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Abstract

Humans use inferred statistical properties of sequential events to smoothen subsequent

actions by anticipatory movements. These anticipatory movements have been studied in

the serial reaction time (SRT) task, in which participants anticipate the target stimuli in

learned sequences, however, under uncertainty, the participants seem to adhere to a

centering strategy. It remains unclear whether this centering behavior is a statistically

inferred way to compensate for the absence of sequence knowledge, using the center as an

optimal anticipatory position. In this study, two state-of-the-art Deep Reinforcement

Learning (Deep RL) algorithms (Proximal Policy Optimization (PPO) & Soft Actor-Critic

(SAC)) are compared and employed to train artificial agents to investigate the scope of

centering behavior, by manipulating the frequency distributions of target stimuli. While

SAC evidently outperformed PPO in terms of performance and stability, both algorithms

displayed an effect of frequency distribution on centering position. Specifically, a

proportional shift toward more probable target stimuli, suggesting that centering behavior

is indeed anticipatory behavior as a way to compensate for the absence of explicit sequence

knowledge.

Keywords: Sequential actions, sequential decision making, statistical learning,

anticipatory behavior, Reinforcement learning, deep reinforcement learning, PPO, SAC
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Simulating Anticipatory Centering Behavior in a Robotic Sequential Reaching

Task using Deep Reinforcement Learning

Introduction

Implicit or explicit, humans are rather good at inferring the statistical properties of

sequential events (Duran & Dale, 2009). It is a good thing we are, since the majority of

human activity consists of sequential decision making, and we rely on this skill to execute

our actions smoothly. These activities vary from complex endeavors, like navigating, to the

most basic human functioning, like motor control. Yet, how exactly humans learn these

actions remains an interesting research subject in psychology and neuroscience and is

currently exultant by the opportunities Artificial Intelligence (AI) has to offer to the field

(Botvinick et al., 2020), which will be elaborated on further below.

In sequence learning inferred statistical properties are used in order to make implicit

and explicit expectations and predictions about subsequent actions (Hunt & Aslin, 2001).

This behavior is already seen in 8-month-olds, who, are capable of word segmentation from

fluent speech based on the statistical properties of adjacent speech sounds (Saffran et al.,

1996). This statistical learning effect is driven by mere exposure (Aslin, 2017), an idea that

already stems from behaviorists Pavlov, 1927 and Skinner, 1938, nevertheless a powerful

mechanism to smoothen our subsequent actions with anticipatory movement. These

anticipatory movements have been observed in studies as anticipatory eye movement before

stimulus manipulation (Mennie et al., 2007) and anticipatory lip movement before speech

(Bell-Berti & Harris, 1979).

A motor learning paradigm to analyze sequence learning is the serial reaction time

(SRT) task (Nissen & Bullemer, 1987). In this task, target stimuli will be presented in a

repeated sequence at varying locations. Sequence learning was originally demonstrated by

comparing the mean response times of structured sequences to random sequences.

de Kleijn et al., 2018 adapted the SRT task to computer-mouse movement with four

possible symmetric target locations around the middle. Target stimuli would be
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highlighted after a short inter-stimulus interval (ISI). It was found that when there was a

repeated structured sequence, participants, after training, were not only faster in terms of

response time but also displayed anticipatory movement towards the next highlighted

target during the ISI. When a repeated structure was absent, and targets were highlighted

at random, participants seemed to conform to a centering strategy, in which the resting

position of the mouse in the ISI was in the middle of the four possible target locations.

This suggests that even in the absence of sequence knowledge, the participants might still

use the statistical properties of the task in order to find the most optimal anticipatory

position, equally distant to all possible target locations (Dale et al., 2012; de Kleijn et al.,

2018; Duran & Dale, 2009). If participants indeed use statistical learning in order to

display this centering behavior, that would suggest that the optimal anticipatory position

can be manipulated, along with the centering behavior of the participant, by moving the

locations or the probability distributions of the target stimuli.

Humans are not the only statistical learners we know. With the rise of AI Machine

Learning (ML) algorithms arose, inspired by human learning and neuroscience (Hassabis

et al., 2017), using statistical learning theory (Vapnik, 1999). Meaning these algorithms use

statistical inference in order to make estimates and predictions. Because of the similarities

between human and machine learning, both fields can benefit from synergism with the

other. The biology of the human brain offers ML inspiration for optimizing learning

algorithms, while contrariwise ML offers psychology and neuroscience a framework to

model and study human learning (Botvinick et al., 2020; Hassabis et al., 2017).

Human learning to Machine learning

A type of Machine Learning (ML), which is inspired by sequential decision making,

is Reinforcement Learning (RL) (Barto et al., 1989; Niv, 2009). RL is a machine learning

method in which an artificial agent interacts with an environment, gathers experiences, and

learns through trial and error over time. Desirable actions are rewarded and undesirable
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actions punished, while the agents try to optimize objectives by maximizing the cumulative

reward (Sutton, Barto, et al., 1998). The basics of learning through reinforcement originate

from classical conditioning and operant conditioning. Classical conditioning, also called

Pavlovian conditioning, is a behavioral procedure that occurs when a neutral stimulus is

paired with a potent stimulus; the neural stimulus will elicit a response similar to the

response the potent stimulus would elicit (Pavlov, 1927). In operant conditioning, also

known as instrumental conditioning, behavior is paired with a consequence; behavior can

be modified by either reinforcement or punishment (Skinner, 1938). Building further on the

work of Pavlov, 1927, Rescorla, 1972 created a model in which learning was driven by the

difference between the predicted and received reward. This learning difference (∆V ) can be

symbolized by the following equation:

∆V = αβ(λ−
∑

V ), (1)

where λ represents the received reward and ∑V the summarized total of associative

value, in other words, the expectation of the reward. Together (λ−∑V ) is the difference

in expectation and actual reward, or error. This difference is used to update the

summarized total of associative value. Alpha α and beta β are weights that depict the

salience of the conditioned stimulus (α) and learning-speed given the unconditioned

stimulus (β). These weights determine the magnitude of adjustment the difference will

have on the previously established associative value. Together, these concepts have become

the foundation of RL (François-Lavet et al., 2018; Jozefowiez, 2002), which is elaborated at

a computational level below.

Reinforcement Learning

A RL problem can be mathematically modeled as a policy search in a Markov

decision process model (MDP), defined by a tuple (S, A, P, R, γ), which consists of:
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• Discrete time t = 0, 1, 2, ... T

• A discrete set of states s ∈ S

• A discrete set of actions a ∈ A(s) for each s

• A transition function p(s′|s, a): the probability of transitioning

from state s to state s′ while taking action a

• A reward function r(s, a, s′) = E[r|s, a, s′]: expected reward of

taking action a at state s transitioning to s′

• Discount factor γ: values the importance of future rewards
In RL, the agent in this attempts to learn policy π in order to maximize the sum of

expected rewards. Policy π specifies what actions should be taken in a given state. This

can either be deterministic a = π(s) or stochastic π(a|s) := P (At+1 = a|St = s). The policy

is determined by value functions v(s) and q(s, a), which in turn are determined by the

policy. The state value function vπ(s) is the expected total return of state s when actions

are specified by policy π. The state-action value function q(s, a) is the expected total

return of state s, given a under policy π, meaning first action a is taken independently of

the policy π. The state value function can be written as: vπ(s) = ∑
a π(a|s)q(s, a) and the

state-action value function as: q(s, a) = ∑
s′ p(s′|s, a)[r(s, a, s′) + γvπ(s′)]. Rewritten this

gives us the following Bellman Equations to describe the value of a state:

vπ(s) =
∑

a

π(a|s)
∑
s′

p(s′|s, a)[r(s, a, s′) + γvπ(s′)] (2)

qπ(s, a) =
∑
s′

p(s′|s, a)[r(s, a, s′) + γ
∑
a′

π(a′|s′)q(s′, a′)]. (3)

Ultimately agents search for the optimal policy π∗, this is done by maximizing the

value functions: vπ∗(s) = v∗(s) :=
π

maxvπ(s) and qπ∗(s, a) = q∗(s, a) :=
π

maxqπ(s, a).

There are two types of methods to learn the optimal policy: On-policy and

off-policy. On-policy methods use the policy that was made to make decisions to evaluate

or improve the policy, off-policy methods evaluate or improve the policy independently of
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the policy used to make these decisions (Sutton, Barto, et al., 1998). The trade-off between

the two is usually characterized by stability versus data efficiency. Off-policy learners tend

to be less data hungry but have to relinquish stability, as opposed to on-policy learners

that retain more stability while being less data efficient (Haarnoja, Pong, et al., 2018;

Juliani et al., 2020; Nachum et al., 2018).

Furthermore, there are two types of RL problems: Model-based, where the MDP is

completely specified, and Model-free, for which the MDP is unknown. In model-free RL

problems, the agent can only learn from direct experiences, like sample paths. This means

that the agent will have to execute a random search, however, can still use the Bellman

equations the propagate values. Exploiting these equations, Temporal difference (TD)

learning is a method in which predictions are made over successive timesteps to drive the

learning process (Sutton & Barto, 1987). An update step through TD can be displayed as

the following equation:

vπ(St)← vπ(St) + α[Rt+1 + γvπ(St−1)− vπ(St)], (4)

where the value of a state is updated by taking the old value and adding the

weighted difference between the old value and the new information found. This weighted

difference: α[Rt+1 + γvπ(St−1)− vπ(St)], corresponds to ∆V , the difference between the

expected and actual value, or error, seen in the Rescorla-Wagner model in Equation 1. In

order to improve the policy in a Model-free problem, the agent will have to balance

exploration versus exploitation of the state-space. The agent needs to explore enough

state-actions in order to improve its knowledge about the value of a state, contrastingly, it

will need to exploit its current estimated values to get the most reward (Sutton, Barto,

et al., 1998).
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Deep RL

When transferring RL to real-world problems, we are struck by the curse of

dimensionality, meaning that, in order to obtain reliable results in situations that approach

real-world complexity, the state-action space and amount of data needed will exponentially

grow with the dimensionality (Bellman, 1957; Perrusquia et al., 2019). When challenged

with these problems, it is important that the agents use the high-dimensional inputs

efficiently to derive representations of the environment (Mnih et al., 2015). Therefore, if

the state-space is high-dimensional combining RL with the representational power of deep

learning, named deep RL is most useful (Botvinick et al., 2020; François-Lavet et al., 2018).

Deep learning is a machine learning network inspired by the biological neural

networks in the brain, in which neurons are connected through synapses, which are used to

receive and transmit signals in order to transmit the information from one neuron to

another (Goodfellow et al., 2016). In deep learning artificial neural networks are utilized,

which transform a set of inputs into a set of outputs. The network consists of layers of

units; an input layer, an output layer, and one or more hidden layers in between. The

connections between there units are weighted and except for the input layer, at every layer,

the input of each unit is computed as the weighted sum of the units of the previous layer.

After the computation from input to output, we can backpropagate gradients from the

output to the input by computing the error derivatives backward. Like this, the weights

can be updated to optimize some loss function (Li, 2017).

In deep RL, deep learning is incorporated to solve high-dimensional RL problems.

In these models, the policy π or other learned functions are represented inside a deep

neural network. These deep RL systems typically use the neural network in order to

compute non-linear mappings from observational input to action output, while also using

RL signals to update the network weights (Botvinick et al., 2020; Mnih et al., 2015). When

extending RL with deep learning, the following hyperparameters are enforced in the RL

model (Juliani et al., 2020):
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1. Max steps: The Total amount of steps the simulation entails.

2. Batch size: The number of experiences (agent observations, actions, and rewards

obtained) used for one iteration of a gradient descent update. The batch size should

always be a fraction of the buffer size.

3. Buffer size: The function of the Buffer size differs for on-policy and off-policy

algorithms. For on-policy algorithms, it is the amount of experiences that should be

collected before learning or updating the model. For off-policy algorithms, it is the

maximum number of experiences that can be stored in the experience replay buffer.

Off-policy algorithms use this experience buffer to train from past experiences.

4. Time horizon: How many steps of experience are needed before adding it to the

experience buffer. It is important that the time horizon is big enough to capture the

sequence behavior of the agent.

5. Learning rate: The strength of each gradient descent update step.

6. Learning schedule: Either constant or linear (the learning rate decreases linearly

towards 0 reaching the end of the training).

Two state-of-the-art deep RL algorithms are Proximal Policy Optimization (PPO)

(Schulman et al., 2017) and Soft Actor-critic (SAC) (Haarnoja, Zhou, Abbeel, et al., 2018)

which will be explained in detail below. Both of these algorithms are Actor-Critic methods,

in which the policy and value function are represented independently and TD learning

methods are used to drive the learning process (Konda & Tsitsiklis, 1999). In this method,

the actor and critic are separate entities. The actor represents the policy for the possible

actions given a state, the critic represent the value function, which evaluates the actions of

the actor.
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Proximal Policy Optimization

PPO (Schulman et al., 2017) is an on-policy family of policy optimization methods

that combine the stability and reliability of trust region policy optimization (TRPO) with

the benefits of first-order optimization. The key feature of the PPO algorithm is a clipped

"surrogate" objective function for computing policy updates. More basic policy gradient

implementations use an objective function whose gradient is the policy gradient estimator:

LP G(θ) = Êt[logπθ(at|st)Ât], (5)

in which the log probability of stochastic policy πθ is multiplied by the estimation of

the advantage function Ât at timestep t to evaluate the impact of action a in state t (Mnih

et al., 2016). Estimates Ât, which tell us how "good" a certain decision is, rely upon

parameters γ ∈ [0, 1] and λ ∈ [0, 1]. Parameter γ is the discount factor, which controls how

much future rewards are valued. Parameter λ makes a compromise between bias and

variance (Schulman, Moritz, et al., 2015). Since this policy gradient is on-policy, it will

search actions from the current state. Therefore, if it takes large steps, it can end up in bad

states and will have to resume from these bad states with locally bad policies. Therefore,

multiple steps of optimization with this loss LP G function with the same trajectory can

lead to uncontrollably large policy changes, which can hurt performance badly (Schulman

et al., 2017).

TRPO tackles this problem by maximizing a surrogate objective to a constraint on

the size of the policy update, namely:

θ
Maximize Êt

[
πθ(at|st)

πθold(at|st)
Ât

]
(6)

Subject to Êt[KL[πθold(·|st), πθ(·|st)]] ≤ δ. (7)

In Equation 6 the probability ratio rt(θ) = πθ(at|st)
πθold(at|st) of πθold, the vector of policy
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parameters before the update and current policy vectors πθ, is utilized to find the impact of

certain actions in certain states. If πθ = πθold, actions are as likely under the current policy

as they were under the old policy, therefore we have r(θold) = 1. When actions under the

current policy are more likely, the ratio will become > 1. Equation 7 exhibits the

constraint the objective is subjected to. With the Kullback–Leibler (KL) divergence, the

difference between the data distribution of the old policy and the current policy is

measured. This distribution must the lower than δ, the size of the region (Schulman,

Levine, et al., 2015). Since hard constraints heavily impact performance, a penalty is

suggested instead. However, finding the appropriate coefficient for this penalty is hard to

determine (Schulman, Levine, et al., 2015; Schulman et al., 2017). Without constraint,

maximization of the LCP I loss function:

LCP I(θ) = Êt

[
πθ(at|st)

πθold(at|st)
Ât

]
= Êt[rt(θ)Ât], (8)

will also lead to unreasonably large policy changes. The PPO-clip algorithm

addresses this by clipping the probability ratio of the surrogate objective:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)], (9)

where the minimum is taken of LCP I and clip(rt(θ), 1− ϵ, 1 + ϵ). In the second term,

the ratio rt(θ) is limited from moving outside of interval [1− ϵ, 1 + ϵ] using hyperparameter

epsilon. Because the minimum is taken, the final objective will never be higher than the

unclipped objective, meaning that the final objective will be a lower bound on the

unclipped objective. Like this, the change in probability ratio is only included if it makes

the objective worse. Pseudo-code of the clipped PPO from Schulman et al., 2017 can be

found in Algorithm 1.
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Algorithm 1 Algorithm 1 PPO, Actor-Critic Style
for each iteration do

for agent 1, ..., N do

Run policy πθold in environment for T timesteps

Compute advantage estimates Â1, ..., ÂT

end for

Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT

θold ← θ

end for

Soft Actor-Critic

SAC (Haarnoja, Zhou, Abbeel, et al., 2018) is an off-policy algorithm based on the

maximum entropy RL framework. The objective in this framework combines the standard

objective with an entropy term, such that the optimal policy is found while also

maximizing entropy (Ziebart, 2010; Ziebart et al., 2008). Meaning that the agent will try

to succeed in the task while acting the most random. This gives us the following equation:

π∗ = arg
π

max
∑

t

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))], (10)

where π∗ is the optimal policy and α is the temperature parameter which

determines the gravity of the entropy term H(π(·|st) versus reward r(st, at), therefore

controlling the randomness for the optimal policy. Because of the entropy term, the policy

is encouraged to explore more and even capture various approaches of near-optimal

solutions (Haarnoja, Zhou, Abbeel, et al., 2018; Ziebart, 2010). Since it is hard to choose a

certain temperature α Haarnoja, Zhou, Hartikainen, et al., 2018 automated this process for

the user with the following Equation:

α∗
t = arg

αt
maxEat∼π∗

t
[−αtlogπ∗

t (at|st; αt)− αtH̄]. (11)
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SAC is rooted in Soft Policy Iteration, in which a soft Q-function including entropy

term is defined by:

τπQ(st, at) ≜ r(st, at) + γE(st+1)∼p[V (s(t + 1)], (12)

where τ is a backup operator, corresponding to the gravity of the Q-update (Juliani

et al., 2020) and V (st) can be defined as:

V (st) = E(st)∼π[Q(st, at)− αlogπ(at|st)], (13)

where the entropy term α now gives weight to the log probability of the stochastic

policy. The policy update is defined by the KL-divergence:

πnew = arg
π′∈Π
minDKL

(
π′(·|st)||

exp 1
α
Qπold(st, ·))

Zπold(st)

)
, (14)

where the distribution is normalized by partition function Zπold(st) and Π is a

restricted set of policies, containing only traceable policies. This projected policy update

makes sure that the new policy has a higher value in terms of maximum entropy objective

than the old policy (Haarnoja, Zhou, Abbeel, et al., 2018).

Since these functions can only find the optimal solutions in tabular form, SAC will

need to use function approximation for the continuous domains. For both the Q-function

and policy, function approximators will be utilized and alternated between updating these

function approximators with stochastic gradients and using the current policy to collect

experiences from the environment. The soft Q-function will be modeled as a neural

network with network-parameter θ, and trained by using stochastic gradients to minimize

the soft Bellman residual:

JQ(θ) = E(st,at)∼D[12(Qθ(st, at)− (r(st, at) + γEst+1∼p[Vθ̄(st+1)]))2]. (15)

The policy can be modeled as Gaussian distribution with a mean and covariance
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with network parameters ϕ. These parameters can be trained by minimizing the

expectation of the KL-divergence seen in Equation 14 with the following formula:

Jπ(ϕ) = E(st)∼D[E(at)∼πϕ
[αlog(πϕ(at|st))−Qϕ(st, at)]] (16)

.

Because the target density is a neural network (Q-function), the policy can be

re-parameterized by using at = fϕ(ϵt; st). As with the Q function approximate, we can

approximate Equation 16 with gradient estimators (Haarnoja, Zhou, Abbeel, et al., 2018).

Because the algorithm is off-policy, the value estimators and policy can be trained from the

replay pool D. A pseudo-code overview for SAC from Haarnoja, Zhou, Hartikainen, et al.,

2018 can be found in Algorithm 2.

Algorithm 2 Algorithm 2 SAC, Soft Actor-Critic
for each iteration do

for each environment step do

Sample at action for policy πϕ(at|st)

Sample transition st+1 from environment p(st+1|st, at)

Store transition in replay pool D

end for

for each gradient step do

Update Q-function parameters θi

Update policy weights ϕ

Adjust temperature α

Update target network weights θ̄i using τ

end for

end for

Human learning has been and still is a huge inspiration for Machine learning,

subsequently, machine learning can now help us in our quest for deeper understanding of
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human learning. Computational modeling, formulating and simulating cognitive processes

in terms of mathematical models, had become increasingly popular in the field of

psychology and neuroscience over the last decade (Lewandowsky & Farrell, 2010; Wilson &

Collins, 2019). Fitting these computational models to behavioral data can help us better

understand the underlying behavior. RL models have been used method to explain decision

making and accompanying cognitive processes (François-Lavet et al., 2018; Niv, 2009;

Zhang et al., 2020).

To help analyze sequence decision making behavior Kachergis et al., 2016 used RL

to model the motor learning paradigm in the SRT task. They found two RL models,

Q-learning and SARSA, which could partially explain the effect of rewards in sequence

learning behavior in humans. Q-leaning (Watkins, 1989) and SARSA (Rummery &

Niranjan, 1994) are two popular model-free RL methods that use TD learning. The

difference between the two lies in their value function and policy updating strategy.

Q-learning is off-policy, whereas SARSA is on-policy. Extending this research, in a later

study (de Kleijn et al., 2018) the same RL models were also effectively used to help model

reactive responses in sequence learning behavior. In terms of maximum score, fit and

variability Q-learning seems to outperform SARSA in modeling sequence decision making

behavior (de Kleijn et al., 2018; Kachergis et al., 2016).

However, these models only partially explained sequence learning behavior. With

RL alone, we can analyze how rewards shape decision making, deep RL opens up new

explanatory principles in neuroscience. By the notion of superadditivity, the integrated

aspects of deep learning and RL, do not only give us the power to model meaningful

abstract representation plus reward-driven decision making behavior of RL, but also

provides us with a framework to study how reward-driven learning builds these

representations, and, in turn, how these representations drive decision making and learning

(Botvinick et al., 2020).

Building on RL models to explain sequence learning in the SRT task, studies with
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deep RL algorithm PPO were conducted in a more realistic 3D environment, simulation

the real-world complexity of the task (de Kleijn et al., 2022; Sen et al., 2022). These

studies made use of an agent resembling a human arm, tasked to touch target stimuli. This

agent consists of a simulated robotic arm with 4 degrees of freedom to move around (DoF)

controlled by a neural network with two fully connected hidden layers, each containing 128

units. In line with human studies of sequence learning behavior, it was found that deep RL

agents made use of predictive information to optimize behavior in the SRT task (Sen et al.,

2022), would adhere to a centering strategy under uncertainty (de Kleijn et al., 2022; Sen

et al., 2022) and displayed more flexibility in critical learning periods (de Kleijn et al.,

2022). Coincidentally, these results, show promising prospects of further investigating and

modeling sequence decision making behavior with the deep RL agent.

Contributions

The current study extends on the centering behavior of the Reacher agent in

absence of explicit predictive information in the studies of Sen et al., 2022 and de Kleijn

et al., 2022. In this experiment, the Reacher will be simulated again, performing the SRT

task, in a more challenging environment. Instead of below, the target stimuli will appear

above the Reacher agent, urging the agent to actively keep its arm up in order to perform

the task. Additionally, alongside PPO, the newer SAC algorithm will be employed to

investigate its performance on the task. And foremost, the scope of centering behavior

itself will be investigated by moving the optimal centering position by changing the

frequency distribution of the target stimuli. This work aims to answer the following

research questions:

1. How does the performance of the algorithms PPO and SAC compare on the Reacher

SRT task?

2. How does the frequency distribution of target stimuli influence the centering behavior

of the Reacher agent?
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Concerning performance, there are no prior results with the SAC algorithm on the

SRT task, and the performance of algorithms tends to be problem specific, therefore this

research will be mostly exploratory. However, in SRT studies using RL algorithms

(de Kleijn et al., 2018; Kachergis et al., 2016), it was found that the off-policy learner

outperformed the on-policy learning, which is why it might be hypothesized that the SAC

algorithm will indeed outperform PPO in terms of performance on the SRT task.

Regarding centering behavior, previous research suggested that the centering

strategy was a way to compensate for the absence of sequence knowledge, using the center

as an optimal anticipatory position to unknown subsequent stimuli (Dale et al., 2012;

de Kleijn et al., 2022; Duran & Dale, 2009). This would mean that if the optimal

anticipatory position changes, like when the probability distribution of the target stimuli is

skewed, this might also result in a shift of centering location towards stimuli that appear

more frequent. Since, like in humans, less initial distance to the stimuli results in faster

response times and therefore more rewards, it is expected that both PPO and SAC

algorithms display a similar pattern. Hence, it is hypothesized that the probability

distribution of target stimuli influences the centering behavior of the Reacher agent.

Method

Implementation

For this study ML-Agents release 14 (Juliani et al., 2020) was used in the Unity 3D

version 2019.4.31f1 with the ML agents 1.8.1 and ML-Agents Extensions 0.2.0 toolkits as

physics simulators. The agents were trained with reinforcement algorithms PPO and SAC

included in ML-Agents release 14, using Python 3.8.8 with library mlagents 0.24.1. The

source code for the implementation can be found at

https://github.com/deborahvans/Reacher. The experiment was conducted using ALICE

High-Performance Computing facility of Leiden University.

https://github.com/deborahvans/Reacher
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Experiment

In this study, the scope of centering behavior was extended and compared among

reinforcement algorithms PPO and SAC. To investigate centering behavior, the location of

the hand of the agent was measured right before the end of the inter-stimulus interval

(ISI). The "center", meaning the most profitable resting state in terms of least movement

acquired to reach the targets, was manipulated by changing the frequency at which certain

targets appeared. The frequency distribution was manipulated among one axis, meaning

that either on the right-side or the left-side targets were more likely to appear. Per

reinforcement trainer, 11 different frequency conditions were created ranging from a

distribution of 0-100 left-right to 100-0 left-right. For the first condition, 0-100, this means

that there is a 0% chance of a stimulus appearing on the left side of the agent and 100%

chance of a stimulus appearing on the right side. An overview of all conditions can be

found in Table 1. Every condition consists of 20 runs, meaning a total of 20*11*2 runs,

which approximately took 0.5 hours per run for the PPO algorithm and 2 hours for SAC.

Table 1

Conditions for each reinforcement learner.

1 2 3 4 5 6 7 8 9 10 11

0-100 10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20 90-10 100-0

Setup

Agents: The agent consists of an arm constructed of two arm segments and a

hand. In Figure 1 the agent and the goal can be seen. The robot arm is centered at the

shoulder (black sphere) and has two actuators, both retaining 3 degrees of freedom to move

around. The first actuator is positioned at the shoulder and the second one at the elbow

between the two arm segments (white spheres). The hand (blue sphere) of the agent

embodies a sensor and can destroy the goal (green sphere) on collision. When torque is
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Figure 1

Robot arm and goal (green).

applied to the actuators to move the joints, axial motion is ignored. Therefore this results

in four degrees of freedom in total.

Task design: Representations of the current reaching task are shown in Figure 2.

For this serial response time (SRT) task, stimuli will appear that the agent has to touch.

Figure 2a contains a representation from the side, in which can be seen that the stimuli

appear above the agent. By presenting the stimuli above the agent, it is avoided that the

agent can display centering behavior by "letting loose" and hanging down its arm. Now, the

agents need to actively keep its arm up to display centering behavior. In Figure 2b we see a

Bird’s-eye view of the locations at which a stimulus can appear. Target stimuli will appear

in random order at one of these four locations. The stimuli will remain for a maximum of

200 timesteps and will either disappear if this limit is reached or if the stimulus is touched

by the hand of the agent. After the stimulus disappears there is an ISI of 50 timesteps after

which a new stimulus appears. The reward for touching target stimuli starts at 1 with a

decay of 0.001 per timestep. This gives us a reward function of reward = 1-0.001*timestep.

Meaning that if the stimulus would be touched at timestep 0 this results in a reward of 1



ANTICIPATORY CENTER REACHING 20

A

t2t1

0

-9

9

Y

0
X

-9 9

(a) View from the side.
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(b) View from the top.

Figure 2

Visual representation on the serial response time (SRT) task. Node A is the anchor point

of the agents (the shoulder). Nodes t1− t4 are the possible coordinates at which a target

stimulus can appear. The distance between the anchor point and stimuli can be calculated

via the Pythagorean theorem:
√

92 + 92 + 92 = 15.59.

and the lowest possible reward would be at the limit of 200 timesteps would remain 0.8.

This is reset for every new target. To discourage inefficient movements and mimic

biological energy consumption a small penalty of 0.0001 * absolute distance moved per

timestep was imposed. The overall performance of touching targets is quantified as

cumulative rewards (minus penalties) per episode. An episode is a total of 4000 timesteps.

Where the target stimulus appears is generated by discrete uniform distribution

U(0,1) per axis. Through curriculum learning the training is divided into two equal

fractions. For the first half of the training, for both axes, the frequency distribution of

where the stimuli can appear is 50-50. This means that for both axes there is a threshold

of 0.5. For each axis, a discrete uniform number is generated. If the number is below the

threshold, the coordinate on the axis will be 9, otherwise, the coordinate will be -9 for this

axis. Like this, all locations have the same likelihood of being the target location. In the
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second half of the training, the frequency distribution for the x-axis is changed. The

Z-coordinate will still have an equal chance of being 9 or -9, however, the chance of the

X-coordinate being 9 or -9 now depends on the frequency distribution condition. If the

frequency condition is for example 70-30, the threshold will be 0.7. This results in a 70%

chance of the X-coordinate being 9 and a 30% chance of it being -9. Centering behavior is

then determined by the location of the hand of the agent at the end of the ISI, 1 timestep

before the new target stimulus appears.

Neural Controller and hyperparameters: The "brain" of an agent is the

neural controller consisting of a feedforward network. A more complex model was used

compared to previous experiments with the Reacher (de Kleijn et al., 2022; Sen et al.,

2022), consisting of three hidden layers which all contained 512 units. The input vector

holds 33 elements, which consisted of the following observations:
• Position of both arm segments (2 × 3 elements)

• Rotation of both arm segments (2 × 4 elements)

• Velocity of both arm segments (2 × 3 elements)

• Angular velocity of both arm segments (2 × 3 elements)

• Position of the hand (3 elements)

• Position of the goal (3 elements)

• Presence of the goal (1 element)
The output layer determines the "action" of the agents. In this case, the torques

applied to the actuators of the arm segments, causing them to rotate and therefore move.

PyTorch was used for the implementation and underlying representation of the deep

learning model. After training an agent the output model was provided as a .onnx file,

which could be used as a brain.

Most parameters for both PPO and SAC are based on a more complex model that

was provided by Juliani et al., 2020. For comparability reasons, the learning rate schedule

of both PPO and SAC was set to constant, meaning that the learning rate (of 0.0003)

would remain the same for the whole training. The max steps for PPO (4000000) were
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doubled compared to SAC (2000000). This decision was made because off-policy

algorithms tend to be more data-efficient and therefore require fewer steps, but spend more

time performing updates (Haarnoja, Zhou, Hartikainen, et al., 2018; Juliani et al., 2020;

Nachum et al., 2018). This was also confirmed by several test runs. Since for this task, the

agents need to capture the underlying distribution of the stimuli, the time horizon to learn

was expanded for both PPO and SAC. The time horizon was set to match the episode

length (4000), as this is common practice (Juliani et al., 2020). More details of the

parameter settings can be found in Appendix A, Table A1.

Data accumulation and statistics

After conducting the experiment and collecting the data, the data was aggravated

to an .csv file in order to be processed in R studio.

SRT performance: To explore the overall performance of both PPO and SAC

algorithms on the SRT task, the cumulative rewards were plotted over time. In order to

investigate a statistical difference between the general performance on both algorithms, the

mean cumulative rewards at the end of the training were compared by applying an

independent sample t-test.

Centering behavior: First, centering behavior was explored and examined

separately for PPO and SAC. The locations of the X-coordinates of the agent at the end of

the ISI were visualized over time and grouped by their frequency distribution. Additionally,

the final X-coordinates at the end of the ISI are plotted against the frequency distribution

that was used in the training. Next, to analyze the effect of frequency distribution on

centering behavior, for each algorithm a linear regression was performed with the frequency

of the X-coordinates being -9 as continuous variable as independent variable and the

X-coordinates of the hand agent at the end of the ISI as dependent variable. Likewise, an

Analysis of Variance (ANOVA) was performed with the same variables, alternately with

the frequency distribution as a factor instead of a numeric variable. Finally, to investigate

the difference between centering behavior between the algorithms, the euclidean distances
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between the position of the hand of the agent and optimal centering position are calculated

and compared by applying an independent sample t-test.

Results

SRT performance

Figure 3a exhibits the mean cumulative rewards per episode and 95% confidence

interval (CI) for each distribution group of PPO over time. Likewise, Figure 3b displays

the same for the SAC trainer.

(a) PPO trainer results. (b) SAC trainer results.

Figure 3

Mean and 95% CI per distribution group of cumulative rewards per episode (4000

timesteps) over time.

For the PPO algorithm in Figure 3a we see relative broad CI’s, indicating the

estimate and therefore trainer is not very stable. Since the CI’s of the different frequency

distribution groups are mostly overlapping it seems most likely that the groups are from

the same population in terms of general SRT performance. In comparison, the SAC

algorithm in 3b shows a lot more stability over the different runs within and between the

different frequency distribution groups. Since the CI’s are very narrow and still overlapping

it can be deduced with more precision, that the means are likely from the same population
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and very close to the actual population mean. Since these measures showed no evidence of

statistical differences between frequency groups (within the algorithm) they are combined

for the following measure.

The overall means and standard deviations (SD) combined of all frequency

conditions per algorithm can be found in Figure 4. The SD’s in the Figure show that the

SAC algorithm results in reduced variability compared to the PPO algorithm. Since the

SD’s are not overlapping and the mean for SAC is higher it seems probable that the

performance on the SRT task is statistically higher for the SAC conditions.

Figure 4

Total mean and SD of cumulative rewards per episode over time.

Given the visualizations, the SAC algorithm seems to exceed the PPO algorithm in

performance on the SRT task. Therefore, a one-sided t−test was conducted. The

independent sample t−test confirmed that, at the end of the training, the SAC algorithm

(M = 48.49) surpassed the PPO algorithm (M = 23.81) in performance, t(235.81) =

-17.847, p < 2.2e-16. This indicated that overall the SAC trainer exceeds the PPO trainer

in training an agent on the SRT task.



ANTICIPATORY CENTER REACHING 25

Centering behavior

For this part, we start by exploring centering behavior for PPO and SAC separately.

Starting with PPO, in Figure 5 the effect of the frequency distribution of the X-coordinate

of the target stimulus on the centering behavior of the agent can be seen over time. In the

first half of the training, the frequency distribution of a stimulus being either at

X-coordinate 9 or -9 is 50-50. In the Figure, this results in the means of all conditions

being spread around 0 with their CI’s almost completely overlapping. After the curriculum

is used in the second half of the training this spread seems to expand and the more skewed

the frequency distribution, the bigger the deviation of the mean from 0 seems to be. The

clear distinction in the graph between the first and second half of the training suggests an

effect of frequency distribution on the centering position behavior of the agent.

Figure 5

Mean X-coordinate and 95% CI of the agent hand at the end of the ISI over time. The

change in frequency distribution was applied at timestep 2x106 for PPO.

Figure 6 displays the X-coordinate of the agent’s hand at the end of the ISI at the
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end of the training. The different colors in the graphs represent different frequency

conditions. For every condition, there seems to be a cluster around a certain X-coordinate,

which seems to increase as the probability of the X-coordinate for target stimuli being 9

increases.

Figure 6

X-Coordinates at the end of the ISI at the end of the training over frequency of the

X-coordinate for target stimuli being 9 for PPO.

First, a linear regression was performed with the frequency of the X-coordinate for

target stimuli being 9 as predictor and the X-coordinate of the agent before stimulus onset

after training as response variable. This resulted in the following fitted linear regression

model: ŷ = −4.07 + 0.074 ∗ x. The overall model was found to be statistically significant

(R2 = 0.24, F (1, 220) = 68.88, p = 1.056e-14). Predictor variable X-coordinate for target

stimuli being 9 significantly predicted X-coordinate of the agent before stimulus onset after
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training (β = 0.074, p = 1.06e-14) This indicated that frequency distribution is a

significant predictor for the centering position of the agent.

Next, an ANOVA was conducted with frequency distribution as factor and position

of the mean X-coordinate of the agents before stimulus onset after training as response

variable. The ANOVA revealed that there was a statistical significant difference in the

centering position between at least two groups (F (10, 211) = 7.689, p = 1.858e-10). Table

2 contains a complete summary of the model. In this table it can be seen that, for most

conditions, the further away the frequency distribution coefficient is from the base (the

0-100 condition in this case), the higher the t-value seems to be in general.

Table 2

ANOVA summary for the PPO algorithm

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.8406 0.8874 -4.328 2.32e-05 ***

10-90 1.8269 1.3193 1.385 0.1676

20-80 0.1171 1.3011 0.090 0.9283

30-70 2.7954 1.3011 2.148 0.0328 *

40-60 1.6744 1.3011 1.287 0.1996

50-50 3.1935 1.3011 2.454 0.0149 *

60-40 3.1676 1.3011 2.434 0.0157 *

70-30 5.1995 1.3011 3.996 8.90e-05 ***

80-20 6.2762 1.3011 4.824 2.70e-06 ***

90-10 5.8931 1.3011 4.529 9.90e-06 ***

100-0 8.0962 1.3011 6.222 2.60e-09 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

Now for the SAC algorithm, Figure 7 displays the effect of the frequency
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distribution of the X-coordinate of the target stimulus on the centering behavior of the

agent over time. As for PPO, the frequency distribution of a stimulus being either at

X-coordinate 9 or -9 is 50-50 for the first half of the training. The figure shows means

around 0 and overlapping CI’s. After the curriculum onset, the graph shows a very clear

distinction between the different frequency groups. In comparison to Figure 5, Figure 7

shows relatively narrow CI’s, suggesting that the centering behavior for this trainer is more

stable and precise. Since the CI’s are very narrow and barely overlapping, it is very likely

that the different frequency conditions come from different populations, suggesting a clear

effect of frequency distribution on centering position behavior of the agent.

Figure 7

Mean X-coordinate and 95% CI of the agent hand at the end of the ISI over time. The

change in frequency distribution was applied at timestep 1x106 for SAC.

Figure 8 displays the X-coordinate of the agent’s hand at the end of the ISI at the
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end of the training. Again, the different colors in the graphs represent different frequency

conditions. In this graph, we see very clear clusters around certain X-coordinates compared

to Figure 6. Individual points deviate less from the overall clusters and the centers of these

clusters increase as the probability of the X-coordinate for target stimuli being 9 increases.

Figure 8

X-Coordinates at the end of the ISI at the end of the training over frequency of the

X-coordinate for target stimuli being 9 for PPO.

As for the PPO, for SAC a linear regression was performed with the frequency of

the X-coordinate for target stimuli being 9 as predictor and the X-coordinate of the agent

before stimulus onset after training as response variable. This resulted in the following

fitted linear regression model: ŷ = −6.113972 + 0.121 ∗ x. The overall model was found to

be statistically significant (R2 = 0.80, F (1, 215) = 877.2, p < 2e-16). Predictor variable

X-coordinate for target stimuli being 9 significantly predicted the X-coordinate of the agent
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before stimulus onset after training (β = 0.121, p < 2e-16). This indicated that frequency

distribution is a significant predictor for the centering position of the agent.

Likewise, an ANOVA was conducted with frequency distribution as factor and

position of the mean X-coordinate of the agents before stimulus onset after training as

response variable. The ANOVA revealed that there was a statistical significant difference

in the centering position between at least two groups (F (10, 206) = 91.63, p < 2.2e-16).

Table 3 contains a complete summary of the model. In line with the CI’s in Figure 7, Table

3 shows that, except for the direct neighboring frequency distributions, the different

frequency conditions significantly differ from each other.

Table 3

ANOVA summary for the SAC algorithm

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.7586 0.4195 -13.729 < 2e-16 ***

10-90 0.5372 0.6094 0.881 0.37908

20-80 1.9663 0.5932 3.315 0.00108 **

30-70 3.5261 0.5932 5.944 1.17e-08 ***

40-60 4.2716 0.6009 7.108 1.89e-11 ***

50-50 4.5734 0.5932 7.710 5.28e-13 ***

60-40 7.7639 0.5932 13.088 < 2e-16 ***

70-30 8.5524 0.5932 14.418 < 2e-16 ***

80-20 9.4969 0.5932 16.010 < 2e-16 ***

90-10 10.2907 0.5932 17.348 < 2e-16 ***

100-0 11.6154 0.5932 19.581 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

Of course, the actual most profitable resting state in terms of least movement
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acquired to reach the targets (the optimal centering position) can be calculated by adding

the probability of the target being -9 multiplied by -9 to the probability of the target being

9 multiplied by 9. Table 4 contains these numbers together with the found X-coordinates

before target onset at the end of the training of PPO and SAC. A visual comparison of the

found X-coordinates can be seen in Figure 9. Respectively, the optimal position for the

Y-coordinate and Z-coordinate are 9 and 0. The euclidean distance between the hand of

the agent and the optimal centering position can be calculated by:

√
(xhand − xopt)2 + (xhand − xopt)2 + (xhand − xopt)2. (17)

Since previous evidence suggested more reliable centering behaviour for the SAC

algorithm, a one sided t−test was conducted. The independent sample t−test confirmed

that, at the end of the training, the SAC algorithm (M = 3.35) displayed a smaller

euclidean distance from the optimal centering position than the PPO algorithm (M =

8.84), t(260) = 15.754, p < 2.2e-16. This indicates that overall, the SAC trainer is superior

to the PPO trainer in terms of approaching the optimal learnt centering behavior.

Figure 9

Mean and SD of X-coordinates before stimulus onset after training over frequency

distribution for PPO and SAC.
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Table 4

Final centering position for each frequency distribution.

Distribution PPO SAC Optimal

0-100 -3.8405977 -5.758629 -9.0

10-90 -2.0137252 -5.221407 -7.2

20-80 -3.7234513 -3.792315 -5.4

30-70 -1.0452287 -2.232568 -3.6

40-60 -2.1662039 -1.487052 -1.8

50-50 -0.6471243 -1.185278 0.0

60-40 -0.6730011 2.005317 1.8

70-30 1.3589230 2.793791 3.6

80-20 2.4355640 3.738274 5.4

90-10 2.0525024 4.532027 7.2

100-0 4.2556401 5.856760 9.0

Discussion

In this study, the scope of centering behavior on the SRT task was modeled and

investigated using 3D deep RL agents. The performance of two different algorithms: PPO

and SAC, was explored and compared on the task. Foremost, the influence of changing the

probability distribution of the target stimuli on resting position during the ISI of the

Reacher agents was investigated; Which was expected to shift from the center towards the

stimuli that appeared more frequent.

Comparing overall SRT performance in terms of cumulative reward per episode, in

this experiment, SAC clearly outperformed PPO with a higher mean cumulative reward

and less variability. In Figures 3a & 3b, both algorithms seemed to plateau nearing the end

of the training, while maintaining a constant learning rate, suggesting that this is indeed
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the number of steps needed for training. As expected, given the known data efficiency of

off-policy algorithms versus on-policy (Haarnoja, Zhou, Hartikainen, et al., 2018; Nachum

et al., 2018), SAC converged a lot faster –in terms of timesteps– than the PPO algorithm;

in real-time, the PPO algorithm was faster which was also expected since on-policy

algorithms usually spend less time updating. What was not expected, was the high

variability of the PPO algorithm, since on-policy algorithms tend to be more stable

(Nachum et al., 2018). However, the SAC algorithm also aims for stability by using the

exponential moving average to update the soft Q-function (Haarnoja, Zhou, Hartikainen,

et al., 2018; Mnih et al., 2015) also seen in Equation 15. The success of this intervention

could be the explanation for why the SAC algorithm is less variable than the PPO

algorithm in this paradigm. Interestingly, the on-policy algorithm SARSA was also found

to be more variable than its off-policy counterpart Q-learning (Kachergis et al., 2016). This

might hint that human learning might be more related to off-policy learning.

For both the PPO and SAC algorithms frequency distribution of the target stimuli

was a significant predictor of the resting position of the hand of the agent. This indicates

that the centering position the agent displayed in previous research (de Kleijn et al., 2022;

Sen et al., 2022) was not just a trivial resting state, but that the Reacher agents use their

implicit acquired knowledge about the statistical properties –i.e. probability distributions–

of the target stimuli to anticipate these stimuli and predict the ISI position to adopt in

order to maximize the cumulative rewards. This reinforces the belief that centering

behavior is indeed used as a way to compensate for the absence of sequence knowledge,

using the center as optimal anticipatory position, as speculated in previous human research

(Dale et al., 2012; de Kleijn et al., 2022; Duran & Dale, 2009).

For the SAC algorithm the distinction between frequency conditions is abundantly

clearer as can be seen in both the Figures 5 & 7 and ANOVA tables 2 & 3. While the SAC

algorithm has no trouble differentiating non-direct neighboring conditions, the PPO

algorithm seems to struggle more in distinguishing the different frequency conditions.
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Again the PPO algorithm shows high variability, which was also noticed comparing overall

SRT performance. The euclidean distance to the optimal anticipatory position was found

to be significantly less for the SAC algorithm compared to PPO. This effect, together with

the lower rewards for global performance of PPO, is in line with human trials where it was

found that humans that adhered to a better centering strategy under uncertainty would

perform better on the overall SRT task (Dale et al., 2012; de Kleijn et al., 2018; Duran &

Dale, 2009).

An explanation of SAC performing better than PPO might be the entropy term

that is added to the model. Because of the entropy term, the policy is able to capture

various approaches of near-optimal solutions, which makes the agent less vulnerable to

environmental changes we also see in real-world problems (Tang & Haarnoja, 2017). In the

current simulation, the order of the target stimuli is randomized and keeps changing,

therefore the entropy term of SAC might also help the algorithm switch tactics in this case.

A limitation, however, is that a lot of hyperparameters of SAC are less critical to the

learning process than for PPO (Juliani et al., 2020). SAC specifically aims to counter the

brittleness of hyperparameters, making them less critical and easier to tune than other

algorithms like PPO (Haarnoja, Zhou, Hartikainen, et al., 2018). Meaning that it is more

likely that PPO performance might be compromised by its hyperparametrisation than

SAC. Therefore, the difference if performance in this study may be partially influenced by

the hyperparametrization of said algorithms. More experimenting and tuning of the PPO

hyperparameters algorithm might produce different results in further research.

Also noticeable, when looking at the differences in actual optimal anticipatory

position and found anticipatory position for both PPO and SAC in Table 4, is that the

more extreme the frequency distance becomes, the larger the distance between the optimal

and found position becomes. One might expect that it is compelling the move the resting

position more toward certain stimuli when it is clearly more likely to be (or even always)

activated, both algorithms seem to be more cautious.
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A possible explanation lies in the curriculum that was employed. The current

curriculum first teaches the agent with an evenly balanced distribution in order to create a

baseline. Research of de Kleijn et al., 2022 demonstrated a critical learning period for deep

RL agents, after which the agents are less flexible to incorporate new objectives. This

might imply that in the current study the critical learning period had passed and the agent

was not flexible enough to incorporate objectives differing too much from the initial one.

However, a striking difference is that the current study uses a constant learning rate

instead of linearly declining towards 0 at the end of the training. Meaning that in this

study experiences learned at later moments in training weigh as much as earlier

experiences. Nonetheless, future research could verify this by manipulating the curriculum

and/or changing the learning rate to linear as seen in de Kleijn et al., 2022.

In this study, the frequency distribution of stimuli was manipulated on one axis only.

In future studies, the probability distribution of more axes could be manipulated or even

the positions of the target stimuli to further investigate the scope of centering behavior or

the simulated Reacher agents. Another way to investigate centering behavior would be to

give them explicit knowledge about the probability distribution as predictive information

instead of training the agents to implicitly learn the distribution, as is done with sequence

information in the study of Sen et al., 2022. In said study, the agents receive information

about the upcoming target stimulus by hot-coding its coordinates in the input vector of the

agent. In further research the agents could be given the probability distribution of the

target stimulus –while changing the probability distribution during the trial– and thus

investigated if explicit knowledge of this probability distribution influences the centering

behavior. Furthermore, to help model sequential decision making processes in humans,

parallel Reacher and human studies should be conducted and compared. The synergy

between simulated and human studies is important as this could help understanding human

learning, along with the development of AI algorithms, and therefore, bridge the gap

between human and machine learning (Botvinick et al., 2020; François-Lavet et al., 2018).
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Conclusion

Driven by the quest of modeling and explaining human sequential learning behavior,

this study investigated and compared the scope of centering behavior for deep RL

algorithms PPO and SAC in a 3D simulated environment of the SRT task. Although SAC

evidently outperformed PPO in terms of performance and stability, it was found that in

both algorithms the frequency distribution of the target stimuli was a vital influence on the

resting position –which shifts proportionally towards more probable target stimuli– of the

agent in the ISI. This indicates that centering behavior is not just a resting position, but

also acts as an optimal anticipatory position, caused by predictive processes, between the

target stimuli under uncertainty. Future research and comparison with human anticipatory

actions should be able to shed a light on how exactly these results relate to human

sequential learning behavior.
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Appendix

Appendix A

Table A1

Hyperparameters of PPO and SAC

Parameters PPO SAC

Batch size 2024 256

Buffer size 20240 500000

Learning rate 0.0003 0.0003

Learning schedule constant constant

Beta 0.005 -

Epsilon 0.2 -

lambd 0.95 -

Tau - 0.005

Init Alpha - 1.0

Gamma 0.995 0.995

Max steps 4000000 2000000

Time Horizon 4000 4000
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