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“It’s all a great mystery...
Look up at the sky and

you’ll see how everything changes”

- Antoine de Saint-Exupéry, The Little Prince
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Abstract

This thesis aims to alleviate the final parsec problem by investigating the
hypothetical intermediate-mass black hole environment lying at the cores of
galaxies, a model first proposed by Ebisuzaki et al. (2001) [1]. Although
intermediate-mass black holes remain undetected, their nature could be the key to
understanding supermassive black hole formation.

If they are indeed present at the hearts of galaxies, their mutual interactions
encourage supermassive black hole-intermediate-mass black hole merging
events. Such merging events bypass theoretical constraints placed by binary
dynamics and the Eddington limit, allowing for supermassive black holes to
grow into their colossal sizes, and could potentially help explain their existence in
the early stages of the Universe’s life.

We investigate this model using both a Newtonian (Hermite) and post-Newtonian
(HermiteGRX) algorithm. The post-Newtonian algorithm incorporates terms up to
order 2.5, allowing it to model gravitational wave emission, which acts as an
energy sink source and encourages merging events. In addition to comparing the
results found using either algorithm, we forecast its corresponding gravitational
wave events.

More specifically, assuming a steady intermediate-mass black hole infall rate of one
every 7 Myr, we predict a population of NIMBH = 15∼20 residing at the inner 0.4pc
of the Milky Way galaxy. In turn, the future gravitational wave interferometer
LISA and the proposed one µAres will be able to detect up to 926 supermassive
black hole-intermediate-mass black hole merging events per year up to a redshift
z ≤ 3. This value is three orders of magnitude larger than those found in various
literature ([2]; [3]; [4]; [5]) due to the lack of observation of intermediate-mass black
hole leaving a large parameter space in such analysis.



1 Introduction

Black holes are objects tethering on the limits of our theoretical understanding.
They are so dense, that their gravity pulls in anything, even light if it lies within
their grasp. Nearly a century after Einstein formulated his theory of general
relativity which predicted black holes ([6]; [7]), their existence was finally
confirmed with advanced LIGO detecting the merging between two stellar-mass
black holes [8], ushering a new era in astronomy.

In general, three distinct black hole families exist. Stellar-mass black holes are those
with masses M ≲ 102M⊙ (M⊙ signifying a solar mass). In the other extreme, with
M ≳ 105M⊙ lie supermassive black holes. Though it has been several decades that
their presence at the core of galaxies has been well established ([9]; [10]; [11]; [12];
[13]; [14]), definitive proof has recently been published with the Event Horizon
Telescope (EHT) successfully imaging the supermassive black hole lying at the
heart of M87 in 2019 [15]. More recently, EHT successfully imaged our own galactic
supermassive black hole, Sagittarius A* [16].

At the cutting edge of our theoretical understanding, these objects are rich in
information and understanding their nature can help us decipher many of
nature’s greatest riddles, for instance, the evolutionary history of galaxies or the
underlying theory of gravity. Regarding galactic evolution, one curious aspect of
supermassive black holes is their gargantuan sizes achieved, with their observed
presence in the early Universe contradicting constraints placed by theory.

This is where the third black hole population, intermediate-mass black holes can
be decisive. These are black holes with masses lying between the stellar mass and
supermassive mass range (102 ≲ M [M⊙]≲ 105). Even so, though countless works,
both theoretical and observational, have been devoted to them (i.e [17]; [18]; [19];
[20]; [21]) intermediate-mass black holes remain unobserved.

In this paper, we use numerical tools to investigate the model initially proposed
in Ebisuzaki et al. (2001) [1]. Here, the authors suggested that the presence of a
dense population of intermediate-mass black holes in the cluster forming the
galactic core could exist (figure 1.1 showing an example). In this scenario,
interactions between IMBH’s will encourage merging events, whose
accumulation over time helps grow the supermassive black hole mass, bypassing
theoretical limitations such as the Eddington limit and the final parsec problem
[22]. In a first, we simulate such a model using both a Newtonian algorithm and a
post-Newtonian algorithm. The latter allows us to capture general relativistic
effects, namely modelling the emission of gravitational waves.
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1.1 Aim and Outline

The paper has two aims. The primary is to investigate whether galactic centres
such as the Milky Way could host a population of tens to dozens of intermediate-
mass black holes, and if so, what are some observational effects that emerge from
such an environment. We aim to provide a definitive number on the hypothetical
steady-state population of intermediate-mass black holes present at the heart of
a Milky Way-like galaxy. The second aim of the report is to analyse differences
between integrators using Newtonian or post-Newtonian formalism.

To achieve this, we start by providing a theoretical background on various themes
essential to the report. More specifically, in section 2, we expand on our current
description of black holes, discuss the global properties of clusters, and outline
the basics of observational properties of gravitational waves. Section 3 outlines
fundamental aspects of the N-body integrators used in this thesis. With the
theory behind the physics and code laid out, an outline of the methodology is
given in section 4. Section 5 then examines the final results, followed by section 6,
which concludes by providing a summary of results and mentioning possibilities
for future work.
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Figure 1.1: Example of a numerical simulation applying the model proposed by Ebisuzaki et al.
(2001) [1]. Here, 30 intermediate-mass black holes of mass M = 103M⊙ (each colour representing
an individual particle) reside within 1pc of a 4 × 106M⊙ supermassive black hole, located at the
origin in black. Outlined circles show the final position of the intermediate-mass black holes, and
smaller dots their corresponding trajectory mapped on the xy-plane over some simulation time.
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2 Behind the Physics: Theoretical Background

2.1 Black Holes

2.1.1 Black Hole Families

Black holes (hereafter BH) make the crux of our investigation. They are celestial
objects emerging naturally in the geometrical description of gravity formulated
by Einstein (1916) [6]. If within a certain distance of it, its gravitational pull is so
strong that not even light can escape its grasp. BHs cover a range of masses.

Stellar-mass black holes (hereafter SBH) have masses M ≲ 102M⊙, where M⊙
signifies one solar mass. It was a set of merging binary SBHs that, in 2016,
ushered in the era of gravitational wave (hereafter GW) astronomy [23]. Lying at
the other extreme, supermassive black holes (hereafter SMBH) have masses
≳ 105M⊙ and are often present at the centre of galaxies ([10]; [12]; [14]). The
first-ever image of a BH, taken in 2019, was that of an SMBH lying at the core of
the giant elliptical galaxy M87 [15]. More recently, the SMBH of our galaxy,
Sagittarius A* (SgrA* for short), was photographed [16]. SgrA* weighs
M = (4.154 ± 0.014)× 106M⊙ [24]. Interestingly, excluding the detection of a GW
event leading up to the formation of a low-mass (∼150M⊙) intermediate-mass
black hole (hereafter IMBH) [25], it is this family of BHs which remain
undetected. IMBH’s cover the mass range 102M⊙ ≲ MIMBH ≲ 105M⊙. These
elusive objects comprise the focus of our research.

Various mechanisms have been brought forward to explain their formation.
IMBHs may be the remnant of population III stars ([17]; [26]; [27]; [28]).
Population III stars can grow larger than the current generation of stars since they
have low metallicity and thus cannot radiate away energy as efficiently. Other
ways IMBH may form is through merging of satellite galaxies with their hosts
instigating collisions of SBH with the product eventually growing into an IMBH
[20], or in the gas disk of active galactic nuclei (hereafter AGN) ([21]; [29]). Here,
we assume IMBH form through runaway mergers at the centre of globular
clusters (hereafter GC).

Runaway mergers occur in clusters due to mass segregation. This phenomenon
follows from the equipartition theorem, which states that the kinetic energy of
two particles will tend to equalise after an encounter. A fixed kinetic energy
implies that massive objects have a lower velocity and thus cannot climb out of
the potential well, sinking to the core instead. Contrariwise, lighter stars are
quicker and expand their orbits to the outer regions until they find a stable orbit.
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Numerical simulations have shown that in sufficiently dense clusters if collisions
occur before the most massive stars undergo supernova explosions (t ≲ 3 Myr),
a runaway merger scenario leading to the formation of an IMBH can occur ([18];
[19]). Though the rate at which this happens is dependent on various assumptions,
papers have suggested between 10% to 20% of GCs with masses MGC > 105M⊙
host an IMBH ([19]; [30]; [31]). Giersz et al. (2015) [19] found that if formed, half
the simulations resulted in an IMBH with mass MIMBH > 0.1MGC. Throughout
the years, several GCs have become candidates for hosting IMBH ([32]; [33]; [34];
[35]), though none have had their existence definitively confirmed.

2.1.2 Formation of Supermassive Black Holes

BHs play a fundamental role in astronomy and cosmology. They are the fate of
massive stars once they die and play a pivotal role in galaxy formation. They are
also of great interest to theoretical physicists due to them lying at the threshold
of our understanding, therefore holding the key to deciphering many of nature’s
greatest riddles. With GW astronomy at its early stages, many questions remain
one of which are the gargantuan sizes achieved by SMBHs.

SMBHs are known to grow through gas accretion. However, the Eddington limit
constrains the accretion rate while various dynamical effects, elaborated on shortly,
suppress the merging time of binary objects. These mathematical limits placed on
the growth rate of SMBH contradict their observations in the early Universe, for
instance, J1342+0928, an 8 × 108M⊙ quasar at redshift z = 7.54 [36]. Observations
of these massive objects so early into the life of the Universe tell us that there is yet
unknown physics to uncover. With IMBHs lying in the mass range between SBHs
and SMBHs, they become an obvious target for understanding the formation of
SMBH.

Ebisuzaki et al. (2001) [1] proposed that SMBHs could form through the
accumulation of mergers with IMBHs. In this scenario, while an IMBH forms at
the centre of a GC through runaway mergers, the cluster sinks to the galactic core
due to the drag force exerted by the wake of neighbouring stars it leaves behind
it. This drag force is dynamical friction, a phenomenon first described by
Chandrasekhar (1943) [37]. The timescale for which it sinks massive objects to the
galactic core is [11]:

tdf =
1.65
ln Λ

r2
i σ

GM
≈ 19 Gyr

ln Λ

( ri

5 kpc

)2 σ

200 km s−1
108M⊙

M
(2.1)

Where ln Λ is the Coulomb parameter, expressed as ln γN with γ = 0.11 for equal
mass systems ([38]; [39]) and N being the number of stars, ri is the initial distance
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from the galactic centre the IMBH (and/or cluster) started to sink from, σ the
velocity dispersion and M the mass of the object in question. Though there are
various assumptions (constant Λ, σ...), as a rule of thumb when plugging in the
values of the average GC circularly inspiraling inwards (M∼105M⊙, ln Λ∼10 and
using σ∼150 km s−1 [11]), only clusters originally at r ≲ 500 pc from the galactic
centre reach the core within a Hubble time. This report considers the scenario
where dynamical friction sources the appearance of IMBH in the inner parsec of
the galaxy.

A crucial feature of the model proposed by Ebisuzaki et al. (2001) [1] is the
existence of several IMBH within the galactic centre. Although dynamical friction
helps clusters sink to the galactic core, the nearer one approaches the centre, the
fewer field stars are in its proximity. With fewer neighbours, the IMBH
experiences increasingly weaker dynamical friction and fewer scattering events
which would otherwise help further deplete the sinking objects’ orbital energy.
The result is that the IMBH stalls out at a certain distance from the SMBH.
Although stars may exchange energy with the binary if they have the correct
angular momentum-energy configuration (the region being the loss cone), once
scattered, they fly outside the domain. It has been found that the loss cone
replenishment rate is too slow for scattering between a tertiary and a binary to be
the sole instigator of merging events [40].

Stalling would be fine if it occurred at distances where GW radiation kicks in to
exhaust the remaining orbital energy from the newly formed binary. However,
numerical simulations show that stalling occurs at a distance roughly ten times
larger than where GW radiation becomes prominent, thus implying that
coalescence events exceed the Hubble time ([41]; [42]; [43]; [44]). This is the final
parsec problem ([22]; [45]). With the existence of a substantial amount of IMBH in
the galactic centre as suggested by the model proposed by Ebisuzaki et al. (2001)
[1], encounters which alter their dynamics can encourage SMBH-IMBH merging
events, thus offering a potential solution to the final parsec problem.

2.2 Clusters and the Galactic Nuclei

Dense environments such as clusters form an integral part of our analysis and are
worth discussing. In general, clusters are self-gravitating stellar environments
and can come in various shapes and sizes. Star clusters host 102 − 104 stars and
are irregular in shape, whereas GCs, which are roughly spherical, contain
between 104 − 106 stars [11]. Although we base our IMBH population to originate
in GCs, in the context of this report, we investigate the IMBH population
potentially residing in the Milky Way’s (hereafter MW) nuclear star cluster

5



(hereafter NSC). To generalise our discussion, we use the term particles to
describe the constituents of clusters. This is because the description of the global
evolution of clusters is often unchanged whether it is composed of stars, IMBH or
a mix of both.

NSCs are found in roughly 80% of galaxies [46] and are dense regions surrounding
a central SMBH. They have masses ranging between 105M⊙∼108M⊙ and densities
reaching ρ ≲ 107M⊙ pc−3 [14]. The MW’s NSC weighs 2.5 × 107M⊙ and extends
to r∼10 pc ([13]; [46]; [47]). The formation of NSCs remains a mystery, though two
models are often discussed:

• In-situ formation: The high density of gas surrounding the SMBH fragment
before triggering the onset of star formation ([48]; [49]; [50]). This results in
the presence of a young stellar population.

• Infalling clusters: Extending from our previous discussion, as clusters sink
to the galactic core and have material stripped away due to tidal forces, the
disrupted stars start orbiting the central SMBH. Over time, with more
clusters sinking in, everything blends into a new cluster surrounding the
central SMBH ([51]; [52]; [53]). This scenario has a preference for an older
stellar population.

The MWs NSC has 80% of its stellar mass composed of old (t ≲ 10 Gyr) stars, 15%
in stars younger than 5 Gyr and the remaining in stars formed in the last 100 Myr
[54]. This diversity in the stellar population implies that both mechanisms play a
role in its formation. Once formed, many complex dynamical processes shape the
evolution of clusters. As we have seen with mass segregation, statistical arguments
can be a helpful tool to understand their global properties, this remains the case
when describing the effects of two-body relaxation.

2.2.1 Two-Body Relaxation

Two-body relaxation is a random walk process generated by weak encounters. It
is an essential characteristic of clusters since weak perturbations are prevalent in
these environments, even dominating the evolution of the system if you neglect
stellar evolution [38]. Weak encounters are interactions where the change in a
particle’s velocity satisfies δv ≪ v. Being a random walk process, two-body
relaxation pushes the cluster towards a Maxwellian velocity distribution.

In general, for an N equal-mass system dominated by weak encounters, the two-
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body relaxation acts on timescales ([11]; [38]):

trlx =

√
r3

c
GMc

N
8 ln γN

(2.2)

Where rc and Mc denote the cluster’s radius and mass respectively. The
logarithmic term accounts for the cumulative effect of weak encounters. In a
system with a Maxwellian velocity distribution, a more precise formula is [11]:

trlx =
2.1σr2

c
G⟨m⟩ ln γN

(2.3)

Here ⟨m⟩ denotes the average particle mass. After a relaxation time has elapsed,
the perturbations essentially cause the particles to have no memory of their
original orbital parameters.

By giving the time scale in which clusters tend to a Maxwellian velocity
distribution, trlx describes the timescale for particles to reach the tail end of the
velocity distribution, regions in which velocities are large enough to eject from the
system. Since our primary aim is to investigate the potential steady-state
population of IMBHs in the NSC, understanding the timescales of mergers or
ejections is critical.

We can refine the expression above to better fit our investigation. Assuming an
isothermal velocity dispersion:

σ =
vc√

3
=

√
G⟨m⟩N

3rc
(2.4)

Where vc is the circular orbital velocity. Taking our own cluster as an example
(section 4), we adopt rc = 0.4 pc[1] and ⟨m⟩ = MIMBH = 103M⊙. Plugging these
values and equation 2.4 into equation 2.3:

trlx = 2.1

√
Nr3

c
G⟨m⟩ ln−1(γN) (2.5)

= 170 kyr

√
N

ln γN
(2.6)

For a typical cluster population of 105 stars, the relaxation time is trlx ≈ 6 Myr.

[1] Though our clusters are initialised with rc = 0.2 pc, using AMUSE, the half-mass radius (the
enclosed radius which contains half the total cluster mass) was found to be roughly 0.4 parsecs.
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Continuing our derivation, following ([11]; [38]) we define the particle loss-rate as:

dN
dt

≡ −βN
trlx

(2.7)

Where β is the evaporation rate constant found to be β ≈ 1
300 in an isolated cluster

([11]; [38]). Evaporation is a process attributed to weak encounters, which, as
already mentioned, shift the cluster to follow a Maxwellian velocity distribution
over time, thus providing a mechanism for stars to reach the tail end of the
velocity distribution and escape the cluster. Inverting the expression and subbing
in for β and equation 2.6, the typical time for a cluster to lose a particle becomes:

tloss = − trlx

βN
(2.8)

= 51.1 Myr (
√

N ln(γN))−1 (2.9)

Although this expression dictates the approximate timescale for particles to
become unbound from their host, this also represents the timescale for collision
events and thus reflects the overall particle loss. This is reasoned because weak
two-body encounters occur more often for particles that have high eccentricities
since these are the particles that travel through the denser, heavily populated core
more often.

More intuitively, in some instances, the orbital parameters may be just right for
the particle to escape. Here, the accumulated perturbations experienced induce an
increase in the particles’ eccentricity. As stated already, increasing the eccentricity
means that the particle often finds itself in the core. At this point, encountering a
particle could cause a change in its orbital parameters such that it now follows an
ejection trajectory. In other instances, plunging into the core can result in a merger
with the SMBH. As we will see, merging events are also heavily influenced by the
particles’ eccentricity (see equation 2.24). Considering this, we expect the extracted
particle loss timescale found in our simulations to be within an order of magnitude
of equation 2.9.

Even so, it is worth mentioning that here we neglect the typical collisional
timescale and assume that the equation reflects merging timescales due to the
similar mechanisms ejections and mergers require to occur. We motivate this
omission following a simple calculation using the collisional timescale [11]:

tcoll =
1

nΣv
(2.10)

= 0.2
(v*,esc

v

)4
trlx ln N (2.11)
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Here, n is the number density, approximated as n = N
r3 , Σ the collisional cross-

section Σ = 4πr2
∗, v the circular velocity of the system, v =

√
GM

r , while v*,esc =√
GM*

r*
, is the escape velocity at the surface of a subject particle. Plugging in values

similar to our simulated system (see section 4):

N = 20, M = M∗ = 4 × 106M⊙, r∗ = rISCO = 51R⊙, r = 0.4 pc

∴ v*,esc =

√
GMSMBH

rSMBH
= 1.22 × 108 m s−1 (2.12)

v =

√
Gm

r
= 2.08 × 105 m s−1 (2.13)

using these and equation 2.2, equation 2.11 becomes:

tcoll = 1.11 × 108 Myr (2.14)

From this we see that tcoll ≫ tloss. Though the example has several assumptions
(namely adopting a Newtonian approach though clearly equation 2.12 deserves a
relativistic description), it helps push the point that tloss is the expression to model
our system off.

We emphasise once more: weak encounters dominate the global evolution of
clusters. Their cumulative effect will cause a steady outflux of particles, be it from
ejections or merging, due to them enhancing orbital eccentricities and their
natural tendency to settle clusters into a Maxwellian velocity distribution. We
now shift our discussion to the complex dynamics present during close
encounters since these form a vital part of GW astronomy and make for
interesting systems.

2.2.2 Binary and Hierarchical Systems

Though encounters between IMBH often result in transient fly-by events, a binary
or hierarchical system may also form. Binary and hierarchical systems are potential
sources of ejection events. They influence overall cluster evolution and could also
source GW radiation (section 2.2.3).

We start our discussion with binary systems. Binary systems are composed of two
particles and often need the presence of a third particle to carry away any excess
kinetic energy before forming [38]. In dense clusters such as the NSC, this occurs
relatively frequently. Binary systems can be either ‘hard’ or ‘soft’.
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Hard binaries are systems whose orbital binding energy exceeds the average
kinetic energy of stars in the same environment. That is, they satisfy [55]:

a <
Gm
4σ2 (2.15)

Here, a is the binary’s semi-major axis, m the mass of the more massive body and
σ the velocity dispersion of the local environment.

By definition, during an encounter between a hard binary and a third particle, the
binary will harden (feel a shrinking of its semi-major axis). By hardening, the
binary releases binding energy in the form of potential energy to the
environment, subsequently increasing the kinetic energy of the tertiary particle
[56]. Contrariwise, encounters between a third particle and soft binaries often
disrupt the system, after which several different outcomes may occur. Keeping
our discussion simple, we keep our focus on hard binaries. The velocity of the
ejected tertiary particle after interacting with a hard binary is expressed as [45]:

v ≈
√

G(m1 + m2)

a
(2.16)

Where m1 and m2 are the binary’s mass components. Plugging values of m1 =
m2 = 103M⊙ and a = 10−2 pc (roughly 2000 AU), we see that the ejected tertiary
can reach speeds of ∼30 km s−1. If we plug the same values for an IMBH-SMBH
binary and use the mass of SgrA* for the SMBH, this value exceeds 1000 km s−1,
allowing for objects unbound from the MW.

A similar process is the Hills mechanism [57]. Here, a binary system and a central
SMBH interact. As the binary loses orbital energy due to GW or tidal forces and
approaches the SMBH, one of the IMBH particles will bind with the SMBH ejecting
the other at speeds over 1000 km s−1. Koposov et al. (2019) [58] confirmed this
phenomenon after discovering a hypervelocity star (hereafter HVS) following a
trajectory radially outwards from the galactic centre with velocity 1755 ± 55 km
s−1 in the galactic frame.

The dynamics of the various ejection and encounter outcomes are complex, and
providing a thorough explanation for all lies outside the scope of the report (see
instead: [59]; [60]; [61]; [62]; [63]). However, in general, three-body interactions
allow for the exchange of the binary’s internal binding energy into the escapee’s
kinetic energy allowing for large velocities. If the interaction is between three (or
two) unbound particles, this ejected velocity is drastically smaller as no hardening
occurs, which would otherwise release potential energy into the local environment
before getting converted into the tertiary’s kinetic energy.
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Perhaps counterintuitively, gravitational systems have negative heat capacities,
meaning that if a binary (or hierarchical) system releases potential energy into the
cluster, the cluster gets colder. We can see this behaviour arise following statistical
arguments. From thermodynamics, a system’s total kinetic energy equals:

KE,tot =
1
2

mv2 =
3
2

NkB⟨T⟩ (2.17)

Where N the number of bodies present in the system and ⟨T⟩ the particles’
average temperature. The virial theorem, which describes a stable system of
discrete particles, relates the system’s kinetic energy with its potential energy:

KE,tot = −1
2

PE,tot (2.18)

Therefore, the system’s total energy is:

Etot = KE,tot + PE,tot (2.19)

= −3
2

NkB⟨T⟩ (2.20)

Using the definition of heat capacity, this means:

C ≡ dE
d⟨T⟩ = −3

2
NkBT (2.21)

Negative heat capacity in gravitational systems means that, although encounters
of particles with binary or hierarchical systems release binding energy into the
cluster and heating it, it inevitably results in its cooling as the system expands.
This phenomenon is intricately connected to mass segregation discussed earlier.

As alluded to, a stable three-body system (hierarchical system) may also form.
Hierarchical systems contain an inner binary with mass components m1 and m2
and semi-major axis ain, and a third particle orbiting the inner binary with a larger
semi-major axis (aout ≫ ain) and mass m3. This third particle orbiting the inner
binary forms the outer binary.

Though they usually aren’t sustainable due to weak and the occasional strong
encounters disrupting the system, Mardling and Aarseth (2001) [64] derived a
condition for a stable hierarchical system. Mathematically, this criterion is:

aout

ain
>

2.8
1 − eout

(
1 +

m3

m1 + m2

)(
1 +

eout√
1 − eout

)2/5
(2.22)

11



where eout is the eccentricity of the outer binary. In such a system, resonant effects
can increase the eccentricity to order of unity, enhancing the merger rate. A notable
example of a resonant phenomenon is the Kozai-Lidov ([65]; [66]; [67]). Here, the
oscillation occurs if the inclination between the inner and outer binary exceeds a
critical value and acts on timescales much larger than the orbital period [68]:

tLK = Pin

(m1 + m2

m3

)( r
ain

)3
(1 − e2

out)
3/2 (2.23)

where Pin is the inner binary’s orbital period, and r is the distance from the inner
binary to the tertiary star forming the outer binary. This effect gets suppressed if
the particles forming the inner binary have equal masses. As we will see in section
4, this is the case for our modelled IMBH particles, and thus, the effect can only
arise if the SMBH forms one of the inner binary particles [69]. It is hard to predict
how the Kozai-Lidov effect influences our own simulations. However, given the
density of the system simulated, one can expect that hierarchical systems rarely
live long enough for them to play a defining role in growing the eccentricity of the
particles compared to weak perturbations.

Given GWs act as an energy sink source, one expects that modelling this relativistic
effect can encourage the formation of binary and hierarchical systems since it may
help carry away excess kinetic energy from a prospective binary akin to the role of
a tertiary particle. Indeed, this is the case observed in Rodriguez et al. (2018) [70].
As we have seen, this may then encourage both ejections, and under the correct
configuration, merging events.

2.2.3 Gravitational Waves

In dense clusters such as the MW NSC, if the presence of IMBH is abundant,
observations of GWs can be especially prevalent. Recording radiation emitted
from SMBH-IMBH systems is the main aim of the future interferometer Laser
Interferometer Space Antenna (LISA) [71], which will be capable to detect these
signals emitted from sources throughout the Universe. The field of GW
astronomy is rich, and its detailed description lies outside the scope of the current
paper (see i.e [71]; [72]; [73]; [74]). Here, we describe the essentials needed when
forecasting GW events present in our simulated NSC environment.

The vast amount of energy expended during the coalescence of an IMBH-IMBH
or SMBH-IMBH merger produces ripples in space-time which could be measured
using state-of-the-art interferometry techniques. The timescale for orbital decay of
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a binary sourced by GW radiation to conclude in the inevitable merger is [75]:

tGW =
5

256
c5

G3
a4(1 − e2)7/2

µ(m1 + m2)2 (2.24)

where m1, m2 are the masses of the two bodies merging, a and e the systems semi-
major axis and eccentricity, c the speed of light and µ, the reduced mass given as:

µ =
m1m2

(m1 + m2)
(2.25)

Note the tGW ∝ a4(1− e2)3.5 proportionality. This relation has been hinted at before
and shows the extent boosting the orbital eccentricity and hardening (reducing a)
has on the rate of GW events.

GW events may be categorised into three distinct phases; the inspiral phase, the
coalescence (merger) phase and the ringdown phase [72]. In our context, we will
often encounter inspiral events though the coalescence phase constitutes one of
the simulations’ stopping conditions (see section 4). During an inspiral event, the
emitted frequency of the GW is ([76]; [77]):

fn =
1
π

√
G(m1 + m2)

a3
(1 + e)1.1954

(1 − e2)1.5 (2.26)

m1 and m2 are the masses of the inspiralling objects forming a binary, a their semi-
major axis and e their eccentricity. The subscript n denotes the nth harmonic of the
GW radiation where fn = n forb and forb is the rest-frame GW frequency.

Since the Universe is expanding, if the source originates from a redshift z away,
the rest-frame frequency relates to the observational frequency by fn = (z + 1) fn,z.
Note that the expression cannot record hyperbolic trajectories where e > 1 due to
the presence of the (1 − e2)1.5 term, meaning many of the potential signals are left
unrecorded in our analysis.

Plugging in values for an SMBH-IMBH event occurring at the core of the MW (e =
0.3 and a = 10−4 pc), the emitted GW frequency is f = 1.95 × 10−6 Hz and falls
right outside the detectable frequency range of LISA, though it is still observable
by the proposed GW interferometer µAres [78]. Even so, although the frequency
may lie within the observable range, the power needs to be strong enough to be
detectable.

The extent that GWs distort space-time in the observer frame, or using GW
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astronomy jargon, the strain, is expressed as [79]:

h2
c,n =

2
3π4/3

G5/3M5/3
c,z

c3D2
L

1

f 1/3
n,z (1 + z)2

( 2
n

)2/3 g(n, e)
F(e)

(2.27)

Here, Mc,z is the chirp mass given as:

Mc,z = Mc(1 + z) (2.28)

=
(m1m2)

3/5

(m1 + m2)1/5 (1 + z) (2.29)

DL the luminosity distance, g(n, e) a harmonic and frequency-dependent function
given in Peters and Matthews (1963) [76], and F(e) an eccentricity-dependent
function given as:

F(e) =
1 + (73

24 e2) + (37
96 e4)

(1 − e2)7/2 (2.30)

The lifetime of the GW emission may often be much longer than the
interferometer observational lifetime, tobs, meaning only a fraction of the power
emitted is measured. To account for this, one has to multiply equation 2.27 by a
factor min{1, ḟn

tobs
fn
} ([79]; [80]; [81]). Here ḟn is the time derivative of the

frequency, representing the frequency band swept by the source during the
mission lifetime. Its expression is given as [79]:

ḟn =
96n
10π

(GMc)5/3

c5 (2π forb)
11/3F(e) (2.31)

With the fundamentals of the theory laid out, we now shift our discussion to N-
body simulations and computational astrophysics in the gravitational regime.
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3 Behind the Code: Gravitational N-body Simulators

This thesis uses the Astronomical Multipurpose Software Environment[2]

(hereafter AMUSE) ([56]; [82]; [83]; [84]). AMUSE is an astrophysical simulation
environment which includes a wide range of astrophysical fields, namely
gravitational dynamics, hydrodynamics, stellar evolution and radiative transport.
Its main strength is that it allows one to combine different physical regimes
coherently, allowing for multi-scale and multi-physics simulations. With a range
of community codes at its disposition, AMUSE is a user-friendly software able to
investigate complex astrophysical questions.

In this report, we focus our attention purely on gravitational dynamics. This
section provides the reader with an introduction to the fundamentals behind the
algorithm (or integrator) used to solve the gravitational system. We begin by
discussing the basics of Newtonian and post-Newtonian gravity before delving
into the various integrators used, Hermite and HermiteGRX (hereafter GRX).

3.1 Newtonian Gravity

In 1687, Newton published the Philosophiæ Naturalis Principia Mathematica [85].
Within it, he proposed the following law to describe the force of gravity, Fg:

Fg = m1 ¨⃗r1 = Gm1

N

∑
j ̸=i

mj

r⃗2
ij

(3.1)

Where G is the gravitational constant, mj the mass of particle j, rij ≡ |ri − rj| the
relative distance between particle i and particle j, and N the number of particles
in the system. Newton’s law forms a set of coupled, ordinary differential
equations. Using it, we can extract the gravitational force felt by a particle by
summing over all the contributions exerted by the (N − 1) others present.
Although the equation can be solved analytically for N = 2 systems, in 1882,
Henri Poincaré [86] showed that this no longer holds for N > 2 systems due to
their chaotic nature (see Appendix A). Since these systems are ubiquitous in
nature, astronomers and physicists alike resort to numerical methods and N-body
simulators to investigate the properties of many-bodied systems.

[2] amuse.readthedocs.io/
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In general, N-body simulators compute the gravitational force exerted onto each
particle using equation 3.1 before calculating the particles’ position and
momentum at a given time step. Afterwards, it synchronises the information and
repeats the procedure for the following time step until it has reached its endpoint.

There are many different ways of achieving this. Over the decades, different
integrators have been developed in a seamlessly ever-lasting dance trying to
balance computational efficiency with physical accuracy. Integrators can range in
applications depending on their properties; from simulating galactic dynamics to
solving the long-term evolution of planetary systems. Since Hermite simulates
N ≲ 104 systems in an efficient manner [56], we use its algorithm in this
investigation for the Newtonian case.

Additionally, some integrators go beyond solving equation 3.1 and model
relativistic effects. Oftentimes, solving the complete general relativistic equations
of gravity [6] is overkill and computationally demanding. To preserve relativistic
effects and reduce the computational load, some integrators use the
post-Newtonian approximation (hereafter PN).

3.2 Post-Newtonian Gravity

PN expansion adopts the geometrical description of gravity by expanding
Newtonian gravity to include minute perturbations in flat Euclidean space. These
perturbations signify weak gravitational fields in and around bodies and
represent the geometric nature of gravity. The approximation is modelled from
Taylor expanding the Einstein field equations in powers of c−n where the xth
ordered term corresponds to the n

2 power. More explicitly, the first PN term (1PN)
corresponds to terms scaled by a factor c−2, the second PN term (2PN) with a c−4

dependency, and so on. The expansion thus takes the form:

⃗̈r = ⃗̈rN +
1
c2
⃗̈r1PN +

1
c4
⃗̈r2PN +

1
c5
⃗̈r2.5PN +O(c−6) (3.2)

Where ⃗̈rN represents the unperturbed Newtonian terms. GRX, provides the user
with several different PN approximations (see [40]). In our context, we incorporate
the 2.5PN terms since this is when GWs emerge.

When modelling the 2.5PN terms, GRX makes use of an adapted form of the
complete Einstein-Infeld-Hoffman (EIH) [87] equations of motions, who
themselves describe the equation of motion in a weak field to first order.

The EIH equations were the first non-trivial solution for a system composed of N
Schwarzschild BH. A Schwarzschild BH, defined by the Schwarzschild metric, is
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the first non-trivial solution to Einstein’s field equations (Schwarzschild (1916)
[88]) and describes the geometry of spacetime outside an electrically neutral,
spherical mass with zero angular momentum. This description ensures that the
EIH equations represent an accurate portrayal of those simulated here since we
neglect the intrinsic spin and charge of BHs. Even so, as successful as it is,
incorporating double summations within the EIH equations causes it to be
computationally taxing when modelling three-body encounters in large N-body
systems.

Will (2014) [89] found that by modifying the equation of motion through Taylor
expanding with respect to a second investigation-dependent variable, one can
remove the highest-ordered summation over pairs of particles without loss of
generality. In our case of BH clusters, the secondary expansion is with respect to
the mass ratios of the IMBH and SMBH. Ideally, applying this approximation
reduces the scaling of the algorithm from O(N3) to O(N2). However, although
GRX applies this modification, it conserves the second-to-highest-ordered pair
summations due to their necessity in energy conservation [40] and influence on
dynamical effects such as the suppression of resonant relaxation [89]. These
double summations, also named cross terms due to their mimj dependencies,
represent the coupling between the potentials of N particles and incorporating
them causes GRX to scale as O(N3).

Resonant relaxation is a phenomenon where repeated interactions within a
system of low-mass particles orbiting around a BH induce torques on one
another, potentially increasing a particle’s orbital eccentricity while keeping its
orbital energy constant [90]. Due to being a resonant effect, these torques
accumulate in time and generate large orbital eccentricities in the long-term
evolution. Given the large timescales for our system (recall tloss ≈ 50 Myr for our
sample cluster), secular effects such as this can play a significant role in the
overall dynamics of the system, encouraging merging events and so it is
necessary to consider them in our investigation.

PN cross terms suppress this effect since it introduces a shift on the particle’s
semi-major axis over time, removing the tendency for torques to constructively
accumulate, but rather destructively interfere with one another. Nevertheless, one
should keep in mind that there are other phenomena present. As pointed out by
Naoz et al. (2013) [69], if the 1PN precessing timescales are much larger than the
Newtonian secular timescales, eccentricities can grow to unity, compensating for
resonant suppression induced by the cross-terms. Given the chaotic nature of the
dense system simulated here often disrupting sustained systems for which these
secular effects emerge, we expect that the major differences in Hermite and GRX
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will be due to the 2.5PN term. As mentioned before, this is when GWs start to
emerge. Introducing an energy sink to the system, GW merging events are
encouraged as the consistent depletion of a particle’s orbital energy causes it to
sink into the potential well until they cross the event horizon.

We’ve added the equation of motion used by GRX under Appendix B (equation B.1)
for the reader’s convenience. Note that it neglects 2PN terms, though this doesn’t
play a significant role in the final results. This is because the 2PN term introduces
a shifting perihelion, something accounted for to an extent by the 1PN term. A
secondary effect described by the 2PN term is the flattening of the poles due to
rotation and tidal forces [91]. However, this effect starts to play a role only when
the particles separation vector r⃗ij is nearing coalescence or has already merged
based on our definition of the collisional radius (see section 4).

There is an abundance of papers focused on PN expansion and its numerical
implementation (i.e [40]; [72]; [89]; [91]; [92]; [93]), for our current paper it suffices
to understand the role each PN term plays in the dynamics of particles. In
general, the following effects arise from the PN terms used in the selected GRX

algorithm:

• 1PN gives corrections to the orbits of particles. More explicitly, these terms
correspond to the periastron shift of a body’s orbit.

• 2.5PN is when GWs emerge. This forms an essential part of the current
investigation as we wish to record and forecast the GW signals of any
potential BH clusters existing in galactic cores. Note that with an
energy-sink source in the form of gravitational radiation (see Appendix B),
the system no longer conserves energy [93].

Though higher-order terms exist, their effects lie outside the scope of our paper
[91]. Given the context of our question, this report uses the Hermite integration
scheme [94] as its Newtonian algorithm and GRX for the PN case. As mentioned
before, these schemes provide the user with reliable results in a computationally
efficient manner, allowing one to simulate many-body systems as is the case for
a hypothetical IMBH cluster residing in the heart of galaxies. We will test and
compare results extracted from either algorithm to see the role PN terms play in
modelling these relativistic systems. When not comparing the formalisms, results
from GRX are analysed since they provide a more accurate portrayal of nature.

The remaining subsections of this chapter provide an overview of various
fundamental properties of the Hermite and GRX algorithms. The curious reader is
directed to ([40]; [94]; [95]; [96]) if they wish for a more thorough understanding.
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3.3 Hermite and HermiteGRX

3.3.1 Predict-Evaluate-Correct Scheme

Both Hermite and GRX use a fourth-order numerical method to solve ordinary
differential equations implicitly. This is done by solving the following:

y(t + δt) = y(t) +
y′(t) + y′(t + δt)

2
δt +

y′′(t)− y′′(t + δt)
12

(δt)2 +O(δt5) (3.3)

The primes denote time derivatives and δt the time step. The implicit nature of
the scheme is clear since, at a particular time step, one requires information about
the system at that same time step. To account for this, the integrators use a fixed-
point iteration until the solution converges. Implicit integration schemes generally
are more stable than their explicit counterparts at the detriment of being more
computationally intensive [56].

The fourth-order nature implies an energy error scaling as δE ∝ δt4. Conserving
energy is essential if a simulation wishes to represent reality since this is a
fundamental law of nature. Checking for energy conservation is often used as a
preliminary check to see whether a given algorithm provides physically
meaningful results. In this report, all simulations using Hermite satisfied the

energy error
E(t f )−E(t0)

E(t0)
≲ 10−2 where E(t f ), E(t0) denote the final and initial

energy respectively with most lying in the 10−4 range (see Appendix C for a short
discussion on energy errors). Due to the 2.5PN term being non-conservative, the
same cannot be said for GRX. However, upon turning off the 2.5PN term and
simulating a few runs, simulations did not exceed an energy error of ∼3 × 10−1.

The following describes the Hermite algorithm:

1. A prediction is made on the position and velocity of a given particle by
solving:

r⃗pred
i+1 = r⃗i + v⃗iδt +

1
2

a⃗pred
i (δt)2 +

1
6

j⃗i(δt)3 (3.4a)

v⃗pred
i+1 = v⃗i + a⃗iδt +

1
2

j⃗i(δt)2 (3.4b)

where r, v, a, j are the position, velocity, acceleration and jerk (j ≡ ...a ) of the
particle at time step ti.
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2. It then predicts the acceleration and jerk of the particle using [95]:

a⃗i+1 = G
N

∑
j ̸=i

mj
r⃗ij

|⃗rij|3
(3.5a)

j⃗i+1 = G
N

∑
j ̸=i

mj

( v⃗ij

|⃗rij|3
+

3(⃗vij · r⃗ij)

|⃗rij|5
)

(3.5b)

Where v⃗ij = |⃗vi − v⃗j| is the relative velocity between two particles. Note how
equation 3.5a uses the Newtonian description of gravitational force and sums
the force exerted by each particle on a specific individual.

3. Using the predicted values of the jerk and acceleration, the particle’s position
and velocity get corrected in the following fashion:

v⃗corr
i+1 = v⃗i +

1
2
(⃗ai + a⃗pred

i+1 )δt +
j⃗i − j⃗pred

i+1
12

(δt)2 (3.6a)

r⃗corr
i+1 = r⃗i +

1
2
(⃗vi + v⃗i+1)δt +

a⃗i − a⃗pred
i+1

12
(δt)2 (3.6b)

4. After doing this for every particle. Steps 1, 2 and 3 are repeated at each
increment of time until the simulation reaches its end time.

This procedure is denoted as a predictor-evaluator-corrector scheme (sometimes
called the velocity Verlet method or Leapfrog method [97]). We note that although
GRX adopts different formulas for which it computes the properties of each particle,
it follows the same predictor-evaluator-corrector procedure.

3.3.2 Adaptive time steps

Both integrators use shared, variable time steps to reduce numerical errors. It is
applied in the following fashion:

δt = η min
i,j ̸=i

( |⃗rij|
|⃗vij|

,
|⃗rij|

|(mi + mj )⃗aij|

)
(3.7)

The adaptive time step scheme implemented has a physically meaningful basis
since it’s dependent on the system’s minimum inter-particle collisional timescale.
The user has the freedom to choose their time step parameter η, and, although
η = 0.1 is sufficient most of the time [98], a value of η = 0.01 is adopted here due
to it giving a nice balance between numerical accuracy and computational time.
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Utilising an adaptive time step scheme helps reduce energy errors present in the
simulation and also benefits results by better resolving close encounters.

We note that time symmetrisation is essential to energy conservation [99],
especially when simulating the long-term evolution of systems. Though the
mechanism isn’t adopted here, future projects with more time to conduct the
investigation should incorporate it.

3.3.3 Regularisation

Notice from equations 3.5a and 3.5b that as a particle separation vector
approaches zero, both the acceleration and jerk diverge. Though this may reflect
reality, the feature plagues N-body simulation since a diverging force results in
the computer needing smaller and smaller time steps to resolve the system
accurately, essentially stopping the integration scheme at singularity. We see this
also reflected in equation 3.7 since as a particle’s separation approaches the
singularity, that is r⃗ij −→ 0, our adaptive time step approaches zero. To work
around this problem, Hermite and GRX use regularisation. We direct the reader to
([40]; [94]; [95]; [96]; [100]; [101]) if they wish for a more comprehensive
discussion.

In essence, the regularisation technique uses similar ideas to those of
Kustaanheimo-Stiefel regularisation (hereafter KS regularisation) [100]. KS
regularisation moulds the equations of motions to take the form of a harmonic
oscillator, thereby removing the singularity through a re-mapping of coordinates.
This mapping is more complicated for the PN formalism due to its acceleration
being velocity dependent [102] and thus GRX utilises quaternions as its map [103].

Before proceeding to the methodology adopted in our simulation, we reiterate
just how significant a role regularisation plays. By removing the singularity
present in our accustomed form of the equations of motion, we allow the
computer to perform better during close encounters and better conserve energy
(see figures 2 and 3 of Por (2014) [40]), a vital feature to understand the reliability
of N-body simulations. Modelling at best as possible close encounters is
especially vital in a dense system such as NSCs since these are environments
where such events are prominent. Furthermore, we recall that merging events are
sourced by highly eccentric pairs (recall equation 2.24), who, due to their
near-radial path, experience close encounters. This tendency makes regularisation
essential to our investigation since these same mergers form a possible outcome
of our simulations.

21



4 Methodology

As mentioned at the beginning of section 3, we use AMUSE and its two community
codes Hermite and GRX to run our simulations. The simulations are conducted on
the ALICE computing resources provided by Leiden University.

4.1 Intermediate Mass Black Hole Infall Rate

Due to the lack of information, it is not yet possible to model our environment with
the correct IMBH in-fall rate to the galactic centre. Many papers assume IMBH to
fall into the galactic core at a rate of τ∼1Gyr ([2]; [3]; [4]; [5]) on the basis that GCs
sinking into the galactic core form the MW’s NSC. In this scenario, however, they
assume that the densest GCs, the ones where IMBH may form, are untouched by
tidal forces exerted by galactic potential and, therefore, can deposit a significant
fraction of their mass into the NSC. Given the mass of the NSC, this limits the total
number of GCs formed and, subsequently, the IMBH population.

Instead, we follow the results shown in figure 4 of Portegies Zwarte et al. (2006)
[31] and discussed in Gerhard (2001) [104], in that even the densest clusters have
a substantial amount of its material dissipate into the galactic environment due to
tidal forces before it reaches the inner few parsecs of the galactic centre. Doing so
allows for a larger IMBH population residing in the galactic centre. To estimate
the steady-state population of IMBH, we take the deduced infall rate found in
Portegies Zwarte et al. (2006) [31], that is, τ = 7 Myr IMBH−1.

4.2 Initial Conditions

For Hermite, we run simulations consisting of 10 ≤ NIMBH ≤ 100 IMBH’s
separated in increments of ten while GRX covers 10 ≤ NIMBH ≤ 40, separated in
increments of five. Being chaotic by nature, N-body systems are sensitive to initial
conditions and random numerical errors. To extract physics we are confident
reflect the true phase-space configuration of the system, we fix the initial
configuration and run the system 20 and 40 times per population using Hermite

and GRX respectively, basing our analysis on the bulk statistics.

Although both GRX and Hermite are deterministic such that identical simulations
will yield identical results, the use of different combinations of nodes on the
ALICE cluster once simulating the system will introduce random numerical
errors, changing the outcomes between individual simulations. When testing the
bulk statistics of simulations run with identical conditions and those run with
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different initial conditions, the same global trends and values were found,
signifying the strength of bulk statistics when conducting N-body simulations.

The reduced populations investigated with GRX are motivated by two factors. The
first comes from the shortened merging times (see section 5.2), entailing that larger
populations lie nowhere near the needed stability time to be classified as a steady-
state population. The second reason is due to the GRX scaling as O(N3).

Figure 4.1: Shaded regions are regimes excluding the existence of an IMBH. Constraints are found
by Yu and Tremaine (2003)[105], Reid and Brunthaler (2004) [106], Gualandris and Merritt (2009)
[107], Naoz et al. (2020) [108], Reid and Brunthaler (2020) [109] and the Gravity collaboration (2020)
[110]. Figure courtesy of [110].

We select our initial conditions based on various observational constraints. The
spatial distribution is sampled from a Plummer sphere [111] of radius 0.25 pc, and
their velocities from an isothermal sphere with velocity dispersion σdisp = 150 km
s−1 following Ghez et al. (1998) [9]. Furthermore, the code moves any particle
within 0.15 parsec of the centre to a shell of 0.15 < rSMBH [pc]< 0.35 keeping
in mind the other IMBH present. The cluster radius and IMBH mass satisfy the
constraints of the galactic centre placed by various research (see figure 4.1 above).

Although the Bahcall-Wolf distribution [112] is the theoretical spatial distribution
of particles surrounding a SMBH, a Plummer model was chosen thanks to its
straightforward implementation in AMUSE and the non-observation of a
Bahcall-Wolf cusp in galactic centres. Each IMBH has mass MIMBH = 103M⊙, a
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value taken from Portegies Zwarte et al. (2006) [31] who found it to be the
average IMBH mass for the population residing within r ≤ 10pc of the SMBH.
The central SMBH mimics that residing in the centre of our galaxy and has mass
M = 4 × 106M⊙ ([113]; [114]). Finally, we do not implement any intrinsic spin on
the BHs and virialise the system before running the code to ensure that the
system starts in a steady state.

4.3 Simulation Parameters

After configuration, the code will integrate the system in time steps of δt = 103

years and η = 10−3 (recall equation 3.7) until one of the following is satisfied:

1. The simulation exceeds the maximum simulation time, tend ≡ 100 Myr.

2. An IMBH particle gets ejected from the system.

3. A merging (IMBH-SMBH or IMBH-IMBH) event has occurred.

The first criterion has a large value as it helps reduce the number of simulations
reaching the maximum time limit but still provides decent resolution of the
simulation with snapshots of the system every 1000 years. The latter two
conditions require further elaboration but in essence, stopping the simulation
after any particle loss allows us to extract the steady-state lifetime of a particular
population.

4.3.1 Stopping Conditions: Ejection Events

One possible way to lose an IMBH in the galactic core is through ejections. As we
saw in section 2.2, this can occur from various mechanisms namely close
encounters inducing perturbations of the order δv ≈ v, or from the countless
weak perturbations which accumulate until a slight nudge causes the particle to
pass a critical threshold. An ejection occurs once the following four criteria are
satisfied:

1. KE > |PE| where KE is the particle kinetic energy and PE its potential energy.

2. The particle lies at a distance |r| > 2.00 pc from the cluster’s centre of mass.

3. The particle is moving away from the cluster. That is, r⃗ij · v⃗ij > 0 where r⃗ij
and v⃗ij denote the positional separation and the velocity with respect to the
cluster’s centre-of-mass frame of reference.

4. The particle is on a hyperbolic trajectory with respect to the centre-of-mass
such that its eccentricity satisfies e > 1.
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The first criterion follows naturally from the definition of unbound systems. If
a particle’s kinetic energy is larger than its binding energy, it has a large enough
velocity to escape the system.

The second criterion ensures that particles aren’t automatically flagged as ejected
if the other three are satisfied. This is important because, during a particle’s
ejected trajectory, it may yet feel perturbations which nudge the particle’s orbital
parameters enough to make it bound to the system once more.

The third criterion ensures that the particle moves away from the cluster. It acts as
a safety check on whether a particle is bound to the system. The fourth also acts as
a safety since it mathematically amounts to the same argument laid out by the first
criterion since E ∝ (e2 − 1) > 0 and thus KE > |PE|. Figure 4.2 shows a simulation
ending by ejection.
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Figure 4.2: Evolution of an NIMBH = 70 simulation using Hermite. Coloured are the IMBH
particles, and at the origin lies the SMBH. The top-left, bottom-left and bottom-right panels show
the particle trajectory in time (small dots) and final position (larger and outlined dots) along the
three cartesian planes. The top-right panel shows the energy error of the simulation.
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Observe that although some particles reach large apostrons, they remain bound to
the system and curve back in due time. Contrariwise, the ejected salmon-coloured
IMBH particle shows a clear radial trajectory outwards.

We note that the escape velocity of the system at r = 0.25 pc is vesc ≳ 263 km
s−1. Thus, a particle takes roughly 6500 years to reach 2.00 parsec, implying a
systematic error of the survival time of simulations ending with ejection events by
roughly 7000 years.

4.3.2 Stopping Conditions: Merging Events

The final way in which the simulation can end is through a merging event. With
AMUSE, this is accounted for by turning on collisional detection. A collision is
detected by AMUSE when the position of two particles lies within a separation
distance smaller than the sum of their radii. Here we define the collisional radius
to be three times the Schwarzschild radius, that is:

rcoll ≡ rISCO =
6GM

c2 (4.1)

This value reflects the innermost stable circular orbit, rISCO, defining the regime for
which beyond, no stable circular orbits exist and the particle plunges into the event
horizon [72]. Our SMBH has a collisional radius of rSMBH, coll = 51R⊙ whereas our
IMBH particles rIMBH, coll = 0.01R⊙ where R⊙ is the Solar radius.

The stopping condition submerses itself into the algorithm of the gravitational
integrator by forcing it to check whether any two particles pass within r < rcoll
after every internal time step. In doing so, it can resolve the particles’ position at
intermediate time steps and not simply at the end of every simulation snapshot
where collisions may have otherwise occurred and therefore, been skipped over.

Table 4.1 summarises the key parameters. Figure 4.3 shows the codes workflow.

NIMBH GRX: [10, 40], Hermite: [10, 100]
t tend ≤ 100 Myr with δt = 103 years
r⃗0 Plummer Distribution
rcluster 0.25pc
v⃗0 Isothermal Sphere, σdisp = 150 km s−1

M IMBH: 103M⊙, SMBH: 4 × 106M⊙

Table 4.1: Summary of parameters used for simulations. The columns are in order: The
simulated populations, parameters defining the time properties of the simulation, the initial spatial
distribution of the particles, the radius of the cluster, the initial velocity distribution of the particles
and finally the particles’ mass.
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Initialise system

Define NIMBH.

Sample r⃗i and v⃗i for all particles i
from a Plummer and Maxwellian

distribution. Set the mass and
collision radius for each particle.
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Integrate system
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ti+1 = ti + δt where
δt = ηtend, η = 10−5
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Figure 4.3: Workflow diagram of the code.
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5 Results

5.1 System Evolution
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Figure 5.1: The evolution of different parameters corresponding to an IMBH particle flagged as
‘ejected’ in a NIMBH = 30 GRX simulation. The solid lines represent the running average, while
the translucent dotted ones the parameters at each snapshot. In the bottom right panel, ‘w.r.t’ is
shorthand for ‘with respect to’ and ‘NN’, the IMBHs’ nearest neighbour. NN could either be the
SMBH or another IMBH. Top left: The eccentricity relative to the SMBH. Top right: The IMBH’s
kinetic energy relative to its original value. Bottom left: The velocity of the IMBH over time. Bottom
right: The distance from the SMBH (black) and nearest neighbour (purple).

Figure 5.1 above shows various properties of an IMBH particle flagged as ejected.
The solid lines denote the running average (averaged over 5% of the simulation
length), and the dotted ones the value after each snapshot.
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The top-left panel shows that the IMBH in this simulation reaches large
eccentricities periodically, with the trough attaining values of log10(1 − e) = −2.1.
The minima in the log10(1 − e) factor (maximum eccentricities) coincide with the
timing of the velocity minima (bottom left panel), suggesting that the IMBH
experiences the greatest changes in its trajectory at apostron. This trend naturally
occurs since it is easier for strong encounters to occur at lower velocities since
they are events causing a change in the particle’s velocity of order δv ≈ v.

The orbit of the IMBH is generally stable and sustained for over a thousand
crossing times, which we find by using the definition of a crossing time,
tcross ≡ R

v , and taking the liberty to plug in approximate values for the particle
inferred by the figure above. Namely: ⟨R⟩∼0.3 pc, ⟨v⟩∼158 km s−1 with a total
simulation time t∼2.5 Myr. Be that as it may, interactions are frequent due to the
large densities in the simulation. As discussed in section 2, the accumulation of
weak and strong perturbations can drastically alter the path of a particle. We see
this manifest in the plots, namely at t = 2.4 Myr when the IMBH finds itself
within 0.03pc of the SMBH and another IMBH particle. The interaction with these
two particles causes them to eject from the system, the extent of which is
highlighted in the bottom right panel, with the distances skyrocketing during the
final time step. Though this isn’t the closest it has been to another particle, the
interactions shift the IMBH sufficiently to eject it.

We shift our analysis to a simulation ending in a merger (figure 5.2). This
simulation also consists of NIMBH = 30 and is run using GRX. We note in passing
that the results varied greatly between individual simulations. The two examples
shown have no special significance.

Here, the IMBH’s eccentricity oscillates once more. The most notable difference,
however, is that towards the end, the log10(1 − e) factor decreases much quicker
than in the previous example. As emphasised throughout the report, large
eccentricities are a tell-tale sign of a merging event. By getting extremely close to
the SMBH, the IMBH has a significant amount of its orbital energy exhausted
away and finds itself located in an increasingly steep potential well. Though close
interaction with the SMBH can cause the particle to eject at times, more often than
not in the GRX case, the vast amount of GW energy emitted encourages it to
plummet and merge with the SMBH. In this sense, we note the fine margins on
which the outcomes depend.

These two plots further motivate our intuition in using equation 2.9 as our overall
particle loss rate since they signify that mergers and ejections rely on large
eccentricities. As already stressed numerous times, e plays a pivotal role when
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reducing GW merging timescales. Additionally, recall that ejection events occur
more often for IMBH with large eccentricities due to them reaching the dense
cluster core during their orbits and thus are more susceptible to weak and strong
interactions relative to their low eccentricity IMBH counterparts, who lie on the
outskirts. It is the tweaks in the orbital parameters induced by interactions which
determine whether the particle will get trapped within the SMBH potential well
and eventually merge with it or whether the IMBH marginally skims the SMBH
and ejects from the cluster out onto the other side.
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Figure 5.2: Evolution of different orbital parameters of an IMBH particle flagged as ‘merged’ in a
NIMBH = 30 GRX simulation.

Lastly, we note that although the IMBH reaches a peak velocity over 2000 km s−1,
ejection doesn’t occur due to it happening when it is near the SMBH where the
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potential is the strongest (rNN ≈ 2.5 × 10−3 pc, vesc = 2630 km s−1).

Figure 5.3 below shows the cumulative distribution (hereafter CDF) of similar
properties as the previous plots for all IMBH particles that merge. To avoid bias
in our comparison, we ensure that a givens simulations data is extracted only up
to the timestep corresponding to the minimum between the individuals’
simulation time or the average simulation time for simulations run with the same
population in the GRX case. The main result is in the top-left panel and shows that
GRX tends to larger eccentricities, even during mergers.
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Figure 5.3: The CDF plots of various orbital parameters of ‘merged’ IMBHs. Top left: The
eccentricity attained. Top right: The distances attained between the IMBH and SMBH. Bottom
left: The velocity values occupied. Bottom right: Distances to the IMBHs’ nearest neighbour.

With clear differences in the eccentricities obtained, the plot tells us explicitly that
modelling relativistic systems requires PN terms as it could drastically alter the
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final results. In fact, not only is eccentricity substantially larger for all values
between 0.97 ≲ e < 1, but it spans a wider range, with particles able to reach the
extremities more often.

The right-hand panels show the distances between any individual IMBH with the
SMBH and its nearest neighbour. The GRX curves at log10 r [pc] ≲ −3.2 show
identical behaviour, signifying that beyond a critical value of log10 r [pc] ≈ −3,
the nearest neighbour is always the SMBH. Hermite doesn’t have this since the
negligence of GW emission means the IMBH has more difficulty reaching close
distances to the SMBH, resulting in reduced merger rates (see table 5.1).

Though intermediate values of rNN occur more often with Hermite, this is a result
of the low samples. Tracking the properties of all particles simulated increases the
number of samples and results in the removal of the trend, as seen in figure 5.4.
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Figure 5.4: The CDF plots of various orbital parameters for all particles present in each simulation.
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Figure 5.4 shows the same global characteristics. Specifically; GRX exhibits larger
eccentricities and closer distances between particles relative to Hermite.
Interestingly, eccentricities reached for Hermite when accounting for all particles
attain larger values (smaller log10(1 − e)) compared to the purely merging case.
Though these large eccentricities should amount to mergers due to them
essentially defining radial paths, if the particle skims the collision region of the
SMBH, it could be ejected out at extreme speeds. The lack of energy dissipation
makes it harder for the particle to succumb to the pull of the SMBH.

Additionally, though hard to see, IMBH velocities for GRX runs reach higher
values, and a lower proportion of them occupy the low values (v ≤ 40 km s−1).
The higher velocities reached are due to their ability to sink ever closer to the
SMBH, as we have seen in the two previous figures, and whose increasingly
strong gravitational pull boosts the IMBH. This also explains the lower
proportionality of low velocities, since the simulated cluster in Hermite tend to
have larger radii, and thus, is generally a colder system in that particles often find
themselves orbiting on the outskirts.

Applying the Kolmogorov–Smirnov test, each distribution rejected the null
hypothesis (p ≤ 0.05), entailing that the distributions are statistically significant
from one another.

Figure 5.5 shows the fraction of simulations ending with mergers. The substantial
differences highlight once more the necessity of PN formalism when studying
mildly relativistic environments. GRX never reaches a SMBH-IMBH merging
outcome of less than 90%, while for Hermite the peak is an SMBH-IMBH merging
rate of 68%, occurring for NIMBH = 20. The linear decrease in merging fractions
relative to the population for Hermite is due to the larger number of binary
systems, which, as discussed in section 2.2.2, help prompt ejection events. The
low merger fraction for NIMBH = 10 Hermite is due to thirteen of its twenty
simulations reaching t = 100 Myr (the third stopping condition).

Table 5.1 summarises the simulation outcomes. Nsims denotes the total number of
runs, SMBH and IMBH Mergers the number of SMBH-IMBH and IMBH-IMBH
events respectively, ejections the number of ejection events and N100Myr the
number of times a simulation reached 100 Myr.

Nsims SMBH Mergers IMBH Mergers Ejections N100Myr
Hermite 200 86 0 100 14
GRX 280 257 0 19 4

Table 5.1: Summary of simulation outcomes.
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Figure 5.5: Fraction of simulations ending with a merger. The top panel shows Hermite results.
The bottom panel shows results for GRX.
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5.2 Stability Time
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Figure 5.6: Simulation times depending on the IMBH population. Filled circles signify the mean.
The upper bar shows where 75% of the data lies below (the upper percentile) and the lower one
where 25% of the data lies below (lower percentile).

Figure 5.6 shows the average time before particle loss occurs (tsurv) depending
on the IMBH population. The figure represents the main result of the thesis as
it answers our primary aim, what constitutes a steady-state population of IMBH
in the MW. The filled circles denote the average simulation time for each IMBH
population, while the upper and lower bars denote where 75% and 25% of the
data lie below and above (the interquartile range).

As alluded to throughout the thesis, accounting for PN effects decreases the
survival time of a given population relative to a Newtonian algorithm. Here we
finally see the effect manifest itself explicitly. For all populations of NIMBH > 10,
this difference is over an order of magnitude. We note that this trend may also
hold for the NIMBH = 10 case since 65% (Nsims = 13) of NIMBH = 10 Hermite runs
reached t = 100 Myr, while for GRX only 8% (Nsims = 3) reached the maximum
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simulation time. This natural cap on the simulation time of NIMBH = 10 runs
makes it difficult to interpret deviations between either simulation. Additionally,
10% of the Hermite NIMBH = 20 runs reached t = 100 Myr, while for GRX this
occured 0% of the time, with NIMBH = 15 reaching it once (2.5%).

Following our discussion in 4.1 and assuming an MW IMBH infall rate of one
every 7 Myr (equivalently log10 t [Myr] = 0.845), results from GRX predict a steady-
state IMBH population at the galactic core between 10∼20. Contrariwise, Hermite
has this value increase to NIMBH = 50∼60. Given that general relativity better
describes nature, we show the results for GRX in the figure below.

10 15 20 25 30 35 40
IMBH Population [N]

1.0

0.5

0.0

0.5

1.0

1.5

2.0

lo
g 1

0t
su

rv
 [M

yr
]

Figure 5.7: Simulation times depending on the IMBH population for GRX.

Refining our previous estimate with figure 5.7, we conclude that the inner 0.4
parsec of the MW, a value determined from the average half-mass radius of the
cluster, may harbour a steady state of N = 15∼20 IMBHs in a MW-like galaxy.

Given the various assumptions made, this value may vary depending on the
model (recall that papers often suggest an infall rate of one IMBH per Gyr).
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Furthermore, the assumed infall rate isn’t a fixed value and, instead, fluctuates
throughout the galaxy’s life. Here, we based our results on the average value
found in Portegies Zwart et al. (2006) [31]. Lastly, we stress that only one specific
configuration was investigated in this report, changing initial conditions such as
the IMBH mass, the initialised IMBH distance from the central SMBH, properties
of the central SMBH black hole or the positional distribution of the system
amongst others could influence results.

Given the complexity of the dynamics, it is hard to predict how these changes
may alter results. However, given the theory developed in section 2, one may
expect that a lower IMBH mass may increase the stability time as GW emission
becomes less pronounced as reflected by a decrease in the GW timescale (see
equation 2.24). Additionally, decreasing the mass also lowers the gravitational
cross section making perturbations less significant and increasing the relaxation
time. Increasing the relaxation time means an increase in our derived particle
escape rate (see equation 2.2 and equation 2.9). Furthermore, sampling the
particle mass from a distribution function result in an increase in ejection events.
We reason with this since the equipartition theorem states velocities should
increase for lower mass particles after encounters. During encounters with a large
mass ratio, the lower-mass particle will experience a large change in its velocity.

In terms of increasing the distance of the IMBH relative to the central SMBH, we
predict that this results in longer stability times and, thus, a larger IMBH
population in the galactic core. All of these influences are worth taking a deeper
look at, though some require further manipulation of the system than others (i.e
changing the central SMBH mass may influence our inferred infall rate).

The line-of-best fit (dashed) in figure 5.6 and figure 5.7 should be taken with a grain
of salt given the sensitivity to individual simulations and the low number of runs.
Even so, it mimics the form of equation 2.9. The mathematical expression for the
curve is:

tloss = 15.87 Myr(
√

N ln 0.121N)−0.942 (5.1)

Here we note several features. The first is that the γ factor in ln γN is similar to
results for equal N-body systems observed by Spitzer (1987) [38] and Giersz and
Heggie (1994) [39] who found γ = 0.11. The extracted power law is slightly
smaller than predicted but lies within a reasonable range. Physically, the
difference may come from the derivation following a Newtonian argument,
whereas final results rely on PN effects, entailing that the derivation may have
neglected various subtleties. Finally, the pre-factor 15.87 Myr is of the same order
as the 51.05 Myr predicted in equation 2.9. Recall that the earlier expression is
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derived using the evaporation rates and that the inclusion of mergers decreases
the factor since it adds in a new particle loss mechanism, as seen here. In passing,
we note that the loss cone forms an interesting aspect of binary dynamics and the
final parsec problem. Although the results are not added here due to the
information it provides being repetitive, Appendix D provides a brief analysis for
the curious reader.

Plugging tloss = 7 Myr into the expression and working backwards, we find a
predicted steady-state population of NIMBH = 15.24 in the heart of Milky Way
galaxies.

A keen eye may have observed a strange behaviour between some of the data
points in both figures. At times the mean lies above the upper percentile range.
All this is saying is that the mean survival time gets skewed by outliers who
vastly exceed the time range where the vast majority of the data lies. Figure 5.8
illustrates this fact by combining similar distributions found for the NIMBH = 60
and NIMBH = 70 populations in the Hermite runs.
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Figure 5.8: Combined histogram of the survival rate for NIMBH = 60 and NIMBH = 70 during
Hermite runs. The dashed vertical line corresponds to their combined average survival time, tsurv.
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The dashed vertical line denotes their combined average time while the counts
denote the frequency the simulation ended at a given time range (bins of ∼2 Myr).
We note that although an overwhelming majority lies below the mean, the rare
occurrence of an tsurv∼37 Myr and tsurv∼51 Myr simulation shifts the average to
go beyond the upper percentile range.

Table 5.2 summarises the extracted mean simulation time in Myr per population.

NIMBH 10 20 30 40 50 60 70 80 90 100
Hermite (⟨tsurv⟩) 71.8 35.1 31.5 9.04 10.5 5.72 4.02 2.39 2.38 1.75

NIMBH 10 15 20 25 30 35 40
GRX (⟨tsurv⟩) 25.2 11.8 4.28 2.09 2.76 2.35 1.61

Table 5.2: Summary of simulation outcomes. Survival times are in Myr.

5.2.1 Forecasting Mergers

The merger of an IMBH into an SMBH creates energetic events which are
detectable throughout the Universe with next-generation interferometers such as
LISA. Here, we take a rudimentary approach and predict the expected GW event
rate a 7 Myr steady-state population implies.

Using the merger fraction found in figure 5.5, we predict an IMBH-SMBH merger
event rate of one per 7.77 Myr. From here, we define our total event rate:

Γ ≡ d
dt

∫∫ dN(z)
dMgal,*

Φ(z, Mgal,*) dMgal, *dz (5.2)

Where dN(z)
dMgal,*

is the number of events per galactic stellar mass and Φ(z, Mgal,*) the
Press-Schechter function, which predicts the number of galaxies of a given mass
up to some redshift. Assuming that dN(z)

dMgal,*
is constant for all galaxies and basing

our results on the MW, we adopt a galactic stellar mass of MMW, * = 6 × 1010M⊙
[115] such that the event rate becomes:

d
dt

dN(z)
dMgal,*

= 2.143 × 10−12 Myr−1M−1
⊙ (5.3)

Using Press-Schechter parameters found with the EAGLE simulation (table A.1 of
Furlong et al. (2015) [116]) and cosmological parameters found by Planck (2018)
[117] to integrate over redshift, we extract the number of events up redshift z = 3.
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Our results integrate over galaxies lying within the mass range
Mgal,* ∈ [108, 1014]M⊙, the lower limit corresponding to galaxies harbouring an
SMBH while the upper limit follows from the galactic mass range probed in
Furlong et al. (2015) [116]. Figure 5.9 shows the results.
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Figure 5.9: The cumulative forecasted SMBH-IMBH events.

The cumulative event rate up to redshift z = 3 is Γ = 926 events per year (Γ = 2.54
day−1). This value is nearly three orders of magnitude larger than that found in
([5]; [118]; [119]). The discrepancy arises from several factors, most notably their
inferred infall rate of ∼Gyr scales, which decreases predictions by two orders of
magnitude. Furthermore, their investigation looks at the merger rates in which
an NSC and SMBH reside in the galactic centre. This amounts to ϵ = 0.3 of all
galaxies lying in their more restricted mass range, M ∈ [108.5, 1010.75]M⊙ ([2]; [5];
[120]). Following the same procedure with their assumptions would reduce our
predicted event rate to Γ∼1.92 yr−1, lying within their range. Indeed, given the
huge range of possible values, the LISA interferometer will be key to constraining
various properties of the model investigated.

The value found is dependent on various assumptions. In addition to generalising
MW results for all galaxies, here we neglect the formation rate of GCs and the delay
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time for which they emerge within galaxies. Both diminish the inferred event rate,
meaning we should interpret our prediction as the upper limit.

5.2.2 Ejection of Intermediate-Mass Black Holes

As discussed in section 2.2.2, IMBHs may eject from the cluster at extreme speeds.
Although table 5.1 shows GRX is not immune to such events, we detract from our
otherwise GRX-centric discussion and look at Hermite runs due to the more
frequent experience of ejection events.

Figure 5.10 shows the mean ejected velocity as a function of population (top) and
the combined ejection velocity distribution (bottom). The smallest average value
corresponds to NIMBH with ⟨vejec⟩ = 267 km s−1 which is near the lower bound
(recall that for r = 0.25pc, vesc = 263 km s−1 in our cluster).

Looking at the colour code of the top panel, we note that the ejection time roughly
follows the trend seen in figure 5.6, where an increasing population takes a
shorter amount of time to eject a particle. The longest average ejection time was
for NIMBH = 30 with ⟨tejec⟩ = 39.7 Myr, whereas the shortest occured for
NIMBH = 80 with ⟨tejec⟩ = 1.37 Myr. Table E.1 in Appendix E summarises the
ejection statistics for Hermite (table E.2 for GRX). The appendix also provides the
equivalent plots for GRX.

Though the number of samples is too low to formulate a conclusive discussion of
some observed characteristics, we dissect the global properties. Generally,
ejection events occur more often and sooner for larger populations. Linking back
to section 2.2.2, we understand this because ejection events often need binary
systems to release their binding energy before they can convert the free energy
into their kinetic energy, boosting it in the process. The dependency on
population size gets accentuated by the fact that binary formation often needs a
third particle to absorb any excess kinetic energy before forming and that,
naturally, with more particles present, it is easier for these systems to emerge in
denser systems. All these effects result in the perceived shorter ejection time and
more frequent ejection events.
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Figure 5.10: Top: Average ejection velocities as a function of IMBH population. Bottom: Histogram
showing ejection velocities of simulations ending with ejections. Both panels are for Hermite.
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The histogram shows that on four separate occasions, the ejected IMBH exceeds
the MW escape velocity at r = 0.2 pc (vesc, MW∼660 km s−1 when using Bovy
(2015) [121] and including the SgrA* mass). Though this phenomenon is much less
common in GRX, it could be insightful in future investigations to scatter lower mass
particles to replicate a stellar population around the central SMBH and see the rate
at which HVS form or where the ejected particles settle. Perhaps they can form an
observable outer shell consisting of lower-mass compact objects and stars. In fact,
observational data show that the NSC exhibits a segregation of stellar population,
with the older stars lying on the outskirts and recently formed stars lying nearer
to the centre [122].

This detachment between the stellar population is thought to relate to older stars
having had time to scatter with massive particles, whereby they gain kinetic
energy and climb out the potential well to settle onto orbits further out. Instead,
younger stars have not yet experienced scattering events which would enable
them to settle into distant orbits. Furthermore, the result of unbound IMBH may
indicate the possibility of migrating IMBH between galactic systems, though to
what extent deserves its own research and is left for future work.

Lastly, we note that our simulation only models the SMBH potential. When
accounting for the NSC potential, the SMBH sphere of influence diminishes
significantly. For the case of Bovy (2015) [121], the SMBH dominates the dynamics
at r ≲ 0.1pc, for which our initialised cluster lies beyond. Including the MW NSC
will steepen the potential well of the simulation, and particles will have a harder
time ejecting from the system. Although GRX rarely experiences ejection events, a
trend also seen in Rodriguez et al. (2018) [70], in reality, the value here is
exaggerated. We also note that the exclusion of the NSC potential influences the
merging timescales since a steeper potential will allow particles to sink nearer to
the SMBH. Nevertheless, the results here provide a good starting point for
understanding the effects such a hypothetical environment may bring forward.

5.3 Binary and Hierarchical Systems

As discussed in section 2.2, clusters may include binary and hierarchical systems.
In this section, hard binaries are those satisfying equation 2.15, while soft binaries
satisfy a more relaxed condition:

a <
GM

4(0.1σ)2 (5.4)

Hierarchical systems are those whose outer binary has e < 1, semi-major axis a <
0.1 pc, and satisfies the Mardling-Aarseth condition stated in equation 2.22. Note
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that figure 5.4 tells us that the nearest IMBH-IMBH neighbours are within rIMBH <
0.1 pc 10% of the time.

Table F.1 summarises the binary systems observed in our simulations while table
F.2 that of hierarchical systems. Results show that 11.6% and 7.92% of binaries
formed in Hermite and GRX are hard, a value similar to those found in previous
literature (10% in the Newtonian case [123]). The small number of persistent
binaries and hierarchical systems observed means that secular effects play a small
role in the overall evolution of the cluster.

Figure 5.11 shows the average fraction of time at least one binary or hierarchical
system exists for simulations run with varying populations. In both cases, the
binary existence fraction (tsys/tsim) and the average number of binary systems,
Nsys, formed show nearly identical results. The same cannot be said about
hierarchical systems (stable triples). This is no doubt due to the large times
needed before triples can emerge (see table F.2), which GRX simulations rarely
attain. Additionally, due to the IMBH being nearer to the SMBH in the GRX case,
the particles experience larger velocities making IMBH-IMBH encounters
predominantly hyperbolic, making it harder for systems to satisfy the conditions
used to define hierarchical systems. With both algorithms, all binaries were
detected as SMBH-IMBH binaries.

The line-of-best fit plotted for Hermite (H) and GRX (G) are:

log10(tsys/tsim)H = −0.027N − 0.643 (5.5)
log10(tsys/tsim)G = −0.028N − 0.766 (5.6)

The plot shows two global characteristics. Firstly, an increasing IMBH population
implies more binaries. Knowledge built throughout section 2.2.2 helps us
understand this since we learned that a denser system allows for more triple
encounter events. Such encounters are essential since the third particle will
absorb any excess energy of the prospective binary, helping them to bind to one
another. This necessity of a third particle to carry away energy during binary
formation gets emphasised by the large IMBH masses adopted here. Large
masses make the relative accelerations of encountering particles at close
approaches larger, making it harder for prospective binaries to settle into a stable
orbit. It would be interesting to investigate how changing the mass properties of
the IMBH influences system formation. Lower masses will allow more binaries
(and hierarchical systems) to form. A mass distribution could further increase this
tendency. The presence of these systems would change several properties of the
cluster and, as already alluded to, are worth taking a deeper look at (i.e number
of ejection events, number of GW events, final particle distribution ...).

44



10 15 20 25 30 35 40
IMBH Population [N]

7

6

5

4

3

2

1

0
lo

g 1
0(

t s
ys

/t s
im

)
Hermite

10 15 20 25 30 35 40
IMBH Population [N]

7

6

5

4

3

2

1

0

lo
g 1

0(
t s

ys
/t s

im
)

GRX
Stable Binary
Stable Triple

0

5

10

15

20

25

30

35

N
sy

s
 

Figure 5.11: The average percentage of time binary and triple systems are present.
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Secondly, the larger the population, the lower the fractional presence of a binary
or hierarchical system. Although this may seem to contradict the fact that more
systems emerge in more populated clusters, results show that the average
formation time of the first system, at best, weakly correlates with the initial
population (see table F.1) while the system lifetime has a strong inverse
relationship with the initial population (recall figure 5.6). The latter relation has
more influence, causing the value to diminish. This also explains why GRX

exhibits a lower number of systems.

More specifically, although the time of first formation is ever so slightly reduced
for GRX NIMBH ≥ 20 runs, their system lifetime is consistently an order of
magnitude lower. IMBHs need time to settle and exchange energy before forming
binaries, a resource not as readily available in GRX runs. This results in the
suppression of their formation. In theory, PN terms should increase the formation
of binary’s and, to an extent, hierarchicals since the presence of GW emission
reduce orbital energies, providing an outlet for stable systems to form. Indeed, in
a more controlled environment that doesn’t stop the system once particle loss
occurs, including PN terms increases the formation of binaries [70].

We note in passing that presence of hierarchical systems in the simulations is
roughly 1.4 orders of magnitude lower than the binary systems for all populations
in the Hermite case. It could be insightful to see whether this tendency emerges in
GRX simulations which run for longer times. This would help uncover some of the
complex dynamical behaviour present in these systems and further enhance our
understanding of the role PN terms have on system formation.

With their sustained interactions, binary and hierarchical systems generate a
consistent source of GW events. Figure 5.12 shows where in frequency-strain
space these events lie when assuming an event luminosity distance of DL = 1
Mpc. Observe that, although present, hierarchical systems barely contribute to the
total GW emission suggesting that they get quickly disrupted.

The next section will include transient events. For now, we note that binaries
show larger strains and frequencies than their hierarchical counterparts (see
figure F.1 for a clearer example). Both of these characteristics are due to binary
systems having a smaller semi-major axis, which influences the strain and

frequency as h ∝
√

f−4/3 ḟ ∝ f 5/3 ∝ a−5/2 (using equations 2.26, 2.27 and 2.31).
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Figure 5.12: Diagram showing where GWs emitted by binaries lie in ( f , h)-space in our GRX

simulations composed of NIMBH ≤ 40. Overlayed on the plot are four gravitational interferometers:
Square Kilometer Array [124], µAres [78], LISA [71] and the Big Bang Observer [125].

Over time, as binaries harden, their strains and frequencies increase, causing a
rightward shift of events. With the ever-tighter binaries undergoing
circularisation (e −→ 0), the frequency will only slightly change, scaling with a−3/2

multiplied by some eccentricity-dependent factor quickly approaching zero.
Meanwhile, the opposite holds for the strain, with the power emitted being
strongest at circularisation - explaining the near-vertical ascent once systems
approach the detectable range.

Figure 5.13 perfectly encapsulates this scenario and shows only events induced by
hard binaries. Once more, the prominent vertical feature is present. Additionally,
figure 5.13 shows that a larger semi-major axis causes a weakening of the strain
due to the reduced number of events detected with strains h < 10−24, signified by
the narrower kernel density estimate shown in the right-hand panel.

Neglecting the effect of a shortened simulation time, the same f vs. h plot for
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Hermite doesn’t exhibit the vertical ascent otherwise seen above (see figure F.1).
This difference exemplifies once more the difficulty Newtonian algorithms have
in reducing the semi-major axis of binaries, especially in systems with such large
masses where PN terms are made more prominent. A fact also reflected with the
smaller fraction of binaries formed having coalescence time tGW < tH (table F.1).

Figure 5.13: Diagram showing where GWs emitted by hard binary systems lie in ( f , h)-space for
GRX simulations with NIMBH ≤ 40 The single hierarchical data point signifies the fact that in only
one time step did a tertiary IMBH interact with a hardened binary.

In both of the previous figures, streak-like features appear. These streaks are
artificial since we can only detect GW events occurring at the simulation
snapshots. The radial drift corresponds to the hardening of a binary system.
Figure 5.14 shows an example of this by tracking a particular binary system found
in a GRX run. Observe that as time moves forward, the events shift to larger
frequencies and strains, signifying the hardening of the system. As we will see
later, figure 5.17 exhibits the same streak, although with a different perspective,
allowing a clearer understanding of the binary evolution.
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Figure 5.14: Example of how binary systems induce the streak-like features present in our
frequency vs. strain diagrams. The colour corresponds to the age of the binary system at a
particular point. This particular binary formed in a GRX run.

5.4 Gravitational Wave Events

Before concluding the report, we extend our discussion of GW events and analyse
events generated by transient events or binary systems in a NSC harbouring 10∼20
IMBH. Before discussing, we note several caveats to our analysis.

As alluded to earlier, detections are constrained by the resolution of the simulation,
meaning we can only track events occurring at discrete time steps of δt = 1000
years. Events which occur in between these snapshots get ignored. Additionally,
although events originating from a sustainable binary or hierarchical system in
nature will emit a continuous signal, with the discrete sampling method adopted
here, the same system may emit several GW events, and thus a single system may
cause numerous events. Finally, we note that due to the (1− e2)−1.5 proportionality
in equation 2.26, hyperbolic encounters (e > 1) are not detected. Since this is often
the case during a fly-by, many events remain undetected, significantly influencing
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the number of IMBH-IMBH events detected.

All in all, though this discussion is a good first step, it deserves its own
investigation. Namely, we look at the global features of GW radiation and leave
forecasting for future papers. Proceeding forwards, we note that the data here
includes the complete duration of simulations. Comparing algorithms with these
data will give a systematic bias towards Hermite due to its longer-lived binary
and hierarchical systems.

Table 5.3 summarises the results for events satisfying f > 10−12 Hz and h > 10−30

in NIMBH ∈ [10, 20] simulations, a value chosen to reflect the varying steady-state
population potentially present in MW-like galaxies due to the fluctuation of IMBH
infall rate. The events signify rates per Myr. Appendix G gives the full results.

Hermite GRX

Avg. Event Rate (IMBH-IMBH) 1.275 × 103 32.11
Avg. Event Rate (SMBH-IMBH) 1.410 × 104 2.546 × 104

Avg. Event Rate (Total) 1.538 × 104 2.549 × 104

Table 5.3: Summary of GW events. Values are averaged over all simulations. They signify the
number of events (combined nearest neighbour and secondary nearest neighbour) per Myr for a
MW-like galactic core composed of NIMBH ∈ [10, 20].

Although limiting the frequency and strain removes a substantial amount of data,
namely events induced by hierarchical systems and IMBH-IMBH transients, most
of the information extracted would be redundant to what we have seen
previously. Namely, figures 5.12 and F.1 tell us that hierarchical systems, or by
extension IMBH-IMBH encounters with large a, generate the weaker signals.
Nevertheless, the key takeaway from the table is that the majority of events
detected using GRX are between SMBH-IMBH, whereas ∼10% of those in Hermite

are between two interacting IMBH’s, even after constraining the strain.

The vast majority of Hermite IMBH-IMBH events are from interactions between
secondary neighbour events (GRX showing slightly more nearest neighbour IMBH-
IMBH events, see table G.1). Considering figure 5.4 shows that for fixed simulation
times, GRX have their particles approach nearer with one another than Hermite, this
result is surprising at first.

The discrepancy relates to the closer approaches GRX particles experience with the
SMBH. As mentioned previously, in environments surrounding the SMBH, the
orbital velocities of the particles take on relativistic speeds. In turn, this reduces
the number of IMBH-IMBH trajectories with e < 1 since they are now more prone
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to being hyperbolic. More explicitly, taking into account all eccentricities, we find
that 84.5% of the tracked IMBH-IMBH encounters for GRX have e > 1. For Hermite,
this reduces to 67.9%.

Figure 5.15: f vs. h diagram for GW events occuring in all NIMBH ≤ 20 GRX simulations. As before,
overlayed on the plot are four different gravitational interferometers: Square Kilometer Array [124],
µAres [78], LISA [71] and the Big Bang Observer [125]. All values assume DL = 1 Mpc.

Figure 5.15 shows where in the frequency-strain parameter space GW events occur
for GRX. Observe the vast majority of events lying outside the detectable range of
GW interferometers. As alluded to before, this is due to the large semi-major axis
of the interacting system. In turn, this decreases the frequency and strain (see
equation 2.26 and equation 2.27, but also figures 5.16 and 5.17). Generally, SMBH-
IMBH events cover a narrower area of parameter space and often exhibit larger
frequencies and strains. This is partly due to the IMBH particles sinking into the
SMBH potential well, reducing the semi-major axis over time, and partly from the

51



larger chirp mass of the SMBH-IMBH system.

The strain’s kernel density (right panel) shows a bimodality in the emission of
GW. Interestingly, when increasing the population to account for NIMBH ≤ 40,
Hermite shows this feature, but GRX does not (see figure G.1 and figure G.2).
Comparing data extracted for binary systems (figure 5.12) with the one above
helps us understand why.

The gap featured in figure 5.15 coincides with the region right below that which
binaries occupy. Furthermore, figure 5.12 does not include the SNN island located
at h ≲ 10−26. Including transient events in this subsection, we allow ourselves to
model weaker events explaining the emergence of the second peak at lower strains.
By deduction, we can infer that the gap is due to a lack of events instigated by
extremely soft binaries. That is, events generated by binaries which do not satisfy
our earlier condition of what constitutes a binary but still have a small enough
semi-major axis to generate large enough signals which otherwise bridge the gap.
This region in semi-major axis space, though not small enough to induce binaries,
encourages GW events and can be considered softer-than-soft binaries. In the case
of figure 5.16, a binary lasting 20Myr populated the gap, given the low number
of IMBH-IMBH events for GRX and this binary surviving for 2 × 104 snapshots,
the persistent generation and detection of its events removed the bimodality. It is
interesting to see such a soft binary last so long, especially in a dense system.

Another feature is the slanted ’Y’ exhibited once SMBH-IMBH events reach the
µAres range. To understand this, we compare the results in the figures here with
those found in figure 5.13. As mentioned before, events following a nearly vertical
ascent and forming a streak are those generated by hard binaries. By definition,
these systems require a small semi-major axis so that they don’t get disrupted by
external encounters (recall equation 2.15). Since the strain spans similar values for
either branch of the ’Y’, we infer that events lying at the larger frequencies are those
skimming past the SMBH and thus consist of large eccentricities and semi-major
axis. A larger semi-major axis makes the systems easily disrupted and hence are
not considered binaries with our conditions, explaining the omission of the second
branch in our earlier figures shown in section 5.3.

Using results found in Kremer et al. (2019) [79], we can also conclude that the
vertical ascent is formed by (hardened) binary systems that undergo GW capture.
That is, the hardened binary merges over time after losing an enormous amount
of its orbital energy in the form of GW radiation during a resonant encounter.
Contrariwise, the events occurring on the gentle slope are due to in-cluster
mergers. These are events where the binaries merge primarily due to dynamical
encounters rather than GW radiation ([70]; [79]; [126]). These two classifications
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help us understand why Hermite doesn’t exhibit the vertical ascent, the GW
capture branch, namely through its exclusion of 2.5PN terms. Furthermore, it
helps us understand why figures focusing on binary systems showed a sparsely
populated in-cluster branch, since, by definition, these events are not formed by
binary systems but rather due to the dynamical encounters which shift their
orbital parameters in the right way to have extremely large eccentricities and
skim the SMBH.

5.4.1 Global Gravitational Wave Properties

Figure 5.16: Scatter plot denoting where Hermite and GRX IMBH-IMBH GW events lie in the a vs.
log10(1 − e) parameter space. The panels above and on the right show the kernel density estimate.
The greyed-out regions denote the frequency range probed by LISA and µAres. The dashed-dotted
lines show where the sensitivity of the interferometers is at a maximum, while the dotted ones, the
frequency range probed ([78]; [127]). Note that the upper bounds for µAres and LISA are the same
( f = 1Hz). The data here is from runs simulated with NIMBH ≤ 40.
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Analysing the induced GW events through a different perspective, figure 5.16 and
figure 5.17 show where in semi-major axis - eccentricity space SMBH-IMBH and
IMBH-IMBH events lie for simulations with NIMBH ≤ 40. The solid line denotes
the region where merging events would take longer than the Hubble time to
occur (tGW > tH) and those which would take shorter (tGW < tH) using equation
2.24 and assuming that the system doesn’t get disrupted. The greyed out bands
delineate the region in (a, log10(1 − e)) space observable by LISA and µAres. The
dotted lines span their observational range, whereas the central dash-dot curve
denotes the peak sensitivity ([78]; [127]). These curves neglect the
frequency-dependent strain sensitivity of the interferometers and instead assume
an ideal interferometer. We note that in both plots, the data extracted
encompasses the complete simulation data, and isn’t cropped to a constant time
frame which otherwise removes systematic biases.

Figure 5.17: Scatter plot denoting where Hermite and GRX SMBH-IMBH GW events lie in the a vs.
log10(1 − e) parameter space.
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From the plot, it is clear once more that an overwhelming amount of events lie
outside the detectable range, and even if the systems resist disruption, their
merging timescales are over the Hubble time. Furthermore, we see most events
are due to particles with eccentricities between 0 ≲ e ≲ 0.9 and semi-major axis
0.1 ≲ a [pc] ≲ 1. This is not surprising since figure 5.4 shows roughly 85% of the
eccentricities tracked have e ≤ 0.9.

In terms of differences, Hermite occupies a narrower range in semi-major axis
values in both figures, with the differences more prominent for IMBH-IMBH
events, once more relating to the ease of close approaches for binaries present in
GRX through GW radiation. Contrariwise, the eccentricity found by Hermite

covers a larger range for both IMBH-IMBH and SMBH-IMBH events. Though
perhaps surprising, we note that even looking at the few IMBH-IMBH events
with extreme eccentricities, the small collisional radii of the IMBH (rcoll = 0.01R⊙)
ensures that IMBH-IMBH mergers do not happen.

In terms of SMBH-IMBH events (figure 5.17), the larger eccentricities exhibited by
Hermite is only a mild difference, and only occur for low∼intermediate values of
eccentricity, values not substantial enough to encourage merging events.

To wrap up, we note once more the fact that figure 5.17 nicely shows the streak
formed by hard binaries observed for GRX. Here we see explicitly the evolution of
such systems, whereby they initially have large e, drastically reducing the merging
timescale. If it is left undisturbed by field particles, we observe that as the IMBH
emits GW and its semi-major axis shrinks, it starts to circularise (log10(1 − e) −→ 0)
with its semi-major axis reducing by several orders of magnitudes in the process.
This is the GW capture mechanism in action. Furthermore, we see that in-cluster
mergers tend to occupy relatively large a and extremely small log10(1− e) regions,
a region still detectable by the detectable region for µAres.

To conclude this section, we emphasise the necessity of PN terms to model clusters
with compact objects. Though most of the time particles inhabiting clusters are
far away from one, the presence of PN terms introduces a new avenue in which
observable GW events may emerge, namely that of GW capture events. Modelling
this is essential as it changes the simulation outcomes and with it, the predicted
observables.
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6 Conclusion

Black holes lie on the cutting edge of our understanding. Although some
mysteries have started to unravel with the onset of GW astronomy, many remain.
Observations of supermassive black holes lying at the heart of galaxies help us
peer into galactic dynamics and evolution, yet their existence in the early
Universe has contradicted our mathematical understandings, with their
formation mechanism remaining unknown.

Lying between stellar-mass black holes and supermassive black holes, the
currently undetected intermediate-mass black hole population may be the key to
understanding the formation mechanism. In this report, we investigate the model
proposed by Ebisuzaki et al. (2001) [1]. Here, intermediate-mass black holes
formed in the hearts of dense globular clusters migrate inwards through
dynamical friction, whereby a steady-state population of intermediate-mass black
holes may exist in the galactic centre. Through their interactions, their orbital
eccentricities may increase, reducing their merging timescales with the central
supermassive black holes and alleviating several mathematical limits placed on
the growth rate of supermassive black holes, namely the final parsec problem and
the Eddington limit. Section 2 describes the model some more, followed by a
discussion on the basics of N-body simulations in section 3. With the theory and
methodology outlined, we explored the results in section 5.

Comparing the results between a Newtonian (Hermite) and a post-Newtonian
(GRX) algorithm incorporating terms up to 2.5PN, we find that GRX, with its
inclusion of gravitational wave radiation, predicts a survival time consistently
one order of magnitude lower compared to its Newtonian counterpart for fixed
populations. Differences in the results of either algorithm are further dissected
throughout the section for which we note that the use of a PN algorithm is
fundamental for a deeper understanding of relativistic systems, namely due to its
introduction of a new GW formation channel.

When assuming the intermediate-mass black hole infall rate to the galactic core of
τ = 7 Myr [31], we predict that a population of NIMBH = 15∼20
intermediate-mass black holes reside within 0.4pc of Sagittarius A*, the
supermassive black hole lying at the heart of our own galaxy. Forecasting the
gravitational wave events observable by LISA [71] and µAres [78] based on such a
steady-state environment, 926 supermassive black hole-intermediate-mass black
hole merging events are detectable per year up to z = 3. This value is three orders
of magnitude larger than other papers, but differences stem from the lack of
constraints placed on the intermediate-mass black hole infall rate. Namely,
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previous papers have assumed an infall rate of τ∼1 Gyr ([2]; [3]; [4]; [5]).

Though a good first step, the investigation is rudimentary. Improvements in
several aspects can provide more reliable results. The most noteworthy is the lack
of an external nuclear star cluster potential. Inclusion of such would steepen the
potential well, encouraging merging events to occur possibly resulting in a
lowered steady-state population and would also reduce the number of observed
ejections.

Additionally, time constraints limited the parameter space explored. Here, we
assumed an equal mass intermediate-mass black hole initiated at a specific
distance from the supermassive black hole when drawn from a Plummer
distribution. Seeing how the intermediate-mass black hole mass influences results
would be an interesting next step, with many of the phenomena present in cluster
dynamics (relaxation time, mass segregation, binary formation...) all being
dependent to a varying extent on the constituent mass.

Furthermore, though the supermassive black hole here has properties chosen to
mimic that of Sagittarius A*, the analysis of such environments centred on a
different supermassive black hole could be equally insightful and allow for a
better way of generalising results. Not only would a change in its mass cause a
change in the extent relativistic effects play a role, but it may influence the
intermediate-mass black hole infall rate.

Similarly, though the initialised distances used here satisfy constraints placed by
the Gravity Collaboration [110], these reflect the lower limits. Increasing their
initial distances from the supermassive black hole would no doubt affect the
survival time of the cluster and allow for a larger steady-state population of
intermediate-mass black holes.

Amongst these considerations, future investigations may choose to probe the
nature of ejection events. Introducing lower-mass objects into the cluster (such as
stellar-mass black holes, intermediate-mass black holes or stars) should increase
the ejection rate, and it could be insightful to analyse their trajectories and their
final settled orbits. In fact, it has been observed that the old stellar population
present in the Milky Way nuclear star cluster, those who’ve had more time to
scatter with other objects, occupy a larger radius than the recently formed stellar
population [122]. As shown here, intermediate-mass black holes can eject
particles to large velocities, the mechanism of which could help alleviate this
apparent separation between stellar populations.

Though neglected here, applying spin to the black hole populations could yield
different results and may be worth taking a deeper look into. Previous results
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show that, depending on the mass ratio of the interacting particles, eccentricities
may enhance (when corotating with one another) or suppress (when
counter-rotating) [128]. Lastly, although GW effects dissipate energy more
efficiently than tidal effects, incorporating tidal effects may encourage the
formation of intermediate-mass black hole-intermediate-mass black hole binary
systems. It may be worth including the effect as, if the binary is tight enough,
these systems also lie in detectable LISA and µAres range and could be an
interesting and unique observable for such a system.
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Appendix A: Chaos in N-body Systems

In N > 2 body systems, any slight change in initial conditions will drastically
influence the final results due to its chaotic nature. Being chaotic, one cannot use
individual N-body simulations to gather meaningful interpretations. Instead, one
conducts several simulations and analyses its global properties such runs yielded
with the assumption that this shows an accurate representation of such systems
([98]; [129]). In the context of this report, due to the parallelisation scheme,
numerical errors were essentially random. In turn, final results varied between
simulations, even when initialised with identical conditions, hence the need for
multiple simulations.

To understand this better in this context, we note that although identical
conditions should provide equivalent results due to the deterministic nature of
computers, this isn’t the case here due to the parallelisation scheme forcing
different cores (and subsequently threads) to compute different segments of a
given simulation at different times depending on the computational resources
available. Since each core has a unique intrinsic numerical error attributed to it,
two individual simulations will not show the same results. Figure A.1 in the
following page shows an example in which various properties of identical
particles are tracked in two separate simulation runs. Note that the curves in the
bottom two panels denote averages over time.

As seen, a many-body system is sensitive to any input making even numerical
round-off errors have consequential effects at later times. The larger the system,
the more sensitive the system is to numerical errors and initial conditions. This
difference is illustrated in the top right of figure A.1, which shows the deviation
in the phase-space coordinates over time. The expression used was taken from
Portegies Zwart (2021) [96]:

ln[δw(⃗r, v⃗)] =
1
2

ln
[
∑

(
(⃗ri − r⃗j)

2 + (⃗vi − v⃗j)
2
)]

(A.1)

Here i and j denote the two particles. The sensitivity of N-body systems towards
the initial conditions cause individual simulations of N-body systems to be
inaccurate when representing real-life situations since precise initial conditions
relevant to different environments are difficult to come by.
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Figure A.1: Top left: System evolution in the xy-plane using Hermite of the same particle in the
same configuration for two different runs, distinguished by their colour. Top right: Deviations in
the phase-space coordinates of the particle. Bottom left: Evolution of the particle’s semi-major axis
with respect to the central SMBH. Bottom right: The evolution of distance of the IMBH particle
with respect to the SMBH (solid) and its nearest neighbour (dashed).
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Appendix B: HermiteGRX Post-Newtonian Terms

The EIH expression including the 2.5PN term used by GRX is shown below.
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Where, ˆ⃗r = r⃗AB
|rAB|

. The expression above shows the PN equation of motion
followed by a massive particle, A. The less massive particles (in our case, IMBH)
have their equations of motion expressed equivalently, the only difference being
the exchange of upper case with lower case letters since these correspond to
massive (upper-case) and less-massive particles thanks to the symmetry of the
derivation [40]. Note that the first term is of Newtonian order, while the following
three describe 1PN corrections, O(c−2).

It is insightful to look at the 2.5PN term in expression B.1. If we restrict ourselves
to circular orbits then ˆ⃗rAB · v⃗AB = 0. Taking equal mass objects (mA = mB = m)
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then the 2.5PN term reduces into:
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Substituting the form for circular velocity:

vcirc =

√
Gm

r
(B.3)

we get that:
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=
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√
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The expression above is important as it implies that the drag force felt by each BH
particle in the simulation is:

F = ma =
32
5c5

√
G7m9

r9
AB

(B.6)

Which results in an energy loss of the binary per unit time of:

∆E = 2πaF (B.7)

where a is the binary’s semi-major axis.
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Appendix C: Energy Conservation
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Figure C.1: Left: The energy evolution of a specific simulation over time. Right: The corresponding
simulations cumulative energy error. The run was using Hermite.

Figure C.1 shows how the energy and its error evolve for a given system. As we
can see from the left-hand panel, the system starts out virialised to ensure stability
(at t = 0 years, PE = −2KE). On the right, we see that the simulation error reaches
a value of ∆E ≈ 10−5.

Though this is large compared to typical N-body simulations, the root is due to
the density of the system causing many close-body encounters. Many algorithms,
including Hermite, adopt time symmetry. This mechanism ensures that the
systematic drift in energy gets suppressed since it forces the simulation (to some
extent) to recover its initial conditions when played backwards.

However, this mechanism is only suited for two-body interactions (Prof. dr.
Makino, private discussion). During a two-body encounter, errors will naturally
arise due to numerical errors and complexity when resolving close encounters.
Once the interaction is over, it will diminish back to its original value. However,
since we simulate a many-bodied system, the energy error induced by the
encounter gets absorbed into the surrounding particles. The absorbing particle
carries the energy away before time-symmetrisation can regulate the errors
produced, which explains the frequent jumps observed. The error gets amplified
by the background IMBH who have just absorbed the excess energy since they
may still influence the complex dynamics of the encounter through applying
weak perturbations.
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Appendix D: Loss Cone

The loss cone forms a fundamental aspect of the final parsec problem. As a
reminder, the loss cone defines the region in angular momentum-energy space,
which, when occupied, objects can scatter with an existing binary depleting its
orbital energy in the process through an exchange of energy.

Here we make use of results following Tremaine and Binney (2008) [11] to
investigate how the different algorithms differ in the rate at which particles reach
the loss cone boundary of the SMBH. There is a subtle difference here as we do
not care for the influence of a third particle on binary systems, but rather, the
loss-cone boundary now denotes the region for which the particle will get
swallowed by the SMBH. In this case, the angular momentum boundary, Jcrit, is:

Jcrit =
√

2GMSMBHq (D.1)

where q = a(1 − e) is the pericenter of the particle in question. If the particle has
J ≤ Jcrit, it has crossed the horizon and will merge with the SMBH. Figure D.1
shows the 2D histogram of the loss cone evolution for every particle simulated
in NIMBH ≤ 40 simulations. To ensure no systematic errors arise, as before, we
constrain the simulations configured with a given population to not go over the
average simulation time of the same population when using GRX runs.

On the x-axis, we have the initial angular momentum of the particle, while the
y-axis shows the final angular momentum. Anything lying below the diagonally
dashed line has a decrease in its angular momentum. The data is heavily
concentrated in particular regions as signified by the kernel density estimates
showing large peaks there. Nevertheless, when comparing the curves in the
upper and right-hand panels, we observe that Hermite exhibits a larger
proportion of its data lying above the diagonal. Furthermore, the lack of a second
peak at values L f ≈ Lcrit indicates the difficulty Newtonian algorithms have to
when inducing merging events due to their omission of GW radiation.
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Figure D.1: Evolution of the IMBH’s angular momentum. Lcrit is defined by equation D.1

75



Appendix E: Ejection Events

NIMBH 10 20 30 40 50 60 70 80 90 100
Counts 3 4 8 10 12 11 9 15 10 17
⟨tejec⟩ [Myr] 13.7 39.5 39.7 8.80 11.9 4.90 4.90 1.37 1.81 1.55
min vejec [km s−1] 242 295 305 258 262 276 262 258 295 265
max vejec [km s−1] 294 344 625 1050 587 450 599 788 490 817
⟨vejec⟩ [km s−1] 268 315 410 412 321 318 368 357 353 421

Table E.1: Summary of ejection velocities depending on the population for Hermite.

NIMBH 10 15 20 25 30 35 40
Counts 0 4 1 7 2 1 4
⟨tejec⟩ [Myr] – 19.2 5.87 0.651 1.78 0.637 0.999
min vejec [km s−1] – 309 395 300 428 316 258
max vejec [km s−1] – 342 395 570 507 316 382
⟨vejec⟩ [km s−1] – 317 395 349 468 316 314

Table E.2: Summary of ejection velocities depending on the population for GRX.
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Figure E.1: Top: Average ejection velocities as a function of IMBH population. Bottom: Histogram
showing ejection velocities of simulations ending with ejections.
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Appendix F: Sustainable Systems

NIMBH 10 20 30 40
Primordial Binaries 0.55 0.95 1.05 1.05
Hard Binaries 0.35 2.55 3.7 5.85
Total Binaries 5.75 18.4 30.8 40.0
⟨tform⟩ [Myr] 0.02054 0.1271 0.09411 0.190
tGW/tH 0.00870 0.03270 0.0130 0.00751

NIMBH 10 15 20 25 30 35 40
Primordial Binaries 1 1 0.95 0 1 1.05 0.90
Hard Binaries 0.65 1.63 1.48 1.88 1.10 2.13 3.10
Total Binaries 9.10 13.7 18.6 24.9 28.2 29.1 32.0
⟨tform⟩ [Myr] 0.02279 0.4404 0.1120 0.1001 0.08377 0.2170 0.1680
tGW/tH 0.091 0.060 0.0404 0.0301 0.0222 0.02403 0.0211

Table F.1: Summary of binary systems observed. Values for the first three columns correspond
to average number of systems found for a given population per simulation. The fourth column
denotes the average time taken for the first system to emerge. The last column shows the fraction
of binaries with merging timescales less than a Hubble time upon applying equation 2.24. Top:
Results for Hermite. Bottom: Results for GRX.

NIMBH 10 20 30 40
Primordial Tertiaries 0 0 0 0
Total Tertiaries 5.35 15.0 21.9 15.4
⟨tform⟩ [Myr] 37.428 19.501 16.118 6.7868

NIMBH 10 15 20 25 30 35 40
Primordial Tertiaries 0 0 0 0 0 0 0
Total Tertiaries 0.025 0.075 0 0 0 0 0.500
⟨tform⟩ [Myr] 4.2350 18.705 – – – – 0.05500

Table F.2: Summary of hierarchical systems observed. When relevant, columns indicate equivalent
properties as table F.1. Top: Results for Hermite. Bottom: Results for GRX.
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Figure F.1: Diagram showing where GWs emitted by binary systems lie in ( f , h)-space in our
Hermite simulations composed of NIMBH ≤ 40.
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Appendix G: Gravitational Wave Forecasting

Hermite GRX

Avg. NN Event Rate (IMBH-IMBH) 2.690 20.65
Avg. NN Event Rate (SMBH-IMBH) 1.377 × 103 1.667 × 103

Avg. NN Event Rate (Total) 1.379 × 103 1.688 × 103

Avg. SNN Event Rate (IMBH-IMBH) 1.272 × 103 11.46
Avg. SNN Event Rate (SMBH-IMBH) 0 2.120 × 103

Avg. SNN Event Rate (Total) 1.272 × 103 2.131 × 103

Avg. Event Rate (IMBH-IMBH) 1.275 × 103 32.11
Avg. Event Rate (SMBH-IMBH) 1.410 × 104 2.546 × 104

Avg. Event Rate (Total) 1.538 × 104 2.549 × 104

Table G.1: All forecasting values found for GW events. As in the main text, values were taken
as the average over all simulations N ≤ 20 and are given as the number of events per Myr. NN
denotes nearest neighbours and SNN, events induced by second nearest neighbours.
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Figure G.1: f vs. h diagram for GW events occuring in all NIMBH ≤ 40 Hermite simulations.
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Figure G.2: f vs. h diagram for GW events occuring in all NIMBH ≤ 40 GRX simulations.
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