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CHAPTER 0

Prologue

1. Diophantine equations

In this thesis we will consider problems in the domain of Diophantine equations
(which belongs to the realm of number theory). The name “Diophantine equations”
dates back to the third century AD, to Diophantus of Alexandria, who wrote a
series of books on solving them. A Diophantine equation is a polynomial equation,
potentially with multiple unknowns. For example:

a2 + b2 = c2 and y2 = x3 − x+ 1.

We are interested in integer or rational solutions to these equations: solutions where
every number is, respectively, a whole number or a fraction. For example, for the
two equations above, we have respectively an integer and a rational solution

32 + 42 = 52 and

(
7

8

)2

=

(
1

4

)3

−
(

1

4

)
+ 1.

Note that for a homogeneous Diophantine equation (in which each term has the
same degree), every integral solution gives rise to an infinitude of similar solutions
by scaling. For example, for the first equation, 62 + 82 = 102 and 92 + 122 = 152

are also solutions. However, these additional solutions do not really provide any
more information. Therefore, we are usually just interested in “primitive solutions”,
in which the variables do not have a common prime factor (so 32 + 42 = 52 is a
primitive solution, while 152 + 202 = 252 is not, since the variables have a common
factor 5).

2. p-adic numbers

Determining whether a Diophantine equation has integer or rational solutions
is generally quite hard. However, sometimes there is a way to show that there are
no integer solutions, by showing that the reduction modulo a prime power has no
solutions.

For example, if 3x37 + 4y42 = 6 were to have any integer solutions, it certainly
would have solutions modulo 4. However, the equation modulo 4 becomes 3x37 ≡ 2
mod 4, and it is trivial to check that neither 0, 1, 2 or 3 satisfy this equation modulo
4. Therefore, 3x37 + 4y42 = 6 has no integer solutions.

Now, if an equation has solutions in Z/pZ, we can try to ‘lift’ those solutions to
Z/p2Z (the advantage of lifting solutions is that we only have to consider p options
for each variable, instead of pm). If we succeed in that, we can try lifting again,
to higher and higher powers of p. If we continue doing this, we are constructing
solutions over Zp, the ring of integers modulo p with lifts to higher and higher

5



6 0. PROLOGUE

powers of p. We can write this formally as

Zp = {(xm)m≥1 | ∀m,xm ∈ Z/pmZ, xm ≡ xm+1 mod pm},

Therefore, the statement that an equation has solutions over Z/pmZ for all m is
equivalent to the statement that it has solutions over Zp and if there exists an m
such that no solutions can be lifted to Z/pmZ, the equation has no solutions over
Zp. We have ‘bundled’ all of our powers of p in this one object Zp.

We can now define an additional object Ẑ =
∏
p prime Zp, which bundles all

powers of all prime numbers. An equation has a solution modulo every prime
power (and therefore, by the Chinese Remainder Theorem, modulo every natural

number) if and only if it has a solution over Ẑ and conversely, if it has no solution

over Ẑ, there exists a prime number p such that there exists no solution modulo pm

for some number m, and therefore the equation has no integer solutions.
For rational solutions, we can define a similar object, AQ,{∞} = Q⊗ Ẑ, which

has a similar property: if there exist no solutions over AQ,{∞}, there exist no
rational solutions.

3. Schemes

The theory of schemes gives us a different language to talk about solutions of
equations. For one Diophantine equation f1, or even multiple equations f1, . . . , fm
with variables X1, . . . , Xn, we can define a scheme

X = V (f1, . . . , fm) = Spec (Z[X1, . . . , Xn]/(f1, . . . , fm)) .

Then we can rephrase “integer solutions to the equations f1, . . . , fm” as “Z-points
of X” (which we denote by the set X(Z)). More generally, for R any ring, X(R)
denotes the solutions to f1, . . . , fm over R.

If the equations f1, . . . , fm are homogeneous, we can define another scheme

X = Cn(f1, . . . , fm) = V (f1, . . . , fm) \ V (X1, . . . , Xn).

This allows us to rephrase “primitive solutions of f1, . . . , fm over R” as “R-points of
X”, or X(R), which we will prove in Lemma 1.2. This means that if X(Ẑ) is empty,
the equations have no primitive integer solutions and if X(AQ,{∞}) is empty, the
equations have no primitive rational solutions.

4. Strong Approximation

However, what if X(AQ,{∞}) is not empty? Then we cannot disprove the ex-
istence of rational solutions in this way. This does, however, give rise to another
question: what information does X(AQ,{∞}) provide about X(Q)? This question is
at the core of strong approximation. A scheme X is said to ‘satisfy strong approx-
imation away from infinity’ if, for every solution X(AQ,{∞}) there exist arbitrarily
close solutions in X(Q). In other words: an equation satisfies strong approximation
away from infinity if for every solution x in X(AQ,{∞}) and every distance ε > 0,
we can find a solution y in X(Q) such that the ‘distance’ between x and y is smaller
than ε (for some definition of ‘distance’). If this is true, X(AQ,{∞}) provides us
with a lot of information about X(Q).
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5. The equation at hand

In this thesis, we will study the (homogeneous) Diophantine equation

q′1 : X2
1 + 47X2

2 − 103X2
3 − 17 · 47 · 103X2

4 = 0.

This equation has been studied before in [BK19]. They proved that the scheme
C4(q′1) corresponding to this equation does not satisfy strong approximation away
from infinity.

Furthermore, it has been shown in [Pag20] that the scheme does satisfy strong
approximation away from infinity, 2, 17, 47 and 103. This means that we look at
the solutions over

AQ,{∞,2,17,47,103} = Q⊗
∏

p6=2,17,47,103

Zp

instead of AQ,{∞}.

6. Group schemes

In this thesis, we will prove a similar result, but this time we will use group
schemes to get there. In particular, we will use the group scheme of linear auto-
morphisms of Cn(f1, . . . , fm).

In the first chapter, we will define the schemes that we will work with in the
rest of the thesis, and some maps between them.

In the second chapter, we will define the ring of adeles, adelic points, a topol-
ogy on the set of adelic points, and we will prove some useful lemmas about this
topology. Also, we actually define strong approximation, and show two schemes
that do not satisfy strong approximation.

The third chapter is all about the ‘easy’ equation q0 : X1X4 − X2X3 = 0.
We will prove consecutively that the schemes SL2, C2 and C4(q0) satisfy strong
approximation away from infinity.

The fourth and fifth chapter are somewhat more theory-heavy, as they deal with
models and twists. In chapter four, we will show how we can modify q′1 slightly,
such that its behaviour with respect to the primes 2, 47 and 103 becomes nice. In
chapter five, we will discuss the theory of twisting and show that we can define
C4(q′1) (and a couple of related schemes) as a variant, or ‘twist’, of C4(q0) (and its
related schemes).

In the sixth and final chapter, we will use all of the above to prove that S̃O(q′1),
one of the schemes related to C4(q′1), satisfies strong approximation away from
infinity. From that, we will deduce that C4(q′1) satisfies strong approximation away
from infinity and 17.





CHAPTER 1

Setting the Stage: The Actors

In this chapter, we will cover some preliminaries, which we will use in the rest
of this thesis.

In this thesis, we work with several schemes over Z. We will introduce them in
this section. Note that all of them can be embedded as locally closed subschemes
into An for some n, can therefore be covered by distinguished opens of An, and are
therefore of finite type over Z.

1. Notation

For f : X → Y a morphism of schemes and R a ring, we will also use f for the
function on R-valued points f : X(R)→ Y (R).

2. The Yoneda Lemma

The following lemma, based on the Yoneda lemma, can be found as Proposition
VI-2 in [EH00]:

Lemma 1.1. If R is a commutative ring, a scheme over R is determined by the
restriction of its functor of points to affine schemes over R; in fact

h : (R−Sch)→ Fun(R−Alg,Set)

is an equivalence of the category of R-schemes with a full subcategory of the category
of functors.

We will usually use the following corollary:

Corollary 1.1. Let R be a ring and let X and Y be R-schemes. Suppose that
we have, for each R-algebra A, a function F(A) : X(A)→ Y (A), such that for each
R-algebra morphism ϕ : A→ B, the following diagram commutes:

X(A) Y (A)

X(B) X(B)

F(A)

X(ϕ) Y (ϕ)

F(B)

.

Then there is a unique morphism of schemes f : X → Y that induces F .

In this thesis we deal mostly with schemes X such that for some n ∈ Z, for all
R-algebras A, X(A) ⊆ An. Now, given two such schemes X and Y with X(A) ⊆ An
and Y (A) ⊆ Am, given f1, . . . , fm ∈ R[X1, . . . , Xn] such that for all R-algebras A,
if we define

F(A) : X(A) 7→ Am, (x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

the image lies within Y (A), then the diagram is automatically commutative and
F(A) is induced by a morphism f : X → Y .

9



10 1. SETTING THE STAGE: THE ACTORS

3. Algorithmic proofs

This thesis contains a handful of theorems that deal with groups Gl, Gr, sets
T ⊆ S and left and right group actions Gl × S → S, S ×Gr → S (note that Gl or
Gr can be trivial). These theorems usually state something along the lines of “For
all s ∈ S, there exist gl ∈ Gl, gr ∈ Gr and a t ∈ T such that gltgr = s”. Now, take
s ∈ S. If we can find gl1, . . . , glk ∈ Gl and gr1, . . . , grk′ ∈ Gr for some k and k′,
such that

glk . . . gl1sgr1 . . . grk′ ∈ T,
then if we take gl = (glk . . . gl1)−1, gr = (gr1 . . . grk′)

−1 and t = g−1
l sg−1

r , then

s = gltgr,

which is what we are looking for.
Now, in almost all of the theorems, S is actually a group, and we have group

homomorphisms fl : Gl → S and fr : Gr → S, such that the left and right action
are given by (g, s) 7→ fl(g)s and (s, g) 7→ sfr(g). Note that to show that a group
homomorphism f : G→ H is surjective, it suffices to show that for all h ∈ H, we can
find gl1, . . . , glk, gr1, . . . , grk′ ∈ G such that f(glk) . . . f(gl1)hf(gr1) . . . f(grk′) = e,
the identity element of H.

Also, in some cases, we actually have G ⊆ S, in which case the homomorphism
is just the identity map.

The following is a proof that the map rn : SL2(Z) → SL2(Z/nZ) is surjective.
In this case we have Gl = Gr = SL2(Z), S = SL2(Z/nZ) and T = {I2}.

There are a few things to remark about the form of the proof. First of all, we
write the steps of the algorithm (the descriptions of the gli and gri) on the left and
the results of those steps (glj . . . gl1mgr1 . . . grj′ for some j and j′) on the right, as
a reference for the state of the matrix and for the indices.

Secondly, the proof contains many references to coefficients of a matrix m, but
after each step, this is a different matrix. We could call them m, m′, m′′ etc.,
but that would become hard to read very soon. This m is a variable and changes,
sometimes even multiple times, during each step.

Thirdly, note that we can lift any number ā ∈ Z/nZ to some a ∈ Z. Also, note
that SL2(Z) contains (and is generated by) all matrices of the form(

1 a
0 1

)
and

(
1 0
a 1

)
for a ∈ Z. Now, multiplying m on the right by their images in SL2(Z/nZ) adds
respectively ā times the second column to the first, or the first column to the second.
Multiplying on the left adds respectively ā times the second row to the first, or the
first to the second. These are the so-called ‘elementary column and row operations’.
This justifies steps like “We can add m21 times m12 to m11” and “Then we add
−m21 times the first row to the second”. In most algorithmic proofs, we will have
at least one of SLk(R) ⊆ Gl and SLk(R) ⊆ Gr.

Most of these algorithmic proofs have also been implemented in sagemath as
jupyter notebooks and have been published at [vdL23]. If there is a sagemath
implementation of a proof, this will be mentioned at the start of the proof.

Theorem 1.1. The map rn : SL2(Z)→ SL2(Z/nZ) is surjective.

Proof. See also the corresponding code at [vdL23].
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Step Outcome

We start with a 2× 2-matrix m ∈ SL2(Z/nZ). (m11 m12
m21 m22

)

We keep subtracting m11 and m12 from each other, whichever one
has a greater lift 0 ≤ m1i < n ∈ Z at any point, until either one
becomes 0.

(
m11 0
m21 m22

)
If m12 = 0, we can add m11 to it, and then subtract m12 from m11

to get m11 = 0.

(
0 m12
m21 m22

)
Since m ∈ SL2(Z/nZ), we know that m12m21 = −1. Therefore,
we can add −m21 times m12 to m11 to have m11 = 1.

(
1 m12
m21 m22

)
Then we add −m12 times the first column to the second and −m21

times the first row to the second to have m12 = m21 = 0.

(
1 0
0 m22

)
Since m ∈ SL2(Z/nZ), we have m22 = 1, which concludes the
proof.

( 1 0
0 1 )

�

4. GLn and SLn

Definition 1.1. For n ∈ Z>0, we define GLn via the Yoneda lemma as

GLn(R) = {m ∈ Matn×n(R) | det(m) ∈ R∗}.
and SL2 as the subscheme

SLn(R) = {m ∈ Matn×n(R) | det(m) = 1}.
They are representable since we have

GLn ∼= Spec (Z[X11, . . . , Xnn, Y ]/(|Xij |ijY − 1)) ,

where |Xij |ij denotes the determinant of the matrix with the Xij as its coefficients,
and

SLn ∼= Spec (Z[X11, . . . , Xnn]/(|Xij |ij − 1)) .

Since the multiplication of matrices is given by polynomial equations in the
coefficients of the matrices, and since determinants are multiplicative, GLn and
SLn become group schemes under matrix multiplication.

5. Cn(f1, . . . , fm)

When studying ‘primitive’ solutions to a homogeneous Diophantine equation,
the notion of a punctured affine cone arises quite naturally. Its definition generally
looks as follows

Definition 1.2. For n,m ∈ Z>0 and f1, . . . , fm ∈ Z[X1, . . . , Xn] all homoge-
neous of degree > 0, we define

Cn(f1, . . . , fm) = Spec (Z[X1, . . . , Xn]/(f1, . . . , fm)) \ V (X1, . . . , Xn),

the open subscheme obtained by ‘removing the origin’. When m = 0, we will leave
out the parentheses and just write Cn.

In this thesis, we will work extensively with C2 and C4(q0) for q0 = X1X4 −
X2X3.

For any ring R, we can describe the R-valued points of a punctured affine cone
as follows:
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Lemma 1.2. Let R be a ring. Then for S = Cn(f1, . . . , fm),

S(R) = {x ∈ Rn | x1R+ · · ·+ xnR = R and fi(x) = 0 for all i},

writing x1, . . . , xn for the coefficients of x.

Proof. Cn(f1, . . . , fm)(R) can be identified with the set of x ∈ Rn such that
fi(x) = 0 for all i, and such that for the morphism

ψ : SpecR→ Spec (Z[X1, . . . , Xn]/(f1, . . . , fm)) ,

given by ψ∗ : Xi 7→ xi, for every prime p ⊆ R, ψ(p) 6∈ V (X1, . . . , Xn)
For x ∈ Rn, we have (ψ∗)−1(p) = ψ(p) ∈ V (X1, . . . , Xn) if and only if for

all i, we have Xi ∈ (ψ∗)−1(p). This is the case if and only if xi ∈ p for all i, or
equivalently, x1R+ · · ·+ xnR ⊆ p.

We conclude that x is in Cn(f1, . . . , fm)(R) if and only if fi(x) = 0 for all i and
the ideal x1R + · · ·+ xnR is not contained in a prime ideal. Since maximal ideals
are also prime ideals, this concludes the proof. �

Example 1.1. For some rings R, we can state this primitivity condition more
specifically:

(1) For R = k for k a field, it means that some xi is nonzero.
(2) For R = Z, it means that gcd(x1, . . . , xi) = 1.
(3) For R = Zp it means that some xi is not divisible by p.

Now take

q0 = X0X3 −X1X2.

We have a morphism C2 × C2 → C4(q0), given (by the Yoneda Lemma) on
R-points by sending ((x1, x2), (y1, y2)) to (x1y1, x1y2, x2y1, x2y2).

Lemma 1.3. The image of (C2 × C2)(R) is inside C4(q0)(R).

Proof. Let R be a ring and let ((x1, x2), (y1, y2)) ∈ (C2 ×C2)(R). Let p ⊆ R
be a prime ideal. There exist i, j ∈ {1, 2} such that we have xi, yj 6∈ p. Then
xiyj 6∈ p. Therefore, (x1y1, x1y2, x2y1, x2y2) ∈ C4(q0)(R). �

5.1. A better model for the quadratic form. The main theorem of this
thesis proves that C4(q′1), with

q′1 = X2
1 + 47X2

2 − 103X2
3 − 17 · 47 · 103X2

4 ,

satisfies strong approximation away from infinity and 17. To accomplish this, we
will work quite often in characteristic p for almost every prime p. However, the
fibers of C4(q′1) over 2, 47 and 103 are given respectively by

(X1 +X2 +X3 +X4)2, X2
1 − 103X2

3 and X2
1 + 47X2

2 .

So the fiber over 2 is not reduced, while the fibers over 47 and 103 are singular.
This topic is covered more extensively in Chapter 4. In our case, we will just use
Theorem 4.1, Lemma 4.7 and Lemma 4.8, to find a better model. We improve this
model somewhat more with a Z-isomorphism to obtain

q1 = X1X4 + 2X2
2 − 5X2X3 +X2

3



6. Isom(Q,Q′) 13

with an isomorphism between q′1 and q1 given by
−3 − 811141

2 187191 2843673841
− 17

47 − 4596505
94

1060758
47

16114425619
47

79
206

5340030
103 − 2464690

103 − 74883927657
206

− 1
9682 − 67624

4841
31196
4841

947907417
9682

 ∈ GL(Q).

By Corollary 2.1, satisfying strong approximation is invariant under isomorphism
over Q, so we will work with q1 instead of q′1 from now on.

Remark 1.1. “We improve this model somewhat more”: We obtain this im-
provement on the obtained matrix m by first solving

1
a
b
c


T

m


1
a
b
c

 = 0.

Taking this as the first column of a (otherwise identity) matrix gives us a transfor-
mation t ∈ SL4(Z) such that (tTmt)11 = 0. Then we can do some (simultaneous)
row and column reductions to obtain a matrix

0 0 0 1
2

0 a b 0
0 c d 0
1
2 0 0 0


(for a, b, c, d ∈ 1

2Z not necessarily the same as in the previous paragraph) such that

ad− bc = − 17
4 . Then we can do some additional row and column reductions within

this submatrix to finally obtain the quadratic form.

5.2. The group action of SLn. We have a group action of GLn (and there-
fore also of SLn) on Cn, consisting of the morphism GLn×Cn → Cn, given on
R-points by the usual matrix-vector multiplication

(m,x) 7→ mx

where we view x as a column vector. Note that if for some prime ideal p ⊆ R,
we have that x1, . . . , xn ∈ p, we also have (mx)1, . . . , (mx)n ∈ p, since these
are R-linear combinations of x1, . . . , xn. Multiplying by the inverse of m shows
that if (mx)1, . . . , (mx)n ∈ p, then also x1, . . . , xn ∈ p. Therefore, the image of
(GLn×Cn)(R) does indeed lie inside Cn(R) and the map on R-points is induced
by a morphism GLn×Cn → Cn.

6. Isom(q, q′)

For n ∈ Z>0, two quadratic forms q, q′ ∈ Z[Y1, . . . , Yn]2, taking Y = (Y1, . . . , Yn)T ,
we define the scheme Isom(q, q′) via the Yoneda lemma as

Isom(q, q′)(R) = {m ∈ GLn(R) | ∃z ∈ R∗ : q′(mY ) = zq(Y )},

where the equation q′(mY ) = zq(Y ) must hold in R[Y1, . . . , Yn].
Note that the coefficients of q′(mY ) are polynomial equations in the mij , and

that the coefficients of zq(Y ) are linear in z, so the equality q′(mY ) = zq(Y ) is
equivalent to a set of polynomial equations in z and in the entries of m, so the given
functor is indeed representable by an (affine) scheme.
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We define GO(q) = Isom(q, q), which becomes a group scheme under matrix
multiplication.

We also define

O(q)(R) = {m ∈ GLn(R) | q(mY ) = q(Y )},
We would want to define SO(q)(R) = {g ∈ GO(q)(R) | det(g) = 1}, which

makes SO(q) into an algebraic subgroup of GO(q). However, since 2 is not a unit
in Z, this is never smooth over Z if n is even (see Theorem C.1.5 from [Con14]).
Therefore, we define SO(q0)(R) in a better, more complicated way, and then define
SO(q)(R) as a twist of this scheme where possible. Following Appendix A, we now
define SO(q0)(R) to be{
g ∈ O(q0) | 2

∣∣∣∣g12 g13

g22 g23

∣∣∣∣ ∣∣∣∣g31 g34

g41 g44

∣∣∣∣+ 2

(
1
2 +

∣∣∣∣g31 g14

g41 g24

∣∣∣∣)( 1
2 −

∣∣∣∣g32 g13

g42 g23

∣∣∣∣) = 1
2

}
In this thesis, we will mostly work with Isom(q, q0), SO(q) and SO(q0)
6.0.1. Morphism. We can extend the group action of GL2×GL2 on C2 × C2

to C4(q0) via the morphism (of affine group schemes) γ : GL2×GL2 → GO(q0),
given on R-points as

γ :

((
a11 a12

a21 a22

)
,

(
b11 b12

b21 b22

))
7→


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

 .

γ restricts to a morphism γ : SL2×SL2 → SO(q0).

In particular, on R-points, it sends (( a11 a12a21 a22 ) , I) and
(
I,
(
b11 b12
b21 b22

))
to respec-

tively 
a11 0 a12 0
0 a11 0 a12

a21 0 a22 0
0 a21 0 a22

 and


b11 b12 0 0
b21 b22 0 0
0 0 b11 b12

0 0 b21 b22

 ,

both of which indeed lie in SO(q0)(R) (and therefore, their product lies in SO(q0)(R)
as well).

7. Transporter

If we have a group G that acts on a space X, and if we have elements a, b ∈ X,
the transporter from a to b is the set of elements of G that send a to b. There is a
scheme-theoretic analogue to this:

For G a group scheme, with a group action ϕ : G × X → X on a scheme X,
and a, b ∈ X(S) for a scheme S, we have a commutative diagram (a fiber product)

Y S

GS GS × S GS ×X X

b

(idG)S×a ϕ

.

Note that the composition of the arrows at the bottom is the morphism that sends
m to m · a. Also note that Y is the scheme theoretic inverse of b.

We define the transporter Ga,b from a to b to be the scheme Y in the diagram.
We write Ga = Ga,a, for the stabilizer of a.



CHAPTER 2

The Call to Adventure: Strong Approximation

As mentioned in the introduction, we want to know the relationship between
(the geometry of) the p-adic points of a scheme, and the Z-valued or Q-valued
points. This relationship is precisely what strong approximation is all about.

In this chapter, we will work towards defining strong approximation, and show
two schemes that do not satisfy strong approximation, to get a feel one of the
reasons why a scheme can fail to satisfy strong approximation.

1. The ring of adeles

Let k be a global field and Ωk the set of places of k. For v ∈ Ωk, we will write
kv for the completion of k with respect to v and we will write

Ov =

{
{x ∈ kv | v(x) ≥ 0} v is nonarchimedean;

kv v is archimedean.

For finite T ⊆ Ωk, we will write Ak,T =
∏′
v∈Ωk\T (kv,Ov) for the adeles away

from T : the subring of
∏
v∈Ωk\T kv, consisting of the (xv)v such that xv ∈ Ov for

all but finitely many v.
If we give kv and Ov the v-adic topology, they become topological rings: rings

with continuous addition and multiplication. We endow Ak,T with the restricted
product topology, which makes it into a topological ring as well. A basis for this
restricted product topology consists of opens∏

v∈S
Uv ×

∏
v∈Ωk\(T∪S)

Ov

for S ⊆ Ωk \ T finite and Uv ⊆ kv open.
In this thesis, we will study k = Q, for which ΩQ consists of the prime numbers

and ∞. For p prime we will write ordp for the p-adic valuation, Zp = Op. We will

write Ẑ =
∏
p Zp for the profinite integers and we have the following equalities.

AQ,{∞} = Q⊗ Ẑ, AQ = R×AQ,{∞}.

The topology on Qp has a basis consisting of opens x + pnZp for x ∈ Qp and
n ∈ Z>0. For finite T ⊆ ΩQ with ∞ ∈ T , the restricted product topology for AQ,T
has a basis consisting of opens x+ n

∏
p∈ΩQ\T Zp with x ∈ AQ,T and n ∈ Z \ {0}.

2. A topology on the adelic points

In this thesis we will show for some schemes that they satisfy strong approx-
imation. To this end, we will first have to define strong approximation and this
requires us to define a topology on X(AQ,T ) for X a scheme of finite type over
AQ,T .

15
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For this section, we use Sections 2.6.2, 2.6.3 and Exercise 3.4 of [Poo17] as a
reference. Let k be a global field with set of places Ωk and let T ⊆ Ωk be a finite
subset. Let X be a scheme of finite type over Ok.

Take v ∈ Ωk. If X is affine, we have X = Spec (Z[X1, . . . , Xn]/I) for some
ideal I, so X(Ov) ⊆ X(kv) ⊆ knv and we give X(kv) and X(Ov) the subspace
topology. If X is not affine, it has an affine open cover X =

⋃
i Ui. Then X(kv) =⋃

i Ui(kv), so we give the Ui(kv) the topology for affine schemes, and we glue along
the intersections. The resulting topology is independent of the choice of open
affine covering. We give the open and closed subset X(Ov) ⊆ X(kv) the subspace
topology.

We have a bijection

X(Ak,T )
∼−→

∏′

v∈Ωk\T

(X(kv), X(Ov))

and we give X(Ak,T ) the restricted product topology.
We will now prove some useful lemmas about this topology.

Remark 2.1. By section 2.6.3 in [Poo17], based on [Con12], given a variety
(separated k-scheme of finite type) X over k, there exists a finite set of places S and
a finite-type Ok,S-scheme X such that Xk ∼= X. We can use this to give X(Ak,T )
a topology, which is independent of the chosen model X , and functorial in X.

Lemma 2.1. For X = Spec (Z[X1, . . . , Xn]/I), X(Ak,T ) has the subspace topol-
ogy from An

k,T .

Proof. The subspace topology has a basis consisting of elements

X(Ak,T ) ∩

∏
v∈S

Uv ×
∏

v∈Ωk\(T∪S)

Onv


for Uv ⊆ knv open and S ⊆ Ωk \ T finite. However, since X is affine, we have for all
v ∈ S that Uv ∩X(kv) is open in X(kv) (and every open of X(kv) is of this form),
so this equals the basis element∏

v∈S
X(kv) ∩ Uv ×

∏
v∈Ωk\(T∪S)

X(Ov),

and X(Ak,T ) has a basis where every element is of this form. �

Lemma 2.2. For a morphism of schemes of finite type f : X → Y , the mor-
phism X(Ak,T )→ Y (Ak,T ) induced by f is continuous.

Proof. Note that for v ∈ Ωk \ T and for the projection map πv : Ak,T → kv,
we have a commutative diagram

X(Ak,T ) Y (Ak,T )

X(kv) Y (kv)

fAk,T

X(πv) Y (πv)

fkv
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so the map is given separately on each coordinate. It is a remark in Section 2.6.2
of [Poo17] that f(kv) : X(kv) → Y (kv) is continuous for all v ∈ Ωk. Therefore,
given finite S ⊆ Ωk \ T and given, for all v ∈ S, opens Uv ⊆ Y (kv), we have that

f−1
Ak,T

∏
v∈S

Uv ×
∏

v∈Ωk\(T∪S)

Y (Ov)

 =
∏
v∈S

f−1
kv

(Uv)×
∏

v∈Ωk\(T∪S)

X(Ov),

the preimage of a basis element, is open and since this holds for any basis element
for the restricted product topology, f(Ak,T ) is continuous. �

Lemma 2.3. For schemes X,Y , (X × Y )(Ak,T ) has the product topology from
X(Ak,T )× Y (Ak,T ).

Proof. First of all, for all places v ∈ Ωk \ T , (X × Y )(kv) has the product
topology, according to Proposition 3.1 from [Con12]. Therefore, the topology on
(X × Y )(Ak,T ) has a basis consisting of sets∏

v∈S
Uv × Vv ×

∏
v∈Ωk\(S∪T )

X(Ov)× Y (Ov)

for S ⊆ Ωk \ T finite and for all v ∈ S, Uv ⊆ X(kv) and Vv ⊆ Y (kv) open. Such
basic open sets equal∏

v∈S
Uv ×

∏
v∈Ωk\(S∪T )

X(Ov)

×
∏
v∈S

Vv ×
∏

v∈Ωk\(S∪T )

Y (Ov)


which gives exactly a basis for the product topology on X(Ak,T )× Y (Ak,T ). �

3. Strong Approximation

Now, we are finally ready to define strong approximation. Furthermore, in this
section, we will prove two additional lemmas that, for some schemes, show that
they satisfy strong approximation.

Definition 2.1 (Strong Approximation). For a global field k, a finite set T ⊆
Ωk and a Ok-scheme of finite type X, we say that X satisfies strong approximation
away from T if X(k) is dense in X(Ak,T ).

If we take k = Q, T = {∞} and X affine (so a subscheme of An), this definition
boils down to: for all (x1, . . . , xn)T ∈ X(AQ,{∞}) and all m ∈ Z>0, there exists

(y1, . . . , yn)T ∈ X(Q) such that xi − yi ∈ mẐ for all i.
We have the following very useful lemma about strong approximation

Lemma 2.4. Let k be a global field and T ⊆ Ωk finite. Let f : X → Y be
a morphism of schemes of finite type over Ok such that the induced map fAk,T

:
X(Ak,T ) → Y (Ak,T ) is surjective. If X satisfies strong approximation away from
T , then Y satisfies strong approximation away from T as well.

Proof. Let V ⊆ Y (Ak,T ) be a nonempty open. Then f−1
Ak,T

(V ) ⊆ X(Ak,T ) is

a nonempty open, since fAk,T
is surjective and continuous.

BecauseX satisfies strong approximation away from T , there exists a ∈ fAk,T

−1(V )∩
X(k). The fact that fAk,T

(a) ∈ V ∩ Y (k) concludes the proof. �



18 2. THE CALL TO ADVENTURE: STRONG APPROXIMATION

Corollary 2.1. Let X and Y be separated schemes of finite type over Ok and
let there be an isomorphism f : Xk

∼−→ Yk. Then X satisfies strong approximation
away from T if and only if Y satisfies strong approximation away from T .

Proof. Since f is an isomorphism, it has an inverse f−1. We have f ◦ f−1 =
idYk and this induces, using the diagonal map k ↪→ Ak,T , the equality fAk,T

◦
f−1
Ak,T

= idY (Ak,T ). Therefore, fAk,T
(note that Ak,T is a k-algebra, so the function

fAk,T
: X(Ak,T )→ Y (Ak,T ) is defined) is surjective and in the same way, f−1

Ak,T
is

surjective.
Applying in both directions an analogue to Lemma 2.4 for k-varieties, using

Remark 2.1 for continuity, gives the result. �

Later on, we will use the following lemma to prove that SL2 satisfies strong
approximation away from infinity.

Lemma 2.5. For G a group scheme with an embedding (as a scheme) into An,
the following are equivalent:

(1) G(Q) is dense in G(AQ,{∞});

(2) G(Z) is dense in G(Ẑ) and G(Q) ·G(Ẑ) = G(AQ,{∞}).

Proof. Since G is a group scheme, it has inversion and multiplication mor-
phisms. Then, by Lemma 2.2, these induce continuous morphisms on G(AQ,{∞}),
which makes G(AQ,{∞}) into a topological group.

Suppose that G(Q) is dense in G(AQ,{∞}). Let (x1, . . . , xn) ∈ G(Ẑ) and m ∈
Z \ {0}. Then there exists (y1, . . . , yn) ∈ G(Q) such that xi − yi ∈ mẐ for all i.

However, then yi ∈ Ẑ ∩Q = Z. Therefore G(Z) is dense in G(Ẑ).

Take a ∈ G(AQ,{∞}). Since G(AQ,{∞}) is a topological group and G(Ẑ) is open,

a·G(Ẑ) is open. SinceG(Q) is dense inG(AQ,{∞}), there exists b ∈ G(Q)∩(a·G(Ẑ)).

Then, take c = a−1b ∈ G(Ẑ), so a = bc−1 ∈ G(Q) ·G(Ẑ).

Conversely, suppose that G(Z) is dense in G(Ẑ) and G(Q) ·G(Ẑ) = G(AQ,{∞}).
Let U ⊆ G(AQ,{∞}) be a nonempty open. Then it contains an element a = bc with

b ∈ G(Q) and c ∈ G(Ẑ). Since G(AQ,{∞}) is a topological group, b−1U is open and

has a nonempty open intersection with G(Ẑ) (since it contains c). Therefore, there
exists b′ ∈ G(Z) ∩ (b−1U). Then bb′ ∈ U , but also bb′ ∈ G(Q) · G(Z) = G(Q), so
G(Q) is dense in G(AQ,{∞}). �

4. Two counterexamples to strong approximation

In this section, we take k = Q, and we show two examples of schemes that do
not satisfy strong approximation away from infinity.

A simple example is Gm = Spec (Z[X,Y ]/(XY − 1)).

Example 2.1. Gm does not satisfy strong approximation away from infinity.

Proof. Note that Gm(Ẑ) is an open subset of Gm(AQ,{∞}). Therefore, if Gm
satisfies strong approximation, Gm(Q) must be dense in Gm(Ẑ). Since

Gm(Q) ∩Gm(Ẑ) = Gm(Z),
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we must have that Gm(Z) is dense in Gm(Ẑ). Note in particular, this means that

for every n ∈ Z>0 and every x ∈ Gm(Ẑ),

Gm(Z) ∩
(
Gm(Ẑ) ∩ (x+ (nẐ)2)

)
must not be empty. In other words, Gm(Z)→ Gm(Ẑ/nẐ) must be surjective. Note

that Ẑ/nẐ = Z/nZ, since scaling by n only affects the components Zp for which
p | n.

Now, if we take n = 5, then Gm(Z/5Z) contains the point (2, 3). However,
Gm(Z) = {(1, 1), (−1,−1)} and neither of these points reduce to (2, 3). Therefore,
Gm does not satisfy strong approximation away from infinity. �

A more sophisticated version of this principle is the scheme SO(q0), with q0

defined in Section 1.5 as X1X4 − X2X3. As established in Section 1.6, we have
a map γ : SL2×SL2 → SO(q0). We use the lack of surjectivity of this map on
AQ,{∞}-points to show that SO(q0) does not satisfy strong approximation away
from infinity.

Lemma 2.6. Let k be a field. Then γ is surjective on k-points if and only if k
is quadratically closed.

Proof. See also the corresponding code at [vdL23].
First of all, recall that γ is given on k-points by

((
a11 a12

a21 a22

)
,

(
b11 b12

b21 b22

))
7→


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

 .

Now, suppose that k is not quadratically closed. Then there exists λ ∈ k which
is not a square. Now, suppose that there exists a preimage (a, b) of

1 0 0 0
0 1

λ 0 0
0 0 λ 0
0 0 0 1

 .

Then we must have b11 = 1
a11

. Since b11a21 = b11a12 = 0, we must have a21 =

a12 = 0. Since a ∈ SL2(k), we have a22 = 1
a11

= b11. Then λ = a22b11 = b211, which
is a contradiction. Therefore, the map is not surjective on k-points.

We will prove that the lack of square roots in k is the only obstruction to this
map being surjective. Therefore, assume that k is quadratically closed. We will
prove that the map is surjective on k-points by using ‘elementary row operations on
steroids’: We let (SL2×SL2)(k) act on the left of SO(q0)(k). Our building blocks
are ((

1 a
0 1

)
, I

)
,

((
1 0
a 1

)
, I

)
,

(
I,

(
1 a
0 1

))
and

(
I,

(
1 0
a 1

))
,

all elements of (SL2×SL2)(k) which, respectively:

• add a times row 3 and 4 to row 1 and 2 respectively;
• add a times row 1 and 2 to row 3 and 4 respectively;
• add a times row 2 and 4 to row 1 and 3 respectively;
• add a times row 1 and 3 to row 2 and 4 respectively.
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Most of the time, we will just mention one component, for example “We add 3
times m11 to m31”, leaving implicit that we then also add 3 times m21 to m41 (and
that the same happens in the other columns).

Note that for every element m ∈ SO(q0)(k), if we write m∗i for the ith column,
we have mT

∗iq0m∗j = (q0)ij : the inner product (using q0) between the ith and jth
column, is the i, jth entry of q0. Depending on the characteristic of k, we may need
to multiply by 2 to actually let this make sense. For example, for (i, j) = (1, 1) and
(i, j) = (1, 4), this gives respectively,

m11m41 −m21m31 = 0 and m11m44 +m41m14 −m21m34 −m31m24 = 1.

Step Outcome

Take m ∈ SO(q0)(k). (
m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

)
First of all, if m11 = 0 and m21 = 0, we must have
m31 6= 0 or m41 6= 0. We add m31 to m11 and m41 to
m21 to have m11 6= 0 or m21 6= 0.
If m21 = 0, we add m11 to m21 to have m21 6= 0.
We add 1−m11

m21
times m21 to m11 to have m11 = 1.

(
1 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

)
We now subtract m21 times m11 from m21, and m31

times m11 from m31. Then m21 = m31 = 0.

( 1 m12 m13 m14
0 m22 m23 m24
0 m32 m33 m34
m41 m42 m43 m44

)
Since m ∈ SO(q0)(k), for i ≤ 3, the inner product be-
tween columns 1 and i is 0, so m4i = 0. Also, the inner
product between columns 1 and 4 is 1

2 , so m44 = 1.

( 1 m12 m13 m14
0 m22 m23 m24
0 m32 m33 m34
0 0 0 1

)
We can now subtract m34 times m44 from m34 and m24

times m44 from m24 to make sure m24 = m34 = 0.

( 1 m12 m13 m14
0 m22 m23 0
0 m32 m33 0
0 0 0 1

)
For 2 ≤ i ≤ 4, the inner product between columns i and
4 is 0, so m4i = 0.

(
1 0 0 0
0 m22 m23 0
0 m32 m33 0
0 0 0 1

)
Then the equation, given at the end of Appendix A to
cut out SO(q0) inside O(q0), gives m23m32 = 0. Also,
since the inner product between the columns 2 and 3 is
1
2 , we have m22m33 = 1. Now for 2 ≤ i ≤ 3, since the
inner product of column i with itself is 0 for all columns,
we have m2im3i = 0 and this gives m23 = m32 = 0.
Then we have m33 = 1

m22
.

(
1 0 0 0
0 m22 0 0
0 0 1

m22
0

0 0 0 1

)

Since k is quadratically closed, there exists µ ∈ k
such that µ2 = m22. Then we can lift m to((

µ 0

0 1
µ

)
,
(

1
µ 0

0 µ

))
∈ (SL2× SL2)(k). Multiplying by its

inverse concludes the proof.

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

�

Example 2.2. SO(q0) does not satisfy strong approximation away from infinity.

Proof. The lemma shows that the map γ : SL2× SL2 → SO(q0) is a finite
étale morphism of degree 2. Then Theorem 8.4.10 from [Poo17] tells us that the
inclusion SO(q0)(Q)→ SO(q0)(AQ,{∞}) is not dense. �
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We can make things a lot more specific than the lemma does, since we don’t
have to worry about the general case.

Over Z
[

1
2

]
, SL2×SL2 and SO(q0) are separated with geometrically integral

fibers. We have a matrix

m =


1 0 0 0
0 3 0 0
0 0 1

3 0
0 0 0 1

 ∈ SO(q0)(Z17).

Since γ is a finite étale morphism of degree 2, either 17 splits in κ(γ−1(m)) and m
has two inverse images, or it is inert and m has no inverse images.

As shown in Lemma 2.6, since 3 has no square root in F17 (and therefore not
in Z17), 17 is inert in κ(γ−1(m)).

By Krasner’s Lemma (Proposition 3.5.74 from [Poo17]), we have an open
subset

U17 = {u ∈ SO(q0)(Z17) | 17 is inert in γ−1(u)}.
We take Up = SO(q0)(Zp) for all primes p - 2 · 17. This gives an open

U =
∏
p-2

Up ⊆ SO(q0)(AQ,{2,∞}).

Now, suppose that there exists x ∈ SO(q0)(Q)∩U . Then we have x ∈ SO(q0)
(
Z
[

1
2

])
.

We will show that this means that 17 is not inert in κ(γ−1(x)), which contradicts
the fact that x ∈ U17.

Now, we take an arbitrary matrix y ∈ SO(q0)
(
Z
[

1
2

])
such that y can be ob-

tained by multiplying x on the left by an element of SL2× SL2

(
Z
[

1
2

])
. Note that

this means that y has a preimage in SL2× SL2

(
Z
[

1
2

])
if and only if x has a preim-

age. We apply a reduction to y similar to the one in Lemma 2.6.
First, we add, if necessary, a row to the first and second row, to make sure the

first two entries in first column are nonzero. Note that there exists a ∈ Z such that
2a · y11, 2

a · y21 ∈ Z.
If necessary, we apply the Euclidean algorithm (over Z) to get 2a · y11 = 0 and

2a · y21 = 1 and we add 2a (note that this is an element of Z
[

1
2

]
) times the second

row to the first. Therefore, we can assume that y11 = 1. After this, we follow the
rest of the reduction steps of Lemma 2.6. Then we can assume that

y =


1 0 0 0
0 λ 0 0
0 0 1

λ 0
0 0 0 1

 .

Note that λ is a unit in Z
[

1
2

]
, so it is of the form (−1)b2c for b, c ∈ Z. Then we

have

γ

((
4b6c 0

0 1
4b6c

)
,

(
1

4b6c
0

0 4b6c

))
≡ y mod 17,

so 17 splits in κ(γ−1(y)) and therefore in κ(γ−1(x)). However, by construction, 17
was inert in κ(γ−1(x)), which gives a contradiction.

Therefore, SO(q0)(Q) ∩ U = ∅ and we conclude that SO(q0) does not satisfy
strong approximation away from infinity.





CHAPTER 3

Fun and Games: The Simple Case

In this chapter, we will prove that C4(q0) satisfies strong approximation away
from infinity. To this end, we will first prove that SL2 satisfies strong approximation
away from infinity using Lemma 2.5, and then use Lemma 2.4 twice to transfer this
property to C2 and finally to C4(q0).

1. SL2

For S a scheme and l ∈ Z, the map Spec (Z/lZ) → Spec (Z) induces a map
rl : S(Z)→ S(Z/lZ) which, for affine schemes, corresponds to the usual reduction
modulo l.

We want to prove that SL2(Z) is dense in SL2(Ẑ). Note that the topology on

SL2(Ẑ) has a basis consisting of opens m+ lẐ4 for l ∈ Z and m ∈ SL2(Ẑ). Saying
that every one of these contains a Z-point is equivalent to saying that the map
SL2(Z)→ SL2(Ẑ/lẐ) is surjective for all l. Note that Ẑ/lẐ ∼= Z/lZ. We prove that

SL2(Z) is dense in SL2(Ẑ) with the following lemma.

Lemma 3.1. For the scheme SLn, rl is surjective for all l.

Proof. See also the corresponding code at [vdL23].
If n = 1, we have SL1(Z/lZ) = {

(
1
)
}, which can be lifted trivially.

Fix l ∈ Z. We let SLn(Z) act on SLn(Z/lZ) on the left and on the right. This
gives us elementary row and column operations.

Step Outcome

We start with a n× n-matrix m.
 m11 m12 ... m1n

m21 m22 ... m2n

...
...

. . .
...

mn1 mn2 ... mnn


Note that we can lift elements of Z/lZ to Z such that
they end up between 0 and l − 1. Take i and j such
that the lift of m1i is less than or equal to m1j . Then
subtract m1i from m1j . This decreases the sum of their
lifts. Since this sum is finite, if we do this repeatedly, all
but one of the m1j will become 0 in a finite number of
steps.

 0 m12 ... 0
m21 m22 ... m2n

...
...

. . .
...

mn1 mn2 ... mnn



Let m1i be the nonzero value. If i 6= n, we add m1i to
m1n and then subtract m1n from m1i.

 0 0 ... m1n
m21 m22 ... m2n

...
...

. . .
...

mn1 mn2 ... mnn


23
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Let a be the determinant of the bottom left (n−1)×(n−
1) submatrix. Note that m1na = 1. Add a times m1n

to m11, which makes sure that m11 = 1. Then subtract
m1n times m11 from m1n. Also, subtract mi1 times m11

from mi1 for all i ≥ 2.

 1 0 ... 0
0 m22 ... m2n

...
...

. . .
...

0 mn2 ... mnn



Note that the bottom right (n− 1)× (n− 1) submatrix
is an element of SLn−1(Z/lZ). Repeating the above for
this submatrix (induction) gives the identity matrix.

( 1 0 ... 0
0 1 ... 0
...

...
. . .

...
0 0 ... 1

)

�

In order to be able to use Lemma 2.5, we need the following lemma.

Lemma 3.2. We have

SLn(Q) · SLn(Ẑ) = SLn(AQ,{∞}).

Proof. If n = 1, we have SLn(AQ,{∞}) = {
(
1
)
}, which is trivial.

We let SLn(Q) act on the left and SLn(Ẑ) on the right of SLn(AQ,{∞}). Note

that
∏
p prime SLn(Zp) = SLn(Ẑ), so we can give elements of SLn(Ẑ) by giving an

element of SLn(Zp) for every prime p.

Step Outcome

Take m ∈ SLn(AQ,{∞}).
 m11 m12 ... m1n

m21 m22 ... m2n

...
...

. . .
...

mn1 mn2 ... mnn


For all p simultaneously: Let ordp be the p-adic valuation
on the p-th component of elements of AQ,{∞}. Take
i ≥ 2 such that ordp(m1i) is minimal. If ordp(m11) >
ordp(m1i), add m1i to m11. Then for all i, we have
ordp(m11) ≤ ordp(m1i).

We have for all i ≥ 2, and all primes p, ordp

(
m1i

m11

)
≥ 0,

so m1i

m11
∈ Ẑ. For all i ≥ 2, add −m1i

m11
times m11 to m1i,

to make sure that m1i = 0.

 m11 0 ... 0
m21 m22 ... m2n

...
...

. . .
...

mn1 mn2 ... mnn


Note that the determinant of the bottom right (n− 1)×
(n−1) submatrix times m11 gives 1. Since both of these
numbers are in AQ,{∞}, we have for all but finitely many
primes p that ordp(m11) = 0. Therefore, the number

q =
∏
p p
− ordp(m11) ∈ Q exists. We multiply the first

row by q (and the second row by q−1) to have m11 = 1.

 1 0 ... 0
m21 m22 ... m2n

...
...

. . .
...

mn1 mn2 ... mnn



Now, the bottom right (n− 1)× (n− 1) submatrix is an
element of SLn−1(AQ,{∞}). If we repeat the above for
this submatrix (induction), we get mii = 1 and mij = 0
for all i < j.

 1 0 ... 0
m21 1 ... 0

...
...

. . .
...

mn1 mn2 ... 1


Because Q satisfies strong approximation away from ∞,
there exists an element m′21 ∈ Q such that m21 −m′21 ∈
Ẑ. We subtract m′21 times m11 from m21 such that the

resulting m21 ∈ Ẑ. Then we subtract m21 times m22

from m21 such that m21 = 0.

 1 0 ... 0
0 1 ... 0
...

...
. . .

...
mn1 mn2 ... 1


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Repeat this for m31, . . . ,mn1, then for m32, . . . ,mn2 and
so on for m43, . . . ,mn,(n−1). This completes the proof.

( 1 0 ... 0
0 1 ... 0
...

...
. . .

...
0 0 ... 1

)

�

Theorem 3.1. SLn satisfies strong approximation away from infinity.

Proof. We have proved that SLn(Z) is dense in SLn(Ẑ). By the previous

lemma, we have that SLn(Q) ·SLn(Ẑ) = SLn(AQ,{∞}). Then Lemma 2.5 gives that
SLn satisfies strong approximation away from infinity. �

2. C2

We will now use Lemma 2.4 to prove that C2 satisfies strong approximation
away from infinity. To this end, we first need to establish surjectivity of a map
SL2 → C2 on adelic points.

Lemma 3.3. For all rings R, SL2(R) acts transitively on C2(R).

Proof. Let x ∈ C2(R). Then x1R + x2R = R, so there exist y1, y2 ∈ R such
that x1y2 − x2y1 = 1. Then we have

m =

(
x1 y1

x2 y2

)
∈ SL2(R)

and m(1, 0)T = x. �

Theorem 3.2. C2 satisfies strong approximation away from infinity.

Proof. If we compose the group scheme action SL2×C2 → C2 with the em-
bedding SL2×{(1, 0)T } → SL2×C2, we obtain a morphism f : SL2 → C2 (this is
just the group action on the point (1, 0)T ). We have already proved that the group
action on R-points is transitive for any ring R, which means that in particular f is
surjective on AQ,{∞}-points.

Since we already proved that SL2 satisfies strong approximation away from
infinity, we use Lemma 2.4 to conclude that C2 satisfies strong approximation away
from infinity. �

3. C4(q0)

Now we do the same for the map C2 × C2 → C4(q0), defined in Section 1.5.

Lemma 3.4. The map C2 ×C2 → C4(q0) is surjective on R-points for all local
rings R.

Proof. Let R be a local ring with maximal ideal m. Note that m contains
every prime ideal of R. Take x ∈ C4(q0)(R). Assume that x1 6∈ m. Then x1

is invertible. Note that x1x4 = x2x3. Then ((1, x3

x1
)T , (x1, x2)T ) is mapped to

(x1, x2, x3,
x2x3

x1
)T = x. The cases where x2, x3 or x4 is not in m are completely

analogous, which completes the proof. �

Lemma 3.5. For any T ⊆ Ωk, the map C2 × C2 → C4(q0) is surjective on
Ak,T -points.
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Proof. By Exercise 3.7 of [Poo17], for a Ok-scheme X of finite type, we have

a bijection X(Ak,T )
∼−→
∏′

v∈Ωk\T
(X(kv), X(Ov)).

Note that kv and Ov are local rings. Therefore, given any element (xv)v∈Ωk\T
of C4(q0)(Ak,T ) we can find by the previous Lemma, for every v ∈ Ωk \ T , a
preimage yv ∈ (C2 ×C2)(kv) of xv ∈ C4(q0)(kv). Note that for almost all places v,
xv ∈ C4(q0)(Ov), in which case we can take yv ∈ (C2×C2)(Ov). Then (yv)v∈Ωk\T ∈
(C2 × C2)(Ak,T ) and (yv)v∈Ωk\T is mapped to (xv)v∈Ωk\T . �

Theorem 3.3. C4(q0) satisfies strong approximation away from infinity.

Proof. Note that the topology of (C2×C2)(AQ,{∞}) is the product topology
(by Lemma 2.3), so, using 3.2, (C2 × C2)(Q) is dense in (C2 × C2)(AQ,{∞}). We
have a morphism C2 × C2 → C4(q0) that is surjective on AQ,{∞}-points. Then by
Lemma 2.4, C4(q0) satisfies strong approximation from infinity. �



CHAPTER 4

Interlude: Finding a Better Model

In this thesis, we work with the quadratic form q′1 over Z which has a bad
reduction modulo the primes 47 and 103, but is smooth over Q. This is a problem
that arises sometimes in algebraic geometry: we have a scheme X over a domain
R (with fraction field K), in this case given by a single equation, with XK smooth,
but XR/p singular for one or more primes p ⊆ R. In that case, we can attempt to
find a better model: a scheme X ′, with XK

∼= X ′K , but with less singular fibers.
We will call this a better model for X.

We have a set of quadratic forms in n variables over R. If 2 is not zero in R,
we can associate to these the set Qn(R) of symmetric matrices m in Matn×n(K)
with mij +mji ∈ R and mii ∈ R for all i and j, such that for every quadratic form
q its associated matrix m satisfies q(x) = xTmx for all x ∈ Rn.

1. Better models

Now, suppose for R = Z or R = Zp, we have some quadratic form q with an
associated matrix m ∈ Qn(R). Suppose that det(m) 6= 0.

Lemma 4.1. The morphism f : Cn(q)Zp → Spec (Zp) is flat iff q is not divisible
by p (i.e. if there exist i and j such that p - 2mij).

Proof. Take A = Zp[X1, . . . , Xn]/(q). By Example 3.3.2 in [Poo17], A is flat
over Zp iff it is a torsion-free Zp-module.

Now, suppose that p | q. Then for all i, q
p 6= 0 ∈ A[Y ]/(XiY − 1), but

p · qp = q = 0 ∈ A[Y ]/(XiY − 1), so A[Y ]/(XiY − 1) is not torsion-free. Therefore,

Zp → A, and thereby SpecA → Spec (Zp), is not flat, so the standard affine open
subsets of Cn(q)Zp are not flat over Zp. Since flatness is a local property, this
implies that f is not flat either.

For the converse, since p - q, for q to be a reducible polynomial in Zp[X1, . . . , Xn],
we need

q =
(∑

riXi

)(∑
r′iXi

)
for r, r′ ∈ Znp . However, then m = r(r′)T , so det(m) = 0, which we assumed not to
be true. Therefore, q is irreducible. Since Zp[X1, . . . , Xn] is a uniform factorization
domain, q is prime, so (q) is a prime ideal and A is a domain. Especially, A is
torsion-free as a Zp-module, the standard open subsets of Cn(q)Zp are flat over Zp
and f is flat. �

27
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Remark 4.1. Note that forX1, . . . , Xn ∈ Z[X1, . . . , Xn] and x = (X1, . . . , Xn)T ,
we have for all i,

∂q

∂Xi
=

∂

∂Xi

∑
j,k

mjkXjXk

= 2
∑
j

mijXi

= ((2m)x)i .

Lemma 4.2. If p - det(2m), the morphism f : Cn(q)Zp → Spec (Zp) is smooth.
For p 6= 2, the converse also holds.

Proof. By Definition 3.5.27 in [Poo17], since f is locally of finite presentation
and by Lemma 4.1 it is flat, smoothness over Zp is equivalent to smoothness over

Qp and Fp.
Suppose that p - det(2m). By Proposition 3.5.17 in [Poo17], we can just show

smoothness on closed points. We will show that for both k = Fp and k = Qp, for

X = Spec (k[X1, . . . , Xn]/(q)) ,

g : X → Spec k is smooth at all closed points, except (X1, . . . , Xn). Since Cn(q)k
equals X, except for this point, and smoothness is a local condition, this shows that
Cn(q)k is smooth.

Let
m = (X1 − x1, . . . , Xn − xn)

be a closed point (note that we take the xi in k). Take x = (x1, . . . , xn)T . Suppose
that X is not smooth at m. Then(

∂q

∂X1
(m),

∂q

∂X2
(m), . . . ,

∂q

∂Xn
(m)

)
∈ Mat1×n(k)

has rank 0, so ∂q
∂Xi

(m) = 0 for all i. By Remark 4.1, 2mx = 0. Note that det(2m) ∈
k∗, so 2m is invertible over k and we have

x = (2m)−10 = 0.

Therefore, Cn(q)k is smooth.
On the other hand, suppose that p 6= 2 and p | 2m. Then over Fp, the null

space of 2m is nontrivial, so we have x := (x1, . . . , xn)T ∈ Fnp such that xi 6= 0

for some x, and 2mx = 0. Since p 6= 2, we have xTmx = xT0 = 0 and m :=
(X1 − x1, . . . , Xn − xn) ∈ Cn(q)Fp . By Remark 4.1, we have(

∂q

∂X1
(m),

∂q

∂X2
(m), . . . ,

∂q

∂Xn
(m)

)
= (2mx)T = 0T

has rank 0 and Cn(q)Fp is singular at m. �

In this chapter, we will only consider linear transformations between the mod-
els. To be more precise, we are looking for a matrix t ∈ GLn(K) such that

MI1 q ◦ t is defined over R, or equivalently, tTmt ∈ Qn(R);
MI2 p - det(2tTmt) = det(t)2 · det(2m).

We will call this a model improvement for q with respect to p.
We can immediately deduce from MI2 that it is impossible to find a model

improvement with respect to a prime p 6= 2 if ordp(det(2m)) is odd.
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Remark 4.2 (Transforming transformations). Suppose that R is a principal
ideal domain, and we have a matrix m ∈ Qn(R) and a model improvement t for m
with respect to a prime p.

We can embed Sn into GLn(Z) ⊆ GLn(R) by letting elements of Sn permute
the standard basis vectors. Given such a g ∈ Sn ⊆ GLn(R), (g−1)Tmg−1 is m but
with its rows and columns permuted (both in the same way). Then gt is a model
improvement for it. Therefore, Sn acts on the left on ‘the set of permutations of
m, together with their model improvements with respect to p’.

If we take g ∈ GLn(R), then tg transforms m to gT (tTmt)g ∈ Qn(R) and this
has determinant det(g)2 det(tTmt) with det(g)2 ∈ R∗, so tg is a model improvement
with respect to the same primes as t. Therefore, GLn(R) acts on the right on the set
of ‘model improvements for m with respect to p’. In particular, we can add a ∈ R
times one column to another, multiply a column by a factor b ∈ R∗ or interchange
columns.

2. Assumptions about transformations

Suppose that R is a principal ideal domain, with fraction field K. For a vector
v, and a prime p, let ordp(v) = mini{ordp(vi)}. For an n×n matrix t, let t∗i denote
its ith column.

From now on, we will mostly work with R = Z and K = Q, or R = Zp and
K = Qp. Take m ∈ Qn(Z).

First of all, it is easier to work with diagonal matrices than with general ma-
trices. The following proof shows that for most purposes, we can restrict to the
diagonal case.

Lemma 4.3. For p 6= 2, we can find a ∈ Z with p - a, and t ∈ SLn
(
Z
[

1
a

])
such

that tTmt is diagonal.

Proof. See also the corresponding code at [vdL23].
Here we let SLn

(
Z
[

1
a

])
act on Qn

(
Z
[

1
a

])
on the right with

(m, g) 7→ gTmg.

Step Outcome

We start with m given, and a = 1.
 m11 m12 ... m1n

m12 m22 ... m2n

...
...

. . .
...

m1n m2n ... mnn


If ordp(m∗1) > minj{ordp(m∗j)}, there exists i such that
ordp(m∗i) = minj{ordp(m∗j)}. We switch the first and
ith column (and row), such that the order of the first
column is minimal.
If ordp(m11) > ordp(m∗1) (so p | p− ordp(m∗1)m11), there
exists i such that ordp(mi1) = ordp(m∗1). Since p 6= 2,
we can add 1 or 2 times the ith column and row to the
first one, to make sure that ordp(m11) = ordp(m∗1).
If we take a to be the least common multiple of a and
the numerator of m11p

− ordp(m11), we have for all i > 1
that m1i

m11
∈ Z

[
1
a

]
, so we can add −m1i

m11
the first row and

column to the ith one to make sure that in the first row
and column, m11 is the only nonzero value.

m11 0 ... 0
0 m22 ... m2n

...
...

. . .
...

0 m2n ... mnn


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If we repeat this for m22 till mnn, by induction, we get
the required a ∈ Z and t ∈ SLn

(
Z
[

1
a

])
such that tTmt

is diagonal.

m11 0 ... 0
0 m22 ... 0

...
...

. . .
...

0 0 ... mnn



�

Corollary 4.1. Since for all a ∈ Z such that p - a, we have Z
[

1
a

]
⊆ Zp, any

time we work over Zp or Z/pkZ, we can assume that m is diagonal if p 6= 2.

Now, usually Zp is much easier to deal with than Z. The following lemma
shows that if we can find a model improvement of a certain form over Zp, this will
automatically give us a model improvement over Z.

Lemma 4.4. Suppose that we have r′ ∈ SLn(Zp), s1, . . . , sn ∈ Z and s =
diag(ps1 , . . . , psn) such that 2

∑
i si = − ordp(det(2m)) and for all i and j,

(r′∗i)
Tmr′∗j ≡ 0 mod p−(si+sj).

Take smin = mini{si}. Then

(1) there exists r ∈ SLn(Z) such that

(1) r′ij ≡ rij mod p−(sj+smin) for all i and j;

(2) for each r ∈ SLn(Z) that satisfies 1, rs is a model improvement.

Proof. (1) By Lemma 3.1, the reduction SLn(Z) → SLn(Z/aZ) is sur-
jective for all a ∈ Z>0. Take a = p−2smin , which gives the result.

(2) Take r ∈ SLn(Z) that satisfies 1. First of all, note that

ordp(det(2(rs)Tm(rs))) = 2 ordp(det(s)) + ordp(2m) = 0,

so MI1 is satisfied. Secondly, note that the only denominators in rs are
powers of p and for all i and j,

p−(si+sj)
(
(rs)Tm(rs)

)
ij

= p−(si+sj)(rs)T∗im(rs)∗j

= p−(si+sj)psi+sjrT∗imr∗j

= rT∗imr∗j

≡ (r′∗i)
Tmr′∗j mod p−(si+sj)

≡ 0 mod p−(si+sj).

so (rs)Tm(rs) has neither denominators that are powers of p, nor other
denominators (except possibly for a factor of 2). Therefore, (rs)Tm(rs) ∈
Qn(Z) so MI2 is satisfied and rs is a model improvement.

�

Now, it turns out that if we have a model improvement with respect to some
prime, we can simplify it to get a sort of ‘canonical’ form:

Lemma 4.5. If there exists a model improvement t over Zp, there exist s1 ≤
s2 ≤ · · · ≤ sn ∈ Z for all i and there exists a lower triangular matrix r ∈ SLn(Z)
with rii = 1 for all i such that for s = diag(ps1 , . . . , psn), rs is a model improvement
for (a permuted version of) m, i.e.:

(1)
∑
i si = ordp(det t);
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(2) we can permute the rows and columns of m (with the same permutation
for both) to get a matrix m′, such that (rs)Tm′(rs) ∈ Qn(Z).

Proof. See also the corresponding code at [vdL23].
In this proof, we will let Sn and SLn(Zp) act on the left and right of t respec-

tively.

Step Outcome

By Remark 4.2, we can exchange the first column with
another column (if necessary) such that ordp(t∗1) ≤
ordp(t∗j) for all j.

 t11 t12 ... t1n
t21 t22 ... t2n
...

...
. . .

...
tn1 tn2 ... tnn


Take s1 = ordp(t∗1).
We can also exchange the first row with another row (if
necessary) such that ordp(t11) = s1 (and perform the
same exchange on these rows and columns of m).
Note that p−s1t11 ∈ Z∗p, so we can divide the first column
by it, to obtain t11 = ps1 .

 ps1 t12 ... t1n
t21 t22 ... t2n
...

...
. . .

...
tn1 tn2 ... tnn


Since s1 = ordp(t∗1) ≤ ordp(t∗2) ≤ ordp(t12), we have
p−s1t12 ∈ Zp. Therefore, we can subtract p−s1t12 times
t11 from t12 to get t12 = 0.

 ps1 0 ... t1n
t21 t22 ... t2n
...

...
. . .

...
tn1 tn2 ... tnn


In the same way, we can make sure that t1j = 0 for all
j ≥ 2.

 ps1 0 ... 0
t21 t22 ... t2n
...

...
. . .

...
tn1 tn2 ... tnn


Note that by doing this, the ordp(t∗j) can only increase,
so they will stay larger than ordp(t∗1).
We can repeat the above for the second through nth
columns (by induction), to make sure that for all i < j,
tij = 0 and for all i, tii = psi .

 ps1 0 ... 0
t21 ps2 ... 0

...
...

. . .
...

tn1 tn2 ... psn



Note that ts−1 is a lower triangular matrix with entries in Zp and all 1s on the
diagonal. Taking r′ = ts−1, we can trivially find a matrix r as in the first part of
Lemma 4.4 with all 1s on the diagonal. The second part of Lemma 4.4 gives us
that r is indeed a model improvement on a permuted version of m with respect to
p. �

Corollary 4.2. Let m′, the matrix r ∈ SLn(Z) and s1 ≤ · · · ≤ sn ∈ Z be
given by the last lemma and assume that m is diagonal. If s1 + sn ≤ 1, we have a
nontrivial solution to the quadratic equation

(2)
∑
i:p|m′ii

x2
i1

m′ii
p
≡ 0 mod p.

Proof. Suppose that s1 + sn ≤ 1. Then s1 + si ≤ 1 for all i. Recall that in
order to satisfy MI1, we must have (r∗i)

Tm′(r∗j) ≡ 0 mod p−si−sj for all i and j.
That means that

0 ≡ (r∗1)Tm′r∗n = rn1m
′
nn1 = rn1m

′
nn mod p.
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So either p | m′nn or p | rn1. Continuing, we find

0 ≡ (r∗1)Tm′(r∗,(n−1))

= r(n−1),1m
′
(n−1),(n−1)1 + rn1m

′
nnrn,(n−1)

≡ r(n−1),1m
′
(n−1),(n−1) mod p.

Therefore, either p | m′(n−1),(n−1) or p | r(n−1),1. Doing this for all i yields that

p - m′ii implies that p | ri1. Note that s1 ≤ 1 so 2s1 ≤ 2. This gives

0 ≡ (r∗1)Tm′r∗1 =
∑
i

r2
i1m

′
ii mod p2.

However, since if p - m′ii, p | ri1, so p2 | r2
i1, we have∑

i:p|m′ii

r2
i1m

′
ii ≡ 0 mod p2

and ∑
i:p|m′ii

r2
i1

m′ii
p
≡ 0 mod p.

�

Conjecture 4.1. A (somewhat wishful) conjecture is that it is only possible
to construct a model improvement with respect to a prime p if Equation (2) has
a solution. In a small numerical search, no counterexamples were found for n = 4
and (s1, s2, s3, s4) = (−1,−1, 0, 1).

If this conjecture holds, a model improvement exists iff it is possible to repeat-
edly construct partial model improvements (see section 4).

The last lemma shows that we only have to look for model improvements
with a very specific form: we can restrict our search to matrices with determinant
p−

1
2 ordp(detm) that are (up to permutation of the rows) a lower triangular matrix

in SLn(Z) times a diagonal matrix that has the (positive and negative) powers of
p.

It also shows that it is sufficient to construct a model improvement over Zp,
because we can then always find a model improvement over Z.

3. A counterexample

We already saw that if ordp(det(2m)) is odd, finding a model improvement is
impossible. Now, for

m = diag(1, 1, 3, 3),

we have det(2m) = 16 · 9, so it would be nice if we could find a model improvement
t with respect to 3. Since det(t) = 1

3 , at least one of the entries of t must have
3 in the denominator and we must have ord3(t∗i) ≤ −1 for some i ≤ 3. We can
assume without loss of generality that i = 1. Then t′∗1 = 3− ord3(t∗i)t∗i must satisfy

t′11
2

+ t′21
2

+ 3t′31
2

+ 3t′41
2 ≡ 0 mod 9.

Reducing the equation modulo 3 gives t′11
2

+ t′21
2 ≡ 0 mod 3, which only has

the solution t′11 ≡ t′21 ≡ 0 mod 3 and t′11
2 ≡ t′21

2 ≡ 0 mod 9. Therefore, we

must have 3t′31
2

+ 3t′41
2 ≡ 0 mod 9, so t′31

2
+ t′41

2 ≡ 0 mod 3, which only has the
solution t′31 ≡ t′41 ≡ 0 mod 3. This contradicts the fact that either t′11, t′21, t′31 or
t′41 is nonzero modulo 3.
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Therefore, we cannot find a better model with respect to 3 for this quadratic
form.

We can do this for any prime p: We can find a, b ∈ Z such that a and b are not
squares modulo p. Then, for all c, d ∈ Z, both not divisible by p,

m = diag(c,−ac, pd,−pbd)

has ordp(det(2m)) = 2, but we cannot find a model improvement with respect to
p.

4. Constructing a model improvement

4.1. The case p 6= 2. In this subsection, we will work over Zp with p 6= 2.
Therefore, we can assume that m is diagonal by Lemma 4.3. Now, by transforming
by a diagonal matrix with powers of 1

p on the diagonal, where necessary, we can

assume that for all i, p2 - mii.
Now, we will order the diagonal entries of m such that p divides the first k

entries and doesn’t divide the n− k entries after that. Note that, to be able to find
a model improvement, we need k to be even.

Definition 4.1. We define a partial model improvement to be a matrix
t ∈ GLn(Qp) such that

PMI1 tTmt ∈ Qn(Zp);
PMI2 ordp(det(tTmt)) = ordp(det(2m))− 2.

Lemma 4.6. If Equation (2) has a nontrivial solution, we can find a partial
model improvement.

Proof. Suppose that we can find a nontrivial solution x̄1, . . . , x̄k ∈ Fp to
Equation (2). We can lift the x̄i to x1, . . . , xk ∈ Zp (we pick an arbitrary lift of the
x̄i). By reordering m11, . . . ,mkk and x1, . . . , xk correspondingly, we can assume
that p - x1. Then, by dividing the xi by x1 (we can do that because Equation (2)
is homogeneous), we can assume that x1 = 1. Now, take

r =


1 0 0 . . . 0
x2 1 0 . . . 0
x3 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 ∈ SLn(Zp) and s = diag

(
1

p
, 1, 1, . . . , 1

)
.

If we take t = rs, we get tTmt ∈ Qn(Zp) since p2 |
∑
i x

2
imii and p | ximii for

all 2 ≤ i ≤ k. Also, det(t) = 1
p , so we remove two factors p from det(2m). �

We now have the following theorem:

Theorem 4.1. For diagonal m, of which the first k diagonal entries are divisible
by p, if p 6= 2 and

(−1)
k
2

∏
i≤k

mii

p

is a square modulo p, then we can find a better model for m with respect to p.
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Proof. See also the corresponding code at [vdL23].
Suppose that k = 2. Then the equation tells us that −m11m22

p2 is a square

modulo p. Therefore, −m11

m22
is also a square modulo p. If we call the root λ, we

have a solution to the equation

m11

p
12 +

m22

p
λ2 ≡ 0 mod p.

Then, by Lemma 4.6 we get a partial model improvement t is, so ordp(t
Tmt) =

ordp(m)− 2 = 0, which means that t is actually a model improvement and we are
done.

On the other hand, suppose that k ≥ 4. By the Chevalley-Warning theorem,
we have a solution to the equation m11

p x2
1 + m22

p x2
2 + m33

p x2
3 ≡ 0 mod p. Then, by

Lemma 4.6, we have (if we order the diagonal entries of m in a suitable way) a
matrix

r =



1 0 0 0 . . . 0
λ2 1 0 0 . . . 0
λ3 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1


and s = diag

(
1

p
, 1, . . . , 1

)

such that rs is a partial model improvement.
Now, take m′ = (rs)Tmrs. If p | m′11, we have p - m′1i for some i ∈ {2, 3}. We

can then add once or twice the ith row and column to the first one of m′ to make
sure that p - m′11. The result is the same as when we would have added p or 2p to
λi in r. Therefore, we assume that p - m′11.

Now, since p2 - m11, we must have either p - λ2 or p - λ3. By, if necessary,
exchanging m22 and m33, we can assume that p - λ2.

The following will only change the upper left 3× 3 submatrix of our matrix, so
we will only show what happens there. We have

(rs)Tmrs =


µ1 λ2

m22

p λ3
m33

p . . .

λ2
m22

p m22 0 . . .

λ3
m33

p 0 m33 . . .
...

...
...

. . .


with µ1 =

m11+λ2
2m22+λ2

3m33

p2 . If we then diagonalize with Lemma 4.3, we obtain

m′ :=


µ1 0 0 . . .
0 µ2 0 . . .
0 0 µ3 . . .
...

...
...

. . .


for µ2 = m22 − λ2

2m
2
22

µ1p2
, which is not divisible by p, and for some value of µ3. Note

that the determinant of the submatrix has only changed by a factor of 1
p2 , so

m11m22m33

p2
= µ1µ2µ3 = µ1

(
m22 −

λ2
2m

2
22

µ1p2

)
µ3,
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and µ3 is divisible by p. Therefore,

µ3

p
=

m11

p
m22

p
m33

p

µ1
m22

p p− λ2
2

(
m22

p

)2 ≡
−m11

p
m22

p
m33

p

λ2
2

(
m22

p

)2 mod p.

Therefore,

(−1)
k
2−1

∏
i,p|m′ii

m′ii
p
≡ (−1)

k
2

λ2
2

(
m22

p

)2

∏
i,p|mii

mii

p
mod p

Since the right-hand side is a square modulo p, the left-hand side is a square modulo
p as well. By induction, we obtain a model improvement with respect to p, which
completes the proof. �

Remark 4.3. If n = 4, the only interesting case is k = 2. In that case, we
can obtain a model improvement in the way described above if −m11

m22
is a square

modulo p.

4.2. The case p = 2. Now, in the case of p = 2, we cannot just diagonalize,
so we will assume that m is already diagonal.

Lemma 4.7. For m diagonal and 2 - det(m), we can find a model improvement
with respect to 2 if the number of diagonal entries that are 1 mod 4 equals the
number of diagonal entries that are 3 mod 4.

Proof. See also the corresponding code at [vdL23].
We reorder the diagonal entries of m such that we get a block matrix, with

diagonal blocks mi =
(
ai 0
0 bi

)
and ai ≡ 1 mod 4 and bi ≡ 3 mod 4 for all i ≤ n

2 .

Then, we transform using a block matrix t, with diagonal blocks ti =
(

1 1
2

0 1
2

)
. Then

we have tTi miti =
(
ai

1
2ai

1
2ai

1
4 (ai+bi)

)
∈ Q(Z). Note that

det(2tTi miti) = a2 +
a(a+ b)

2
≡ 1 + 0 = 1 mod 2,

so det(2tTmt) ≡ 1 mod 2 and t is a model improvement with respect to 2. �

5. Combining model improvements with respect to different primes

In the last two sections, we described ways to construct a model improvement
with respect to one prime. However, we would like to have a model improvement
with respect to all the primes at once.

Lemma 4.8. Let t1, . . . , tk be model improvements with respect to primes p1, . . . , pk.
Then we can find a model improvement t with respect to p1, . . . , pk.

Proof. See also the corresponding code at [vdL23].
Suppose that we have model improvements t1, . . . , tk with respect to primes

p1, . . . , pk.
Then Lemma 4.5 gives us lower triangular matrices r1, . . . , rk ∈ SLn(Z) and di-

agonal matrices s1, . . . , sk with 2 det(si) = − ordpi(m) for all i. Note that these give
transformations with respect to different permutations of (the rows and columns
of) m. Therefore, we will reshuffle the rows of the ri such that they correspond to
the original matrix m again.
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Now, let l = −mini,j{ordp((si)jj)}. Since SLn satisfies strong approximation
away from infinity, we have r ∈ SLn(Z) such that for all i, r ≡ ri mod p2l

i . We
now take s =

∏
i si and t = rs. By Lemma 4.4, t is a model improvement with

respect to p1, . . . , pk. �



CHAPTER 5

The Twist

1. The theory of twisting

Suppose that we have a finite and faithfully flat morphism of schemes p : S′ →
S.

In this chapter, we will look at fpqc descent of schemes and twists of schemes.
The problem of descent is, given an S′-scheme X ′, finding an S-scheme X such
that X ′ ∼= X ×S S′.

We define S′′ and S′′′ as the following fiber products:

S′′′ S′′ S′

S′ S′ S

p

p p

Also, for a finite group G, we define

S′ ×G =
∐
σ∈G

SpecS′

Definition 5.1. A Galois covering with Galois group G is a finite and faith-
fully flat morphism of schemes p : S′ → S with a right action of the finite group
G on S′ such that the morphism S′ × G → S′′, given by (x, σ) 7→ (x, σx) is an
isomorphism.

Galois coverings generalize finite Galois field extensions. In this thesis, we will
only need affine Galois coverings SpecR→ SpecS with group G such that we have
inclusions into fields R ⊆ L′ and S ⊆ L with L ⊆ L′ a finite Galois field extension
with group G.

Example 5.1. An example of a Galois covering is

Spec

(
Z

[
1

17
,

1 +
√

17

2

])
→ Spec

(
Z
[

1

17

])
.

Its Galois group contains one nontrivial element: the ring automorphism that sends
1+
√

17
2 to 1−

√
17

2 .

Example 5.2. Another example of a Galois covering is

Spec

(
Z
[

1

2 · d1 · d2 · · · · · dn
,
√
d1, . . . ,

√
dn

])
→ Spec

(
Z
[

1

2 · d1 · d2 · · · · · dn

])
with

√
di 6∈ Q(

√
d1, . . . ,

√
di−1) for all i. Its Galois group contains 2n elements

and each of these elements is determined by the images of the
√
di (either

√
di or

−
√
di).

37
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Note that if we have a morphism of schemes X → S′ and an isomorphism
σ : S′ → S′, we can take the fiber product

Y X

S′ S′σ

.

We define σX := Y .
Now, let p : S′ → S be a Galois covering with Galois group G.

Definition 5.2. We define a Galois descent datum to be an S′-scheme X ′,
together with S′-isomorphisms fσ : σX ′ → X ′ for every σ ∈ G such that for all
σ, τ ∈ G, we have that fστ = fσ ◦ (σfτ ) (the so-called cocycle condition), so the
following diagram commutes:

στX ′ σX ′ X ′

S′

σfτ

fστ

fσ

Given two Galois descent data (X ′, (fσ)σ∈G) and (Y ′, (gσ)σ∈G), we define a
morphism of Galois descent data to be a morphism ϕ : X ′ → Y ′ such that for
all σ ∈ G, the following diagram commutes:

σX ′ X ′

σY ′ Y ′

fσ

σϕ ϕ

gσ

Galois descent data and their morphisms form a category.

Note that for an S-scheme X, we can identify σXS′ with XS′ , intuitively be-
cause the S′/S-Galois action on a scheme defined over S does not change anything.
Therefore, we can identify fσ : σXS′ → XS′ with an element of AutXS′ , which we
will call fσ as well.

Definition 5.3. A scheme is quasi-affine if it is an open subscheme of an affine
scheme and is quasi-compact.

Theorem 5.1. If p : S′ → S is fpqc and S is affine (by the definition of a finite
Galois covering, p is finite, so S′ is affine too), then

(i) the functor X 7→ (XS′ , (IdXS′ )σ∈G) from S-schemes to S′-schemes with de-
scent data is fully faithful;

(ii) the functor X 7→ (XS′ , (IdXS′ )σ∈G) from (quasi-)affine S-schemes to (quasi-
)affine S′-schemes with descent data is an equivalence of categories.

Proof. This follows from Theorem 4.3.5, Theorem 4.4.4 and Remark 4.4.7 in
[Poo17]. �

The first part means that for S′-schemes with descent data (X ′, (fσ)σ∈G) and
(Y ′, (gσ)σ∈G) that can be descended to S-schemes X and Y , giving a scheme
morphism X → Y is equivalent to giving a morphism of Galois descent data
(X ′, (fσ)σ∈G)→ (Y ′, (gσ)σ∈G).
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The second part means that every descent datum on a (quasi-)affine S′-scheme
can indeed be descended to a (quasi-)affine S-scheme.

Now, let X be an S-scheme.

Definition 5.4. An S′-twist of X is an S-scheme Y such that XS′
∼= YS′ .

Note that twisting X is equivalent to descending XS′ .
By Theorem 5.1 (ii) we have that for p : S′ → S fpqc and S affine, twisting an

S-scheme X is equivalent to giving fσ ∈ AutXS′ for all σ ∈ G such that the fσ
satisfy the cocycle condition.

Remark 4.5.4 from [Poo17] gives us an explicit way of finding the (fσ)σ∈G
associated to a twist: for S-schemes X and X ′, if we choose an isomorphism ϕ :
XS′ → X ′S′ , we can take fσ = ϕ−1(σϕ).

Example 5.3. To twist a group scheme G that has composition morphism
ϕ : G×G→ G, we want to twist not only G but also the morphism ϕ. Therefore,
ϕ and the fσ have to be compatible. This means that we want the following diagram
to commute for all σ ∈ G:

G×G G×G

G G

(fσ,fσ)

ϕ ϕ

fσ

In other words, we want fσ to be a group scheme automorphism.
Note that if fσ is a group scheme automorphism, we know from group theory

that the following diagrams commute on R-points

G G

G G

fσ

i i

fσ

and

S S

G G

Id

e e

fσ

for i : G → G the inverse and e : S → G identity point. Then it follows from the
Yoneda Lemma that the diagrams themselves also commute. Therefore, to twist a
group scheme, we only have to check whether the fσ commute with ϕ for all σ.

2. Twisting for our specific quadratic form q1

We want to twist the following structure that exists over our base quadratic
form q0 = X1X4 −X2X3, with all parts defined in Chapter 1:

(1) The scheme C4(q0).
(2) The scheme SO(q0).

(3) The scheme S̃O(q0).
(4) The group operation SO(q0)× SO(q0)→ SO(q0).

(5) The group operation S̃O(q0)× S̃O(q0)→ S̃O(q0).
(6) The group action SO(q0)× C4(q0)→ C4(q0).

(7) The covering morphism (of group schemes) γ : S̃O(q0)→ SO(q0).

Roughy speaking, C4(q0) encodes the primitive solutions of q0. We then have

SO(q0), (a subgroup of) its symmetry group, defined in Appendix A. S̃O(q0) is the
universal cover of this group, which we can conveniently define as SL2×SL2. Their
relationships become clear in the following two cartesian diagrams:
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S̃O(q0)× S̃O(q0) S̃O(q0)

SO(q0)× SO(q0) SO(q0)

γ×γ γ

SO(q0)× SO(q0)× C4(q0) SO(q0)× C4(q0)

SO(q0)× C4(q0) C4(q0)

The first diagram denotes that γ is compatible with the group operations of both
group schemes. The second diagram denotes that first doing the group operation
and then applying the group action is the same as applying the group action twice.

For the next lemma, we define

χ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Lemma 5.1. Let SpecA′ → SpecA be a Galois covering with group G. Let
ϕ : C4(q0)A′

∼−→ C4(q)A′ be a linear isomorphism, given by an element m ∈
Isom(q0, q)(A

′). Suppose that

• for all σ ∈ G, aσ := m−1(σm) ∈ GO(q0)(A′) is defined over A and
commutes with χ;

• there exists, for every σ ∈ G, a matrix bσ ∈ GL2(A) such that γ(bσ, bσ) =
λa′σ for some λ ∈ A∗, for a′σ = aσ if aσ ∈ SO(q0)(A) and a′σ = aσχ if
aσ 6∈ SO(q0)(A).

Then we can twist the structure on C4(q0), given above as components (1)-(7),
to a structure on C4(q) as schemes and morphisms over A.

Proof. We need to provide

(1) a cocycle f : G→ Aut(C4(q0)A′);
(2) a cocycle g : G→ Aut(SO(q0)A′);

(3) a cocycle h : G→ Aut(S̃O(q0)A′).

Here, Aut(G) denotes the group of scheme automorphisms of the group scheme G.
We also need to prove that the following diagrams commute for all σ ∈ G,

which shows that the fσ, gσ and hσ are actually group scheme automorphisms, and
that the gσ and hσ are compatible:

(4)

SO(q0)× SO(q0) SO(q0)× SO(q0)

SO(q0) SO(q0)

gσ×gσ

gσ

(5)

S̃O(q0)× S̃O(q0) S̃O(q0)× S̃O(q0)

S̃O(q0) S̃O(q0)

hσ×hσ

hσ

(6)

SO(q0)× C4(q0) SO(q0)× C4(q0)

C4(q0) C4(q0)

gσ×fσ

fσ
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(7)

S̃O(q0) S̃O(q0)

SO(q0) SO(q0)

hσ

gσ

To this end, for all σ ∈ G, we define the following on R-points:

(1) We set fσ(x) = aσx. This trivially satisfies the cocycle condition.
(2) We set gσ(m) = aσma

−1
σ . This trivially satisfies the cocycle condition.

(3) We set hσ(m1,m2) =

{
(bσm1b

−1
σ , bσm2b

−1
σ ) if aσ ∈ SO(q0)(A)

(bσm2b
−1
σ , bσm1b

−1
σ ) else

We still need to prove that h satisfies the cocycle condition. Therefore, note
that the elements of (GL2×GL2)(A) lying above λI4 ∈ GO(q0)(A) for λ ∈ A∗ are
exactly of the form (λµI2,

1
µI2) for some µ ∈ A∗. Also note that since the aσ and

bσ are matrices over A, G acts trivially on the fσ, gσ and hσ. Now, take σ, τ ∈ G.
Note that we have (since f is a cocycle and since aτ commutes with χ)

I4 = aσaτa
−1
στ

= aσaτχχ
−1a−1

στ

= aσχaτχ
−1a−1

στ

= aσχaτχa
−1
στ

and therefore a′σa
′
τa
′
στ
−1 = I4, regardless of whether aσ and/or aτ are in SO(q0)(A)

or not.
We have that

γ(bσbτ b
−1
στ , bσbτ b

−1
στ ) = λa′σa

′
τa
′
στ
−1 = λI4

for some λ ∈ A∗. Therefore, bσbτ b
−1
στ = µI2 for some µ ∈ A∗. Then

hσhτh
−1
στ (m1,m2) = (bσbτ b

−1
στm1(bσbτ b

−1
στ )−1, bσbτ b

−1
στm2(bσbτ b

−1
στ )−1) = (m1,m2).

Since this holds for all σ, τ ∈ G, h satisfies the cocycle condition.
We then have for all σ, the following equalities on R-points, which gives the

commutativity of the diagrams by the Yoneda Lemma:

(4) For all m1,m2 ∈ SO(q0)(R),

a−1
σ m1aσ · a−1

σ m2aσ = a−1
σ m1m2aσ.

(5) For all (m11,m21), (m12,m22) ∈ (SL2× SL2)(R), we have, if aσ ∈ SO(q0)(A),

(bσm11b
−1
σ , bσm21b

−1
σ ) · (bσm12b

−1
σ , bσm22b

−1
σ ) = (bσm11m12b

−1
σ , bσm21m22b

−1
σ )

and else,

(bσm21b
−1
σ , bσm11b

−1
σ ) · (bσm22b

−1
σ , bσm12b

−1
σ ) = (bσm21m22b

−1
σ , bσm11m12b

−1
σ ).

(6) We have for all x ∈ C4(q0)(R) and m ∈ SO(q0)(R),

aσma
−1
σ · aσx = aσmx.

(7) We have for all (m1,m2) ∈ (SL2×SL2)(R) that if aσ ∈ SO(q0)(A),

γ(hσ(m1,m2)) = γ(bσ, bσ)γ(m1,m2)γ(b−1
σ , b−1

σ ) = aσγ(m1,m2)a−1
σ = gσ(γ(m1,m2))

and else, noting that χγ(m1,m2)χ = γ(m2,m1),

γ(hσ(m1,m2)) = γ(bσ, bσ)γ(m2,m1)γ(b−1
σ , b−1

σ ) = aσχγ(m2,m1)χa−1
σ = gσ(γ(m1,m2)).
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This concludes the proof. �

Corollary 5.1. For

q1 = X1X4 + 2X2
2 − 5X2X3 +X2

3 ,

we can twist the structure on C4(q0) to a structure on C4(q1) as schemes and
morphisms over A = Z

[
1
17

]
.

Proof. Take the ring

A′ = Z

[
1

17
,

1 +
√

17

2

]
.

Note that we have a Galois covering SpecA′ → Spec
(
Z
[

1
17

])
with Galois group

{id, σ}. We have an isomorphism ϕ : C4(q0)A′
∼−→ C4(q1)A′ , given on R-points by

the matrix 
1 0 0 0

0
√

17
17

√
17

17 0

0 11
√

17
17 −

√
17+1
2 −6

√
17

17 +
√

17+1
2 0

0 0 0 1


Then we have

aσ =


1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 1

 and bσ =

(
1 0
0 −1

)
∈ GL2(Z).

Note that aσ is defined over Z and commutes with χ. The result follows. �

3. Twisting for a generic quadratic form q

Corollary 5.2. For

q = a1X
2
1 + a2X

2
2 + a3X

2
3 + a4X

2
4

for a1, . . . , a4 ∈ Z, we can twist the structure on C4(q0) to a structure on C4(q) as

schemes and morphisms over A = Z
[

1
2a1a2a3a4

]
.

Proof. Take a0 = −1 and

A′ = Z
[

1

2a1a2a3a4
, α0, . . . , α4

]
for α2

j = aj , so α0 = i. Remember from Section 1 that we have a Galois covering
SpecA′ → SpecA with a Galois group G, with order a power of 2.

Then we have an isomorphism ϕ : C4(q0)A′ → C4(q)A′ given on R-points by
the matrix

1

2


1
α1

0 0 0

0 1
α2

0 0

0 0 1
α3

0

0 0 0 1
α4




1 0 0 1
0 1 −1 0
0 −α0 −α0 0
−α0 0 0 α0

 .

Now, every σ ∈ G is determined by its action on the αj : for all j, we have
σ(αj) = sjαj for some sj ∈ {−1, 1} and σ is determined by the s0, . . . , s4. Note
that every combination of s0, . . . , s4 gives an element σ ∈ G if and only if we have
αj 6∈ Q(α0, . . . , αj−1) for all j.
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Then we have

aσ =
1

2


s1 + s0s4 0 0 s1 − s0s4

0 s2 + s0s3 −s2 + s0s3 0
0 −s2 + s0s3 s2 + s0s3 0

s1 − s0s4 0 0 s1 + s0s4

 .

For example, if sj = 1 for all j, this evaluates to the identity matrix. Note that the
aσ are all defined over Z and all commute with χ. In the following table, we list
the aσ, a′σ and bσ for a set of generators σ ∈ G (given by their values of sj).

(s0, s1, s2, s3, s4) aσ a′σ bσ

(−1, 1, 1, 1, 1)


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 (
0 1
−1 0

)

(1,−1, 1, 1, 1)


0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 (
0 1
−1 0

)

(1, 1,−1, 1, 1)


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (
1 0
0 1

)

(1, 1, 1,−1, 1)


1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 1




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (
1 0
0 −1

)

(1, 1, 1, 1,−1)


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (
0 1
1 0

)

Since the aσ correspond to ϕ−1(σϕ), we have for all σ, τ ∈ G that aσaτ =
aστ . Now, for all σ ∈ G, choose a decomposition σ = σ1σ2 . . . σm in terms of the
generators given in the table. Then set

bσ = bσ1bσ2 . . . bσn .

Then we have

γ(bσ, bσ) = γ(bσ1 , bσ1)γ(bσ2 , bσ2) . . . γ(bσn , bσn) = aσ

and the result follows. �

3.1. Glueing twists. In this thesis, we only work with our particular qua-
dratic form, and with generic quadratic forms given by diagonal matrices. However,
in future work it would be interesting to twist the structure over C4(q0) to a struc-
ture on C4(q) for q not necessarily given by a diagonal matrix. This would go
roughly as follows:

By Lemma 4.3, if we have a quadratic form q given by a matrix m, we can, for
every prime p 6= 2, diagonalize q over Z

[
1
a

]
for some a with p - a. Then we can
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define C4(q), SO(q) and S̃O(q) over Z
[

1
2 detm ,

1
a

]
as twists of C4(q0), SO(q0) and

S̃O(q0). However, we want to define these over Z
[

1
2 detm

]
.

To that end, we have to glue these twists together. Glueing schemes and
morphisms is described in Exercise II.2.12 from [Har77] and step 3 in Theorem
II.3.3 of [Har77]. To glue schemes {Xi} together, one needs to provide opens

Uij ⊆ Xi and isomorphisms ϕij : Uij
∼−→ Uji for all i 6= j that satisfy some

compatibility conditions.

So, as mentioned, for all primes p, we can diagonalize m over Z
[

1
ai

]
for some

ai with p - ai and then twist with Galois descent datum

(C4(q0)Ai , (fi,σ ∈ Aut(C4(q0)A′i))σ∈Gi)

with Ai = Z
[

1
2 detm ,

1
ai

]
and A′i an extension of Ai by a couple of square roots.

This twist is then Xi = C4(q)Ai .

The opens Uij to glue along would then be Uij = C4(q)Aij for Aij = Ai

[
1
aj

]
,

which correspond to the twists given by the Galois descent data

(C4(q0)Aij , ((fi,σ)A′ij ∈ Aut(C4(q0)A′ij ))σ∈Gij )

for (the ‘compositum’) A′ij a ring containing A′i and A′j such that SpecA′ij →
SpecAij is a Galois covering.

Note that for all i there exists a matrix mi such that for all σ, fi,σ is given on

R-points by m−1
i (σmi). Define cij = m−1

j mi and let ϕ′ij : C4(q0)Aij → C4(q0)Aji
be defined on R-points by x 7→ cijx. Then, for all σ ∈ Gij , for all Aij-algebras R
and for all x ∈ C4(q0)(R),

fj,σ(σϕ′ij(x)) = m−1
j (σmj)(

σm−1
j )(σmi)x = m−1

j mim
−1
i (σmi) = ϕ′ij(fi,σ(x)),

so ϕ′ij is an (iso)morphism of Galois descent data and induces an (iso)morphism

Uij
∼−→ Uji.
Now, to get an isomorphism ψij from Vij := SO(q)Aij ⊆ SO(q)Ai to Vji :=

SO(q)Aji ⊆ SO(q)Aj that is compatible with ϕij , one can take, on R-points for
m ∈ SO(q0)Aij (R),

ψ′ij(m) = cijmc
−1
ij .

However, to get an isomorphism ρij from Wij := S̃O(q)Aij ⊆ S̃O(q)Ai to Wji :=

S̃O(q)Aji ⊆ S̃O(q)Aj that is compatible with ψij , one needs to lift cij ∈ GL4(A′ij)

to dij ∈ (GL2×GL2)(A′ij) such that γ(dij , dij) = λcij for some λ ∈ A′∗ij . It would
take quite some work to prove that such a dij actually exists and is defined over A′ij
or some Galois extension of A′ij . Maybe it would be possible to adapt the algorithm
in Lemma 2.6 to work for arbitrary rings, but this is beyond the scope of this thesis.

When we have these isomorphisms, the proof that they indeed yield the desired
structure over C4(q)Z[ 1

2 detm ] will probably be similar to Lemma 5.1.



CHAPTER 6

Apotheosis: The Interesting Case

Definition 6.1. Note that every nondegenerate quadratic form over Q be-
comes equal, after a linear change of basis over R, to

k∑
i=1

Xi −
n∑

i=k+1

Xi.

for some k and n. We call (k, n− k) the signature of this quadratic form.

Let q be a a quadratic form with signature (2, 2), for which Lemma 5.1 or

Lemma 5.2 gives a ring A = Z
[

1
p1,...,pn

]
and a ring A′ such that the structure on

C4(q) is given by A-schemes and A-morphisms, and over A′ this structure becomes
isomorphic to the structure over C4(q0). We take S = {p1, . . . , pn}.

Example 6.1. This is satisfied by q = q1, with A = Z
[

1
17

]
, S = {17} and

A′ = A
[

1+
√

17
2

]
.

Example 6.2. This is also satisfied by a generic quadratic form

q = a1X
2
1 + a2X

2
2 + a3X

2
3 + a4X

2
4

which has signature (2, 2) (i.e. with exactly two of the ai positive), with

A = Z
[

1

2a1a2a3a4

]
, S = {p : p | 2a1a2a3a4} and A′ = A′

[√
−1,
√
a1, . . . ,

√
a4

]
.

In this chapter we will prove that C4(q) satisfies strong approximation away

from S ∪ {∞}. To this end, we first prove that S̃O(q), defined in the previous
chapter, satisfies strong approximation away from infinity, using Theorem 7.12 from

[PR94], transferring some properties from S̃O(q0) (which equals SL2×SL2) to

S̃O(q), via the A′-isomorphisms. After this, we will use a morphism S̃O(q)→ C4(q),
together with a proof of surjectivity, to show using Lemma 2.4 that C4(q) satisfies
strong approximation away from S ∪ {∞}.

1. Isomorphisms

Note that the definition of C4(q) as a twist of C4(q0) starts with giving an A′-
point of Isom(q0, q). This A′ equals A, with some roots of quadratic polynomials
adjoined.

Remark 6.1. Now, given a field k with characteristic not in S (for example,
k = Fp, k = Q or k = Qp), take L = k. For each of the quadratic polynomials f
of which we adjoined a root to A to obtain A′, if f is irreducible over L, replace L
by L[X]/(f), so adjoin a root of f to L. Then k ⊆ L is a finite field extension such

45
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that Isom(q0, q) has an L-point, since we have a (canonical) morphism A′ → L.
Since the structure on C4(q) is an A′-twist of the structure on C4(q0), we have that
after base change to L, these structures become isomorphic.

Remark 6.2. For any prime p 6∈ S, take k = Qp. Then let L as in remark 6.1
and take B = OL the valuation ring of L. Note that SpecB → Spec (Zp) is flat by
Example 3.3.2 from [Poo17] since B is a subring of a field and therefore torsion
free, and of finite presentation by proposition 23 in [Lan94] and Proposition 5.4.5
in [Gou97]. Therefore, it is fppf, so especially it is fpqc. Since the

√
ai are integral

over Zp, we have a (canonical) morphism A′ → B and Isom(q0, q) has a B-point.

2. Strong approximation of S̃O(q)

In this section, we show that S̃O(q) satisfies strong approximation away from
infinity, using Theorem 7.12 from [PR94]:

Theorem 6.1. Let G be a reductive algebraic group, over an algebraic number
field K, and let S be a finite subset of V K . Then G has the strong approximation
property with respect to S if and only if

(1) G is simply connected (in particular, G is semisimple);
(2) G does not contain any K-simple component Gi with GiS compact.

We will prove these properties one by one:

Lemma 6.1. S̃O(q)Q is reductive.

Proof. S̃O(q)Q is reductive if and only if its unipotent radical (S̃O(q)Q)unip

is trivial. By Remark 6.1 there exists a finite field extension Q ⊆ L such that

S̃O(q)L
∼= (SL2× SL2)L. By Proposition 5.9.2 from [Poo17], we have

((S̃O(q)Q)unip)L = (S̃O(q)L)unip
∼= ((SL2×SL2)L)unip = (((SL2×SL2)Q)unip)L.

(SL2×SL2)Q has a faithful semisimple representation, since it is a product of the
simple algebraic group (SL2)Q with itself. This makes (SL2× SL2)Q into a re-
ductive algebraic group: [Mil17], Corollary 22.20 and Example 22.21. Therefore,

((S̃O(q)Q)unip)L ∼= (((SL2×SL2)Q)unip)L is trivial, and (S̃O(q)Q)unip must be trivial

as well so S̃O(q)Q is reductive. �

Lemma 6.2. S̃O(q)Q is geometrically simply connected.

Proof. There exists a finite field extension Q ⊆ L such that S̃O(q)L
∼=

(SL2×SL2)L. Simply connectedness is preserved under base extension and de-
scent (Section C.3 in [Poo17]) and because (SL2× SL2)Q is reductive and satisfies
strong approximation away from infinity, we know by Theorem 6.1 that it is simply

connected. Therefore, we have that (SL2×SL2)L is simply connected, so S̃O(q)L

is simply connected and therefore S̃O(q) is simply connected. �

Lemma 6.3. S̃O(q) has no Q-simple component G with G{∞} = G(R) compact.
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Proof. Note that both q and q0 have signature (2, 2), so they are equal up

to a change of basis over R. Then, S̃O(q)R
∼= S̃O(q0)R = (SL2×SL2)R. Note that

the simple components of (SL2×SL2)R are both (SL2)R. Therefore, any Q-simple

component G of S̃O(q) has either GR ∼= (SL2)R or GR ∼= (SL2×SL2)R.
Note that for all a ∈ R, we have ( 1 a

0 1 ) ∈ SL2(R), so (SL2)R(R) = SL2(R) is
unbounded as a subset of R4 and therefore noncompact. Since topological spaces of
R-points of isomorphic schemes are homeomorphic, G(R) = GR(R) is noncompact
as well. �

Lemma 6.4. S̃O(q) satisfies strong approximation away from ∞.

Proof. We use [PR94], Theorem 7.12. We conclude the proof by remarking
that we have already shown that

(1) S̃O(q) is reductive: this is Lemma 6.1;

(2) S̃O(q) is simply connected: this is Lemma 6.2;

(3) S̃O(q) has no Q-simple component Gi with Gi{∞} = Gi(R) compact: this

is Lemma 6.3.

�

3. Transitivity of the S̃O(q)-action

We want to prove that S̃O(q) acts transitively on Zp-points of C4(q) for all
primes p 6∈ S.

In this section, we fix such a prime and fix a, b ∈ C4(q)(Zp). We want to show

that the transporter S̃O(q)a,b has a Zp-point.

Lemma 6.5. Let R be a local ring and let x, y ∈ C4(q0)(R). Then (SL2×SL2)x,y
has an R-point.

Proof. Take R a local ring and x, y ∈ C4(q0)(R).
Then, by Lemma 3.4 there exist x̄, ȳ ∈ (C2 ×C2)(R) such that x̄ is mapped to

x and ȳ to y.
By the transitivity of the SL2-action, we have g ∈ (SL2×SL2)(R) such that

gx̄ = ȳ, so by definition of the SL2×SL2-action on C4(q0), gx = y. �

Note that S̃O(q)a,b has a right action of S̃O(q)a. In this section, we want to

use Lang’s theorem, for which we need to show that S̃O(q)a,b is a S̃O(q)a-torsor.

Definition 6.2. For a smooth algebraic group G over a perfect field k, a G-
torsor is a k-variety X with a right G-action such that Xk̄

∼= Gk̄, respecting the
Gk̄-action.

Lemma 6.6. For the ring B as in Remark 6.2, we have

(S̃O(q)a,b)B
∼= (S̃O(q)a)B ∼= ((SL2×SL2)(1,0,0,0))B

and the first isomorphism respects the (S̃O(q)a)A-action

Proof. We have an isomorphism ϕ : C4(q)B
∼−→ C4(q0)B and isomorphisms

(S̃O(q)a,b)B
∼= ((SL2×SL2)ϕ(a),ϕ(b))B and (S̃O(q)a)B ∼= ((SL2×SL2)ϕ(a))B .
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Note that, by transitivity of the SL2×SL2-action on ring-valued points, (SL2×SL2)ϕ(a),ϕ(b)

has a B-point g0 and therefore S̃O(q)a,b has a B-point g, which gives an isomor-

phism, given on ring-valued points (for R a B-algebra) as

S̃O(q)a,b(R)
∼−→ S̃O(q)a(R), h 7→ g−1h

and this (trivially) respects the right S̃O(q)a-action.
Furthermore, since B is a local ring, the action of SL2×SL2 on C2 is transitive

on B-points. Therefore,

(S̃O(q)a)B ∼= ((SL2× SL2)ϕ(a))B ∼= ((SL2×SL2)(1,0,0,0))B ,

with the second isomorphism given on R-points by

m 7→ g−1mg

for g ∈ SL2(B) such that g · (1, 0, 0, 0)T = ϕ(a). �

Lemma 6.7. (S̃O(q)a)Zp is smooth over Zp and connected.

Proof. First of all, for the ring B as in Remark 6.2, we have

(S̃O(q)a)B ∼= ((SL2×SL2)(1,0,0,0))B .

There also is an isomorphism of schemes, given on ring-valued points by

(Gm×A2)(R)
∼−→ (SL2×SL2)(1,0,0,0)(R), (λ, µ, ν) 7→

((
λ µ
0 λ−1

)
,

(
λ−1 ν

0 λ

))
.

Therefore, (S̃O(q)a)B ∼= ((SL2× SL2)(1,0,0,0))B is connected and smooth over B.
Since the image of a connected topological space is connected and the base change by

an fpqc (surjective) morphism gives a surjection of topological spaces (S̃O(q)a)B →
(S̃O(q)a)Zp , connectedness is preserved under fpqc descent. By Appendix C.1 in
[Poo17], smoothness is also preserved under fpqc descent. Now, since SpecB →
Spec (Zp) is fpqc, (S̃O(q)a)Zp is connected and smooth over Zp. �

Lemma 6.8. S̃O(q)a,b has a Zp-point.

Proof. Since (S̃O(q)a)Fp is a smooth connected algebraic group and S̃O(q)a,b

is a S̃O(q)a-torsor, Lang’s Theorem (Theorem 5.12.19 from [Poo17]) tells us that

we have an Fp-point ḡ ∈ S̃O(q)a,b(Fp).

Since (S̃O(q)a,b)Zp is smooth, Hensel’s Lemma (Theorem 3.5.63a from [Poo17])

tells us that the function of sets S̃O(q)a,b(Zp) → S̃O(q)a,b(Fp) is surjective, so we

have g ∈ S̃O(q)a,b(Zp) (such that g ≡ ḡ mod p). �

Corollary 6.1. For all a, b ∈ C4(q), we have g ∈ S̃O(q)(Zp) such that g·a = b.

Therefore, S̃O(q)(Zp) acts transitively on C4(q)(Zp) for all p 6∈ S.
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4. Strong approximation of C4(q)

Now we are finally ready to prove the theorem that we have been working
towards in this thesis.

Theorem 6.2. C4(q) satisfies strong approximation away from S ∪ {∞}.

Proof. Take U ⊆ C4(q)(AQ,S∪{∞}) a nonempty open. Then we have a point

x ∈ U . There exists a ∈ Q∗ such that a−1x ∈ C4(q)(
∏
p6∈S Zp). Then a−1U is also

nonempty open.

We have a morphism f : S̃O(q) → C4(q)A, given on ring-valued points by
g 7→ g(1, 0, 0, 0). It is actually the composition of the morphisms

S̃O(q)× {(1, 0, 0, 0)} → SO(q)× C4(q)→ C4(q).

By Lemma 2.2, f is continuous on AQ,S∪{∞}-points and by Lemma 6.8, its
restriction to

∏
p 6∈S Zp-points is surjective.

Therefore, f−1(a−1U) is open, and contains a preimage of a−1x, so it is nonempty.

Since, by Lemma 6.4, S̃O(q) satisfies strong approximation away from ∞, we

have a point y ∈ f−1(a−1U) ∩ S̃O(q)(Q). This gives a point

f(y) ∈ a−1U ∩ C4(q)(Q).

Note that multiplication by a sends C4(q)(Q) to itself. Therefore, af(y) ∈ U ∩
C4(q)(Q), which concludes the proof. �





APPENDIX A

Clifford Algebras

This appendix summarizes the relevant parts of section C.2 from [Con14].
Given a domain R and a quadratic form q ∈ R[X1, . . . , Xn], and defining V =

Rn and ei = (0, . . . , 1, . . . , 0) ∈ V the standard generators for V as a R-module, we
define the Tensor Algebra

T (V ) =
⊕
n≥0

V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

.

This is an R-algebra with a Z-grading.
We then define the Clifford algebra C(q, V ) to be the quotient of T (V ) by the

relations v⊗ v = q(V ) for all v ∈ V . This gives an R-algebra with a Z/2Z-grading.
We have the relations e2

i = q(ei) and

q(ei + ej) = (ei + ej)
2 = e2

i + eiej + ejei + e2
j = q(ei) + eiej + ejei + q(ej),

so eiej = q(ei + ej) − q(ei) − q(ej) − ejei. Therefore, C(q, V ) is generated as an
R-module by elements of T (V ) of degree at most n.

We define C0(q, V ), the ”even” part of C(q, V ), to be the subalgebra of C(q, V ),
consisting of elements of degree 0 ∈ Z/2Z. We then define Zq ⊆ C0(q, V ) to be the
center of C0(q, V ).

We have a O(q)-action on C(q, V ), which preserves the Z/2Z-grading, so it
preserves C0(q, V ) and therefore Zq. Therefore, we have a group homomorphism
O(q)→ AutZq/R.

The automorphism group of Zq consists of two elements, so it is isomorphic to
Z/2Z. We therefore have an homomorphism

Dq : O(q)→ Z/2Z.

If n is even, we define

SO(q) = kerDq.

We have by Theorem C.2.11 in [Con14] that SO(q) is smooth with connected
fibers.

Now, for n = 2m even and q = −X1X2m +X2X2m−1 − · · ·+ (−1)mXmXm+1,
we have for all i and j, e2

i = q(ei) = 0 and

eiej =

{
(−1)i − ejei j = n− i
−ejei j 6= n− i

Define

vk = (1− (−1)k2eken−k)

and v =
∏m
k=1 vk

Note that for all i and j with j 6∈ {i, n− i}, v2
i = 1 and vivj = vjvi. so

v2 = 1.
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We have, for all i, j, that

vjei =

{
−eivj i ∈ {j, n− j}
eivj i 6∈ {j, n− j}

Therefore, eiv = −vei, so for all i and j, we have eiejv = veiej , so v ∈ Zq.
Now, we define v′ = 1−v

2 ∈ Zq. This results in an expression over Z, so this is also

defined in characteristic 2. We have (v′)2 = v′.
We have that Zq ∼= R×R, and is generated as an R-module by 1 ∈ R and v′.
Now, suppose that we have some ϕ ∈ AutZq/R, given by ϕ(v′) = b0 + b1v

′.
Then we have

b0 + b1v
′ = ϕ((v′)2) = ϕ(v′)2 = b20 + (2b0b1 + b21)v′,

so we have b0(b0 − 1) = 0 and (2b0 + b1 − 1)b1 = 0. Note that b1 6= 0, since ϕ is an
automorphism. This gives either (b0, b1) = (0, 1) or (b0, b1) = (1,−1), so ϕ(v′) = v′

or ϕ(v′) = 1− v′.
Now, note that in characteristic 2, the constraints b1 = 1 and b1 = −1 become

the same, however, the constraints b0 = 0 and b0 = 1 stay distinct.
For n = 4, we have q = −X1X4 + X2X3 and v′ = 2e1e2e3e4 − e1e4 + e2e3.

Then we have, for g ∈ O(q)(R),

Dq(g)(v′) = det(g)v′−2

∣∣∣∣g12 g13

g22 g23

∣∣∣∣ ∣∣∣∣g31 g34

g41 g44

∣∣∣∣−2

(
1
2 +

∣∣∣∣g31 g14

g41 g24

∣∣∣∣)( 1
2 −

∣∣∣∣g32 g13

g42 g23

∣∣∣∣)+ 1
2

We now define SO(q0)(R) to be{
g ∈ O(q0) | 2

∣∣∣∣g12 g13

g22 g23

∣∣∣∣ ∣∣∣∣g31 g34

g41 g44

∣∣∣∣+ 2

(
1
2 +

∣∣∣∣g31 g14

g41 g24

∣∣∣∣)( 1
2 −

∣∣∣∣g32 g13

g42 g23

∣∣∣∣) = 1
2

}
as a closed subscheme (given by a polynomial equation) of SO(q0).
Note that 1

2 is not defined in characteristic 2, but when expanding the equa-

tion, the 1
2 ’s on the left side cancel with the 1

2 on the right hand side and the
multiplication by 2 to give an equation over Z.
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