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Abstract

Our research is related to testing dark energy/modified gravity theories.
We determine the positivity bounds on effective field theories with

spontaneously broken Lorentz invariance. We consider all the operators
in a low-energy — effective field theory (EFT) approach and gain the

conditions for EFT coefficients so that a theory is healthy (without
instabilities). These conditions are called the positivity bounds, for which
a theory works. These positivity bounds can give us constraints about the

cosmological model. We mainly follow the paper Positivity bounds on
effective field theories with spontaneously broken Lorentz invariance by Paolo
Creminelli, Oliver Janssen, and Leonardo Senatore, where the positivity

bounds are calculated from the two-point correlation functions of
conserved quantities like the Noether current and stress-energy tensor.

Then we show how this new mechanism of finding positivity bounds can
be used for real cosmological models.
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Chapter 1
Introduction

The context of our thesis is related to the late time universe and effective
field theories of dark energy (DE), which address the cosmic acceleration
and possibly the cosmological constant problem. In the following lines, we
explain why we use the EFT approach and what the cosmological problem
means.

The idea of using EFTs is that one can make calculations without knowing
the exact theory. We write down the actions in the effective field theory
approach. The EFT approach means writing down all the possible opera-
tors in the low-energy degrees of freedom (while high-energy degrees of
freedom (DoFs) are integrated out). From the symmetries of the theory,
we guess which operators to use, and from the coefficients of operators, we
gain information about the details of the UV theory.

Now, let us explain the case of the cosmological problem. For a massless
spin-2 field in General Relativity, we have the following action:

S =
∫

d4x
√
−g

M2
p

2
[R + Λ0] (1.1)

Where g is a determinant of the metric, Mp is the Planck mass, R is the
Ricci (curvature) scalar and Λ0 is the cosmological constant (we will see
later that it can get time-dependent corrections). Looking at the energy
density of dark energy (vacuum energy) Λvacuum calculated from the the-
ory including all the fields from the standard model (SM), we will see that
it is 120 orders of magnitude higher than the appropriate observed value
of it (Λobserved). From the energy (mass) scale’s point of view, it is equiv-
alent to the discrepancy of 30 orders between theory and observation (as
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8 Introduction

energy density scales as [energy−4])[1]. We can write down the following
expression.

Λ0 + Λvacuum = Λmeasured, (1.2)

where Λvacuum is the theoretical value of the cosmological constant, calcu-
lated from considering standard model fields, Λmeasured is the value which
can be received from the observations, and Λ0 is the cosmological constant
related to the dark energy (the term we have in the action (1.1)). Λvacuum,
as we already mentioned, is 120 degrees higher than Λmeasured, that leaves
us with the negative value of Λ0. The value of Λmeasured is fixed while
the value of Λvacuum may change with phase transitions as the universe
expands. Hence, Λ0 would here be very fine-tuned in a time-dependent
way.

All this suggests the idea that action (1.1) has to be changed. Proposed
action for the effective field theory (EFT) of dark energy (DE)/EFT of cos-
mological perturbations/EFT of Inflation is:

S =
∫

d4x
√
−g

M2
p

2
[(1 + Ω(t))R + Λ0(t) + ...] (1.3)

In the simplest and most suitable way to discuss the ghost and gradient
instabilities, the action can be written as follows:

S =
∫

d4x
√
−g

M2
p

2
[R + Λ0] +

∫
d4x
√
−g

M2
p

2

[
A(t)

ϕ̇2

2
+ B(t)

(∇ϕ)2

2

]
(1.4)

As later can be shown, it turns out that for certain conditions for these
EFT coefficients, Lagrangian received from action (1.4) should give us a
healthy theory. Under ”healthy” we mean the theory that is free of insta-
bilities. In order to be free of instabilities, the theory should satisfy some
stability criteria given below:

• to avoid the ghosts, Lagrangian should give a positive energy term
(for (1.4) A should be positive);

• to avoid the gradient instabilities, DoFs should be propagating with
non-negative speed;

• to avoid the tachyonic and Jeans instabilities, DoF should have a pos-
itive mass squared.

Satisfaction of these criteria specifies conditions for EFT coefficients and
that conditions are called the positivity bounds.

8
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9

We mainly follow the paper: Positivity bounds on effective field theories with
spontaneously broken Lorentz invariance by Paolo Creminelli Oliver Janssen
and Leonardo Senatore, re-derive (get each formula and condition) inde-
pendently and try to relate the given mechanism to the cosmological mod-
els [2].

Under some assumptions about UV completion of a theory (Lorentz in-
variance, locality, unitarity) we can derive inequalities that the low-energy
(EFT) coefficients must satisfy. Mainly, there are two ways to get condi-
tions for coefficients. One of them is considering the analytic structure
of the S-matrix, where one uses a tree-level scattering amplitude of two
particles. The amplitude is written in the EFT coefficients. This matrix
gives crucial information: using Cauchy’s theorem one can relate an inte-
gral (over some physical quantity constructed from scattering amplitude)
along a low-energy contour (using the EFT approach with coefficients) to a
high-energy one. This can be proven to have a definite sign, so conditions
for the EFT coefficients are obtained. We provide an exact way of doing
this in chapter 2. Another way is to look at two-point correlation functions
of conserved quantities, like the Noether current and stress-energy tensor.
Conservation laws of these quantities will help us to get the conditions for
the EFT coefficients, so we will get the positivity bounds. This is provided
in chapter 4.

Generally, in late cosmology Lorentz invariance is spontaneously broken
because we use the FLRW metric which is not invariant under Lorentz
transformations (the metric is evolving in time),

g ̸= Λ−1gΛ (1.5)

where Λ is the Lorentz transformation matrix. Also, contrary to de-Sitter
and Minkowski cases, FLRW background does not acquire the local time-
like killing vector (so, we cannot find any scale up to which FLRW metric
would be Lorentz invariant) [3]. Conclusively, in late-time cosmology, we
have the preferred time direction. So, while choosing the relevant theories
in cosmology one could reduce the allowed parameter space by knowing
which theories of inflation and DE admit a standard UV completion. To
deal with the inflation and DE models we need to consider the UV theory
to be the Lorentz-breaking theory and we cannot directly expand the ”pos-
itivity” arguments gained from the Lorentz-invariant cases. It is wrong to
think about the EFT in which Lorentz symmetry is broken as a Lorentz-
invariant theory around another vacuum.
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10 Introduction

Consider we are in a Lorentz-breaking theory. Generally, the low and high
energy states are connected by the boosts, but in Lorentz-breaking theory
we do not have the boost-invariance. This hints that the S-matrix approach
which describes the scattering of the EFT degrees of freedom cannot be ex-
tended to the UV, as the states are intrinsically in low-energy and without
boosts one cannot relate them to states in the UV theory (high energy).
So, it is not clear how to connect the low-energy EFT calculation to the
UV which is quite meaningful when working with positivity logic. So, the
S-matrix approach is good for Lorentz-invariant theories and not the best
way for our investigation when we have the Lorentz-breaking theory.

In [2] another route is used. They look at the correlation function ⟨Jµ(−k)Jν(k)⟩
of a conserved current Jµ (and the stress-energy tensor Tµν). From the con-
servation laws of these two-point correlation functions they gain the con-
ditions for EFT coefficients, so-called positivity bounds. For these deriva-
tions we will use the conformal field theory (CFT) approach (from David
Tong’s lecture notes) [4] because its characteristics match our requirements
(for example, the calculation should be valid both in IR and UV) quite well
as we will see later. ”A conformal field theory is a field theory which is in-
variant under the conformal transformations” defined as follows: Under the
change of coordinates: σα → σ̃α(σ), the metric changes as:

gαβ(σ) → Ω2(σ)gαβ(σ) (1.6)

CFT transformation preserves the angles so the angles are rather impor-
tant here than the quantities like distance etc. The assumption in paper
[2] is that in deep UV the theory reaches a conformal fixed point, which
means the correlation function of Jµ is fully fixed by conformal invariance.
UV limit together with the analytic properties of the two-point function
of Jµ give us a possibility to have an argument similar to the one of the
S-matrix and derive positivity bounds on the coefficients of EFT.

In paper[2] they consider the EFT that describes the low-energy excita-
tions of a CFT at finite chemical potential µ for an internal U(1) symmetry.
According to this logic, there is only one extra scalar degree of freedom
so both UV conformal invariance and Lorentz invariance are broken only
by µ. µ can be seen as a cut-off of the effective field theory (the point in
near UV, where the EFT approach ceases to be valid). From the beginning,
it maybe seems strange to relate CFT formalism to cosmology. Until we
explain it more thoroughly, let us provide here a little overview: we know
that at low energy cosmological perturbations are not Lorentz-invariant,

10
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but in UV they should have Lorentz-invariant completion. Then, we know
that CFTs are Lorentz-invariant in UV and they also are connected to the
EFT by the large charge section. So, if we use CFTs for our theory, we can
have a possibility to find positivity bounds for the low-energy EFT coef-
ficients. These coefficients would dictate when our Lagrangian (for the
DE/MG theory, which in low energy limit is Lorentz breaking and in UV
has Lorentz invariant completion) gives the healthy theory. In chapter 3
we provide more explicit explanations of why and how we can use CFTs
to gain positivity bounds, which are connected to the Lagrangian coeffi-
cients and, therefore, to the cosmology.

In our project, we want to find the conditions for the EFT coefficients from
two-point correlation functions of conserved quantities like the Noether
current and stress-energy tensor. That conditions represent the positivity
bounds on the EFT coefficients and give a possibility to predict when DE
Lagrangian will give the healthy theory. Then the results can be related to
real cosmology models to constrain the cosmological constant values.

Version of January 20, 2023– Created January 20, 2023 - 13:45
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Chapter 2
Formalism

Even though we are not going to use the S-matrix method, it is worth ex-
plaining how it works, because we will need to compare then this method
to the two-point correlation function’s approach. For this, we adopt some
findings from [5]. S-matrix approach means considering of 2 → 2 scatter-
ing in forward limit (i.e. t → 0, where s, t, u are Mandelstam variables)[6].
Then there is calculated the tree-level scattering amplitude in low-energy
EFT, so the amplitude is written in EFT coefficients. After this, the authors
construct a physical quantity from this amplitude which can be used for
deriving the positivity bounds for the EFT coefficients. Then they demon-
strate that the S-matrix in a given limit has certain properties which make
it possible to derive the positivity bounds:

1. S-matrix is a physically well-defined function for all values of the
real variable s.

2. S-matrix is field-redefinition independent.

3. The consequences of locality and Lorentz-invariance:

• S-matrix has an analytic continuation to the upper and lower
half complex s-planes, where singularities belong only on the
real axis. This includes unitarity cuts for energies |s| > 4m2,
where m is a non-zero mass gap in the theory. Here scattering is
for 2 particles, and minimal energy for each particle is the rest
energy m, c = 1, thus |s| > (m + m)2.

• S-matrix has a crossing symmetry: M(s)⋆ = M(4m2 − s⋆).

Version of January 20, 2023– Created January 20, 2023 - 13:45
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14 Formalism

4. A consequence of unitarity: the main idea is that the discontinuity
across the cut has a definite sign, namely, it is i× a positive number.

5. A consequence of the minimal requirements to derive the Froissart
bound[6]: Scattering amplitude decays as |(M(s))|/s2 → 0 as |s| →
∞.

Here, ŝ is defined as: ŝ = s − 4m2 and M̂(ŝ) ≡ M(s), then Eq. (5) gives:
M̂(ŝ)⋆ = M̂(−ŝ⋆).

At the tree level, the scattering amplitude in the low-energy EFT is:

M̂(ŝ) = c0 + c2
ŝ2

Λ4 + c4
ŝ4

Λ8 + ...; (2.1)

where ci-s are real numbers and Λ is the scale suppressing the higher-
dimension operators in the EFT.
Now, we provide an example of how one can use scattering amplitude to
derive the positivity bounds. To construct a physical quantity that allows
applying of the Cauchy theory, the authors [2] use function M̂(ŝ)/ŝ3:

M̂(ŝ)
ŝ3 = c0

1
ŝ3 + c2

1
ŝΛ4 + c4

ŝ
Λ8 + ... (2.2)

Next the integral is computed counterclockwise. Then the following is
obtained: ∮

dŝ
M̂(ŝ)

ŝ3 = 2πi
c2

Λ4 . (2.3)

As we can see from Cauchy’s integral theorem, the only pole that does not
give residue 0 is one with c2 term. We can perform this integral around the
contour shown in Fig.2.1. Now observe, that M̂ decays sufficiently quickly
at ∞. Therefore, the integral along the large circle is negligible as r → ∞.
Then, integrals along the negative s cut and along the positive s cut are the
same. Thus i × c+ with c+ non-negative number is obtained. That gives
condition c2 ≥ 0.

14
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2.1 IR/UV control 15

Figure 2.1: The two contours in the ŝ-plane for S-matrix argument. The integral
around the origin gives the coefficient of the operator in the EFT. It is equivalent
to the large contour that reduces to an integral along the cuts since the arcs at
infinity vanish. The integral along the cuts is positive definite[2]

All this logic (S-matrix approach) works well when we have a Lorentz-
invariant theory because we know how to relate low-energy states to high-
energy ones, but in this thesis, we are focusing on theories for which the
Lorentz-invariance is spontaneously broken. Upon Spontaneous breaking
of Lorentz invariance, Goldstone bosons appear, which represent degrees
of freedom relevant to these kinds of EFTs.

An important obstacle in our reasoning is that when Lorentz-invariance is
broken, we have no boost transformation that relates high-energy to low-
energy states. Due to this, it is difficult and quite compelling to connect
the low and high-energy S-matrices.

Now let us switch to another approach.

2.1 IR/UV control

From the situation explained above we can see that we should search for
such a quantity whose behavior can be controlled both in IR and UV. Un-
der the assumption that deep UV completions of our EFTs are Lorentz-
invariant, unitary CFT-s[2], good candidates with required characteristics
can be the correlation functions of conserved quantities, like conserved
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16 Formalism

currents or stress-energy tensor. Conserved currents are primary opera-
tors (a detailed definition of primary can be seen in section 2.4) for CFT-s
and have fixed scaling dimensions. If we consider a d dimensional space-
time, the conserved currents will have scaling dimension d − 1, the stress-
energy tensor will have scaling dimension d.

The 2-point correlation function of the conserved currents in Fourier space
will be:

⟨Jµ(−k)Jν(k)⟩ = cJ(kµkν − ηµνk2)kd−4 (2.4)

Derivation of (2.4) ([7]):

π
µ
α (p) = δ

µ
α − pµ pα

p2 (2.5)

This operator is a projector onto tensors transverse to p, which means
pµπ

µ
α (p) = 0 (because of transversality condition). From the transverse

Ward identities (identities that arise from the conservation law of currents)
it can be shown that the divergence of any 2-point function of conserved
currents is proportional to the 1-point functions (derivations can be seen
in [7]). Under the assumption that 1-point correlation functions vanish, 2
point correlation function is divergenceless, therefore transverse. It can be
expressed as follows:

⟨Jµ(p)Jν(-p)⟩ = πµν(p)C(p) (2.6)

Where C(p) is any function of the magnitude of momentum. From the
Dilation Ward identity, it can be shown that the form factors* should be
the homogeneous functions† of degree 2△− d. For the conserved current,
scaling dimension △ = d − 1, so 2△− d = d − 2. ⇒ C(p) = c̃J pd−2 (c̃J is
arbitrary constant here).

So we can see that in our case 4-momentum is k, we have different sign
from different ordering, we have 4D, so δ

µ
ν → ηµν and 1/k2 is out of the

parenthesis, so using (2.5) we definitely get (2.4).

Under the assumption that conserved currents are Hermitian, the corre-
lation functions of the Noether currents become field-redefinition inde-
pendent. This is another property in common with the S matrix approach.

*a function that encapsulates the properties of certain particle interaction without con-
sidering whole underlined physics but providing suitable momentum dependence of
suitable matrix elements instead

†a function of several variables such that, if all its arguments are multiplied by a scalar,
then its value is multiplied by some power of this scalar, called the degree of homogeneity

16
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2.2 Analiticity 17

Focusing on the correlation functions, we should decide which one to
study. Locality and Lorentz invariance are very meaningful, thus quite
natural decision would be if we use the retarded and advanced Green’s
functions[7]:

Gµν
R (x − y) = iθ(x0 − y0) ⟨0|[Jµ(x), Jν(y)]|0⟩

Gµν
A (x − y) = −iθ(y0 − x0) ⟨0|[Jµ(x), Jν(y)]0|⟩ .

(2.7)

2.2 Analiticity

Next, we look at analytic properties of Gµν
R and Gµν

A . Here we are using
logic and expressions from paper [2].
Fourier transform of Green’s function is (definition):

G̃µν
R,A(ω, p) =

∫
Rd

ddxe−ip·xGµν
R,A(x). (2.8)

Metric convention is (−,+, ...,+).

For retarded function one observes:
Gµν

R = 0 for x0 < 0 because if x0 < 0, then θ = 0 and so becomes Gµν
R ;

Gµν
R = 0 for x2 > 0 as commutator of the currents will be 0 because quan-

tum fields at space-like separation commute.

From the calculations‡ we have that for pIm ∈ FLC, G̃µν
R (ω, p) is analytic.

Analogously, for pIm ∈ BLC G̃µν
A (ω, p) is analytic.

Now we will show analicity explicitly. For this we write the momentum
in the following way:

p = k0 + ωξ (2.9)

k0, ξ ∈ Rd−1 are constants, |ξ| ≡ ξ < 1, ω Im > 0 for G̃R and ω Im < 0 for
G̃A.
Then we assume that upon appropriate limits - ω Im → 0± - both functions
G̃µν

R,A(ω) can be defined on the real line ω ∈ R.

‡Integration of (2.8) - FLC (forward lightcone): x0 > 0, x2 < 0. Considering the
complex values for p and assuming polynomial boundedness (The function f is poly-
nomially bounded means that there exist such polynomials g and h that for all x we
have g(x) ≤ f (x) ≤ h(x)) of the real-space correlation functions, (2.8) converges for
Re(−ip · x) < 0 or pIm · x < 0 (negative i× negative imaginary part gives overall ” − ”)
as |x| → ∞ in the FLC. ⇒ pIm ∈ FLC.

Version of January 20, 2023– Created January 20, 2023 - 13:45
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18 Formalism

For each k0 and ξ let us define the following function on the whole com-
plex ω-plane:

G̃µν(ω) =

{
G̃µν

R (ω, p) i f ω Im ≥ 0,
G̃µν

A (ω, p) i f ω Im < 0.
(2.10)

It can be shown that G̃µν(ω) is analytic on C \ {(−∞,−m)∪ (m, ∞)}, with
m positive mass. Let us consider ω ∈ R (or ω ± ϵ, ϵ → 0). Inserting a unit
operator 1 = ∑n |Pn⟩⟨Pn| and remembering that Jµ(x) = e−iP̂·x Jµ(0)eiP̂·x

we have:

lim
ϵ→0

(
G̃µν(ω + iϵ)− G̃µν(ω − iϵ)

)
= i

∫
Rd

ddxe−ip·x⟨0|[Jµ(x), Jν(0)]|⟩

= i
∫

Rd
e−ip·x⟨0|Jµ(x)

(
∑
n
|Pn⟩⟨Pn|

)
Jν(0)|⟩ − (µ ↔ ν, x ↔ 0)

= i
∫

Rd
e−ip·x⟨0|e−iP̂·x Jµ(0)eiP̂·x

(
∑
n
|Pn⟩⟨Pn|

)
Jν(0)|⟩ − (µ ↔ ν, x ↔ 0)

= i(2π)d ∑
n
{δ(d)(p − Pn)⟨0|Jµ(0)|Pn⟩⟨Pn|Jν(0)|0⟩ − δ(d)(p + Pn)⟨0|Jµ(0)|Pn⟩⟨Pn|Jν(0)|0⟩}.

(2.11)

Where we have integrated over x to get delta functions and (2π)d and use:
⟨0|e−iP̂x = 0, e−iP̂x|0⟩ = −Pe−iP̂x|0⟩ and
eiP̂x|0⟩ = 0, ⟨0|eiP̂x = P⟨0|eiP̂x,
For simplicity we will consider theory with a mass gap: so P0

n > m > 0.
p0 = ω, thus if ω| < m arguments of delta functions never vanish and G̃µν

is continuous as we cross the imaginary axis at this point. So, we can see
that for ω > m, only the first term of the last line of Eq. (2.11) contributes,
whereas for ω < m only the second term contributes. So, we can conclude
that G̃µν(ω) is analytic on the doubly-cut plane C \ {(−∞,−m)∪ (m, ∞)}.

2.3 Positivity of cut contributions

We want to check if the contribution from the discontinuity across the cuts
has a definite sign. Let us integrate G̃µν around the (m, ∞) cut in a clock-
wise direction, changing measure with some arbitrary powers of ω. We

18
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2.3 Positivity of cut contributions 19

get a contribution only from the first part of (2.11), from δ(d)(p − Pn). It is
an useful idea to contract G̃µν with 2 copies of a constant real vector Vµ:

1
(2π)d

∫
(m,∞)cut

dω

ωl G̃µν(ω)VµVν = i
∫ ∞

m

dω

ωl ∑
n

δ(d)(p − Pn)|⟨Pn|Jµ(0)Vµ|0⟩|2

(2.12)
This is true because, Vµ and Jµ are Hermitian, so we can write that ⟨0|Jµ(0)|Pn⟩ =
⟨Pn|Jmu(0)|0⟩ and in summation we can write down ∑ |Vµ|2 = ∑ VµVν.
This is of the form i× (positive). (because, integration gives − 1

l+1 from ∞
to m⇒, we get −( 1

∞ − 1
m ) that gives 1

m and m is positive).

Integrating over (−∞,−m), we obtain:

1
(2π)d

∫
(m,∞)cut

dω

ωl G̃µν(ω)VµVν = −i
∫ −m

−∞

dω

ωl ∑
n

δ(d)(p + Pn)|⟨Pn|Jµ(0)Vµ|0⟩|2

(2.13)
(2.13) is i× (positive) for odd l and i× (negative) for even l. We are inter-
ested in odd l cases as we want the contribution from both sides to be i×
(positive).

Crossing symmetry and reality properties.

Let us see if the Green’s functions G̃µν
R,A(p) satisfy a crossing symmetry

property.
For pIm ∈ FLC we have:

G̃νµ
A (−p) =− i

∫
Rd

ddxeip·xθ(−x0)⟨0|[Jν(x), Jµ(0)]|0⟩

= −i
∫

Rd
ddxe−ip·xθ(x0)⟨0|[Jν(−x), Jµ(0)]|0⟩

= −i
∫

Rd
ddxeip·xθ(−x0)⟨0|[Jν(0), Jµ(x)]|0⟩ = G̃µν

R (p)

(2.14)

Where to go from the first line to the second we change the integration
variable (x → −x), to go from the second line to the third we use transla-
tion invariance (translate it by x).
So, we can see that the crossing symmetry property is satisfied.
In the case k0 = 0, from Eq. (9) we have:

G̃µν(ω) = G̃νµ(−ω) when k0 = 0 (2.15)

Let us highlight, that Green’s advanced and retarded functions have cer-
tain reality properties as well. Due to the fact that Gµν(x) is real for real x,
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20 Formalism

its Fourier transform satisfies:

G̃µν
R (p) = (G̃µν

R (−p⋆))⋆ (2.16)

where pIm ∈ FLC. (because G̃µν
R (−p) =

∫
rd ddxeip·xGµν

R (x) and then taking
its conjugate will give

∫
rd ddxeip·xGµν

R (x) = G̃µν
R (p) ).

Together Eq.s (16), (14) imply:

G̃µν
R (p) = (G̃νµ

A (p⋆))⋆. (2.17)

2.4 EFT contact terms and gauging symmetry

To help understand this subsection, we will first introduce the notion of
the contact terms. Let us use the definition for the operator product ex-
pansion (OPE) [4]. OPE represents the behavior of local operators when
they approach each other. Given two local operators Oi and Oj at nearby
points z and w on the complex plane (Fig2.2) can be closely approximated
by a string of operators at one of the points z or w.

Oi(z, z̄)Oj(ω, ω̄) = ∑
k

Ck
ij(z − ω, z̄ − ω̄)Ok(ω, ω̄) (2.18)

Ck
ij(z−ω, z̄− ω̄) is a set of functions. Because of the translation invariance,

Ck
ij-s depend only on the separation between 2 operators. The operators

like (2.18) represent operator insertions inside time-ordered correlations
functions. Now we want to define the primary operator. Ward identities
give that OPE for T (stress-energy tensor) with any operator O must be in
form:

T(z)O(ω, ω̄) = ... +
∂O(ω, ω̄)

z̄ − ω̄
+ ... (2.19)

20
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2.4 EFT contact terms and gauging symmetry 21

Figure 2.2

A primary operator is an operator whose OPE with T (T̄) diminishes at
order (z − ω)−2 ((z̄ − ω̄)−2)[4]. So, there are no higher-order singularities:

T(z)O(ω, ω̄) = h
O(ω, ω̄)

(z − ω)2 +
∂O(ω, ω̄)

z̄ − ω̄
+ non − singular (2.20)

The equation of energy conservation in a complex plane looks like [4]:

∂Tz̄z̄ = −∂̄Tzz (2.21)

This leads to OPE:

Tzz̄Tωω̄ =
cπ

6
∂z∂̄ω̄δ(z − ω, z̄ − ω̄) (2.22)

Eq. (2.22) implies that OPE of Tzz̄ and Tωω̄ almost vanishes, however, we
can notice certain singular behavior as z → ω. This term (a derivative of δ
function) is the contact term between operators and is needed to guaran-
tee the energy-momentum conservation.

After presenting the properties of Gµν in the UV let us now discuss the
calculation of G̃µν in the EFT.
We can understand the EFT as the low-energy expansion of the UV theory
where the heavy degrees of freedom are integrated out. Integration of the
heavy modes generates the contact terms. An example of such a term gen-
eration would be when an expansion of a heavy propagator proportional
to (p2 + m2)−1 at low energy returns a polynomial in p2. This polyno-
mial represents the Fourier transform of a sum of the generated contact
terms, which themselves are the derivatives of the delta function (as we
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saw above in Eq. (2.22)).

Commonly, coupling a given operator to an external source allows to effi-
ciently calculate the correlation functions. If our operator is the conserved
current, then such a field can be a non-dynamical vector potential gauge
field Aµ, if the operator is the energy-momentum tensor, then such a field
can be a non-dynamical metric gµν.

When (U(1)) is spontaneously broken, this gauge symmetry is sponta-
neously broken as well. Consequently, U(1) symmetry leads to a gauge
symmetry for Aµ.
Rather than calculating the correlation functions for Jµ, we can obtain the
functional derivatives in the path integral of the gauged theory.

We can express Green’s function in terms of the time-ordered product op-
erators:

Gµν
R (x − y) =iθ(x0 − y0)⟨0|[Jµ(x), Jν(y)]|0⟩ =

= i⟨0|T{Jµ(x)Jν(y)}|0⟩ − i⟨0|Jν(y)Jµ(x)|0⟩.
(2.23)

(as θ leaves only the part where x0 > y0, so if time order is Jν(y)Jµ(x),
expression should vanish, as it does).

The contact terms will appear only in the time-ordered product but not
in the last term of Eq.(2.23).
We will indeed have:

i
∫

Rd
ddxe−ip·x⟨0|Jν(0)Jµ(x)|0⟩ =

= i(2π)d ∑
n

δ(d)(p + Pn)⟨0|Jν(0)|Pn⟩⟨Pn|Jµ(0)|0⟩
(2.24)

(Active ω < −m mode, so no heavy-energy contribution).
However, due to the product with θ function in real space, the first term
of RHS of (2.23) involves a convolution in Fourier space. Thus, the heavy
modes also contribute to the time-ordered correlation function at the low
energy.

Useful is to see in path integral approach: The first term is time-ordered,
so we can write:

⟨0|T{Jµ(x)Jν(y)}|0⟩ = 1
Z

∫
Dϕei

∫
Rd ddxL(ϕ) Jµ(x)Jν(y) (2.25)

22
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2.4 EFT contact terms and gauging symmetry 23

Z - normalization:

Z =
∫

Dϕei
∫

Rd ddxL(ϕ) (2.26)

ϕ is the whole set of heavy and light dynamical fields in theory. The sec-
ond term of (2.23) is without any prescription about ordering, but still
interesting for the observables different from the flat space S-matrix (in
Cosmology, etc). After applying the time-evolution operator: U(t, t0) from
t0 → t, the correlator in Schrodinger picture becomes:

⟨0|Jν(y)Jµ(x)|0⟩ = ⟨0|U(+∞, y0)Jν
(s)(y)U(y0, x0)Jµ

(s)(x)U(x0,−∞)|0⟩
(2.27)

Let us insert twice the identity element at a fixed time:

1 =
∫

Dϕ(x̃)|ϕ(x)⟩⟨ϕ(x)|, (2.28)

at the time t = x0 and t = y0. Then let us express each time-evolution
operator by path integral with appropriate boundary conditions, we will
get:

⟨ϕ(y0, ỹ)|U(y0, x0)|ϕ(x0, x̃)⟩ =
∫ ϕ(ỹ)

ϕ(x̃)
Dϕei

∫ y0

x0 ddxL(ϕ), (2.29)

So, we can write

⟨0|Jν(y), Jµ(x)|0⟩ = 1
Z

∫
Dϕ(x̃)

∫
Dϕ(ỹ)Jν(ϕ(y0, y))Jµ(ϕ(x0, x))

∫
ϕ(ỹ)

Dϕ3ei
∫ +∞

y0 ddxL(ϕ3)×

×
∫ ϕ(ỹ)

ϕ(x̃)
Dϕ2ei

∫ y0

x0 ddxL(ϕ2)
∫ ϕ(x̃)

Dϕ1ei
∫ x0
−∞ ddxL(ϕ1).

(2.30)

It is worth noticing that ϕ(x0, x) is fixed in terms ϕ(x̃) : ϕ(x0, x) = ϕ(x̃)
∣∣∣
x̃=x

.

Next the authors[2] introduce the external sources coupled to Jµ and write
the correlation of currents as the functional derivatives wrt gauge bosons.
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L(ϕi) → L(ϕi, Ai
µ):

Gµν
R (x, y) =

=
i
Z

(∫
Dϕ0ei

∫ ddxL
(

ϕ0,A(0)
µ

)
Rd Jµ(ϕ0(x))Jν(ϕ0(y))

∣∣∣
A(0)

µ =0
+

∫
Dϕ(x̃)

∫
Dϕ(ỹ)Jν(ϕ(y0, y))Jµ(ϕ(x0, x))

∫
ϕ(ỹ)

Dϕ3ei
∫ +∞

y0 ddxL(ϕ3,A(3)
µ )×

∫ ϕ(ỹ)

ϕ(x̃)
Dϕ2ei

∫ y0

x0 ddxL(ϕ2,A(2)
µ )
∫ ϕ(x̃)

Dϕ1ei
∫ x0
−∞ ddxL(ϕ1,A(1)

µ )
∣∣∣

A(1,2,30
µ =0

)
.

(2.31)

Let us rewrite the currents as derivatives wrt Aµ:

Gµν
R (x, y) =

i
Z

(
− δ2

δA(0)
µ (x)δA(0)

ν (y)

∫
Dϕ0ei

∫ ddxL
(

ϕ0,A(0)
µ

)
Rd

∣∣∣
A(0)

µ =0
−

− δ2

δA(1)
µ (x)δA(3)

ν (y)

∫
Dϕ(x̃)

∫
Dϕ(ỹ)

∫
ϕ(ỹ)

Dϕ3ei
∫ +∞

y0 ddxL(ϕ3,A(3)
µ )×

∫ ϕ(ỹ)

ϕ(x̃)
Dϕ2ei

∫ y0

x0 ddxL(ϕ2,A(2)
µ )
∫ ϕ(x̃)

Dϕ1ei
∫ x0
−∞ ddxL(ϕ1,A(1)

µ )
∣∣∣

A(1,2,30
µ =0

)
.

(2.32)

This expression is in full UV theory. If we want to gain an appropriate low-
energy EFT expression, we should integrate out the heavy fields: splitting
the fields in heavy, ϕh, and light, ϕl, the following expression can be ob-
tained:

eiSEFT(ϕl ,Aµ) =
∫

DϕheiSEFT(ϕh,ϕl ,Aµ). (2.33)

Now resulting SEFT is gauge invariant, therefore it contains all the ”mini-
mal” couplings of ϕl to Aµ induced by gauging. Integrating out the heavy
fields leads to other operators as well.

Operators quadratic in Aµ contribute the contact terms to the ⟨J J⟩ (so we
see that only time-ordered part gives contribution).

24
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2.5 Contour argument 25

2.5 Contour argument

We now will see the example of how one can gain positivity bounds for
theories in which boosts are spontaneously broken. Consider a low-energy
EFT with a cutoff Λ. Let us compute G̃µν(ω) in this case. 00 component
will look like this:

G̃00(ω) = µd−2
[

c1
1

1 − c2
s ξ2 +

ω2

Λ

( c2

(1 − c2
s ξ2)2 + d1

)
+ O

(ω4

Λ2

)]
(2.34)

The propagators of the low energy degree of freedom (which has a speed
of propagation cs) give us the denominators in Eq. (2.34), µ is overall scale,
ci and di are the EFT coefficients.
Similar logic what was provided in the case of the S-matrix can be used
here: ∮

dω
G̃00(0)

ω3 = 2πi
( c2

(1 − c2
s ξ2)2 + d1

)µd−2

Λ2 (2.35)

From the CFT correlator (2.4) we have an expression for G̃µν. Then we can
do the same trick that was used in (2.3) by applying the Cauchy theorem.
If we have d = 3, G̃µν ∼ ω in the limit |ω| → ∞ and contribution from
the circle at infinity is negligible. Conclusively, one can guess that the
integral around the origin is equal to the integral along the cuts, which is
i× (positive). This will give us the following bound:

c2

(1 − c2
s ξ2)2 + d1 ≥ 0. (2.36)

To get the most general bounds (inequalities) ξ should be varied in the in-
terval 0 ≤ ξ < 1 and G̃µν should be contracted with a generic vector Vµ.

Getting rid of the mass gap

In the absence of the mass gap, the low energy excitation loops will open
a cut in the ω-plane all along the real axis (Fig.2.3). And one can integrate
over 2 separate contours getting the same results for positivity bound as
from integrating over the contour shown on Fig.2.1.
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Figure 2.3: Different contours that give the same result as in Fig. 1. This choice is
suitable when a cut is running all along the real axis.

26
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Chapter 3
Conformal fields and Superfluids

Now we will discuss the reason for using a conformal field theory, explain
superfluidity and relate them.

3.1 Superfluids

Generally, the superfluid is called the fluid which flows without friction.
A flow can be observed by transporting something through a capillary[8].
For example, for liquid helium superfluidity can be considered as the fric-
tionless transport of a conserved charge. There exists a certain critical tem-
perature, below which helium becomes superfluid and above which it be-
haves like a normal fluid. So, at the critical temperature, a phase transition
happens, leaving the system in a superfluid phase below this temperature.
This transition can be described as Bose-Einstein condensation, where he-
lium atoms occupy a single quantum state forming a ”condensate”. This
phase transition can be characterized by the symmetries of the system, so
one can relate it to the conserved charge: in the superfluid phase of a sys-
tem, a symmetry of the system associated with a charge is spontaneously
broken.

We can now switch from liquid helium to a more microscopic approach
for superfluids. To understand the characteristic properties of a super-
fluid, one can consider the theory for the degrees of freedom forming Bose
condensate. The useful general concepts are stated below:

• U(1) symmetry: is the simplest continuous symmetry under which
the Lagrangian of the model is invariant; U(1) symmetry is charac-
terized by one real parameter. The necessary condition for super-
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fluidity is the spontaneous breaking of Lagrangian invariance under
U(1);

• conserved charge: is essential for all superfluids due to the charge be-
ing transported by a superflow; this charge is a consequence of U(1)
symmetry via Noether’s theorem

• Bose-Einstein condensatrion: is an alternative way to express that U(1)
symmetry is spontaneously broken in the context of the bosonic su-
perfluid;

• spontaneous symmetry breaking: is the evidence that the ground state
(the Bose-Einstein condensate) in a superfluid is not invariant wrt to
the original symmetry transformations of the system’s Lagrangian;

• Goldstone mode: is a massless mode, which arises for all temperatures
below the critical temperature if a spontaneously broken symmetry
is global [8].

Now we will keep this in mind for some time and explain why are we
using a conformal field approach. Then it will be clear that this two can be
related.

3.2 Conformal field theory approach

Generally, we are trying to look at the modified gravity by considering
an extra scalar degree of freedom. So, we are interested if there exists a
”global completion” for dynamics of our scalar degree of freedom [9], that
means if the description of π (the scalar field) is still working at large dis-
tances. One way to achieve this is to make 4D Lagrangian conformally
invariant. The 4D conformal group is SO(4, 2). It has the following max-
imal subgroups: SO(3, 2), 4D Poincare, and SO(4, 1) with their isometry
groups of four-dimensional spaces - anti-deSitter, Minkovski, and deSit-
ter, respectively. A single scalar, namely dilaton, can cause a spontaneous
breakdown of the conformal group into any of the above subgroups [9].

In [10], the authors consider a limit in which the gravity is decoupled
MPl → ∞. The dynamical gravity significantly changes the picture at
large distances, but for local analysis, at distances much smaller than the
Hubble scale, the effects of the dynamical gravity can be neglected. Above
mentioned AdS, Minkowski, and dS are the three possible maximally sym-
metric solutions corresponding to different unbroken combinations of the

28
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3.2 Conformal field theory approach 29

following generators: dilations, infinitesimal special conformal transfor-
mations, translations, and boosts (see expressions for these generators in
appendix A). For example, consider the Minkowski space case. It corre-
sponds to a trivial (constant) configuration of a scalar degree of freedom.
The translations and boosts for this space are unbroken, while dilations
and special conformal transformations are spontaneously broken. Now,
let us write down conformally invariant Lagrangians. To do so, we write
down all possible diff-invariant* Lagrangian terms involving the metric
defined as following (consider that matter is minimally coupled to the
metric):

gµν = e2πηµν (3.1)

where π is our scalar degree of freedom. Note that a conformal group is
such a subgroup of diffeomorphisms that leaves the metric conformally
flat. The simplest term of the Lagrangian will be:∫

d4x
√
−g =

∫
d4xe4π (3.2)

where g = detgµν = e4π · det(ηµν) = e4π · (−1). This is conformally in-
variant, upon changing the integration variable (see appendix A). For the
next terms in the derivative expansion, we will have curvature invariants
R, R2, RµνRµν, Rµ

νρσRνρσ
µ . At short distances and for small values of π, the

conformal invariance reduces to the Galilean invariance [10].

So we can construct Lagrangian for our theory in the CFT approach where
we have spontaneously broken symmetry, but we should be careful that
received Lagrangian gave at most second order in equations of motion in
order to avoid the ghosts and other instabilities. Because of this, we should
add some terms to the Lagrangian that will cancel the terms gained from
the curvature that give us higher-order EOMs.

Now as we already said that spontaneous breaking is a necessary con-
dition for superfluidity and we have also the Lagrangian in a CFT ap-
proach with spontaneously broken symmetry, we can relate superfluids
Lagrangian to conformal field Lagrangian (just use Lagrangian that we
gained for CFT for superfluids). From now, we will try to construct the
Lagrangian, which will give us the two-point correlation functions for con-
served current and stress-energy tensor.

*an invariant for the action of a Lie group on a space that involves the derivatives of
graphs of functions in the space
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Chapter 4
Conformal superfluids

In this chapter, we will use the conformal field theory approach for su-
perfluids and consider the case where gravity is decoupled. The whole
CFT may be quite complicated and subtle to consider but we can consider
its separate sections. We are interested in a large charge Q sector as the
EFT encodes all the information about that, and also it can be identified
with the derivative expansion (as we show in calculations). Also, we are
interested in a theory where Lorentz invariance is spontaneously broken
because of the preferred time direction, while we know that for conformal
superfluids the charge causes the breaking of U(1) symmetry. Thus it will
be a wise idea, if we consider our CFT at a finite chemical potential µ as
a state evolving in time around U(1) (in this case we are trying to look
at our theory in the conformal superfluid’s approach) (µ will turn out to
be the EFT cut-off of the theory)[2]. The spontaneous symmetry breaking
of Lorentz invariance leads to a Goldstone boson — the unique degree of
freedom at much lower energies than cut-off µ. This symmetry breaking
can be expressed as the charged scalar χ linearly evolving in time

χ(x) = µt + π(x), (4.1)

π is the Goldstone boson here. One can gain the most general action
through a coset construction [11] or by using an effective metric (appendix
B).

Generally, the CFT correlation functions containing two or more operators
with large charge can be obtained using the EFT[12]. The EFT operators’
coefficients contain all the specifics about the certain CFT, thus the positiv-
ity constraints will specify the region of possible CFT data.
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We will work in d = 3, however, our arguments are general. Reasons
why we will consider d = 3 are the following:

• d = 3 the CFTs are the main objects in second-order phase transi-
tions;

• in d = 3 it is sufficient to consider the operators of the theory at next
to linear order (NLO), whereas in d = 4 the contour we are going
to perform integral around would not converge at infinity and one
would have to consider higher order terms.

4.1 ⟨J J⟩ calculation

Considering the terms next to linear order (NLO) in derivatives, the EFT
Lagrangian for our scalar field π that is coupled to Aµ in d = 3 (relation to
superfluid Lagrangian can be seen in appendix B) is:

L =
c1

6
|∇χ|3 − 2c2

(∂|∇χ|)2

|∇χ| + c3

(
2
(∇µχ∂µ|∇χ|)2

|∇χ|3 + ∂µ

(∇µχ∇νχ

|∇χ|2
)
∂ν|∇χ|

)
−

− b
4

FµνFµν

|∇χ| +
d
2

Fµ
i Fνi

|∇χ|3∇µχ∇νχ,

(4.2)

where χ is from Eq.(4.1) and:

∇µχ ≡ ∂µχ − Aµ

|v| ≡
√
−vµvµ

(4.3)

For obtaining a healthy kinetic term, we need the following condition:
c1 > 0.
Now if we expand the Lagrangian up to the second order in π and A and
integrate by parts, we will get:

L =
c1µ3

6
+

c1µ

2

[
(π̇ + A0)2 − 1

2
(∂i − Ai)

2 + µ(π̇ + A0)
]
+

+
2c2

µ

[
− π□π̈ + 2A0□π̇ + A0□A0

]
+

+
2c3

µ

[
− π□π̈ + 2A0□cs π̇ − Ai∂iπ̈ + (Ȧ0)2 + Ȧ0∂i Ai

]
+

+
(b + d)

2µ

[
(∂i A0)2 + (∂0Ai)

2 + 2Ȧ0(∂i Ai)
]
− b

4µ
(∂i Aj − ∂j Ai)

2

(4.4)

32
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4.1 ⟨J J⟩ calculation 33

where □ ≡ ∂µ∂µ and □cs = −∂2
t + c2

s ∂i∂
i, c2

s =
1
2 .

Now up to quadratic order, we can write down this expression:

L = L(A = 0) + Aµ Jµ
N + O(A2) (4.5)

Prove that we can do that is provided below:
considering Lagrangian for the Klein-Gordon field;

LKG = (∂µϕ)⋆(∂µϕ)− m2ϕ⋆ϕ, (4.6)

For global symmetry: ϕ → eiαϕ;
For local symmetry: ϕ → eiα(x)ϕ, that needs also to have

Aµ → Aµ − ∂µα(x)
∂µ → Dµ = ∂µ − iqAµ

(4.7)

Then we would have:

L = (Dµϕ)⋆(Dµϕ)− m2ϕ⋆ϕ − 1
4

FµνFµν =

= (∂µϕ)⋆(∂µϕ)− m2ϕ⋆ϕ − 1
4

FµνFµν + Aµ Jµ.
(4.8)

Where the first two terms are the Lagrangian with vector-potential zero,
L(A = 0), the third one is quadratic in A so we neglect it ⇒ we could
write down L as:

L = L(A = 0) + Aµ Jµ. (4.9)

Let us find the Noether currents (associated to symmetry χ → χ + c for
the Lagrangian (4.2)):

Aµ Jµ = L − L(A = 0)

=
µc1

2

(
2π̇A0 + (A0)2 − 1

2
(−2∂iπAi + A2

i ) + µA0
)
+

+
2c2

µ
(2A0□π̇ + A0□A0) +

2c3

µ
(2A0□csπ̇ − Ai∂iπ̈ + (Ȧ0)2 + Ȧ0∂i Ai)+

+
b + d

2µ
((∂i A0)2 + (∂0Ai)

2 + 2Ȧ0(∂i Ai))−
b

4µ
(∂i Aj − ∂j Ai)

2

(4.10)
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If we neglect the quadratic terms in A and consider only the Noether cur-
rent without the contract terms (that are b, d) we will be left with:

Aµ Jµ = L − L(A = 0)

=
µc1

2

(
2π̇A0 − 1

2
(−2∂iπAi) + µA0

)
+

+
2c2

µ
(2A0□π̇) +

2c3

µ
(2A0□cs π̇ − Ai∂iπ̈ + Ȧ0∂i Ai)

(4.11)

The Noether currents are expressed in the following way:

J0
N = −µc1

2
− µc1π̇ − 4c2

µ
□π̇ − 4c3

µ
□cs π̇ (4.12)

Ji
N =

µc1

2
∂iπ − 2c3

µ
∂iπ̈, (4.13)

which are derived from Noether procedure given below:
L = L(A = 0) + Aµ Jµ

N + O(A2).

Now we will try to obtain a propagator of π as we will need it to calcu-
late the two-point function Jµ

N in EFT. We get it from the quadratic action,
considering A = 0. We have:

L(2)A=0 =
µc1

2

(
π̇2 − 1

2
(∂iπ)2

)
− π□π̈

(2c2

µ
+

2c3

µ

)
(4.14)

Let us rewrite (4.14) in a bit different way:
We will use:

π̇2 − 1
2
(∂iπ)2 =∂t(ππ̇)− ππ̈ − 1

2
∂i(π∂iπ) +

1
2

π∂i∂
iπ =

= ∂µ(π∂µπ)− ππ̈ +
1
2

π∂i∂
iπ;

(4.15)

The first term is full derivative so we can imagine: L → L − ∂µ(π∂µπ) and
use the result from (4.15). Then let’s have a look at the following:

π□π̈ = (π□π̇)′ − π̇□π̇ = (π□π̇)′ − π̇∂µ∂µπ̇ =

= (π□π̇)′ − ∂µ(π̇∂µπ̇) + (∂µπ)2 ≈ −π2 + (∂iπ̇)2.
(4.16)

Here we neglected the first term because it had a I I I derivative and the
second term because it was a full derivative.

34
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So, using (4.15) and (4.16) we can write:

L(2),A=0 =
µc1

2
π□csπ − 2(c2 + c3)

µ
π□π̈ =

1
2

π̇2
c −

1
4
(∂iπc)

2 +
2(c2 + c3)

µ
(π̈2

c − (∂iπ̇)2),
(4.17)

where πc ≡
√

µc1π.

In Fourier space:

L(2),A=0(k) =
1
2

π̃c(−k)
(

ω2 − c2
s k2 +

4(c2 + c3)

µ2c1
ω2(ω2 − k2)

)
π̃c(k) (4.18)

Fourier convention:

f (x) = (2π)−3
∫

d3keik·x f̃ (k) (4.19)

The ππ̃ propagator:

⟨π̃c(−k)π̃c(k)⟩ =
i

ω2 − c2
s k2

(
1 − 4(c2 + c3)

µ2c1
ω2 (ω

2 − k2)

ω2 − c2
s k2

)
(4.20)

The current conservation constrains the structure of the current-current
correlator (⟨Jµ(−k)Jν(k)⟩):

kµ⟨Jµ(−k)Jν(k)⟩ = 0 (4.21)

In the absence of the Lorentz invariance, we can express the current-current
correlator with 2 possible tensorial quantities, that guarantee the conser-
vation,

i⟨Jµ(−k)Jν(k)⟩ = A(kµkν − ηµνk2) + B(kikj − δijk2), (4.22)

here A and B are general functions of ω and |k|.

Let us try to calculate A and B. We will do that in the following way:

1. Firstly, we will consider the correlation function of 00 components of
the currents, it will give us A (as we will see a bit later);

2. And then we will consider the correlation function of ii component
of the currents and with already known A we will find B.
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For 00 component for the RHS of the equation (4.22) we will have only A
part as following (i and j do not have 0 meanings, so we will not have B
part):

A(k0k0 − η00k2) = A(ω2 + (−ω2 + k2)) = Ak2 (4.23)

Now let us see what will be LHS of (4.22) considering the 00 component.
Firstly, let us write down our current in Fourier space:

J̃0
N(k) = iω + iω

4c2

µ
(ω2 − k2) + iω

4c3

µ
(ω2 − c2

s k2) (4.24)

Then correlator for 00 component will be:

⟨ J̃0
N(−k) J̃0

N(k)⟩ = ω2µ2c2
1

(
1 +

4c2

µ2c1
(ω2 − k2) +

4c3

µ2c1
(ω2 − c2

s k2)
)2
·

· i
ω2 − c2

s k2

(
1 − 4c2ω2(ω2 − k2)

µ2c1(ω2 − c2
s k2)

− 4c3ω2(ω2 − k2)

µ2c1(ω2 − c2
s k2)

)
=

=
iω2µc1

ω2 − c2
s k2

(
1 +

8c2

µ2c1
(ω2 − k2) +

8c3

µ2c1
(ω2 − c2

s k2)
)
·

· i
ω2 − c2

s k2

(
1 − 4c2ω2(ω2 − k2)

µ2c1(ω2 − c2
s k2)

− 4c3ω2(ω2 − k2)

µ2c1(ω2 − c2
s k2)

)
(4.25)

Then let us remind RHS of (4.22). For 00 components we will have:

i⟨ J̃0
N(−k) J̃0

N(k)⟩
k2 = A (4.26)

Let us calculate A term by term. We will also consider the on-shell condi-
tion which means:

2ω2 = k2 (4.27)

Also, we will need to take into account that c2
s = 1/2.

1. For the first — c1 term we have:

A1 =
( i⟨ J̃0

N(−k) J̃0
N(k)⟩

k2

)
1
= − µc1

2(ω2 − c2
s k2)

2ω2

k2 = − µc1

2(ω2 − c2
s k2)

.

(4.28)
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2. For the second — c2 term we have:

A2 =
( i⟨ J̃0

N(−k) J̃0
N(k)⟩

k2

)
2
=

= − ω2µc1

k2(ω2 − c2
s k2)

( 8c2

µ2c1
(ω2 − k2)− 4c2

µ2c1
ω2 ω2 − k2

ω2 − c2
s k2

)
=

= − c2(ω
2 − k2)ω2

k2µ(ω2 − c2
s k2)2

(8ω2 − 8c2
s k2 − 4ω2) =

= − c2(ω
2 − k2)ω2

k2µ(ω2 − c2
s k2)2

4(ω2 − k2) =
c2(ω

2 − k2)k4

k2µ(ω2 − c2
s k2)2

=

=
c2

µ

(ω2 − k2)k2

µ(ω2 − c2
s − k2)2

.

(4.29)

Where we used the following:

ω2 =
k
2

,

ω2 − k2 = −k2

2

(4.30)

3. For the third — c3 term we have:

A3 =
( i⟨ J̃0

N(−k) J̃0
N(k)⟩

k2

)
3
=

= − ω2µc1

k2(ω2 − c2
s k2)

( 8c3

µ2c1
(ω2 − c2

s k2)− 4c3ω2

µ2c1

ω2 − k2

ω2 − c2
s k2

)
=

= − ω2µc1

k2(ω2 − c2
s k2)

( 1
ω2 − c2

s k2

(
− 4c3

µ2c1

)
· k2

2
·
(−k2

2

))
=

= − c3ω2k4

k2µ(ω2 − c2
s k2)2

=

= − c3

µ

ω2k2

(ω2 − c2
s k2)2

.

(4.31)

So, to sum up, our AN (contribution to A from only Noether currents,
without contact terms) will be AN = A1 + A2 + A3:

AN = − µc1

ω2 − c2
s k2 +

c2

µ

ω2 − k2k2

(ω2 − c2
s k2)2

− c3

µ

ω2k2

(ω2 − c2
s k2))

+
b
µ
+

d
µ

(4.32)
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Now let us find the contact terms for A and call them Ac. To do so, we will
use the following expression written for correlation function[2]:

1
Z

∫
Dϕei

∫
R d3xL(ϕ0,A(0)

µ ) δ2L(ϕ0, A(0)
µ )

δA(0)
µ δA(0)

ν

∣∣∣
A(0)

µ =0
. (4.33)

Let us look at the Fourier expansion of A0.

A0 = (2π)−3
∫

d3keik·x Ã0 = kA0 (4.34)

Now, if we take the fourth line of the Lagrangian (4.4) and try to take the
00 component, we will get:

b + d
2µ2 (−k2A0 − 2iωiki Ai) (4.35)

Now if we differentiate it twice wrt A0 we get:

⟨Jµ
c (−k)Jν

c (k)⟩ = −i2k2 (4.36)

⇒
i⟨Jµ

c (−k)Jν
c (k)⟩ = i(−i2k2) = 2k2 b + d

2µ
= Ack2 (4.37)

⇒
Ac =

b + d
µ

(4.38)

So, for full A we have A = AN + Ac:

A = − µc1

ω2 − c2
s k2 +

c2

µ

ω2 − k2k2

(ω2 − c2
s k2)2

− c3

µ

ω2k2

(ω2 − c2
s k2)2

+
b
µ
+

d
µ

. (4.39)

Now let us derive B. We have the following Fourier expansion:

Ji = iki
µc1

2
π̃(k) + iωki

2c3

µ
π̃(k) (4.40)

Let us consider the ii component. Then:

i⟨J(−k)J(k)⟩ = i
k2µ2c2

1
4

(
1 +

4c3ω2

µ2c1

)2
⟨π̃(−k)π̃(k)⟩ =

= i2 k2µ2c1

4(ω2 − c2
s k2)

(
1 +

8c3ω2

µ2c1

)(
1 − 4c2ω2(ω2 − k2)

µ2c1(ω2 − c2
s k2)

− 4c3ω2(ω2 − k2)

µ2c1(ω2 − c2
s k2)

)
=

= − k2µ2c1

4(ω2 − c2
s k2)

(
1 − 4c2ω2(ω2 − k2)

µ2c1(ω2 − c2
s k2)

− 4c3ω2(ω2 − k2)

µ2c1(ω2 − c2
s k2)

+
8c3ω2

µ2c1

)
(4.41)
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Where we used expansion for small 1/µ2. On the other side, from RHS of
(4.22) we have:

i⟨J(−k)J(k)⟩ =A(k2 − 3(−ω2 + k2)) + B(k2 − 3k2) =

= 3Aω2 − 2Ak2 − 2Bk2.
(4.42)

So, we have:

B =
3
2

A
ω2

k2 − A − i
2k2 ⟨J(−k)J(k)⟩ = 3

4
A − A − i

2k2 ⟨J(−k)J(k)⟩ =

= −A
4
− i

2k2 ⟨J(−k)J(k)⟩.

(4.43)

Let us calculate term by term again:

1. For the first — c1 term we have:

B1 =− 1
4

(
− µc1

2(ω2 − c2
s k2)

)
+

µc1

8(ω2 − c2
s k2)

=

=
µc1

8(ω2 − c2
s k2)

+
µc1

8(ω2 − c2
s k2)

=
µc1

4(ω2 − c2
s k2)

(4.44)

2. For the second — c2 term we have:

B2 =− c2(ω
2 − k2)k2

4µ(ω2 − c2
s k2)2

− c2(ω
2 − k2)ω2

2µ(ω2 − c2
s k2)2

=

= − c2(ω
2 − k2)k2

4µ(ω2 − c2
s k2)2

− k2

2
c2(ω

2 − k2)k2

2µ(ω2 − c2
s k2)2

=

= −k2

2
c2(ω

2 − k2)

µ(ω2 − c2
s )

2 =
c2(ω

2 − k2)2

µ(ω2 − c2
s k2)2

(4.45)

Here we used that

−k2

2
= ω2 − k2. (4.46)

3. For the third — c3 term we have:

B3 =
c3

4µ(ω2 − c2
s k2)2

(
ω2 + 2ω2 − k2

)
− c3

2µ

ω2(ω2 − k2)

(ω2 − c2
s k2)2

=

=
c3ω2

2µ

1/2k2

(ω2 − c2
s k2)

− c3

2µ

ω2(ω2 − k2)

(ω2 − c2
s k2)2

=

= − c3

µ
ω2 ω2(ω2 − k2)

(ω2 − c2
s k2)2

(4.47)

Version of January 20, 2023– Created January 20, 2023 - 13:45

39



40 Conformal superfluids

So, for BN we have BN = B1 + B2 + B3:

BN =
µc1

4(ω2 − c2
s k2)

+
c2

µ

(ω2 − k2)2

(ω2 − c2
s k2)2

− c3

µ
ω2 (ω2 − k2)

(ω2 − c2
s k2)2

. (4.48)

Now let us find contact terms for B.

Lc =
(b + d)

2µ

[
(∂i A0)2 + (∂0Ai)

2 + 2Ȧ0(∂i Ai)
]
− b

4µ
(∂i Aj − ∂j Ai)

2 (4.49)

So with the procedure (4.33), we will have the following derivative (dif-
ferenciating twice wrt Ai):

−3
b + d

µ
+

4b
µ

(4.50)

Here I used Fourier expansion for A and the fact that in Fourier space one
can derive that(∂i Aj − ∂j Ai) = 2∂i Aj. For the correlator we will have:

⟨Jc(−k)Jc⟩ = i
(
− 3

b + d
µ

+
4b
µ

)
. (4.51)

Then from equation (4.43) we have relationship:

Bc =− A
4
− i · i

4ω2 (−3
b + d

µ
+

4b
µ
) =

= −A
4
+

1
4ω2 (−3

b + d
µ

ω2 +
4b
µ
) = −d

4
.

(4.52)

Then for full B we will have BN + Bc:

µc1

4(ω2 − c2
s k2)

+
c2

µ

(ω2 − k2)2

(ω2 − c2
s k2)2

− c3

µ
ω2 (ω2 − k2)

(ω2 − c2
s k2)2

− d
µ

(4.53)

So, in our EFT we get:

A = − µc1

ω2 − c2
s k2 +

c2

µ

ω2 − k2k2

(ω2 − c2
s k2)2

− c3

µ

ω2k2

(ω2 − c2
s k2))

+
b
µ
+

d
µ

, (4.54)

B =
µc1

4(ω2 − c2
s k2)

+
c2

µ

(ω2 − k2)2

(ω2 − c2
s k2)2

− c3

µ
ω2 (ω2 − k2)

(ω2 − c2
s k2)2

− d
µ

. (4.55)

40

Version of January 20, 2023– Created January 20, 2023 - 13:45



4.2 Positivity bounds from ⟨J J⟩ 41

4.2 Positivity bounds from ⟨J J⟩
We want to derive the positivity bounds on coefficients c2, c3, d. The logic
is similar to Chapter 2. We find the conditions from the two-point correla-
tion function using Cauchy integral formula. We take aim at the tree-level
approximation in the EFT. Let us consider the function:

f̃ (ω) = G̃µν(k)Vµ(k)Vν(k)|k=(ω,k0+ωξ) (4.56)

where
G̃µν(k) = i ⟨Jµ(−k)Jν(k)⟩ (4.57)

and Vµ(k = (ω, k0 + ωξ)) ≡ V(ω), whose components are the arbitrary
polynomials in ω (we use this vector just for contraction with our func-
tion). Consider expressions:

K̂ =
(1, ξ)√
1 − ξ2

,

Ê =
(ξ, ξ̂)√
1 − ξ2

F̂ = (0, f̂)

(4.58)

k = (ω, k0 + ωξ). (4.59)

Hats denote unit vectors, so we have:

ξ̂ · ξ̂ = 1 = f̂ · f̂ , ξ̂ · f̂ = 0,

K̂ · K̂ = −1, Ê · Ê = 1 = F̂ · F̂,

K̂ · Ê = K̂ · F̂ = Ê · F̂ = 0.

(4.60)

At each ω we can expand V(ω) in this basis like:

V(ω) = α(ω)K̂ + β(ω)Ê + γ(ω)F̂; (4.61)

We consider k0 = 0 and notice that K̂ mimics k, conclusively, when we
multiply it by correlator its contribution will be zero, so we will not take
into account the contribution from α. So,

k = (ω, ωξ). (4.62)

V(ω) = β(ω)Ê + γ(ω)F̂ (4.63)
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For two point correlation function (4.22) we have:

i ⟨Jµ(−k)Jν(k)⟩ = A(kµkν − ηµνk2) + B(kikj − δijk2); (4.64)

Together , (4.22), (4.56), (4.57) give:

f̃ (ω) =
(

A(kµkν − ηµνk2) + B(kikj − δijk2)
)
VµVν (4.65)

Let us do it part by part. Start from A part:

A(kµkν − ηµνk2)VµVν = A
(
(kµVµ)

2 − k2V2) (4.66)

For the first term we have:

(kµVµ)
2 = (−k0V0 + k · V)2 =

=
(
− ωβξ√

1 − ξ2
+ ωξ

( ξ̂β√
1 − x2

+ γ f̂
))

=

=
(
− ωβξ√

1 − ξ2
+

ωβξ√
1 − ξ2

)2
= 0.

(4.67)

For the second term we have:

−k2V2 =− (−ω2 + ω2ξ2)(−V2
0 + V2) =

= ω2(1 − ξ2)
( −βξ2

1 − ξ2 +
( βξ̂√

1 − ξ2
+ γ f̂

)2)
=

= ω2(1 − ξ2)
( −βξ2

1 − ξ2 +
β2

1 − ξ2 + γ2
)
=

= ω2(1 − ξ2)
( β2

1 − ξ2 (1 − ξ2) + γ2
)

= = ω2(1 − ξ2)(β2 + γ2).

(4.68)

So, for our A part we have Aω2(1 − ξ2)(β2 + γ2).

For the B part we should consider that:

kµ = δ
µ
0 K0 + δ

µ
i ki;

δij = (δ
µ
i δν

j );

δ
µ
i δν

j VµVν = (δ
µ
i Vµ)

2

(4.69)

42
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So we have:

(kiVi)2 − k2V2 =
(

ωξ
( βξ̂√

1 − ξ2
+ γ f̂

))2
− ω2ξ2

( β2

1 − ξ2 + γ2
)

=
ω2ξ2β2

1 − ξ2 − β2ω2ξ2

1 − ξ2 − γ2ω2ξ2 =

= −γ2ω2ξ2

(4.70)

So, for the B part we have: −Bγ2ω2ξ2, ⇒:

f̃ (ω) = Aω2(1 − ξ2)(β2 + γ2)− Bγ2ω2ξ2 (4.71)

Now we have expressions for the coefficients A and B. Keeping in mind
that : k2 = −ω2(1 − ξ2),
k = (ω, ωξ), ⇒

f̃ (ω) = Aω2(1 − ξ2)(β2 + γ2)− Bγ2ω2ξ2

− µc1

2(ω2 − c2
s⃗ k2)

ω2(1 − ξ2)(β2 + γ2) +
µc1

4(ω2 − c2
s⃗ k2)

ξ2ω2γ2+

+
c2

µ

ω2 − k⃗2

(ω2 − c2
s⃗ k2)2

k⃗2(1 − ξ2)(β2 + γ2) +
c2

mu
(ω2 − k⃗2)2

ω2 − c2
s⃗ k2

ξ2ω2β2−

− c3

µ

ω2⃗k2

ω2 − c2
s⃗ k2

ω2(1 − ξ2)(β2 + γ2)− c3

µ

ω2(ω2 − k⃗2)

ω2 − c2
s⃗ k2

ξ2γ2ω2+

+
b + d

µ
ω2(1 − ξ2)(β2 + γ2)− d

µ
ξ2ω2γ2 ≡ (1) + (2) + (3) + (4)

(4.72)

Where (1), (2) etc. are lines’ numbers. Let us calculate line by line:
We have:

(1) ≡− µc1ω2

2ω2(1 − ξ2

2 )
(1 − ξ2)β2 − µc1

2(1 − ξ2

2 )
(1 − ξ2)γ2 +

µc1

4(1 − ξ2

2 )
ξ2γ2 =

= − µc1

2(1 − ξ2

2 )
(1 − ξ2)β − µc1

2(1 − ξ2

2 )
γ2(1 − ξ2 +

ξ2

2
) =

= − µc1

2(1 − ξ2/2)

(
(1 − ξ2)β2 + (1 − ξ2/2)γ2

)
.

(4.73)

(2) ≡ c2

µ

ω2(1 − ξ2)

ω2(1 − ξ2

2 )
2

ω2ξ2(1 − ξ2)(β2 + γ2) +
c2

µ

(1 − ξ2)ξ2ω2γ2

(1 − ξ2

2 )
2

=

=
c2

µ

(1 − ξ2)2

(1 − ξ2/2)2 ω2ξ2β2.

(4.74)

Version of January 20, 2023– Created January 20, 2023 - 13:45

43



44 Conformal superfluids

(3) ≡
( c3

µ

ω2ω2ξ2(1 − ξ2)

(1 − ξ2/2)2 (β2 + γ2) +
c3

µ

(1 − ξ2)

(1 − ξ2/2)2 ξ2γ2ω2
)
=

= − c3

µ

ω2ξ2(1 − ξ2)

(1 − ξ2/2)2 β2.
(4.75)

(4) ≡bω2

µ
(1 − ξ2)(1 − ξ2)(β2 + γ2) +

dω2

µ

(
(1 − ξ2)β2 + γ2

)
. (4.76)

So, we will have:

f̃ (ω) =− µc1

2(1 − ξ2/2)

(
(1 − ξ2)β2 + (1 − ξ2/2)γ2

)
+

+
c2

µ

(1 − ξ2)2

(1 − ξ2/2)2 ω2ξ2β2 −− c3

µ

ω2ξ2(1 − ξ2)

(1 − ξ2/2)2 β2+

bω2

µ
(1 − ξ2)(1 − ξ2)(β2 + γ2) +

dω2

µ

(
(1 − ξ2)β2 + γ2

)
.

(4.77)

Then using the known trick we have:

∮
dω

f̃ (ω)

ω3 = iπ f̃ ′′(0) (4.78)

Then we know that contribution from cuts should i × positive ⇒ f̃ (ω)′′ ≥
0, that gives us the following condition:

2
c2

µ

ξ2(1 − ξ2)2

(1 − ξ2/2)2 β2 − 2
c3

µ
ξ2 (1 − ξ2)

(1 − ξ2/2)2 β2 + 2
b
µ
(1 − ξ2)(β2 + γ2)+

+ 2
d
µ

(
(1 − ξ2)β2 + γ2

)
≥ 0

(4.79)

So,

c2
ξ2(1 − ξ2)

(1 − ξ2/2)2 β2 − c3ξ2 ξ2

(1 − ξ2/2)2 β2 + b(β2 + γ2) + d
(

β2 +
γ2

1 − ξ2

)
≥ 0.

(4.80)

For all ξ ∈ [0, 1), β, γ.

We can find the bounds by taking the following limits:

• ξ → 1, γ ̸= 0, ⇒ d ≥ 0

• ξ → 0 ⇒ b + d ≥ 0,

44
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• ∝ γ2 → RHS, ⇒

c2
ξ2(1 − ξ2)

(1 − ξ2/2)2 β2 − c3ξ2 ξ2

(1 − ξ2/2)2 β2 + bβ2 + dβ2 ≥ −bγ2 − d
γ2

1 − ξ2

(4.81)

So, the most stringent bounds we get when γ = 0, then,

c2
ξ2(1 − ξ2)

(1 − ξ2/2)2 − c3ξ2 ξ2

(1 − ξ2/2)2 + b + d ≥ 0 (4.82)

If we devide everything on ξ2(b + d) and multiply by (1 − ξ2/2)2,
we will get the following constraint:

c2

b + d
(1 − ξ2)− c3

b + d
≥ − (1 − ξ2/2)2

ξ2 . (4.83)

These constraints hold for all ξ ∈ [0, 1), and they are plotted in Fig.4.1. The
boundary curve for c̃2 ≤ −3/4, c̃3 ≤ 1/4 is given by

c̃3 = c̃2 − 1 +
√

1 − 4c̃2, (4.84)

where c̃2,3 ≡ c2,3/(b + d), when for c̃2 ≥ −3/4 the boundary curve is just
the horizontal line c̃3 = 1/4 [2].

If k0 ̸= 0:

K̂ = k = (ω, k),

Ê = (k2, ωk),

F̂ = (0,−ωk2, ωk1).

(4.85)

Then: For the A part we have:

A
(
(kµVµ)

2 − k2V2
)
=

= A
(
(−k0V0 + kV)2 + (ω2 − k2)V2

)
=

= A
(
− ωβk2 + k1V1 + k2V2)

2 + (ω2 − k2)V2
)
=

= A
(
(−ωβk2 + βk2

1ω − γωk1k2 + ωβk2
2 + γωk1k2)

2 + (ω2 − k2)V2
)
=

= A(0 + (ω2 − k2)V2) =

= A(ω2 − k2)(−V2
0 + V1V1 + V2V2) =

= A(ω2 − k2)
(
− β2k4 + ω2k2(β2 + γ2)

)
=

= A(ω2 − k2)k2
(
(ω2 − k2)β2 + ω2γ2

)
,

(4.86)
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Figure 4.1: The constraints (4.83) (the blue region is allowed). There are also the
constraints d ≥ 0 and b + d ≥ 0. c1 > 0 is required to have a healthy kinetic term
for fluctuations.

For the B part we have:

B
(

kiVi)2 − k2V2
)
=

= B
(
(k1V1 + k2V2)

2 − k2(β2ω2k2 − (β2 + γ2)ω2k2)
)
=

= −Bγ2ω2k4

(4.87)

So,

f̃ (ω) = A(ω2 − k2)k2
(
(ω2 − k2)β2 + ω2γ2

)
− Bγ2ω2k4 (4.88)

We will have 2 new poles:

ω2 = c2
s k2(ω) (4.89)

46
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4.3 ⟨TT⟩ calculation 47

We know that k = k0 + ωξ, so,

ω2 =
1
2

k2
0 +

2
2

k0ωξcosθ +
ω2ξ2

2

ω2(1 − ξ2/2)− ωk0ξcosθ − 1
2

k0 = 0

D = k2
0ξ2cos2θ + 2(1 − ξ2/2)k2

0 = k2
0

√
ξ2cos2θ + 2 − ξ2 = k2

0

√
2 − ξ2sin2θ

ω± =
k0ξcosθ ± k0

√
2 − ξ2sin2θ

2(1 − ξ2/2)
=

=
k0

2(1 − ξ2/2)

(
ξcosθ ± k0

√
2 − ξ2 sin2 θ

)
.

(4.90)

Here θ is an angle between k0 and ξ. Now we have 2 more poles so we
consider a contour including all three low-energy poles. The resulting in-
tegral is again positive. Summing the contributions from all the three poles
together gives us exactly the same inequality Eq. (4.82)[2]. So we can say
that non-zero k0 will not give any other different condition, which means
our assumption k0 = 0 works.

4.3 ⟨TT⟩ calculation

We can consider with similar logic the two-point correlation function of
the stress-energy tensor. From the dimensional analysis, we guess that
the CFT correlator involving a stress-energy tensor will contain two more
powers of ω than the correlation function of the currents. So, to have a con-
verging contour at infinity, we should construct the function (to which we
apply the Cauchy integral formula) dividing the correlator by two more
powers of ω, thus we should consider the EFT operators with two more
derivatives[2]. In this case, it is convenient to couple χ field with a non-
dynamical metric gµν. Then the most general action non-linearly realizing
the conformal symmetry can be written using a Weyl invariant confor-
mal metric ĝµν = gµν|gαβ∂αχ∂βχ|. At next to next to linear order (NNLO)
in derivatives we gain three new operators (compared to the Lagrangian
(4.2)) and we have the following action:

S =
∫

d3x
√
−ĝ
( c1

6
− c2R̂ + c3R̂µν∂̂µχ∂̂νχ + c4R̂2 + c5R̂µνR̂µν + c6R̂0

µR̂µ0
)

(4.91)
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where R̂0
µ ≡ R̂λ

µ∂λχ (derivation that the first three terms of this action co-
incide with an appropriate action for Lagrangian (4.2) and therefore (4.2)
is also derived from this logic can be seen in appendix B). The logic and
the procedure are similar to what we provided for the current.

For the calculation of the stress-energy tensor, one should use linear per-
turbations around the flat space, Tµν = (−g)1/2δS/δgµν|g=η. We want to
investigate the following correlator:

⟨Tµν(−k)Tρσ(k)⟩ (4.92)

Like ⟨J J⟩, ⟨TT⟩ will also include the contact terms generated by O(δg2)
terms in the action[2].

We will discuss the conserved traceless object ⟨TµνTρσ⟩subl. (we consider
subleading orders i.e. NLO and NNLO) with the relevant symmetries
(µ ↔ ν, ρ ↔ σ, (µν) ↔ (ρσ)). One can express this correlator in
d > 2 dimensions as the following linear combination:

i⟨Tµν(−k)Tρσ(k)⟩subl. = C(k)Πµνρσ(k) + D(k)Π̃µνρσ(k) (4.93)

with

Πµνρσ =
1
2
(πµρπνσ + πµσπνρ)− 1

d − 1
πµνπρσ, (4.94)

Π̃µνρσ =
1
4
(πµρπ̃νσ + πµσπ̃µρ + πνρπ̃µσ) +

1
d − 2

π̃µνπ̃ρσ, (4.95)

where

πµν ≡ ηµν − kµkν

k2 , (4.96)

π̃µν = δmn − kmkn

k2 . (4.97)

With the same logic as we calculated A and B coefficients can be calcu-
lated C and D as well, but we should consider the ii components first,
that leaves expression for C. For ii component D is multiplied by 0 (as
π̃ii = δii − kiki

k2 = 3 − 3 = 0 for ii component), so from (4.91) we can calcu-
late C and than use this information to calculate D.

48
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4.4 Positivity bounds from ⟨TT⟩ 49

Expressions for C and D are the following:

C =− µ

2
ω2(ω2 − k2)2

(ω2 − c2
s k2)2

(c2 + c3) +
1
µ

k4(ω2 − k2)2

(ω2 − c2
s k2)2

c4+

+
1

2µ

(ω2 − k2)2(ω2(ω2 − k2) + k4)

(ω2 − c2
s k2)2

c5 +
1

4µ

k2ω2(ω2 − k2)2

(ω2 − c2
s k2)2

c6−

− 1
2µ

(c2 + c3)
2

c1

k4ω2(ω2 − k2)2

(ω2 − c2
s k2)3

,

(4.98)

D =− µ

4
k4(ω2 − k2)

(ω2 − c2
s k2)2

(c2 + c3)−
1
µ

k4(ω2 − k2)2

(ω2 − c2
s k2)2

(
2c4 +

3
4

c5

)
+

+
1

8µ

k6(ω2 − k2)

(ω2 − c2
s k2)2

c6 +
1
µ

(c2 + c3)
2

c1

k2ω2(ω2 − k2)2

(ω2 − c2
s k2)3

.

(4.99)

4.4 Positivity bounds from ⟨TT⟩

Using the same logic as for ⟨J J⟩, we contract (4.91) by multiplying it twice
with a general symmetric two-tensor A:⟨TµνTρσ⟩Aµν Aρσ. Let us take k0 =
0 here as well and expand this 2-tensor A with the constant coefficients as
follows:

Aµν = αK̂µK̂ν + βÊµÊν +γF̂µ F̂ν + α̃(K̂µÊν + K̂νÊµ)+ β̃(K̂µ F̂ν + F̂ν F̂µ)+ γ̃(Êµ F̂ν + Êν F̂µ),
(4.100)

where K̂, Ê and F̂ are given in Eqns. (4.85). Through the calculation we
will use the identities expressed below:

πµαK̂µ = π̃µαÊµ = 0,

πµαÊµ = Êα,

πµα F̂µ = F̂α,

π̃µα F̂µ = F̂α.

(4.101)

Now we will start calculating ⟨TµνTρσ⟩Aµν Aρσ step by step. Firstly, we
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will calculate the C part:

CΠAµν =C
(1

2
(πµρπνσ + πµσπνρ)− 1

d − 1
πµνπρσ

)
·

·
(

αK̂µK̂ν + βÊµÊν + γF̂µ F̂ν + α̃(K̂µÊν + K̂νÊµ)+

+ β̃(K̂µ F̂ν + F̂ν F̂µ) + γ̃(Êµ F̂ν + Êν F̂µ)
)
=

= C
(1

2
(βÊρÊσ + γF̂ρ F̂σ + γ̃(Êρ F̂σ + Êσ F̂ρ))

+
1
2
(βÊσÊρ + γF̂σ F̂ρ + γ̃(Êσ F̂ρ + Êρ F̂σ))−

− 1
2
(βÊνπρσÊν + γF̂νπρσ F̂ν) + γ̃(Êνπρσ F̂ν − Êµπρσ F̂µ)

)
,

(4.102)

CΠAµν Aµν =
(1

2
(βÊρÊσ + γF̂ρ F̂σ + γ̃(Êρ F̂σ + Êσ F̂ρ)

+ βÊσÊρ + γF̂σ F̂ρ + γ̃(Êσ F̂ρ + Êρ F̂σ)−

− βÊνπρσÊν + γF̂νπρσ F̂ν) + γ̃(Êνπρσ F̂ν − Êµπρσ F̂µ))
)
·

·
(
(αK̂ρK̂σ + βÊρÊσ + γF̂ρ F̂σ + α̃(K̂ρÊσ + K̂σÊρ)+

+ β̃(K̂ρ F̂ν + F̂ν F̂µ) + γ̃(Êρ F̂σ + Êσ F̂ρ)
)
=

=
C
2
(βÊ2 + γF̂2 − 2βγγ̃2 + γ̃2 + γ̃2 + γ̃2) =

=
C
2
[(β − γ)2 + 4γ̃2]

(4.103)

50
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4.4 Positivity bounds from ⟨TT⟩ 51

we used here (4.60). Now we calculate the D part:

DΠAµν =D
(1

4
(πµρπ̃νσ + πµσπ̃νρ + πνσπ̃µρ + πνρπ̃µσ)− π̃µνπ̃ρσ

)
·

·
(
(αK̂µK̂ν + βÊµÊν + γF̂µ F̂ν + α̃(K̂µÊν + K̂νÊµ)+

+ β̃(K̂µ F̂ν + F̂ν F̂µ) + γ̃(Êµ F̂ν + Êν F̂µ)
)
=

= D
(1

4
(γF̂ρ F̂σ + γ̃ÊρÊσ + γF̂ρ F̂σ + γ̃ÊρÊσ+

+ γF̂ρ F̂σ + γ̃ÊρÊσ + γF̂ρ F̂σ + γ̃ÊρÊσ)− γF̂ν F̂νπ̃ρσ
)
·

·
(

αK̂ρK̂σ + βÊρÊσ + γF̂ρ F̂σ + α̃(K̂ρÊσ + K̂σÊρ)+

+ β̃(K̂ρ F̂ν + F̂ν F̂µ) + γ̃(Êρ F̂σ + Êσ F̂ρ)
)
=

= D
(1

4
(4γ2 + 4γ̃2)− γ2

)
= Dγ̃2

(4.104)

we used (4.60) and (4.100) and we are in d = 3 ⇒ (d − 2) = 1. (4.102)
and (4.103) give:

i⟨Tµν(−k)Tρσ(k)⟩subl. =
C
2
[(β − γ)2 + 4γ̃2] + Dγ̃2. (4.105)

Now let find the facilitated expression for C using that k = ωξ.

C =− µ

2
ω2 (ω2 − ω2ξ2)2

(ω2(1 − 1/2ξ2))2 (c2 + c3)+

+
ω4ξ4(ω2 − ω2ξ2)2

µ(ω2 − 1/2ω2ξ2)2 c4 +
1

2µ

(ω2 − ω2ξ2)2(ω2(ω2 − ω2ξ2) + ω4ξ4)

(ω2(1 − 1/2ξ2))2 c5+

+
1

4µ

ω4ξ4(ω2 − ω2ξ2)2

(ω2(1 − 1/2ξ2))2 c6 −
1

2µ

(c1 + c2)
2

c1

ω6ξ4(ω2 − ω2ξ2)2

(ω2(1 − 1/2ξ2))3 =

= −µ

2
ω2(1 − ξ2)2

(1 − 1/2ξ2)2 (c2 + c3) + ω4 ξ4(1 − ξ2)2

(1 − 1/2ξ2)2 c4+

+ ω4 (1 − ξ2)2(1 − ξ2 + ξ4)

2µ(1 − 1/2ξ2)2 c5 + ω4 ξ2(1 − ξ2)2

4µ(1 − 1/2ξ2)2 c6 − ω4 (c2 + c3)
2

c1

ξ4(1 − ξ2)2

2µ(1 − 1/2ξ2)3 .

(4.106)

From Eq.(4.106) we can see that in order to neglect the contour at infinity
and construct a physical quantity for which we will use the Cauchy the-
orem, we should divide (4.105) by at least ω5. Let us divide (4.105) by
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ω5 and integrate around the origin (in a counterclockwise direction, using
Cauchy integral formula (4.78)). This procedure will give us the positiv-
ity bounds. (We are going to express RHS of Eq.(4.93). Plugging C from
Eq.(4.106) to Eq.(4.102) and plugging the result from Eq. (4.104) and D in
Eq.(4.93) gives the following (δ ≡ β − γ):

1
2µ

(1 − ξ2)

(1 − 1/2ξ2)2 ξ4c4(δ
2 + 4γ̃2) +

1
4µ

(1 − ξ2)2

(1 − 1/2ξ2)2 c5(1 − ξ2 + ξ4)(δ2 + 4γ̃2)+

+
1

8µ

ξ2(1 − ξ2)2

(1 − 1/2ξ2)2 c6(δ
2 + 4γ̃2)− 1

4µ

(c2 + c3)
2

c1(1 − 1/2ξ2)

(1 − ξ2)2

(1 − 1/2ξ2)2 (δ
2 + 4γ̃2)−

− 1
µ

ξ4(1 − ξ2)2

(1 − 1/2ξ2)2

(
2c4 +

3
4

c5

)
γ̃2 +

1
8µ

ξ6(1 − ξ2)

(1 − 1/2ξ2)2 c6γ̃2+

+
1
µ

(c2 + c3)
2

c1(1 − ξ2)

ξ4(1 − ξ2)2

(1 − 1/2ξ2)2 γ̃2 ≥ 0.

(4.107)

Facilitation of (4.107) by dividing everything by (1−ξ2)2

(1−1/2ξ2)2 leads to:

1
2µ

ξ4c4δ2 +
2
µ

ξ4c4γ̃2 +
c5

4µ
(1 − ξ2 + ξ4)δ2 +

c5

µ
(1 − ξ2 + ξ2)γ̃2+

+
c6

8µ
ξ2δ2 +

c6

2µ
ξ2γ̃2 − 1

4µ

ξ4(c2 + c3)
2

c1(1 − 1/2ξ2)
δ2 − 1

µ

(c2 + c3)
2

c1(1 − 1/2ξ2)
γ̃2+

+
c6

8µ

ξ6

(1 − ξ2)
γ̃2 ≥ 0

(4.108)

c4

(1
2

ξ4δ4 +
2
µ

ξ4γ̃2 − 2
µ

ξ2γ̃2
)
+ c5

(1
4
(1 − ξ2 + ξ4)δ2 + (1 − ξ2 + ξ4)γ̃2 − 3

4
ξ4γ̃2

)
+

+ c6

(1
8

ξ2δ2 +
1
2

ξ2γ̃2 +
1
8

ξ6

1 − ξ2 γ̃2
)
− (c2 + c3)

2ξ4

4c1(1 − 1/2ξ2)
δ2 ≥ 0

(4.109)

4c4ξ4δ2 + 2c5

(
(1 − ξ2 + ξ4)δ2 + (2 − ξ2)2γ̃2

)
+

+ ξ2
( ξ4

1 − ξ2 γ̃2 + 4γ̃2 + δ2
)

c6 ≥ 4(c2 + c3)
2

c1(2 − ξ2)
δ2ξ4

(4.110)

4c4ξ4 + 2
(
(1 − ξ2 + ξ4)δ2 + (2 − ξ2)2γ̃2c5

)
+ ξ2

( (2 − ξ2)2

1 − ξ2 γ̃2 + δ2
)

c6 ≥ 4δ2ξ4 (c2 + c3)
2

c1(2 − ξ2)
(4.111)

52
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Let us try to get stringent bounds. For this reason, let us make several
assumptions:

• δ = 0 then

2(2 − ξ2)2γ̃2c5 + ξ2 (2 − ξ2)2

1 − ξ2 γ̃2c6 ≥ 0 (4.112)

2(1 − ξ2)c5 + ξ2c6 ≥ 0 (4.113)

⋆ ξ = 1 → c6 ≥ 0,

⋆ ξ = 0 → c5 ≥ 0,

• γ̃ = 0

4ξ2δ2c4 + 2(1 − ξ2 + x4)δ2c5 + ξ2δ2c6 ≥ 4ξ4δ2

2 − ξ2
(c2 + c3)

2

c1
(4.114)

⋆ ξ = 1 →

4c4 + 2c5 + c6 ≥ 4
(c2 + c3)

2

c1
. (4.115)
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Chapter 5
Results

To summarize, for the conformal field theory Lagrangians (that we be-
lieve can be extended to more general theories for DE/Modified Grav-
ity models) from the two-point correlation functions of conserved current
(5.1) − (5.4) and stress-energy tensor (5.5) − (5.7) the following bounds
can be obtained[2]:

c1 ≥ 0 ( f or healthy conditions), (5.1)

c2

b + d
(1 − ξ2)− c3

b + d
≥ − (1 − ξ2/2)2

ξ2 , (5.2)

d ≥ 0, (5.3)

b + d ≥ 0, (5.4)

4c4 + 2c5 + c6 ≥ 4(c2 + c3)
2/c1, (5.5)

c5 ≥ 0, (5.6)

c6 ≥ 0. (5.7)

The constraints in (5.2) hold for all ξ ∈ [0, 1) and are plotted in figure
(2.1). Spontaneous breaking of Lorentz boosts leads to a Goldstone boson
π, whose EFT action is given by Eq. (4.91) where ĝµν = gµν|gαβ∂αχ∂βχ|
and χ = µt + π.

5.1 Applying results to cosmology

Until now we presented a quite new method of getting the constraints for
EFT coefficients, but now we would like to explain how this method will
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work in cosmology for real cosmological models, in our case for DE/MG.
For that firstly we should write down the most general EFT action for
DE/MG models up to second-order perturbations, including the most rel-
evant operators [13].

S =
1
2

∫
d4x
√
−g[M2

pl f (t)R − 2Λ(t)− 2c(t)g00+

+ M4
2(t)(δg00)2 − m3

1(t)δg00K − M̄2
2(t)δK2−

− M̄2
3(t)δKν

µδKµ
ν + µ2

1(t)δg00δR + m2
2(t)h

µν∂µg00∂νg00 ++...]

+ Sm[gµν,χm ].

(5.8)

Mpl is the Plank mass, g00 = −1+ δg00, g — determinant of the metric, δR
and δRµν — perturbations of Ricci scalar and tensor, Sm — matter action
for all matter fields χm.

EFT functions — f , Λ, c, Mi, mi, µi.

This model-independent construction of the action can be connected to
Horndeski theories as follows:

M̄2
2 = −M̄2

3 = 2µ2
1, m2

2 = 0 (5.9)

After writing the general action (5.8) one can find the EFT functions from
modified Friedmann equations. But as we see, there are 4 free functions
- EFT functions f , Λ, c together with the unknown expansion history
H, and 2 Friedmann equations. So, in order to find 2 functions from this
system of equations, one should fix the other 2. Another interesting fact
is that as in the unitary gauge, the extra DoF is hidden in the metric, we
cannot get an explicit equation for the scalar field. So, evolution histories
of the DoF and metric perturbations cannot be studied separately in the
unitary gauge. However, one can make such a field appear explicitly in
the action by using the Stuckelberg trick *[11]. For this one needs to force
back broken gauge transformation on the field Lagrangian. After this pro-

*restoring the full diffeomorphism invariance

56
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cedure, the resulting action will be:

S =
∫

d4x
√
−g[

M2
pl

2
f (t + π)R − Λ(t + π)

− c(t + π)(−1 + δg00 − 2π̇ + 2π̇δg00) + 2∇iπg0i − π̇2 +
1
a2∇iπ∇iπ

+
M4

2(t)
2

(δg00 − 2π̇)2

− m3
1(t)
2

(δg00 − 2π̇)(δKµ
µ + 3Ḣπ +

∇i∇iπ

a2 )

− M2
2(t)
2

(δKµ
µ + 3Ḣπ +

∇i∇iπ

a2 )

− M2
3(t)
2

[(δKi
j + Ḣπδi

j +
1
a2∇

i∇jπ)(δK j
i + Ḣπδ

j
i

+
1
a2∇

i∇jπ) + (δK0
0)

2 + 2(δKi
0 −

H
a2∇

iπ)(δK0
i + H∇iπ)]

+
µ2

1(t)
2

(δg00 − 2π̇)(δR + 4H
∇i∇iπ

a2 )

+
m2

2(t)
2

(gµν + nµnν)∂µ(g00 − 2π̇)∂ν(g00 − 2π̇)] + Sm[gµν, χm][11].

(5.10)

Now we would like to explain (show the explicit steps theoretically) how
the equations (4.91) and (5.10) relate to each other. Firstly, in Eq. (4.91)
we are using the conformal transformations to express the field and the
curvature explicitly (exact calculations are done in appendix B) [14], then
we decouple the gravity and get an action similar to the action for La-
grangian (4.2) with some extra terms (extra terms are from the three more
terms in (4.91), that give us more bounds). For this derived action we al-
ready have obtained the positivity bounds (above in Chap.5). Now, let us
compare this gained action with the action (5.10). If we compare the cor-
responding terms and find the connection between them we will be able
to use the same positivity bounds for the functions in (5.10). The latter
corresponds to a real cosmological model. According to [15], there exists
a connection between the EFT functions in (5.10), also called Wilson func-
tions,† and the terms of our action received from (4.91) [15]. However,
the coefficients from the action (4.91) are complicated functions of Wilson
functions and we could not find the exact relation between them at the

†the coefficients of metric perturbations
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58 Results

moment of submission of this thesis because of the lack of time. Also, the
CFT model works for 3D, but it is not clearly known yet how it will work
for 4D. The needed assumption is that CFT starts to work at a scale lower
than the string theory scale. But it is quite a strong assumption that yet
needs to be checked carefully. Next, if it works and if a relation between
Wilson functions and obtained action’s terms is found, we will be able to
use the gained positivity bounds for the Wilson functions to constrain the
α values of the theory. Consequently, we will obtain the constraints about
the cosmological constant.

5.2 Conclusion

In this thesis, we looked at a new mechanism of finding the positivity
bounds (in Sec. 4), which would guarantee the proposed Lagrangian/action
to give the healthy theory [2]. This new approach could be a useful tool for
testing DE/MG theories. So, we tried to apply this mechanism to the real
cosmological models in Sec. 5 (with provided assumption, that needs to
be carefully checked yet). The mechanism considers finding the positivity
bounds from 2-point correlation functions of conserved quantities like the
Noether current and the stress-energy tensor. We propose the idea of re-
lating the new mechanism of bound-constraining to the real cosmological
models. The idea is the following: firstly, we take the Lagrangian/action
of the model—in our case we consider the DE/MG model, which has an
extra scalar degree of freedom. Next, we write down the equation of mo-
tion (EOM) for the scalar field of our theory, expand the solution of EOM
in the low-energy limit, and plug the solution back into the initial La-
grangian/action. As a result, we get an expression similar to (4.91). Fi-
nally, we find the positivity bounds following the approach explained in
Sec. 5.1 and use them to constrain our model of DE/MG.

58
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Chapter 6
Future plans

As I already mentioned we were not yet able to find the exact connec-
tion between the Wilson functions and the coefficients from the (4.91)
action, but we enjoyed working on this and we hope we will be able to
find them soon. Also, we want to investigate how CFT works in 4D and
try to find other constraints from 2-point correlation functions of a linear
combination of the conserved current and stress-energy tensor ⟨(J(−k) +
µT(−k))(J(k) + µT(k))⟩ as it is proposed in paper [2].
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Appendix A
CFT/superfluids

Generators:

• Dilations
D : π(x) → π′(x) ≡ π(λx) + logλ; (A.1)

• Infinitesimal conformal transformations

Kµ : π(x) → π′(x) ≡ π(x + (cx2 − 2(c · x)x))− 2cµxµ; (A.2)

• Translations
Pµ : π(x) → π′(x) ≡ π(x + a); (A.3)

• Boosts
Mµν : π(x) → π′(x) ≡ π(Λ · x). (A.4)

If we check the following Lagrangian:∫
d4x
√
−g =

∫
d4xe4π, (A.5)

we will see that it is conformally invariant upon changing the integration
variable. For instance, under spacial conformal transformations, Eq.(A.2),
we get:∫

d4xe4π(x) →
∫

d4xe4π(x+(cx2−2(c·x)x))e−8cµxµ
=
∫

d4x′e4π(x′). (A.6)
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Appendix B
Modified metric & EFT operators

The modified metric can be written as:

ĝµν ≡ gµν|gαβ∂αχ∂βχ|, (B.1)

where χ = µt + π(t, x). At leading orders derivative we have:

S(1) =
c1

6

∫
d3x
√
−ĝ =

c1

6

∫
d3x
√
−g|∂χ|3 (B.2)

For the next order, we have to add the terms:

S(2) =
∫

d3x
√
−ĝ(−c2R̂ + c3R̂µν∂̂µχ∂̂νχ) (B.3)

Now let us consume that the first three terms in action (4.91) give us
the same Lagrangian as (4.2) (up to total derivative) Let us consider term
by term. First term of the action (4.92) is:

c1

6

∫
d3x
√
−ĝ =

c1

6

∫
d3x
√
−g∂χ3 (B.4)

So, for the Lagrangian, the first term will be
c1

6
∂χ3 (B.5)

That perfectly coincides with the c1 term of the Lagrangian (4.2) (we do
not have a covariant derivative here, because it is not coupled to Aµ, not
any other difference). For c2 term in (4.91) we will use the following for-
mula [14]:

R̂ =
R

|∂χ|2 − 2(n − 1)gαβ(∂χ)3(∇α∇β∂χ)− (n − 1)(n − 4)gαβ∂χ−4∇α∂χ∇β∂χ

(B.6)
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64 Modified metric & EFT operators

Putting the partial derivative everywhere instead of covariant, n = 3, and
gµν = ηµν gives:

R̂ =
R

|∂χ|2 − 2 ∗ 2(∂χ)−3∂χ3 + 2 ∗ ∂χ−4(∂∂χ)2 (B.7)

Now we consider that the gravity is decoupled and plug the result from
(B.7) we get for c2 term in (4.91):∫

d3x
√
−ĝ(−c2R̂) =

∫
d3x
√
−g∂χ3(−c2R̂) =

=
∫

d3x
√
−g(−c2)

(∂∂χ)2

∂χ
,

(B.8)

where we threw away the first term of (B.7) because of the decoupled
gravity and the second term because it gives us a total derivative and
would not make a change in EOMs. So, we can see that the second La-
grangian term that we get from the action (4.91) also coincides with the
relevant c2 term of the Lagrangian (4.2).

Now let us look at the (c3) term. For this one, we also use formula:[15]

R̂µν = R̂σρ ĝσν ĝρµ = |∂χ|−4R̂σρgσνgρµ =

= |∂χ|−4gσνgρµ
(

Rσρ − (n − 2)(δα
σδ

β
ρ + gσρgαβ)|∂χ|−1∇α∇β|∂χ|+

+ 2(n − 2)(δα
σδ

β
ρ + gσρgαβ)|∂χ|−2∇α|∂χ|∇β|∂χ|

)
=

= |∂χ|−4
(

Rµν − |∂χ|−1∇σ∇ρ|∂χ|gσνgρµ − |∂χ|−1gσρgαβgσνgρµ∇α∇β|∂χ|+

+ 2|∂χ|−2∇σ|∂χ|∇ρ|∂χ|gσνgρµ + 2|∂χ|−2gρσgαβgσνgρµ∇α|∂χ|∇β|∂χ|
)

,

(B.9)

From the action (4.91) we have:∫
d3x
√
−ĝR̂µν∂µχ∂νχ =

∫
d3x
√
−g∂χ3R̂µν∂µχ∂νχ, (B.10)

Then for the Lagrangian term equivalent to this, we will have:

∂χ3R̂µν∂µχ∂νχ =

∂χ3|∂χ|−4∂µχ∂νχ
(

Rµν − |∂χ|−1∂µ∂ν|∂χ| − |∂χ|−1gµνgαβ∂α∂β|∂χ|+

+ 2|∂χ|−2∂ν|∂χ|∂µ|∂χ|+ 2|∂χ|−2gµνgαβ∂α∂χ∂β∂χ
)

,

(B.11)

64
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Considering the gravity decoupling we have:

∂χ3R̂µν∂µχ∂νχ = −
∂µχ∂νχ∂µ∂ν|∂χ|

|∂χ|2 −
∂µχ∂µχ∂α∂α∂χ

|∂χ|2 ++2
∂µχ∂νχ∂ν|∂χ|∂µ|∂χ|

|∂χ|3 =

= −
∂µχ∂νχ∂µ∂ν|∂χ|

|∂χ|2 − ∂α∂α∂χ + 2
∂µχ∂νχ∂ν|∂χ|∂µ|∂χ|

|∂χ|3 .

(B.12)

We can see that the third term of the (B.12) is similar to the 1 − st part
of the c3 term in (4.2), the second term is the full derivative and we can
ignore that as it will not change EOMs. For the first term of (B.12) we
have:

−
∂µχ∂νχ∂µ∂ν|∂χ|

|∂χ|2 =

= ∂µ

(∂µχ∂νχ∂ν∂χ

∂χ2

)
+ ∂µ

(∂µχ∂νχ

∂χ2

)
∂ν∂χ,

(B.13)

So we can see that from here we could keep only the second term of RHS
of (B.13) if we want which coincides with the second part of the C3 term
in (4.2), as the first one is the total derivative. So, we have shown that the
action (4.91) definitely leads us to the Lagrangian like (4.2).
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