .000*** 0.46 0.32 0.66 

Sample Size b             

500 1.933 .167 .000*** 6.91 5.00 9.64 1.696 .157 .000*** 5.45 4.02 7.44 

1000 2.564 .190 .000*** 12.98 9.01 19.02 2.408 .175 .000*** 11.12 7.93 15.77 

4000 4.987 .465 .000*** 146.51 65.24 419.28 4.366 .326 .000*** 78.73 43.45 157.88 

Note. Displaying the effect of simulation factors on correctly recognizing intercepts, regardless of PI-status, across methods. When p < 0.05, and the 95% CI of the 

Odds Ratio is larger than 1, the method does significantly better under the category in question compared to the reference category. When p < 0.05, and the 95% 

CI of the Odds Ratio is less than 1, the method does significantly worse under the category in question compared to the reference category. N = 1590. Odds Ratios 

indicating significant effects are in bold. 

 SE = Standard Error, OR = Odds Ratio, CI = confidence interval: LL = lower limit: UL = upper limit.  

a 0 = 0 PI slopes, b 0 = sample size 100. 

* = p < 0.05, ** = p < 0.01, *** = p < 0.001. 
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Figure 6 

Number of Correctly Recognized Intercept with PI-status Not PI per 100 Replications  

 

Note. Displaying the number of correctly recognized intercepts for models with Not PI as PI-status of the intercept, 

across simulation factors. PI = Predictive Invariant. Total number of identified intercepts: 2347. Total possible: 3200. 

Missing data: = 10.  TotalLASSO =1212. TotalMCP = 1135. 

 

 

To sum up, it was apparent that the accuracy of recognizing the PI-status of the intercept 

was positively related to the same factors as slopes with the same PI status, i.e., sample size and 
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the number of slopes that had the same PI-status as the intercept in question. Additionally, the PI-

status of the intercept influenced whether or not it would be correctly recognized. When it came 

to what method was preferred, they were the same as for slopes. For coefficients with PI-status PI, 

MCP was preferred and for coefficients with PI-status Not PI, the preference was for LASSO.  

Non-Estimable Models 

Considering non-estimable models, I found a pattern directly linked to the convergence of 

models when using the LSLX package. The said pattern can be seen in Table 9.  In short, if the 

sample size was 100, there were instances where the methods did not converge (read: did not 

produce results)17. There were no non-estimable models found for other sample sizes. The number 

of non-estimable models was equal across methods, suggesting that LSLX overall handles small 

sample sizes worse than larger ones. Moreover, as #PISlopes increased the number of missing 

analyses increased. In total there were missing analyses on 44 out of a possible 6400 replications. 

That is, there were 0.69% missing analyses, all due to non-convergence. Knowing that there was 

one model intercept per analysis, one was able to deduce that there also were 44 missing intercepts. 

Regarding missing slopes, the number of missing analyses for the PI slopes was equal to the 

number in Table 9 multiplied by #PISlopes. This equaled a total of 448 missing slopes out of the 

possible total of 19200 PI slopes (2.33 %). For the Not PI slopes, the number of non-estimable 

models was equal to the number of non-estimable models in Table 9 multiplied by #NPISlopes (i.e., 

12 - #PISlopes). That was 104 missing slopes, equaling 0.54% of the Not PI slopes.  

 

 

 
17

 According to Huang (2020) this could be due to the δ-parameter being too small. However, that would not 

explain why the convergence issue is equally present for LASSO and MCP, as LASSO does not consider the δ-

parameter. 
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Table 9 

Non-estimable models Grouped by Simulation Factors 

Sample Size PI-status intercept: Not PI PI-status intercept: PI 

 #PISlopes: 0 #PISlopes: 4 #PISlopes: 8 #PISlopes: 12 #PISlopes: 0 #PISlopes: 4 #PISlopes: 8 #PISlopes: 12 

100 2 1 2 5 - - 3 9 

500 - - - - - - - - 

1000 - - - - - - - - 

4000 - - - - - - - - 

Note. Displaying the number of replications for which there are non-estimable models, across all simulation factors. 

The pattern and number of non-estimable models were identical for LASSO and MCP. Total number of missing 

analyses = 44. The possible maximum number of missing analyses is 100 per cell (i.e., a total of 6400).  

PI = Predictive Invariant, #PISlopes = Number of slopes set to be PI in the simulation, - = no missing values. 

 

Empirical Study 

Concerning the empirical data, I sought to find out to what degree the PI-status of the 

intercept- and slope coefficients could be correctly identified consistent with the literature and to 

what extent the methods could push for strong regression invariance when predicting life 

satisfaction when using sex as a grouping variable. The results of the analysis are presented in 

Table 10. Coefficients marked in bold had their PI-status identified in line with the presented 

theory. 

Inspecting the results using LASSO as the penalization method, the PI-status of the model 

intercept was identified as Not PI, with a negative increment. This translated to males overall 

scoring lower on life satisfaction than females – which was in line with the theory. Investigating 

PI-status for the slopes where PI was to be expected, the slopes for all variables but one were found 
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to be PI. Positive self-esteem had an increment higher than zero, indicating that for this variable 

the PI-status of the slope was Not PI and that this variable was of greater influence for the male 

group when predicting life satisfaction. This was not in line with the presented literature. In total, 

five out of six variables that were assumed to have PI-status PI were found to be so when using 

LASSO as the penalization method.  

Looking at the variables where the slopes were assumed to be Not PI, we saw that the 

method had only identified the expected PI-status of the slope of unemployment as Not PI. The 

increment was positive, suggesting that this variable was more important for males when compared 

to females when predicting life satisfaction. The remaining variables all had the PI-status of their 

slopes identified as PI. Based on these results one can state that our LASSO analysis on the 

empirical data, had a high sensitivity rate and a low specificity rate. Regarding the level of 

invariance that LASSO managed to enforce, intercept invariance was not enforced and 

consequently not strong regression invariance. The model came close to slope invariance, 

penalizing nine out of eleven slopes to exact zero.  

Analyzing the results of using MCP as the penalization method, similar results were found, 

yet with what appears to be more conservative penalties. The increment of the intercept was again 

found to be negative and identified as Not PI, which was in line with the theory. Looking at the 

slopes, results indicated that for all slopes expected to be PI, the PI-status was identified as such – 

perfect sensitivity. For all slopes where PI-status was expected to be Not PI, the method had 

recognized none of them correctly – specificity equaling zero. At first glance this may appear as a 

negative thing, however, when considering the second half of this study’s focus, namely pushing 

for predictive invariance, the results are promising. MCP had penalized all group differences to 

zero. This meant that for this model slope invariance did hold.  
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Comparing the two methods, they both correctly recognize the expected PI-status of the 

model intercept, as well as six out of eleven slopes. MCP pushed for PI to a larger degree than 

LASSO and had in addition a better overall fit (RMSEALASSO = 0.051; RMSEAMCP = 0.038).  

It is important to note that some of the variables themselves were penalized to have zero 

slopes, and hence could be removed from the model in a model selection scenario. The parameters’ 

group differences for these variables are naturally zero too. This may give a skewed view of the 

sensitivity and specificity rates.  

 

Keeping these results in mind, I will go on to discuss their implications and give advice 

regarding how I best believe future research can improve the research on the topic PI in MGMR 

and the quest for fair prediction.  
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Table 10 

Accuracy of Recognizing PI-Status on Empirical Data: Results of Regression Analysis Predicting Life satisfaction - Using LASSO and MCP  

Variable Expected PI-status a LASSO MCP 

  βp p βp1 p βp p βp1 p 

(intercept) Not-PI .070 .015* -.141 .000*** .113 .000*** -.229 .000*** 

Positive Self-

Esteem 

PI .192 .000*** .022 .590 .224 .000*** .000 - 

Negative Self-

Esteem 

PI -.052 .076 .000 - -.032 .280 .000 - 

Disinhibition PI -.020 .388 .000 - -.019 .409 .000 - 

Need for Change PI -.044 .071 .000 - -.047 .057 .000 - 

Impulsivity PI .058 .006** .000 - .073 .001** .000 - 

Neuroticism PI .000 - .000 - .000 - .000 - 

Euphoria Not PI .198 .000*** .000 - .215 .000*** .000 - 

Dysphoria Not PI -.158 .000*** .000 - -.178 .000*** .000 - 

GPH b Not PI -.211 .000*** .000 - -.225 .000*** .000 - 

Unemployment Not PI .177 .015** .037 .529 .155 .000*** .000 - 

Study Delay Not PI -.003 .850 .000 - .000 - .000 - 

Note. Displaying reference- and increment values for regression models using LASSO and MCP as penalization methods when predicting Life satisfaction. 

Reference group = female, thus all differences indicate how males compare to females. βp = coefficient estimate in reference group, βp1 = estimated increment for 

group 1 (males), PI = Prediction invariant. - = value not applicable. Slopes for which the method identified the anticipated PI-status are in bold.  

a = The expected status of the slope as either predictive invariant or not predictive invariant, b = General Psychological Health. 

** = p < 0.01, *** = p < 0.001. 

RMSEALASSO = 0.051, RMSEAMCP = 0.038.
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Discussion 

Summary of Results   

When penalizing the parameters’ group differences as means to recognize the PI-status of 

intercepts, all simulation factors were influential. When looking at the PI-status of slopes, similar 

results were found – except that the PI-status of the intercept had no effect. Overall, a larger sample 

size leads to greater accuracy when recognizing the PI-status. Accuracy in correctly recognizing 

the PI-status of intercept- and slope coefficients was positively related to the number of other 

coefficients with the same PI-status. Additionally, PI intercepts were more likely to be identified 

than Not PI intercepts. MCP is positively linked to sensitivity and correctly recognizing PI 

intercepts and slopes. LASSO is in the same manner positively linked to specificity and correctly 

recognizing intercepts and Not PI slopes. 

Regarding the empirical data, results showed that the difference between LASSO and MCP 

is that MCP pushed all group differences in slope to zero, enforcing slope invariance to hold, 

whereas LASSO recognized the PI-status of the slope of Unemployment and Positive Self-Esteem 

as Not PI. For the former this was in line with theory, but not for the latter. Neither method 

managed to push for intercept invariance and thus also not strong regression invariance. This is 

not a surprise seeing that theory suggested that females indeed had higher life satisfaction scores 

than male subjects.   

Implications 

Based on the results of the simulation study, in order to recognize a slope’s PI-status one 

would want data that has a large sample size, a higher number of PI slopes and use MCP to push 

for PI. However, when investigating what penalization method is better on real data one must 

consider what the goal is. The preferred method depends on whether the goal is to correctly 
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recognize the PI-status of a coefficient, having higher Sensitivity and Specificity, or to push for 

PI. In the case of wanting to correctly recognize the PI-status, the results indicate that this accuracy 

highly depends on the number of true PI slopes. When investigating the more practical scenario, 

it becomes apparent that unlike our simulation study it is here not possible to know the true PI-

status of the slopes. One can merely make educated guessed based on supporting theory. Thus, the 

focus here should rather be on seeing how well the methods can push for PI.  

Regardless of wanting to have a model where strong regression invariance holds, one 

would only want to have such a model if it in fact is true. That is, having a perfect sensitivity rate 

is good, yet not when specificity is at zero. Pushing all variables to be predictive invariant is not 

justified if there indeed are great group differences between group-intercepts or -slopes in the true 

model. Consequently, the optimal goal would be to have a model that 1) correctly identifies the 

PI-status of slopes, and 2) penalize for PI for those Not PI slopes when the differences are 

negligible. In other words, one should aim for a model with a perfect sensitivity rate and a high 

specificity rate where the model would push appropriately sized group differences in intercept and 

slope to zero.  

Normally, when using penalization methods to penalize slopes the aim is to pinpoint what 

variables are stronger predictors and what ones can be left out, i.e., variable selection. In that case, 

the slopes pushed to zero are considered to have too little impact on the prediction to be included 

in a final model. In the same fashion, one could use the method presented in this paper to select 

the variables with predicted PI-status PI and thus get a model where slope invariance holds. In this 

case, the variables where the group difference is penalized to exact zero are the variables one would 

wish to keep in the model, rather than leave out, as they are the variables where PI holds. 
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Strength 

First off, this study is one of only a few on the topic and thus is adding to the research 

currently available. Second, this study investigates how group differences can be recognized as 

well as minimized through penalization methods – using currently available methods applied to a 

new problem. Moreover, the study investigates both intercept- and slope coefficients, taking the 

research beyond PI in the single coefficients – allowing for an investigation of intercept- and slope 

invariance and ultimately strong regression invariance. Finally, regarding the empirical part of the 

study, the strength lies in that it is a helpful addition that bridges the gap between how the method 

works when the PI-status of slopes is known, and the real world when we only can hypothesize 

the PI-status of slopes.  

Limitations and future research 

Despite the good things I have to say about the study, there are undoubtfully topics that 

one could (re)consider. In particular, there are two topics on which there is room for improvement 

or that simply should be more carefully considered in the future. First, the stimulation set up. 

Second, the way penalization methods are used. 

Regarding the simulation set up, all data simulated are balanced designs, thus one cannot 

state how different group sized may influence the results. In addition, only two groups are 

considered. How penalizing parameters’ differences between more than two groups influences the 

results, is yet to be investigated. Further, I have not considered differential multicollinearity in the 

predictors and how this may influence the results. Seeing how other types of invariances are 

investigated through a look at correlations, maybe one should consider that here too. Moreover, 

throughout the simulation study there were always a set of 12 predictive variables. Future research 

may want to investigate how a larger or smaller set of predictors could influence the results. If we 
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consider the variables and their slopes a little more, it would be of interest to see how the size of 

the coefficients could influence the detection of PI-status as well as the push for PI.  

The second topic regarding limitations and future research concerns how the penalties are 

applied. I used the Bayesian Information Criterion as loss function for the regularization 

parameters. Huang (2020, p. 5) suggests several criteria that through LSLX may be applied to 

select the regularization parameters. An investigation into what selection criterion is indeed best 

for this method is of interest. In addition, there is a fundamental issue with how the penalties are 

applied when performing LASSO and MCP regression analysis via LSLX. The penalties put on 

both the slope parameter and group difference depend on the same regularization parameters. This 

could be a problem because regression parameters and their group differences are not necessarily 

on the same scale.  A potential solution to this, which in not implemented in LSLX is adaptive 

LASSO as discussed by Geminiani et al. (2021).   

Conclusion 

 To conclude on the findings and methods proposed in this study it is safe to say it has added 

insight into how one can use LASSO and MCP to penalize the model parameters’ group 

differences and by that recognize for what variables the prediction is (not) conditional on the group. 

There are flaws that in the future should be considered, yet one can draw two main conclusions 

from this study. 1) It is possible to recognize the PI-status of slopes, where the accuracy of this 

identification depends on the sample size, what penalization method one uses and, the number of 

coefficients with the same PI-status as the PI-status of the coefficient one wished to recognize. 2) 

Seeking PI is possible, yet one needs to be careful with the reasoning behind choosing either 

method, where MCP is best at recognizing PI coefficients and LASSO is best at recognizing Not 

PI coefficients.  
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 Pushing for PI is possible, yet one should always take other research into account to build 

a strong theoretical background to support what variables are to be expected having a PI-status PI 

and what variables are not. An uneducated guess, merely pushing for strong regression invariance 

could lead to low sensitivity rates where group differences are ignored.  
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Appendix A 

Abbreviations 

Table A1 

Variable Abbreviations and Statistics for Empirical Data 

Variable Name Abbreviation Mean SD 

Life Satisfaction LifeSat 26.18 5.72 

Dysphoria Dys 1.56 2.66 

Euphoria Euph 6.95 3.04 

Positive Self Esteem PosSE 15.95 3.32 

Negative Self Esteem NegSE 21.79 9.02 

Neuroticism Neuro 25.05 9.38 

Disinhibition Dis 26.51 7.39 

Need for Change NFC 25.44 6.88 

Impulsivity Imp 24.49 4.52 

General Psychological Health GPH 19.80 4.53 

Unemployment Unemp 2.77 0.59 

Years of delay in studies StuD 0.34 0.66 

Note.  Overview of abbreviations, means, and standard deviations across variables included in 

the empirical study. 
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Table A2 

Abbreviation used in Paper 

Abbreviation Full Name Meaning 

PI Predictive Invariance a 

Predicative invariant b 

a An appropriate lack of group difference. 

b A coefficients PI-status indicating homogeneous 

groups. 

MGMR Multi-Group Multiple 

Linear Regression 

The type of analysis we are applying PI to. 

Not PI Not predictive 

invariant 

A coefficient’s PI-status indicating heterogeneous 

groups.  

SEM Structural Equation 

Modeling 

Modeling technique using latent variables.   

LASSO Least Absolute 

Shrinkage and 

Selection Operator 

A method used to apply penalties to components of 

the model, using the λ parameter. 

MCP Minimax Concave 

Penalty 

A method used to apply penalties to components of 

the model, using the λ- and δ parameters. 

N Sample Size Simulation Factor: Number of simulated values per 

dataset. Used when referring to the simulation 

factor. 

PIIntercept PI-status of the 

intercept 

Simulation Factor: Indicator for if the intercept is 

set to (not-) predictive invariant in the simulation).  
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Abbreviation Full Name Meaning 

#PISlopes Number of predictive 

invariant slopes 

Simulation Factor: Number of variables in the 

simulation for which the slope was simulated to be 

predictive invariant. 

#NPISlopes Number of not 

predictive invariant 

slopes 

The number of variables in the simulation for which 

the slope was simulated to not be predictive 

invariant. 

In our study, #NPISlopes was equal to 12- #PISlopes. 

#TSlopes True slopes The number of slopes where the PI-status was 

correctly recognized.  

#TPISlopes True predictive 

invariant slope 

The number of slopes simulated to be predictive 

invariant in the population and found to be 

predictive invariant by the model. 

#FPI False predictive 

invariant 

The number of coefficients (here: slopes) simulated 

to be not predictive invariant in the population yet 

found to be predictive invariant by the model.  

#TNPISlopes True not predictive 

invariant slope 

The number of slopes simulated to be not-predictive 

invariant in the population and found to be not 

predictive invariant by the model. 

#FNPI False not predictive 

invariant 

The number of coefficients (here: slopes) simulated 

to be predictive invariant in the population yet 

found to be not predictive invariant by the model.  
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Abbreviation Full Name Meaning 

TInterceot True intercept Indicator of whether or not the PI-status of the 

intercept was correctly recognized. 

TPIIntercept True not predictive 

invariant intercept 

Indicator of whether or not the PI-status of the 

intercept was correctly recognized as predictive 

invariant. 

TNPISlopes True not predictive 

invariant intercept 

Indicator of whether or not the PI-status of the 

intercept was correctly recognized as not predictive 

invariant. 

CI Confidence Interval  Range indicating the magnitude of results.  

In contrast analysis, values larger than 1 indicate a 

positive effect, values below 1 indicate a negative 

effect, and values including 1 indicate no effect. 

AIC Akaike Information 

Criterion 

Selector used to see how well the model fits the 

data. The lower the value the better. This value 

allows for comparison between models. Here it 

allows for comparison between LASSO- and MCP 

models.  

RR Rate Ratio  Group difference measure.  

OR Odds Ratio  Group difference measure.  

Note. Abbreviations used throughout the text, the full name as well as what they refer to in more 

detail.  
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Appendix B 

R-code 

Below is the R code showing how I used LSLX in a function to implement predictive 

invariance restrains on model coefficients B1) in the simulation study and B2) for the empirical 

data. Only the code for how LASSO was implemented is depicted, seeing that MCP was 

implemented in the exact same way.  

 

B1: Method for simulation study 

Method_LASSO <- function(data){ 
  # Input: data = data frame with predictors, an outcome and a group variable 
  # Output: List containing;  mod.coef = data frame with 
  #                                     model coefficients per group 
  #                           penalty.lvls = penalty levels 
  #                           fit.indices = fit indices for model 
   
  nPred <- ncol(data)-2 
   
  # Empty data frame for storing data 
  mod.coef <- data.frame(matrix(NA, nrow = 3, ncol = nPred), 
                         inter = c(NA, NA, NA), 
                         group = c(0, 1, 999)) 
  for(i in 1:nPred){ 
    names(mod.coef)[i] <- paste("beta", i, sep = "") 
  } 
   
  rownames(mod.coef) <- c("group = 0", 
                          "group = 1", 
                          "groupDiff") 
   
  # Specifying penalised regression model 
  model_reg <- 
    "y <~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12" 
   
  # Object 
  lslx_reg <- lslx$new(model = model_reg, 
                       data = data,  
                       group_variable = "group", 
                       reference_group = 0, verbose = F) 
   
  # Penalising increment components for intercept and residual error 
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  lslx_reg$penalize_coefficient(c("y<-1/1", "y<->y/1"), verbose = F) 
   
  # Model fit and error check 
  test.1 <- try(lslx_reg$fit(penalty_method = "lasso", verbose = T)) 
  test.2 <- try(lslx_reg$extract_coefficient_matrix(selector = "bic", 
                                                    block = "y<-y")) 
  if(inherits(test.1, "try-error") | inherits(test.2, "try-error")){ 
    # all output stays empty 
    penalty.lvls <- NA 
    fit.indices <- NA 
 
    print("It didn't work ...") 
    print("... no results for you.") 
  } else { 
     
    ## Extract model Coefficients 
    # Slopes 
    mod.coef[mod.coef$group == 0,1:nPred] <- 
      as.data.frame(lslx_reg$extract_coefficient_matrix(selector = "bic", 
                                                        block = "y<-y")$"0")[
1,  
                                                                             
-1] 
    mod.coef[mod.coef$group == 1,1:nPred] <- 
      as.data.frame(lslx_reg$extract_coefficient_matrix(selector = "bic", 
                                                        block = "y<-y")$"1")[
1,  
                                                                             
-1] 
    # Intercept 
    mod.coef$inter[mod.coef$group == 0] <-  
      lslx_reg$extract_coefficient_matrix(selector = "bic", 
                                          block = "y<-1")$"0"[1, 1] 
    mod.coef$inter[mod.coef$group == 1] <-  
      lslx_reg$extract_coefficient_matrix(selector = "bic", 
                                          block = "y<-1")$"1"[1, 1] 
     
    # Increment 
    mod.coef[mod.coef$group ==  999, -ncol(mod.coef)] <-  
      mod.coef[mod.coef$group == 1, -ncol(mod.coef)] - 
      mod.coef[mod.coef$group == 0, -ncol(mod.coef)] 
     
    ## Extract other information 
    penalty.lvls <- lslx_reg$extract_penalty_level(selector = "bic") 
    fit.indices <- lslx_reg$extract_fit_index(selector = "bic") 
     
    print("IT WORKED! YOU GOT RESULTS!!!") 
  } 
   
  model.summary <- list(mod.coef = mod.coef, 
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                        penalty.lvls = penalty.lvls, 
                        fit.indices = fit.indices) 
   
  return(model.summary) 
} 

 

B2: Method for empirical study 

# Model 
model_reg <- "# Regressions 
              LifeSat <~ PosSE + NegSE + Dis + NFC + Imp + Neuro + Euph + Dys 
+ GPH +  Unemp + StuD   
              " 
# Initializing object 
lslx_reg_LASSO <-lslx$new(model = model_reg, 
                          data = data, 
                          group_variable = "Sex", 
                          reference_group = 0) 
# Penalizing increment components 
lslx_reg_LASSO$penalize_coefficient(c("LifeSat<-1/1", "LifeSat<->LifeSat/1")) 
# Model fit 
lslx_reg_LASSO$fit(penalty_method = "lasso") 
# Summary 
lslx_reg_LASSO$summarize(selector = "bic") 
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Appendix C 

LAVAAN to LSLX Syntax Comparison 

LSLX LAVAAN Command Example 

<= ~ 

Regression (with the parameters on the RHS FREELY 

estimating the variable on the LHS) 

y <= x1 + x2 

<~  Penalized Regression y <~ x1 + x2 

<=> ~~ (Co)variance x1 + x2 <=> x1 + x2 

<~>  Penalized (Co)variance x1 <~> x1 

<=: =~ Defining a (reflective) latent factor on the RHS x1 + x2 + x3 <=: f1 

<~: pen()*f =~ Defining latent factors on the LHS but with a penalty f1 :~> x1 + x2 + x3 

fix(1)* 1* Fixes loading to be 1 fix(1) * x1 + x2 + x3 <=: f1 

pen()*  Penalized estimate (overrules <=) y <= pen()*x1 + x2 

free()*  Frees estimate (overrules <~) y <~ x1 + free()*x2 

1  Intercept y <= 1 + x1 + x2 

Note. Displaying a comparison between LSLX- and LVAAN syntax, including examples. f = name of factor, 

LHS = Left Hand Side, RHS = Right Hand Side. 

 

 

 


