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CHAPTER 0

Prologue

1. Diophantine equations

In this thesis we will consider problems in the domain of Diophantine equations
(which belongs to the realm of number theory). The name “Diophantine equations”
dates back to the third century AD, to Diophantus of Alexandria, who wrote a
series of books on solving them. A Diophantine equation is a polynomial equation,
potentially with multiple unknowns. For example:

A+ =¢ and y?=2—z+1.

We are interested in integer or rational solutions to these equations: solutions where
every number is, respectively, a whole number or a fraction. For example, for the
two equations above, we have respectively an integer and a rational solution

7\? 1\° 1
2 2 _ g2 Y (2) (2
3°4+4° =5 and <8> (4) <4> + 1.

Note that for a homogeneous Diophantine equation (in which each term has the
same degree), every integral solution gives rise to an infinitude of similar solutions
by scaling. For example, for the first equation, 62 + 82 = 102 and 9% 4 122 = 152
are also solutions. However, these additional solutions do not really provide any
more information. Therefore, we are usually just interested in “primitive solutions”,
in which the variables do not have a common prime factor (so 3% + 42 = 5% is a
primitive solution, while 152 4202 = 252 is not, since the variables have a common
factor 5).

2. p-adic numbers

Determining whether a Diophantine equation has integer or rational solutions
is generally quite hard. However, sometimes there is a way to show that there are
no integer solutions, by showing that the reduction modulo a prime power has no
solutions.

For example, if 3237 + 4y*? = 6 were to have any integer solutions, it certainly
would have solutions modulo 4. However, the equation modulo 4 becomes 3237 = 2
mod 4, and it is trivial to check that neither 0, 1, 2 or 3 satisfy this equation modulo
4. Therefore, 3237 4 4y*? = 6 has no integer solutions.

Now, if an equation has solutions in Z/pZ, we can try to ‘lift’ those solutions to
Z/p*Z (the advantage of lifting solutions is that we only have to consider p options
for each variable, instead of p™). If we succeed in that, we can try lifting again,
to higher and higher powers of p. If we continue doing this, we are constructing
solutions over Zj,, the ring of integers modulo p with lifts to higher and higher

5



6 0. PROLOGUE

powers of p. We can write this formally as
Zp = {(mm)m21 | Ym, T, € Z/mea Tm = Tm+1 mod pm}7

Therefore, the statement that an equation has solutions over Z/p™Z for all m is
equivalent to the statement that it has solutions over Z, and if there exists an m
such that no solutions can be lifted to Z/p™Z, the equation has no solutions over
Z,. We have ‘bundled’ all of our powers of p in this one object Z,,.

We can now define an additional object Z = Hp prime Zp, Which bundles all
powers of all prime numbers. An equation has a solution modulo every prime
power (and therefore, by the Chinese Remainder Theorem, modulo every natural
number) if and only if it has a solution over 7 and conversely, if it has no solution
over Z, there exists a prime number p such that there exists no solution modulo p™
for some number m, and therefore the equation has no integer solutions.

For rational solutions, we can define a similar object, Ag (o} = Q® Z which
has a similar property: if there exist no solutions over Ag .}, there exist no
rational solutions.

3. Schemes

The theory of schemes gives us a different language to talk about solutions of

equations. For one Diophantine equation fi, or even multiple equations fi,..., fin
with variables X1,..., X, we can define a scheme
X=V(f1,..., fm) =Spec(Z[ X1, ..., Xn]/(f1,-- -, fm)) -
Then we can rephrase “integer solutions to the equations fi,..., f,,” as “Z-points
of X” (which we denote by the set X(Z)). More generally, for R any ring, X (R)
denotes the solutions to f1,..., fm over R.
If the equations f1,..., f,, are homogeneous, we can define another scheme
X =Culf1y-- s fm) =V (f1,. o, f) \V(X1,..., Xn).

This allows us to rephrase “primitive solutions of fi,..., fm, over R” as “R-points of

X7, or X(R), which we will prove in Lemma This means that if X (Z) is empty,
the equations have no primitive integer solutions and if X (Aq o)) is empty, the
equations have no primitive rational solutions.

4. Strong Approximation

However, what if X (Ag,{o}) is not empty? Then we cannot disprove the ex-
istence of rational solutions in this way. This does, however, give rise to another
question: what information does X (Ag, 10}) provide about X (Q)? This question is
at the core of strong approximation. A scheme X is said to ‘satisfy strong approx-
imation away from infinity” if, for every solution X (Ag {oc}) there exist arbitrarily
close solutions in X (Q). In other words: an equation satisfies strong approximation
away from infinity if for every solution x in X(Ag {}) and every distance ¢ > 0,
we can find a solution y in X (Q) such that the ‘distance’ between x and y is smaller
than ¢ (for some definition of ‘distance’). If this is true, X (Aq {s}) provides us
with a lot of information about X (Q).
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5. The equation at hand

In this thesis, we will study the (homogeneous) Diophantine equation
qp: X7 +47X3 —103X2 —17-47-103X3 = 0.

This equation has been studied before in [BK19]. They proved that the scheme
C4(q}) corresponding to this equation does not satisfy strong approximation away
from infinity.

Furthermore, it has been shown in [Pag20] that the scheme does satisfy strong
approximation away from infinity, 2, 17, 47 and 103. This means that we look at
the solutions over

AQ fco,2,17,47,103) = Q® H Ly,
p£2,17.47,103

instead of Ag foc-

6. Group schemes

In this thesis, we will prove a similar result, but this time we will use group
schemes to get there. In particular, we will use the group scheme of linear auto-
morphisms of Cy,(f1,..., fm)-

In the first chapter, we will define the schemes that we will work with in the
rest of the thesis, and some maps between them.

In the second chapter, we will define the ring of adeles, adelic points, a topol-
ogy on the set of adelic points, and we will prove some useful lemmas about this
topology. Also, we actually define strong approximation, and show two schemes
that do not satisfy strong approximation.

The third chapter is all about the ‘easy’ equation qg : X7 X4 — XoX3 = 0.
We will prove consecutively that the schemes SLo, Co and Cy(qo) satisfy strong
approximation away from infinity.

The fourth and fifth chapter are somewhat more theory-heavy, as they deal with
models and twists. In chapter four, we will show how we can modify ¢ slightly,
such that its behaviour with respect to the primes 2, 47 and 103 becomes nice. In
chapter five, we will discuss the theory of twisting and show that we can define
Cy(qq) (and a couple of related schemes) as a variant, or ‘twist’, of Cy(qo) (and its
related schemes).

In the sixth and final chapter, we will use all of the above to prove that SO(q}),
one of the schemes related to Cy(q)), satisfies strong approximation away from
infinity. From that, we will deduce that Cy(q}) satisfies strong approximation away
from infinity and 17.






CHAPTER 1

Setting the Stage: The Actors

In this chapter, we will cover some preliminaries, which we will use in the rest
of this thesis.

In this thesis, we work with several schemes over Z. We will introduce them in
this section. Note that all of them can be embedded as locally closed subschemes
into A™ for some n, can therefore be covered by distinguished opens of A", and are
therefore of finite type over Z.

1. Notation

For f: X — Y a morphism of schemes and R a ring, we will also use f for the
function on R-valued points f : X (R) — Y(R).

2. The Yoneda Lemma

The following lemma, based on the Yoneda lemma, can be found as Proposition
VI-2 in [EHOO]:

LEMMA 1.1. If R is a commutative ring, a scheme over R is determined by the
restriction of its functor of points to affine schemes over R; in fact

h : (R—Sch) — Fun(R—Alg, Set)

is an equivalence of the category of R-schemes with a full subcategory of the category
of functors.

We will usually use the following corollary:

COROLLARY 1.1. Let R be a ring and let X andY be R-schemes. Suppose that
we have, for each R-algebra A, a function F(A) : X(A) — Y (A), such that for each
R-algebra morphism ¢ : A — B, the following diagram commutes:

x(4) 9 ya)
Jxm JY(@ :
F(B)
X(B) —=> X(B)
Then there is a unique morphism of schemes f : X — 'Y that induces F.

In this thesis we deal mostly with schemes X such that for some n € Z, for all
R-algebras A, X(A) C A™. Now, given two such schemes X and Y with X (A) C A"
and Y(A) C A™, given f1,..., fm € R[X1,...,X,] such that for all R-algebras A,
if we define

f(A) : X(A) = Amv (1'1»' . .,(En) — (fl(mla s axn)v < wfm(mlw .. 7xn))»
the image lies within Y (A), then the diagram is automatically commutative and
F(A) is induced by a morphism f: X — Y.

9



10 1. SETTING THE STAGE: THE ACTORS

3. Algorithmic proofs

This thesis contains a handful of theorems that deal with groups Gy, G,., sets
T C S and left and right group actions G; x S — S, S x G, — S (note that G; or
G, can be trivial). These theorems usually state something along the lines of “For
all s € S, there exist g; € Gy, g» € G, and a t € T such that g;tg. = s”. Now, take
s € S. If we can find gj1,...,91x € Gy and gp1,..., gk € G, for some k and £/,
such that

Gik---9118Gr1 -+ - Grkr €T,
then if we take g; = (g1 - gn) ", gr = (gr1 - grwr) " and t = g; 'sg; !, then

s = gitgr,

which is what we are looking for.

Now, in almost all of the theorems, S is actually a group, and we have group
homomorphisms f; : G; — S and f, : G, — S, such that the left and right action
are given by (g,s) — fi(g)s and (s,g) — sf-(g). Note that to show that a group
homomorphism f : G — H is surjective, it suffices to show that for all h € H, we can
find gi1, ..., Giks Gr1, - -+ grir € G such that f(gix) ... f(gu)hf(gr1) ... f(grer) = e,
the identity element of H.

Also, in some cases, we actually have G C S, in which case the homomorphism
is just the identity map.

The following is a proof that the map r, : SLo(Z) — SLa(Z/nZ) is surjective.
In this case we have G} = G, = SLy(Z), S = SL2(Z/nZ) and T = {I2}.

There are a few things to remark about the form of the proof. First of all, we
write the steps of the algorithm (the descriptions of the g;; and g,;) on the left and
the results of those steps (gi; ... g11mgr1 ... grj» for some j and j’) on the right, as
a reference for the state of the matrix and for the indices.

Secondly, the proof contains many references to coefficients of a matrix m, but
after each step, this is a different matrix. We could call them m, m’, m” etc.,
but that would become hard to read very soon. This m is a variable and changes,
sometimes even multiple times, during each step.

Thirdly, note that we can lift any number @ € Z/nZ to some a € Z. Also, note
that SLy(Z) contains (and is generated by) all matrices of the form

(%) = (oY)

for a € Z. Now, multiplying m on the right by their images in SLy(Z/nZ) adds
respectively a times the second column to the first, or the first column to the second.
Multiplying on the left adds respectively a times the second row to the first, or the
first to the second. These are the so-called ‘elementary column and row operations’.
This justifies steps like “We can add mo; times mis to m1;” and “Then we add
—meg times the first row to the second”. In most algorithmic proofs, we will have
at least one of SLx(R) C G and SLi(R) C G,..

Most of these algorithmic proofs have also been implemented in sagemath as
jupyter notebooks and have been published at [vdL23]. If there is a sagemath
implementation of a proof, this will be mentioned at the start of the proof.

THEOREM 1.1. The map 1y, : SLo(Z) — SLo(Z/nZ) is surjective.

PROOF. See also the corresponding code at [vdL23].
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Step Outcome
We start with a 2 x 2-matrix m € SLy(Z/nZ). (et ma2)

We keep subtracting mq; and m1o from each other, whichever one (%; ,,gz )
has a greater lift 0 < my; < n € Z at any point, until either one

becomes 0.

If m12 = 0, we can add mq; to it, and then subtract mio from mq; (

to get my; = 0.

Since m € SLy(Z/nZ), we know that miame; = —1. Therefore, ( . ml?)
we can add —moy times mis to mqq to have mq; = 1.

Then we add —mo times the first column to the second and —ma; (

times the first row to the second to have mis = mg; = 0.

Since m € SLy(Z/nZ), we have may = 1, which concludes the ({9)
proof.

4. GL,, and SL,,

DEFINITION 1.1. For n € Z(, we define GL,, via the Yoneda lemma as
GL,(R) = {m € Mat,,xn(R) | det(m) € R*}.
and SLy as the subscheme
SL,(R) = {m € Mat, xn(R) | det(m) = 1}.
They are representable since we have
GL,, = Spec (Z[X11,. .., Xnn, Y]/(|X4j]5;Y — 1)),

where | X;;|;; denotes the determinant of the matrix with the X;; as its coefficients,
and
SLn = Spec (Z[th e 7Xnn]/(|Xz]‘7j — 1)) .

Since the multiplication of matrices is given by polynomial equations in the
coefficients of the matrices, and since determinants are multiplicative, GL,, and
SL,, become group schemes under matrix multiplication.

5' Cn(f17"'7fm)

When studying ‘primitive’ solutions to a homogeneous Diophantine equation,
the notion of a punctured affine cone arises quite naturally. Its definition generally
looks as follows

DEFINITION 1.2. For n,m € Zsq and f1,..., fm € Z[X1,...,X,] all homoge-
neous of degree > 0, we define

Cn(fiy-- s fm) =Spec(Z[X1, ..., Xn]/(f1, -, f)) \V (X1, ..., Xn),

the open subscheme obtained by ‘removing the origin’. When m = 0, we will leave
out the parentheses and just write C,.

In this thesis, we will work extensively with Cy and Cy(qo) for go = X1X4 —
X5 Xs.

For any ring R, we can describe the R-valued points of a punctured affine cone
as follows:
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LEMMA 1.2. Let R be a ring. Then for S = Cp(f1,-- -, fm),
S(R)={x€R"|z1R+ -+ x,R=R and f;(x) =0 for all i},
writing T1,...,x, for the coefficients of x.

Proor. Cp(f1,--., fm)(R) can be identified with the set of 2 € R™ such that
fi(x) = 0 for all 4, and such that for the morphism

¥ : Spec R — Spec (Z[X1, ..., Xul/(f1,-- - fm)),
given by ¢* : X; — z;, for every prime p C R, ¥(p) € V(X1,..., X,)

For # € R", we have (¢¥*)71(p) = ¢(p) € V(X1,...,X,) if and only if for
all 4, we have X; € (¢*)~!(p). This is the case if and only if x; € p for all i, or
equivalently, t1R+--- +z, R C p.

We conclude that z is in Cy,(f1,. .., fm)(R) if and only if f;(x) = 0 for all ¢ and
the ideal x1 R + - -+ 4+ x, R is not contained in a prime ideal. Since maximal ideals
are also prime ideals, this concludes the proof. ([

ExaMPLE 1.1. For some rings R, we can state this primitivity condition more
specifically:

(1) For R =k for k a field, it means that some z; is nonzero.
(2) For R = Z, it means that ged(zy,...,z;) = 1.
(3) For R =Z, it means that some z; is not divisible by p.
Now take
qo = XoX3 — X1 Xo.
We have a morphism Cy x Cy — Cy(qp), given (by the Yoneda Lemma) on
R-points by sending ((z1, z2), (y1,y2)) to (z1y1, Z1Y2, T2y1, T2Y2).

LEMMA 1.3. The image of (Co x C3)(R) is inside Cy(qo)(R).

PROOF. Let R be a ring and let ((z1,2), (y1,y2)) € (C2 x C2)(R). Let p C R
be a prime ideal. There exist ¢,j € {1,2} such that we have z;,y; ¢ p. Then
x;y; & p. Therefore, (z1y1, 21Y2, T2y1, 22y2) € Ca(qo)(R). O

5.1. A better model for the quadratic form. The main theorem of this
thesis proves that Cy(q), with

¢y = X7 +47X3 — 103X3 — 17-47-103X3,

satisfies strong approximation away from infinity and 17. To accomplish this, we
will work quite often in characteristic p for almost every prime p. However, the
fibers of Cy(q}) over 2, 47 and 103 are given respectively by

(X1 + Xo+ X3+ X4)?, X7 —103X7 and Xi +47X3.

So the fiber over 2 is not reduced, while the fibers over 47 and 103 are singular.
This topic is covered more extensively in Chapter @] In our case, we will just use
Theorem Lemma [£.7 and Lemma to find a better model. We improve this
model somewhat more with a Z-isomorphism to obtain

q = X1X4 +2X7 - 5Xo X3 + X3
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with an isomorphism between ¢] and ¢; given by

—3 81l 187191 2843673841
17 _ 459%505 1060758 16114425619

E 5340080 _ 2dtueoo  rasshoerest | € GL(Q).

s A /.71 31198 947907917

79682 4841 4841 9682

By Corollary 2.1] satisfying strong approximation is invariant under isomorphism
over Q, so we will work with ¢; instead of ¢} from now on.

REMARK 1.1. “We improve this model somewhat more”: We obtain this im-
provement on the obtained matrix m by first solving
T

o Qe =

Taking this as the first column of a (otherwise identity) matrix gives us a transfor-
mation ¢ € SL4(Z) such that (t7mt);; = 0. Then we can do some (simultaneous)
row and column reductions to obtain a matrix

000 %
0 a b O
0 ¢c d 0
1000

(for a,b,c,d € %Z not necessarily the same as in the previous paragraph) such that
ad—bc = f%. Then we can do some additional row and column reductions within
this submatrix to finally obtain the quadratic form.

5.2. The group action of SL,,. We have a group action of GL,, (and there-
fore also of SL,,) on C,,, consisting of the morphism GL, xC, — C,, given on
R-points by the usual matrix-vector multiplication

(m,z) = mx

where we view z as a column vector. Note that if for some prime ideal p C R,

we have that x1,...,x, € p, we also have (mz)y,...,(mz), € p, since these
are R-linear combinations of x1,...,x,. Multiplying by the inverse of m shows
that if (ma)i,...,(mx), € p, then also z1,...,xz, € p. Therefore, the image of

(GL,, xCp)(R) does indeed lie inside C, (R) and the map on R-points is induced
by a morphism GL, xC),, — C,.

6. Isom(q,q’)

For n € Z~q, two quadratic forms q, ¢’ € Z[Y1, ..., Yy, ]2, taking Y = (Y1,...,Y,)7,
we define the scheme Isom(q, ¢’) via the Yoneda lemma as

Isom(q,¢')(R) = {m € GL,(R) | 3z € R* : ¢/(mY) = 2q(Y)},

where the equation ¢'(mY) = z¢(Y) must hold in R[Y7,...,Y,].

Note that the coefficients of ¢/(mY’) are polynomial equations in the m;;, and
that the coefficients of zq(Y) are linear in z, so the equality ¢'(mY) = 2¢q(Y) is
equivalent to a set of polynomial equations in z and in the entries of m, so the given
functor is indeed representable by an (affine) scheme.



14 1. SETTING THE STAGE: THE ACTORS

We define GO(g) = Isom(q, q), which becomes a group scheme under matrix
multiplication.
We also define

O(q)(R) = {m € GLy(R) [ ¢(mY) = q(Y)},

We would want to define SO(¢)(R) = {g € GO(¢)(R) | det(g) = 1}, which
makes SO(q) into an algebraic subgroup of GO(gq). However, since 2 is not a unit
in Z, this is never smooth over Z if n is even (see Theorem C.1.5 from [Con14]).
Therefore, we define SO(go)(R) in a better, more complicated way, and then define
SO(q)(R) as a twist of this scheme where possible. Following Appendix [A] we now

define SO(go)(R) to be
{960((zo)l2 +2(;+ )(5_ >:§}

In this thesis, we will mostly work with Isom(g, ¢o), SO(¢) and SO(qo)

6.0.1. Morphism. We can extend the group action of GLs X GLs on Cy x Cy
to Cy4(qo) via the morphism (of affine group schemes) v : GLs x GLy — GO(qo),
given on R-points as

gi2 913
g22  g23

g31  g34
g41 G4

931 Ji14
941  g24

g32  gi3
ga2  g23

a11bi1  arthbie  a12bir  aisbio
.((au a12> <b11 bl2>>}_> a11b21  a1ibaa  aizbar  ai2ban
v azr  azz)’\bar b2 a21b11  agibia  abii  agebin
a21ba1  azibaa  agabar  ageba

«y restricts to a morphism 7 : SLy X SLy — SO(qp).
In particular, on R-points, it sends ((§1! 6i2),1) and (I, (b“ biz )) to respec-

tivel @21 a22 b21 ba2
ively
a1 0 a2 O bin b1z 0 O
0 ail O a2 and b21 bQQ 0 O
a1 0 ax O 0 0 bux biaf’
0 a1 0 a2 0 0 b21 b22

both of which indeed lie in SO(gp)(R) (and therefore, their product lies in SO(go)(R)
as well).

7. Transporter

If we have a group G that acts on a space X, and if we have elements a,b € X,
the transporter from a to b is the set of elements of G that send a to b. There is a
scheme-theoretic analogue to this:

For G a group scheme, with a group action ¢ : G x X — X on a scheme X,
and a,b € X(5) for a scheme S, we have a commutative diagram (a fiber product)

Y S

| I

GS e GS XSOMGGS x X L> X

Note that the composition of the arrows at the bottom is the morphism that sends
m to m - a. Also note that Y is the scheme theoretic inverse of b.

We define the transporter G from a to b to be the scheme Y in the diagram.
We write Gq = Gq.q, for the stabilizer of a.



CHAPTER 2

The Call to Adventure: Strong Approximation

As mentioned in the introduction, we want to know the relationship between
(the geometry of) the p-adic points of a scheme, and the Z-valued or Q-valued
points. This relationship is precisely what strong approximation is all about.

In this chapter, we will work towards defining strong approximation, and show
two schemes that do not satisfy strong approximation, to get a feel one of the
reasons why a scheme can fail to satisfy strong approximation.

1. The ring of adeles

Let k be a global field and € the set of places of k. For v € Q, we will write
k., for the completion of k& with respect to v and we will write

0. _ {{x € ky | v(xz) > 0} v is nonarchimedean;

ko v is archimedean.

For finite T' C €, we will write Ay 1 = H;eﬂk\T(kW O,) for the adeles away
from T the subring of Hveﬂk\T k,, consisting of the (z,), such that z, € O, for
all but finitely many v.

If we give k, and O, the v-adic topology, they become topological rings: rings
with continuous addition and multiplication. We endow Ay 7 with the restricted
product topology, which makes it into a topological ring as well. A basis for this
restricted product topology consists of opens

H U, x H O,

ves vEQL\(TUS)

for S C Q. \ T finite and U, C k, open.

In this thesis, we will study £ = Q, for which Qg consists of the prime numbers
and oo. For p prime we will write ord, for the p-adic valuation, Z, = O,. We will
write Z = Hp Z,, for the profinite integers and we have the following equalities.

AQix} =Q®Z, Ag=RxAg(x}

The topology on Q, has a basis consisting of opens x + p"Z, for x € Q, and
n € Zso. For finite T' C Qg with co € T, the restricted product topology for Ag r
has a basis consisting of opens @ + n][,cq,\7 Zp With € Ag,r and n € Z\ {0}.

2. A topology on the adelic points

In this thesis we will show for some schemes that they satisfy strong approx-
imation. To this end, we will first have to define strong approximation and this
requires us to define a topology on X (Agqr) for X a scheme of finite type over
A@,T.

15



16 2. THE CALL TO ADVENTURE: STRONG APPROXIMATION

For this section, we use Sections 2.6.2, 2.6.3 and Exercise 3.4 of [Pool7] as a
reference. Let k be a global field with set of places Q and let T' C Q. be a finite
subset. Let X be a scheme of finite type over Oy.

Take v € Q. If X is affine, we have X = Spec (Z[X1,...,X,]/I) for some
ideal I, so X(0,) C X(k,) C kI and we give X(k,) and X (O, ) the subspace
topology. If X is not affine, it has an affine open cover X = (J, U;. Then X (k,) =
U, Ui(ky), so we give the U;(k,) the topology for affine schemes, and we glue along
the intersections. The resulting topology is independent of the choice of open
affine covering. We give the open and closed subset X (0,) C X(k,) the subspace
topology.

We have a bijection

X(Arr) S [ (X(k). X(0,)
vEQE\T

and we give X (A ) the restricted product topology.
We will now prove some useful lemmas about this topology.

REMARK 2.1. By section 2.6.3 in [P0oo17], based on [Conl2], given a variety
(separated k-scheme of finite type) X over k, there exists a finite set of places S and
a finite-type Ok, s-scheme X such that A = X. We can use this to give X (Ay 1)
a topology, which is independent of the chosen model X, and functorial in X.

LEMMA 2.1. For X = Spec (Z[X1,...,Xn]/I), X(Ak1) has the subspace topol-
ogy from Ay .

PRrROOF. The subspace topology has a basis consisting of elements

XAro)n [ JJvex ] or

veS veQL\(TUS)

for U, C k2 open and S C Q \ T finite. However, since X is affine, we have for all
v € S that U, N X (k) is open in X (k,) (and every open of X (k,) is of this form),
so this equals the basis element

[[xtk)nv, x [ X0,

vES veQL\(TUS)

and X (A r) has a basis where every element is of this form. O

LEMMA 2.2. For a morphism of schemes of finite type f : X — Y, the mor-
phism X(Ag 1) = Y (Ag ) induced by f is continuous.

PRrROOF. Note that for v € ; \ T and for the projection map m, : Ap 1 — ky,
we have a commutative diagram

fa,,

X(Arr) —5 Y(Arr)

J{X (m0) J{Y(m)

X(ky) —2 s Yk,
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so the map is given separately on each coordinate. It is a remark in Section 2.6.2
of [Pool?] that f(k,) : X(k,) — Y (k,) is continuous for all v € Q. Therefore,
given finite S C Qi \ T and given, for all v € S, opens U, C Y (k,), we have that

faee (ITUex IT Y@ | =TI #0) < [T X0,

vES veQL\(TUS) veES veQL\(TUS)

the preimage of a basis element, is open and since this holds for any basis element
for the restricted product topology, f(Ag,r) is continuous. O

LEMMA 2.3. For schemes X,Y, (X X Y)(Ay 1) has the product topology from
X(Ak)T) X Y(AkyT)

PRrROOF. First of all, for all places v € Qu \ T, (X x Y)(k,) has the product
topology, according to Proposition 3.1 from [Conl2|]. Therefore, the topology on
(X xY)(Ag,r) has a basis consisting of sets

[To.xVvix [ X(0,)xY(0,)
veES vEQE\(SUT)

for S C Qi \ T finite and for all v € S, U, C X(k,) and V,, C Y (k,) open. Such
basic open sets equal

[To.x I x| x|][vex ][] Y

veS veQL\(SUT) veS veQE\(SUT)

which gives exactly a basis for the product topology on X (Ak ) X Y(Akr). O

3. Strong Approximation

Now, we are finally ready to define strong approximation. Furthermore, in this
section, we will prove two additional lemmas that, for some schemes, show that
they satisfy strong approximation.

DEFINITION 2.1 (Strong Approximation). For a global field &, a finite set T C
Qr, and a Og-scheme of finite type X, we say that X satisfies strong approximation
away from T if X (k) is dense in X (A ).

If we take k = Q, T' = {oco} and X affine (so a subscheme of A™), this definition
boils down to: for all (z1,...,2,)" € X(Aq (0}) and all m € Zs, there exists
(y1,...,yn)T € X(Q) such that z; — y; € mZ for all i.

We have the following very useful lemma about strong approximation

LEMMA 2.4. Let k be a global field and T C Q finite. Let f : X — Y be
a morphism of schemes of finite type over Oy such that the induced map fa, , :
X(Agr) = Y(Ag 1) is surjective. If X satisfies strong approzimation away from
T, then Y satisfies strong approximation away from T as well.

PrOOF. Let V C Y(Ay r) be a nonempty open. Then f;iT(V) C X(Agr)is
a nonempty open, since fa, .. is surjective and continuous.

Because X satisfies strong approximation away from 7', there exists a € fa, . -1 N
X (k). The fact that fa, ,(a) € VNY (k) concludes the proof. O



18 2. THE CALL TO ADVENTURE: STRONG APPROXIMATION

COROLLARY 2.1. Let X andY be separated schemes of finite type over Oy and
let there be an isomorphism f : X, = Yj,. Then X satisfies strong approzimation
away from T if and only if Y satisfies strong approximation away from T.

PROOF. Since f is an isomorphism, it has an inverse f~!. We have fo f~! =
idy, and this induces, using the diagonal map k& — Ay 7, the equality fa, , o
f;‘i’T = idy(a, ;). Therefore, fa, , (note that Ay r is a k-algebra, so the function
fa,r i X(Akrr) = Y(Apg7) is defined) is surjective and in the same way, f;i,T is
surjective.

Applying in both directions an analogue to Lemma 2.4 for k-varieties, using
Remark for continuity, gives the result. ([

Later on, we will use the following lemma to prove that SLo satisfies strong
approximation away from infinity.

LEMMA 2.5. For G a group scheme with an embedding (as a scheme) into A™,
the following are equivalent:
(1) G(Q) is dense in G(Aqg {s0});
(2) G(Z) is dense in G(Z) and G(Q) - G(Z) = G(Ag {o0})-

PROOF. Since G is a group scheme, it has inversion and multiplication mor-
phisms. Then, by Lemma these induce continuous morphisms on G(Agq,(o0}),
which makes G(Aq,{~}) into a topological group.

Suppose that G(Q) is dense in G(Aq (o0}). Let (z1,...,7,) € G(Z) and m e
Z\ {0}. Then there exists (y1,...,y,) € G(Q) such that z; — y; € mZ for all i.
However, then y; € Z N Q = Z. Therefore G(Z) is dense in G(Z).

Take a € G(Aq {s0})- Since G(Ag, {0} ) is a topological group and G(Z) is open,
a-G(Z) is open. Since G(Q) is dense in G(Ag, (1), there exists b € G(Q)N(a-G(Z)).
Then, take ¢ = a~'b € G(Z), so a = be™! € G(Q) - G(Z).

Conversely, suppose that G(Z) is dense in G(Z) and G(Q)-G(Z) = G(Ag (o))
Let U C G(Ag,{o}) be a nonempty open. Then it contains an element a = bc with
be G(Q) and ¢ € G(Z). Since G(Aq,{}) is a topological group, b'U is open and
has a nonempty open intersection with G (Z) (since it contains c). Therefore, there
exists b’ € G(Z) N (b='U). Then bb' € U, but also bV’ € G(Q) - G(Z) = G(Q), so
G(Q) is dense in G(Ag {oc})- O

4. Two counterexamples to strong approximation

In this section, we take k = Q, and we show two examples of schemes that do
not satisfy strong approximation away from infinity.
A simple example is G,,, = Spec (Z[X,Y]/(XY —1)).

EXAMPLE 2.1. G,, does not satisfy strong approximation away from infinity.

PrOOF. Note that G,,(Z) is an open subset of G,,(Ag {o0}). Therefore, if G,
satisfies strong approximation, G,,(Q) must be dense in G,,(Z). Since

Gm(Q) NGw(Z) = G (2),
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we must have that G,,(Z) is dense in G,,(Z). Note in particular, this means that
for every n € Z~q and every x € G,,,(Z),

Gm(Z) N (Gm(Z) N (z + (nz)2))

must not be empty. In other words, G,,(Z) — G,,(Z/nZ) must be surjective. Note
that Z/nZ = Z/nZ, since scaling by n only affects the components Z, for which
pln.

Now, if we take n = 5, then G,,(Z/5Z) contains the point (2,3). However,
Gm(Z) ={(1,1),(—1,—1)} and neither of these points reduce to (2,3). Therefore,
G, does not satisfy strong approximation away from infinity. |

A more sophisticated version of this principle is the scheme SO(qg), with g
defined in Section as X1X4 — XoX3. As established in Section we have
a map 7y : SLy X SLy — SO(go). We use the lack of surjectivity of this map on
A {oc}-points to show that SO(qo) does not satisfy strong approximation away
from infinity.

LEMMA 2.6. Let k be a field. Then ~y is surjective on k-points if and only if k
s quadratically closed.

PROOF. See also the corresponding code at [vdL23].
First of all, recall that v is given on k-points by

annbir  aitbia  ai2bin  aiebio

((au alZ) <511 b12)>'_> a11ber  aithay  aisbar  aiabao
a1 ag) ' \ba1 b2 a21b11  agibia  agebin  agebin
a21ba1  agibaa  agobar  aseba

Now, suppose that k is not quadratically closed. Then there exists A € k which
is not a square. Now, suppose that there exists a preimage (a,b) of

0 0

O O =
O O¥= O

0 0
A0
0 0 1

Then we must have b1y = i Since bij1a21 = biia12 = 0, we must have as; =
a12 = 0. Since a € SLy(k), we have azy = i =by1. Then \ = agebi; = b3, which
is a contradiction. Therefore, the map is not surjective on k-points.

We will prove that the lack of square roots in k is the only obstruction to this
map being surjective. Therefore, assume that k is quadratically closed. We will
prove that the map is surjective on k-points by using ‘elementary row operations on
steroids’: We let (SLg x SLy)(k) act on the left of SO(go)(k). Our building blocks

are

(o 8)r) (G20 (o 5) e (0 2),

all elements of (SLg x SL2)(k) which, respectively:

add a times row 3 and 4 to row 1 and 2 respectively;
add a times row 1 and 2 to row 3 and 4 respectively;
add a times row 2 and 4 to row 1 and 3 respectively;
add a times row 1 and 3 to row 2 and 4 respectively.
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Most of the time, we will just mention one component, for example “We add 3
times m11 to mg1”, leaving implicit that we then also add 3 times mo; to my4; (and

that the same happens in the other columns).

Note that for every element m € SO(qo)(k), if we write m.; for the ith column,
we have mZ.gom.; = (qo)i;: the inner product (using go) between the ith and jth
column, is the i, jth entry of qg. Depending on the characteristic of k, we may need

to multiply by 2 to actually let this make sense. For example, for (i,5) =

(i,7) = (1,4), this gives respectively,

mi1mar — Moimszr =0 and  Mi1Mag + Ma1Mig — Ma1Mag — M31Mag = 1.

Step
Take m € SO(qo) (k).

First of all, if mq; = 0 and mg; = 0, we must have
msz1 # 0 or myy # 0. We add mg; to my; and my; to
moq tO have mi1 75 0 or mo1 7’5 0.

If mo1 = 0, we add mi1 to mo1 to have mo1 7& 0.

We add % times mg; to mqy to have mq; = 1.

We now subtract meo; times mq; from moy, and maz;
times mq; from mgq. Then mo; = m3; = 0.

Since m € SO(qo)(k), for ¢ < 3, the inner product be-
tween columns 1 and ¢ is 0, so my4; = 0. Also, the inner
product between columns 1 and 4 is %, S0 Mmys = 1.
We can now subtract msy times myy from msy and moy
times myy from moy to make sure mos = msq = 0.

For 2 <i <4, the inner product between columns ¢ and
41is 0, so my; = 0.

Then the equation, given at the end of Appendix [A] to
cut out SO(qp) inside O(qo), gives magmsz = 0. Also,
since the inner product between the columns 2 and 3 is
, we have mosmgz = 1. Now for 2 < ¢ < 3, since the
inner product of column ¢ with itself is 0 for all columns,
we have mg;ms; = 0 and this gives mo3 = mge = 0.
Then we have mg3 = #2
Since k is quadratically closed, there exists p € k
such that ;ﬂ = Mmao. Then we can lift m to

((g 3) : (g /0)) € (SLa x SLo)(k). Multiplying by its
inverse concludes the proof.

Outcome

mi1
mai
m3i
mgqy

m21

§3~

maq

O OO~ OO0 OO0

VRS
[elelerty

oo+ 3

SO

33

333 &

=) o§§o =)

5

[=lel ]

[
o o §
[V

(=l el

mi2
ma2
m32
mM42

miz2
ma2
ms32
my42

mi2
ma2
m32
ma2

2 M13 Miq
2 M23 M24q
2 M33 M34

0

mi13 Miq
ma3 0
mss

ng O
m33 O
m22 )

[ClN)

—ooo
v

mi3 Mmig
ma23 M2g
m33 M3q
M43 M4a4q

mi3 Miq
ma3 Mayq
m33 M34
M43 MMaq

mi13 Miq
m23 M2aq
m33 M34
M43 Mag

‘)

')

)

)
)

(1,1) and

O

EXAMPLE 2.2. SO(qg) does not satisfy strong approximation away from infinity.

PROOF. The lemma shows that the map v : SLy x SLo — SO(qg) is a finite
étale morphism of degree 2. Then Theorem 8.4.10 from [Pool7] tells us that the

inclusion SO(qo)(Q) — SO(qo)(Aq,{x0}) is not dense.

O
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We can make things a lot more specific than the lemma does, since we don’t
have to worry about the general case.

Over Z [%], SLo x SLo and SO(qp) are separated with geometrically integral
fibers. We have a matrix

1 0 0 O
0 3 0 O

m = 0 0 % 0 S SO(QO)(Zl7)
0 0 0 1

Since v is a finite étale morphism of degree 2, either 17 splits in x(y~1(m)) and m
has two inverse images, or it is inert and m has no inverse images.

As shown in Lemma since 3 has no square root in Fy7 (and therefore not
in Z17), 17 is inert in x(y~1(m)).

By Krasner’s Lemma (Proposition 3.5.74 from [Pool7]), we have an open
subset

Uiz = {u € SO(qo)(Z17) | 17 is inert in v~ (u)}.

We take U, = SO(qo)(Z,) for all primes p{2-17. This gives an open

U= HUP Q SO(QO)(AQ,{Z,oo}>-
2

Now, suppose that there exists 2 € SO(go)(Q)NU. Then we have z € SO(qo) (Z [3])-
We will show that this means that 17 is not inert in x(y~!(z)), which contradicts
the fact that = € Uy7.

1

Now, we take an arbitrary matrix y € SO(qo) (Z [5]) such that y can be ob-

tained by multiplying = on the left by an element of SLy X SLo (Z [%]) Note that
this means that y has a preimage in SLo X SLo (Z [%]) if and only if z has a preim-
age. We apply a reduction to y similar to the one in Lemma, [2.6)

First, we add, if necessary, a row to the first and second row, to make sure the
first two entries in first column are nonzero. Note that there exists a € Z such that
29 y11,2% - yo1 € Z.

If necessary, we apply the Euclidean algorithm (over Z) to get 2% - y1; = 0 and
2% - y91 = 1 and we add 2% (note that this is an element of Z [%D times the second
row to the first. Therefore, we can assume that y1; = 1. After this, we follow the

rest of the reduction steps of Lemma [2.6] Then we can assume that

100 0
{0 a0 0
YZlo o L o
00 0 1

Note that A is a unit in Z [], so it is of the form (—1)*2° for b,c € Z. Then we

have . )
4°6¢ 0 e 0
156¢ =
K (( 0 4b16u) , ( 0 4b6c)) =y wod 17,

so 17 splits in x(y~!(y)) and therefore in x(y~*(z)). However, by construction, 17
was inert in k(y~1(x)), which gives a contradiction.

Therefore, SO(gp)(Q) NU = 0 and we conclude that SO(gg) does not satisfy
strong approximation away from infinity.







CHAPTER 3

Fun and Games: The Simple Case

In this chapter, we will prove that C4(qo) satisfies strong approximation away
from infinity. To this end, we will first prove that SLs satisfies strong approximation
away from infinity using Lemma[2.5] and then use Lemma [2.4] twice to transfer this
property to Co and finally to Cy(qo).

1. SLo

For S a scheme and [ € Z, the map Spec(Z/IZ) — Spec (Z) induces a map
ry 2 S(Z) — S(Z/IZ) which, for affine schemes, corresponds to the usual reduction
modulo /.

We want to prove that SLy(Z) is dense in SLa(Z). Note that the topology on
SL»(Z) has a basis consisting of opens m + IZ* for | € Z and m € SLy(Z). Saying
that every one of these contains a Z-point is equivalent to saying that the map
SLy(Z) — SLo(Z/1Z) is surjective for all I. Note that Z/IZ = Z/IZ. We prove that
SLy(Z) is dense in SLy(Z) with the following lemma.

LEMMA 3.1. For the scheme SL,,, r; is surjective for all l.

PROOF. See also the corresponding code at [vdL23].
If n = 1, we have SL1(Z/IZ) = {(1)}, which can be lifted trivially.
Fix [ € Z. We let SL,(Z) act on SL,(Z/IZ) on the left and on the right. This

gives us elementary row and column operations.

Step Outcome

We start with a n x n-matrix m. et a2 o n
Mpl M2 .. Man

Note that we can lift elements of Z/IZ to Z such that oz e 0

they end up between 0 and [ — 1. Take ¢ and j such

that the lift of my; is less than or equal to mq;. Then T

subtract my; from my;. This decreases the sum of their
lifts. Since this sum is finite, if we do this repeatedly, all
but one of the my; will become 0 in a finite number of
steps.

. ; . 0 0 ... m
Let my; be the nonzero value. If i # n, we add my; to mpy mes A"
m1, and then subtract mq,, from mq;.
Mp1 M2 .. Man

23
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Let a be the determinant of the bottom left (n—1) x (n— o 0
1) submatrix. Note that mipa = 1. Add a times my, .
to mq1, which makes sure that mq; = 1. Then subtract (:)m:n2 mim
M1, times myy from myq,. Also, subtract m;; times mq
from m;; for all ¢ > 2.

Note that the bottom right (n — 1) x (n — 1) submatrix 59 S
is an element of SL,,_1(Z/IZ). Repeating the above for ( . )
this submatrix (induction) gives the identity matrix.

In order to be able to use Lemma [2.5] we need the following lemma.
LEMMA 3.2. We have

PROOF. If n = 1, we have SL,(Ag,{}) = {(1)}, which is trivial.

We let SL,,(Q) act on the left and SLy,(Z) on the right of SL,(Aq,{s})- Note
that [[, Jsime SLn(Zp) = SLy, (Z), so we can give elements of SLy,(Z) by giving an
element of SL,,(Z,) for every prime p.

Step Outcome
Take m € SLy,(Ag {o0))- may mas . man

For all p simultaneously: Let ord,, be the p-adic valuation

Mn1 Mnp2 ... Mnn

on the p-th component of elements of Ag (o). Take

i > 2 such that ord,(my;) is minimal. If ord,(mi) >

ordy(mi;), add my; to mq1. Then for all i, we have

ord,(ma1) < ordp(ma;).

We have for all ¢ > 2, and all primes p, ord, (;’;i) >0, a0
SO :lel € 7. For all i > 2, add —:Z—lll times mqq to myq;, S o
to make sure that mq; = 0. Mnl Mn2 ... Mnn
Note that the determinant of the bottom right (n — 1) x I R
(n— 1) submatrix times mq; gives 1. Since both of these

numbers are in Ag (o}, we have for all but finitely many Mt T s T
primes p that ord,(mi1) = 0. Therefore, the number

q=1[,p" ordp(mi1) ¢ Q exists. We multiply the first

row by ¢ (and the second row by ¢~!) to have mi; = 1.

Now, the bottom right (n — 1) x (n — 1) submatrix is an T e
element of SL,,_1(Aq,{s}). If we repeat the above for C
this submatrix (induction), we get m;; = 1 and m;; =0 M1 Mnz oo 1
for all ¢ < j.

Because Q satisfies strong approximation away from oo, 59 o9
there exists an element mb; € Q such that mo; —mb, € S
7. We subtract mb, times my; from my; such that the T |

resulting mo; € Z. Then we subtract mo; times maoo
from moq such that mq; = 0.
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Repeat this for msq, ..., my1, then for mss, ..., my,2 and 599
so on for mys, ..., My, (,—1)- This completes the proof. .

THEOREM 3.1. SL,, satisfies strong approzimation away from infinity.

PROOF. We have proved that SL,(Z) is dense in SL,(Z). By the previous
lemma, we have that SL,(Q) - SLy(Z) = SL,,(Ag,{s}). Then Lemma gives that
SL,, satisfies strong approximation away from infinity. O

2. Cy

We will now use Lemma to prove that Cy satisfies strong approximation
away from infinity. To this end, we first need to establish surjectivity of a map
SLy — (5 on adelic points.

LEMMA 3.3. For all rings R, SLa(R) acts transitively on Ca(R).

PROOF. Let © € Co(R). Then z1 R + 29R = R, so there exist y1,y2 € R such
that x1y2 — z2y1 = 1. Then we have

m = (“””1 yl) € SLo(R)

T2 Y2

and m(1,0)T = z. O
THEOREM 3.2. Cy satisfies strong approrimation away from infinity.

PROOF. If we compose the group scheme action SLy xCy — Cy with the em-
bedding SLy x{(1,0)7} — SLy xCs, we obtain a morphism f : SLy — Cs (this is
just the group action on the point (1,0)7). We have already proved that the group
action on R-points is transitive for any ring R, which means that in particular f is
surjective on Ag {o0}-points.

Since we already proved that SLo satisfies strong approximation away from
infinity, we use Lemma[2.4] to conclude that Cs satisfies strong approximation away
from infinity. (|

3. Ci(qo)
Now we do the same for the map Cy x Co — C4(qo), defined in Section

LEMMA 3.4. The map Cy x Cy — Cy(qo) is surjective on R-points for all local
rings R.

PrROOF. Let R be a local ring with maximal ideal m. Note that m contains
every prime ideal of R. Take z € Cy(qo)(R). Assume that ;1 ¢ m. Then z;
is invertible. Note that x1z4 = xoxs. Then ((1,%)T,(x1,m2)T) is mapped to
(z1, 22, %3, x;TJ)T = x. The cases where x5, x3 or x4 is not in m are completely
analogous, which completes the proof. O

LEMMA 3.5. For any T C Qy, the map Cy x Co — Cy(qo) is surjective on
Ay r-points.
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PRrROOF. By Exercise 3.7 of [P0ool7], for a Oy-scheme X of finite type, we have
~ /

a bijection X (Arr) = [] UEQk\T(X(kU),X((’)v)).

Note that k, and O, are local rings. Therefore, given any element ((Ev)vegk\T
of Cy(qo)(Ak,r) we can find by the previous Lemma, for every v € Qp \ T, a
preimage y, € (Ca x C3)(ky) of 2, € Cy4(qo)(ky). Note that for almost all places v,
z, € Cy4(q0)(O,), in which case we can take y, € (C2xC2)(O,). Then (yy)veq,\7 €
(Co x Co)(Ag,1) and (yu)veq,\7 is mapped to (Ty)yeq,\7- O

THEOREM 3.3. C4(qo) satisfies strong approzimation away from infinity.

PRrOOF. Note that the topology of (Cy x C2)(Aq,{o}) is the product topology
(by Lemma , so, using [3.2 (C2 x C2)(Q) is dense in (Cy x C2)(Ag,foc}). We
have a morphism Cy x Cy — Cy(qo) that is surjective on Ag roo}-points. Then by
Lemma Cy(qo) satisfies strong approximation from infinity. O



CHAPTER 4

Interlude: Finding a Better Model

In this thesis, we work with the quadratic form ¢] over Z which has a bad
reduction modulo the primes 47 and 103, but is smooth over Q. This is a problem
that arises sometimes in algebraic geometry: we have a scheme X over a domain
R (with fraction field K), in this case given by a single equation, with Xy smooth,
but Xp/, singular for one or more primes p C R. In that case, we can attempt to
find a better model: a scheme X', with Xx = X}, but with less singular fibers.
We will call this a better model for X.

We have a set of quadratic forms in n variables over R. If 2 is not zero in R,
we can associate to these the set @, (R) of symmetric matrices m in Mat,,x, (K)
with m;; +m;; € R and my; € R for all 7 and j, such that for every quadratic form
q its associated matrix m satisfies q(z) = xTma for all z € R™.

1. Better models

Now, suppose for R = Z or R = Z,, we have some quadratic form ¢ with an
associated matrix m € @, (R). Suppose that det(m) # 0.

LEMMA 4.1. The morphism [ : C,(q)z, — Spec (Zy) is flat iff q is not divisible
by p (i.e. if there exist i and j such that p{2m;;).

PROOF. Take A =Z,[Xq,...,X,]/(¢). By Example 3.3.2 in [Po017], A is flat
over Zj, iff it is a torsion-free Z,-module.

Now, suppose that p | ¢. Then for all i, % # 0 € A[Y]/(X;Y — 1), but
p-l=q=0€A[Y]/(X;Y — 1), s0 A[Y]/(X;Y — 1) is not torsion-free. Therefore,
Z, — A, and thereby Spec A — Spec (Z,), is not flat, so the standard affine open
subsets of Cp(q)z, are not flat over Z,. Since flatness is a local property, this
implies that f is not flat either.

For the converse, since p 1 ¢, for ¢ to be a reducible polynomial in Z,[ X1, ..., X,,],

we need
q= (ZTin) (Zr'iXi)

for r,7" € Z7. However, then m = r(r')", so det(m) = 0, which we assumed not to
be true. Therefore, ¢ is irreducible. Since Z,[X7, ..., X,] is a uniform factorization
domain, ¢ is prime, so (q) is a prime ideal and A is a domain. Especially, A is
torsion-free as a Zy-module, the standard open subsets of C,,(q)z, are flat over Z,
and f is flat. O

27
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REMARK 4.1. Note that for X1,..., X, € Z[X1,...,X,]andz = (X1,..., X,)7,
we have for all 7,

dq 0
ox, = o, 2 X
3 K2 j,k

J

— ((2m)a),

LEMMA 4.2. If p{det(2m), the morphism f : Cpn(q)z, — Spec(Zy) is smooth.
For p # 2, the converse also holds.

PRrROOF. By Definition 3.5.27 in [Po017], since f is locally of finite presentation
and by Lemma it is flat, smoothness over Z, is equivalent to smoothness over
Q,p and F,,.

Suppose that p { det(2m). By Proposition 3.5.17 in [P0o017], we can just show
smoothness on closed points. We will show that for both k = F, and k = Q,, for

X = Spec (k[X1, ..., Xn]/(a))
g : X — Speck is smooth at all closed points, except (X1,...,X,). Since Cy,(q)x
equals X, except for this point, and smoothness is a local condition, this shows that
C(q) is smooth.
Let
m= (Xl —.’1}1,...7Xn—$n)

be a closed point (note that we take the z; in k). Take z = (z1,...,2,)T. Suppose
that X is not smooth at m. Then

() S ). () € Mata ()

00X, 70X, T oX,

has rank 0, so %(m) = 0 for all i. By Remarkm 2mx = 0. Note that det(2m) €

k*, so 2m is invertible over k and we have
r=(2m)"'o=0.

Therefore, Cy,(q) is smooth.

On the other hand, suppose that p # 2 and p | 2m. Then over F,, the null
space of 2m is nontrivial, so we have z := (x1,...,2,)7 € [ such that z; #0
for some z, and 2ma = 0. Since p # 2, we have 27mz = 270 = 0 and m :=

(X1 —x1,..., X, —x,) € Culg)r,. By Remark we have

(aa)?l(m)a ai)i(m), RN (;ign (m)) - (me)T —oT

has rank 0 and C,(q)r, is singular at m. O

In this chapter, we will only consider linear transformations between the mod-
els. To be more precise, we are looking for a matrix ¢t € GL,,(K) such that

MI1 got is defined over R, or equivalently, t’mt € Q, (R);

MI2 p{ det(2tTmt) = det(t)? - det(2m).
We will call this a model improvement for ¢ with respect to p.

We can immediately deduce from MI2 that it is impossible to find a model
improvement with respect to a prime p # 2 if ord,(det(2m)) is odd.
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REMARK 4.2 (Transforming transformations). Suppose that R is a principal
ideal domain, and we have a matrix m € @, (R) and a model improvement ¢ for m
with respect to a prime p.

We can embed S,, into GL,(Z) C GL,(R) by letting elements of S,, permute
the standard basis vectors. Given such a g € S,, C GL,(R), (g7')Tmg~! is m but
with its rows and columns permuted (both in the same way). Then gt is a model
improvement for it. Therefore, S, acts on the left on ‘the set of permutations of
m, together with their model improvements with respect to p’.

If we take g € GL,(R), then tg transforms m to g (t'mt)g € Q,(R) and this
has determinant det(g)? det(t?mt) with det(g)? € R*, so tg is a model improvement
with respect to the same primes as ¢t. Therefore, GL,,(R) acts on the right on the set
of ‘model improvements for m with respect to p’. In particular, we can add a € R
times one column to another, multiply a column by a factor b € R* or interchange
columns.

2. Assumptions about transformations

Suppose that R is a principal ideal domain, with fraction field K. For a vector
v, and a prime p, let ord,(v) = min;{ord,(v;)}. For an n x n matrix ¢, let ¢,; denote
its ith column.

From now on, we will mostly work with R = Z and K = Q, or R = Z, and
K =Q,. Take m € Q,(Z).

First of all, it is easier to work with diagonal matrices than with general ma-
trices. The following proof shows that for most purposes, we can restrict to the
diagonal case.

LEMMA 4.3. For p # 2, we can find a € Z withpta, and t € SL,, (Z [%]) such
that tTmt is diagonal.

PROOF. See also the corresponding code at [vdL23].
Here we let SL,, (Z [%]) act on @, (Z [%]) on the right with

(m,g) — g"'mg.

Step Outcome
. . _ mii Mi2 ... Mip
We start with m given, and a = 1. Mis Mas .. TMae

If ordy, (my1) > minj;{ordy,(m.;)}, there exists ¢ such that oo
ord,(m,;) = min;{ord,(m.;)}. We switch the first and Min M2n .o Mnn
ith column (and row), such that the order of the first

column is minimal.

If ord,(myy) > ordy,(m.) (so p | p~ 9 (™<1)my,), there

exists ¢ such that ord,(m;1) = ord,(m.1). Since p # 2,

we can add 1 or 2 times the ith column and row to the

first one, to make sure that ord,(m11) = ord,(m.1).

If we take a to be the least common multiple of a and e m022 - m(;n
the numerator of mq1p~ " ("11)  we have for all i > 1

that Xt € Z [1], so we can add =t the first row and 0 mam ..
column to the ¢th one to make sure that in the first row

and column, mq; is the only nonzero value.
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If we repeat this for mos till my,,, by induction, we get e mon - 8
the required a € Z and t € SL,, (Z [é]) such that tTmt . .
is diagonal. 0 0 e

COROLLARY 4.1. Since for all a € Z such that p 1 a, we have Z [5] C Zy, any
time we work over Z, or 7.)p" 7, we can assume that m is diagonal if p # 2.

Now, usually Z, is much easier to deal with than Z. The following lemma
shows that if we can find a model improvement of a certain form over Z,, this will
automatically give us a model improvement over Z.

LEMMA 4.4. Suppose that we have v € SL,(Z,), $1,...,8, € Z and s =
diag(p®,...,p°") such that 2", s; = —ord,(det(2m)) and for all i and j,
(rii)Tmr;j =0 mod p sitsi),
Take S$pmin = ming{s;}. Then
(1) there exists r € SL,(Z) such that

(1) ri; = 1ij mod p~(sitsmin) for all i and j;

(2) for each r € SLy,(Z) that satisfies[1] rs is a model improvement.

PROOF. (1) By Lemma the reduction SL,,(Z) — SL,(Z/aZ) is sur-
jective for all @ € Z~q. Take a = p~2min_ which gives the result.
(2) Take r € SL,,(Z) that satisfies |1} First of all, note that

ord,(det(2(rs)Tm(rs))) = 2ord,(det(s)) + ord,(2m) = 0,

so MI1 is satisfied. Secondly, note that the only denominators in rs are
powers of p and for all ¢ and j,

P (rs)Tm(rs)) ;= o ) Tim(rs).

(sitsi)psits;,

- T

=p p wd TV s j
T

= T MTy;

= (r,;)"mrl; mod p~ (st

=0 mod p~itsi),

so (rs)Tm(rs) has neither denominators that are powers of p, nor other
denominators (except possibly for a factor of 2). Therefore, (rs)Tm(rs) €
Qn(Z) so M12 is satisfied and rs is a model improvement.

O

Now, it turns out that if we have a model improvement with respect to some
prime, we can simplify it to get a sort of ‘canonical’ form:

LEMMA 4.5. If there exists a model improvement t over Z,, there exist s1 <
$9 < - < 8y €Z for all i and there exists a lower triangular matriz v € SL,(Z)
with r;; = 1 for all i such that for s = diag(p®',...,p*), rs is a model improvement
for (a permuted version of ) m, i.e.:

(1) 3, s; = ordp(dett);
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(2) we can permute the rows and columns of m (with the same permutation
for both) to get a matriz m’, such that (rs)Tm/(rs) € Q. (Z).

PROOF. See also the corresponding code at [vdL23].
In this proof, we will let S,, and SL,,(Z,) act on the left and right of ¢ respec-
tively.

Step Outcome

By Remark we can exchange the first column with /it f12 - fin
another column (if necessary) such that ord,(t.1) <

Ordp(t*j) for all ] tot tno oo o

Take s1 = ordy(t.1).

We can also exchange the first row with another row (if

necessary) such that ord,(t11) = s1 (and perform the

same exchange on these rows and columns of m).

Note that p~*'t1; € Zj, so we can divide the first column Ptz e tin

. . to1 taz ... ton

by it, to obtain t1; = p°!.
tnt tna . ton

Since s1 = ordp(ts1) < ordp(tye) < ordy(ti2), we have 1;:1 ti - f;i
p~*'t12 € Z,. Therefore, we can subtract p~*t15 times
t11 from t15 to get t10 = 0. tor bom o b
In the same way, we can make sure that t1; = 0 for all pt 0. 0
; 21 t2z ... tan
Jj=2 .
Note that by doing this, the ord,(t.;) can only increase, e

so they will stay larger than ord,(t.1).
We can repeat the above for the second through nth 1;; p22 5 8
columns (by induction), to make sure that for all i < j,

t;j = 0 and for all 4, t;; = p*.

Note that ts~! is a lower triangular matrix with entries in Z, and all 1s on the
diagonal. Taking r’ = ts~!, we can trivially find a matrix 7 as in the first part of
Lemma [£.4] with all 1s on the diagonal. The second part of Lemma [4.4] gives us
that r is indeed a model improvement on a permuted version of m with respect to
p. [

COROLLARY 4.2. Let m’, the matriz r € SL,(Z) and s; < - < s, € Z be
given by the last lemma and assume that m is diagonal. If s1 + s, < 1, we have a
nontrivial solution to the quadratic equation

/

m'.
2 22 —% =0 mod p.
(2) > @h )

i:p|lm),

PROOF. Suppose that s; + s, < 1. Then sy +s; < 1 for all i. Recall that in
order to satisfy MI1, we must have (r.;)Tm’(r.;) =0 mod p~%~% for all i and j.
That means that

— T, ./ ! /
0= (ra)" m'ren = rnamy,, 1 =rpim,,, mod p.
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So either p | m/,,, or p | r,1. Continuing, we find
0= (r))"m (re,(n-1))

= r(nfl)vlm/(nfl),(nfl)l + Tnlmimrn,(nq)

= (-1 (1), (n—1) mod p.
Therefore, either p | manl),(nfl) or p | 7(n—1),1. Doing this for all 4 yields that
ptm}; implies that p | 7;1. Note that s; <1 so 2s; < 2. This gives

0= (r)Tmry = erlm;i mod p?.

i

However, since if pf ml,, p | 71, so p? | r%, we have

Z ram, =0 mod p?

i:plml,
and .
ms.
E 22— =0 mod p
e~ p
i:p|m?,

O

CONJECTURE 4.1. A (somewhat wishful) conjecture is that it is only possible
to construct a model improvement with respect to a prime p if Equation has
a solution. In a small numerical search, no counterexamples were found for n = 4
and (s1, $2,83,84) = (—1,-1,0,1).

If this conjecture holds, a model improvement exists iff it is possible to repeat-
edly construct partial model improvements (see section .

The last lemma shows that we only have to look for model improvements
with a very specific form: we can restrict our search to matrices with determinant
p’% ordp(detm) that are (up to permutation of the rows) a lower triangular matrix
in SL,(Z) times a diagonal matrix that has the (positive and negative) powers of
.

It also shows that it is sufficient to construct a model improvement over Z,,
because we can then always find a model improvement over Z.

3. A counterexample

We already saw that if ord,(det(2m)) is odd, finding a model improvement is

impossible. Now, for

m = diag(1,1,3,3),
we have det(2m) = 16 -9, so it would be nice if we could find a model improvement
¢ with respect to 3. Since det(t) = %, at least one of the entries of ¢ must have
3 in the denominator and we must have ords(t.;) < —1 for some i < 3. We can
assume without loss of generality that ¢ = 1. Then t,; = 3~ ords(t-i)¢ . must satisfy
% +th > +3th,° +3t,,° =0 mod 9.

Reducing the equation modulo 3 gives t’112 + t'212 =0 mod 3, which only has
the solution #;, = th; = 0 mod 3 and #,°> = t5;> = 0 mod 9. Therefore, we
must have 3t5,” + 3t,,> =0 mod 9, so t4,° + t};> =0 mod 3, which only has the
solution t4; = t}; =0 mod 3. This contradicts the fact that either ¢}, 5, t5; or
t4; is nonzero modulo 3.
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Therefore, we cannot find a better model with respect to 3 for this quadratic
form.

We can do this for any prime p: We can find a,b € Z such that a and b are not
squares modulo p. Then, for all ¢,d € Z, both not divisible by p,

m = diag(c, —ac, pd, —pbd)

has ord,(det(2m)) = 2, but we cannot find a model improvement with respect to
p.

4. Constructing a model improvement

4.1. The case p # 2. In this subsection, we will work over Z, with p # 2.
Therefore, we can assume that m is diagonal by Lemma[4.3] Now, by transforming
by a diagonal matrix with powers of 1% on the diagonal, where necessary, we can
assume that for all 4, p? { my;.

Now, we will order the diagonal entries of m such that p divides the first k
entries and doesn’t divide the n — k entries after that. Note that, to be able to find
a model improvement, we need k to be even.

DEFINITION 4.1. We define a partial model improvement to be a matrix
t € GL,(Qp) such that

PMI1 tT'mt € Q,(Zy);
PMI2 ord,(det(t"mt)) = ord,(det(2m)) — 2.

LEMMA 4.6. If Equation has a nontrivial solution, we can find a partial
model improvement.

PROOF. Suppose that we can find a nontrivial solution #1,...,2, € Fp to
Equation . We can lift the Z; to z1,. ..,z € Z, (we pick an arbitrary lift of the
Z;). By reordering mqi,...,mg and z1,...,x) correspondingly, we can assume
that p 1 x1. Then, by dividing the x; by x; (we can do that because Equation
is homogeneous), we can assume that 1 = 1. Now, take

1 0 0 ... 0

p=]2 0 1 ... 0 € SL,(Z,) and s=diag (71,1,...,1>.
e . D
o 0 0 ... 1

If we take t = rs, we get tImt € Q,(Z,) since p? | > ximg; and p | z;my; for
all 2 <i < k. Also, det(t) = %, so we remove two factors p from det(2m). O

We now have the following theorem:

THEOREM 4.1. For diagonal m, of which the first k diagonal entries are divisible
by p, if p# 2 and
SO G-

i<k P

s a square modulo p, then we can find a better model for m with respect to p.
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PROOF. See also the corresponding code at [vdL23].
Suppose that & = 2. Then the equation tells us that 7% is a square
modulo p. Therefore, —zli is also a square modulo p. If we call the root A\, we

have a solution to the equation

12—&—@/\2 =0 mod p.
p

M
Then, by Lemma we get a partial model improvement ¢ is, so ordp(tTmt) =
ord,(m) — 2 = 0, which means that ¢ is actually a model improvement and we are
done.

On the other hand, suppose that k£ > 4. By the Chevalley-Warning theorem,
we have a solution to the equation “1 3 + %x% + %x% =0 mod p. Then, by

Lemma we have (if we order the diagonal entries of m in a suitable way) a
matrix

1 0 0 0 0
A1 0 0 0
A3 01 0 0 1
10 0 0 1 0 and sdiag(,l,...,l)
p
0 0 0 O 1

such that rs is a partial model improvement.

Now, take m’ = (rs)Tmrs. If p | m/;, we have p { m}; for some i € {2,3}. We
can then add once or twice the ith row and column to the first one of m’ to make
sure that p { m{;. The result is the same as when we would have added p or 2p to
A; in r. Therefore, we assume that p { mf;.

Now, since p? f my1, we must have either p { Ay or p { A3. By, if necessary,
exchanging maos and mss, we can assume that p { Aa.

The following will only change the upper left 3 x 3 submatrix of our matrix, so
we will only show what happens there. We have

M1 A2z \gTaz

\om P P

22

. 27 ma2 0

(rs)"mrs = | ), mas 0 mas
P

2 2
with gy = muFAymeaFAMs {f we then diagonalize with Lemma we obtain

p
w0 0
, 0 125 0

mi=0 0 p

2
22 which is not divisible by p, and for some value of p3. Note

for f1y = Mgy — 227
H2 = M2z p1p

that the determinant of the submatrix has only changed by a factor of p%, SO

m11M22M33 _ A3m3,
5 T Hipep3 = 1| a2 — 5 | 43
p Hp
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and pg is divisible by p. Therefore,

M mi1 M2z M3z __mj1 ma23 m33
3
— = P P P 5 = - g mod p.
p mag . )\2 mag )\2 m22
H1=5=P 2\ 2\

Therefore,

(—1)2 1 H mgizi(_l)i 5 H n;“ mod p

. p 2(m .
i,p|m}, >\2 % ,p|mas

Since the right-hand side is a square modulo p, the left-hand side is a square modulo
p as well. By induction, we obtain a model improvement with respect to p, which
completes the proof. O

REMARK 4.3. If n = 4, the only interesting case is k = 2. In that case, we
can obtain a model improvement in the way described above if —% is a square
modulo p.

4.2. The case p = 2. Now, in the case of p = 2, we cannot just diagonalize,
so we will assume that m is already diagonal.

LEMMA 4.7. For m diagonal and 2 1 det(m), we can find a model improvement
with respect to 2 if the number of diagonal entries that are 1 mod 4 equals the
number of diagonal entries that are 3 mod 4.

PROOF. See also the corresponding code at [vdL23].
We reorder the diagonal entries of m such that we get a block matrix, with
diagonal blocks m; = (‘B l?'i) and a; =1 mod 4 and b; = 3 mod 4 for all ¢+ < 3.

Then, we transform using a block matrix ¢, with diagonal blocks t; = ((1) i ) Then
we have t7'm;t; = (;;i %(fijjbi)) € Q(Z). Note that

det(2t mt;) = a* + w =1+0=1 mod 2,
so det(2tTmt) =1 mod 2 and t is a model improvement with respect to 2. (]

5. Combining model improvements with respect to different primes

In the last two sections, we described ways to construct a model improvement
with respect to one prime. However, we would like to have a model improvement
with respect to all the primes at once.

LEMMA 4.8. Letty,...,tx be model improvements with respect to primes p1, . .., Pg.
Then we can find a model improvement t with respect to py,...,pk-

PROOF. See also the corresponding code at [vdL23].

Suppose that we have model improvements ¢y, ...,t; with respect to primes
P1s-- - Pk-

Then Lemma gives us lower triangular matrices r1, ..., € SL,(Z) and di-
agonal matrices s1,. .., s, with 2det(s;) = —ord,, (m) for all i. Note that these give

transformations with respect to different permutations of (the rows and columns
of) m. Therefore, we will reshuffle the rows of the r; such that they correspond to
the original matrix m again.
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Now, let [ = —min; ;{ord,((s;);;)}. Since SL,, satisfies strong approximation
away from infinity, we have r € SL,(Z) such that for all i, r = r; mod p?. We
now take s = [[,s; and t = rs. By Lemma t is a model improvement with
respect to p1,...,Pk. ([



CHAPTER 5

The Twist

1. The theory of twisting

Suppose that we have a finite and faithfully flat morphism of schemes p : S —
S.

In this chapter, we will look at fpqc descent of schemes and twists of schemes.
The problem of descent is, given an S’-scheme X', finding an S-scheme X such
that X’ =~ X xg 5.

We define S” and S” as the following fiber products:

S/// S// S/
A
s —rss LS
Also, for a finite group G, we define
S'x G =[] Specs’
ceG
DEFINITION 5.1. A Galois covering with Galois group G is a finite and faith-
fully flat morphism of schemes p : S’ — S with a right action of the finite group

G on S’ such that the morphism S’ x G — S”, given by (z,0) — (x,0z) is an
isomorphism.

Galois coverings generalize finite Galois field extensions. In this thesis, we will
only need affine Galois coverings Spec R — Spec S with group G such that we have
inclusions into fields R C L' and S C L with L C L’ a finite Galois field extension
with group G.

ExXAMPLE 5.1. An example of a Galois covering is

s (2] 10 5T ) s (2 ]).

17 2
Its Galois group contains one nontrivial element: the ring automorphism that sends
VT o 1-V1T
2

2 .

EXAMPLE 5.2. Another example of a Galois covering is

1 1
Z Vdi, ... \/dy| | = Z
Spec( |:2.d1.d2.....dn’ Lo ]) Spec< |:2.d1.d2.....dn]>

with v/d; € Q(V/dy,...,+/d;_1) for all i. Its Galois group contains 2" elements
and each of these elements is determined by the images of the v/d; (either \/d; or

V).

37
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Note that if we have a morphism of schemes X — S’ and an isomorphism
o: 5" — S5, we can take the fiber product

Y — X

-

(e

S —= 9
We define X :=Y.
Now, let p: S’ — S be a Galois covering with Galois group G.

DEFINITION 5.2. We define a Galois descent datum to be an S’-scheme X',
together with S’-isomorphisms f, : “X’ — X' for every o € G such that for all
o,7 € G, we have that f,. = fo o (?f;) (the so-called cocycle condition), so the
following diagram commutes:

for

oT /! o /! /
X X = X

Sz

Given two Galois descent data (X', (fy)oec) and (Y, (9s)oec), we define a
morphism of Galois descent data to be a morphism ¢ : X’ — Y” such that for
all o € G, the following diagram commutes:

O'Xl fo‘ X/
e ]
oy 9o v’
Galois descent data and their morphisms form a category.

Note that for an S-scheme X, we can identify ? Xg/ with Xg, intuitively be-
cause the S’/S-Galois action on a scheme defined over S does not change anything.
Therefore, we can identify f, : ?Xg — X with an element of Aut Xg/, which we
will call f, as well.

DEFINITION 5.3. A scheme is quasi-affine if it is an open subscheme of an affine
scheme and is quasi-compact.

THEOREM 5.1. Ifp: 8" — S is fpgc and S is affine (by the definition of a finite
Galois covering, p is finite, so S’ is affine too), then
(i) the functor X — (X, (Idx,, )scg) from S-schemes to S’-schemes with de-
scent data is fully faithful;
(ii) the functor X — (Xg, (Idx,, )ocq) from (quasi-)affine S-schemes to (quasi-
Jaffine S"-schemes with descent data is an equivalence of categories.

PRrROOF. This follows from Theorem 4.3.5, Theorem 4.4.4 and Remark 4.4.7 in
[PoolT7]. O

The first part means that for S’-schemes with descent data (X', (f,)seq) and
(Y, (9s)oeq) that can be descended to S-schemes X and Y, giving a scheme
morphism X — Y is equivalent to giving a morphism of Galois descent data

(X/’ (fo)oca) — (Y/7 (9o )oea)-
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The second part means that every descent datum on a (quasi-)affine S’-scheme
can indeed be descended to a (quasi-)affine S-scheme.
Now, let X be an S-scheme.

DEFINITION 5.4. An S’-twist of X is an S-scheme Y such that Xg =Yg .

Note that twisting X is equivalent to descending Xg-.

By Theorem (ii) we have that for p : 8" — S fpqc and S affine, twisting an
S-scheme X is equivalent to giving f, € Aut Xg/ for all ¢ € G such that the f,
satisfy the cocycle condition.

Remark 4.5.4 from [Pool7] gives us an explicit way of finding the (fy)scc
associated to a twist: for S-schemes X and X', if we choose an isomorphism ¢ :
Xsr — XG,, we can take f, = o 1(7¢p).

ExaAMPLE 5.3. To twist a group scheme G that has composition morphism
¢ : G x G — G, we want to twist not only G but also the morphism ¢. Therefore,
© and the f, have to be compatible. This means that we want the following diagram
to commute for all o € G:

(fo.fa)
=%

GxG GxG
| v
G —I ,a

In other words, we want f, to be a group scheme automorphism.
Note that if f, is a group scheme automorphism, we know from group theory
that the following diagrams commute on R-points

leJEEL ANy § 1,5
Ji , liaﬂd Je . J{e
(e JEELANYE e JEELANY]

for i : G — G the inverse and e : S — G identity point. Then it follows from the
Yoneda Lemma that the diagrams themselves also commute. Therefore, to twist a
group scheme, we only have to check whether the f, commute with ¢ for all o.

2. Twisting for our specific quadratic form ¢
We want to twist the following structure that exists over our base quadratic
form go = X1 X4 — X5X5, with all parts defined in Chapter [T}

(1) The scheme Cy(qo).
The scheme SO(qo).

(2)
(3) The scheme SO(qp).

(4) The group operation SO(gg) x SO(go) — SO(qo)-
(5)

(6)

—_—~

The group operation SO(gg) x SO(go) — SO(qo).
The group action SO(gg) X C4(q0) — Cu(qo)-
(7) The covering morphism (of group schemes) v : SO(gp) — SO(qo).
Roughy speaking, C4(qo) encodes the primitive solutions of ¢y. We then have
SO(qo), (a subgroup of) its symmetry group, defined in Appendix SO(qo) is the
universal cover of this group, which we can conveniently define as SLy x SLs. Their
relationships become clear in the following two cartesian diagrams:
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—_—~

SO(qo) x SO(qo) — S%) SO(go) x SO(qo) x Ca(go) — SO(qo) x C4(qo)

SO(go) x SO(go) — SO(qo) SO(qo) x Ca(q0) ——— Calqo)

The first diagram denotes that ~ is compatible with the group operations of both

group schemes. The second diagram denotes that first doing the group operation

and then applying the group action is the same as applying the group action twice.
For the next lemma, we define

=

Il
coor
o~ oo
oo m~o
— o oo

LEMMA 5.1. Let Spec A’ — Spec A be a Galois covering with group G. Let
0 @ Ci(q)ar = Cu(q)ar be a linear isomorphism, given by an element m €
Isom(qo, q)(A’). Suppose that
e for all o0 € G, a, := m~*(“m) € GO(q)(4') is defined over A and
commutes with x;
o there exists, for every o € G, a matriz b, € GLa(A) such that v(bs, by) =
Aal. for some A € A*, for al. = a, if a, € SO(qo)(A) and al, = ar,x if
Qo ¢ SO(qO)(A)
Then we can twist the structure on Cy(qo), given above as components (1)-(7),
to a structure on Cy(q) as schemes and morphisms over A.

PROOF. We need to provide

(1) a cocycle f: G — Aut(Cy(qo)a);
(2) a cocycle g : G — Aut(SO(qo)a);
(3) a cocycle h : G — Aut(SO(qo) 4/)-
Here, Aut(G) denotes the group of scheme automorphisms of the group scheme G.
We also need to prove that the following diagrams commute for all o € G,
which shows that the f,, g, and h, are actually group scheme automorphisms, and
that the g, and h, are compatible:

SO(g0) x SO(q0) 2723 SO(go) x SO(g0)

oo |

SO(qy) ——2=—— SO(qo)

—_—~ —_~

SO(g0) x SO(q0) "% SO(go) x SO(go)

o |

—~ —_—

SO(qo) ——2=—— SO(qo)

SO(g0) % Ca(go) 23 SO(go) x Cal(qo)

o] |

Ca(qo) — Ci(qo)
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— he

SO(g0) — SO(qo)

(7) l l

SO(qo) 2 SO(qo0)
To this end, for all 0 € G, we define the following on R-points:

(1) We set f,(x) = a,z. This trivially satisfies the cocycle condition.

(2) We set g,(m) = ay,ma;". This trivially satisfies the cocycle condition.
bomibst, bymabt) if ay € SO(qo)(A

(3) We set hg(my,ms) z{ Ebqub(;l,bgmlb;l; oo (90)(A)

We still need to prove that h satisfies the cocycle condition. Therefore, note
that the elements of (GLy x GL2)(A) lying above Ay € GO(qo)(A) for A € A* are
exactly of the form (Aulo, %Ig) for some p € A*. Also note that since the a, and
b, are matrices over A, G acts trivially on the f,, g, and h,. Now, take 0,7 € G.
Note that we have (since f is a cocycle and since a, commutes with )

—1
oT
_ -1 -1
= AgUr XX Gy

-1 -1
= aUXa’TX a’a’T

-1
= aJXaTXa’o'T

Iy =agara

and therefore a’ a’al ~! = I, regardless of whether a, and/or a, are in SO(qo)(A)
or not.

We have that

T

Y(bebrbst bybrbsl) = Adldlal,. "t = A,
for some A\ € A*. Therefore, b, b, b, } = pls for some p € A*. Then
hohehgt (m,ma) = (bbbt (bbb 1)~ bobrby ma(bobrbt) ™) = (ma,ma).

Since this holds for all o, 7 € G, h satisfies the cocycle condition.
We then have for all o, the following equalities on R-points, which gives the
commutativity of the diagrams by the Yoneda Lemma:

(4) For all my, ma € SO(qo)(R),
a;lmlaa . a;lmgaa e a;lmlmgag.

(5) For all (my1,ma1), (M1, ma2) € (SLa x SLy)(R), we have, if a, € SO(go)(A4),

(bomaib, b bomarb,t) - (bomiaab, ', bemashy ') = (bomiimisb, ', bymaimasb,t)
and else,

(bomarb, ' bomarb, t) - (bomaosb, !, bomisb, ') = (bomaimasb, ', bymiimiab,t).

(6) We have for all x € Cy(qo)(R) and m € SO(qo)(R),

ac,ma;1 C Qe = QM.
(7) We have for all (mq,m2) € (SLa x SLy)(R) that if a, € SO(go)(A4),
V(o (m1,ma)) = 7(bo, by )y(m1, ma)y (b5 1, b5 1) = agry(ma, ma)ag " = go(v(ma, ma))

and else, noting that xy(mi, ma)x = y(ma, m1),

Y(ho(m1,m2)) = ¥(be, be)y(ma, m1)y(b; ", b, ) = axxy(ma, mi)xa; " = go(y(mi,ms)).
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This concludes the proof. ([
COROLLARY 5.1. For
@ = X1X4+2X2 - 5X,X3 + X2,

we can twist the structure on Cy(qo) to a structure on Cy(q1) as schemes and
morphisms over A =7 [%] .

Proor. Take the ring

A =7~ L\/ﬁ
17’ 2

1
17
{id,o}. We have an isomorphism ¢ : C4(qo) a» — C4(q1)as, given on R-points by
the matrix

Note that we have a Galois covering Spec A’ — Spec (Z[ D with Galois group

1 0 0 0
0 V7 V17 0
vit Uity viin
0 115 — ¥ =67 + 5 0
0 0 0 1
Then we have
1 0 0 0
0o 0 -1 0 1 0
%“=10 _1 0 o and b, = <O _1> € GLo(2Z).
0 0 0 1
Note that a, is defined over Z and commutes with x. The result follows. O

3. Twisting for a generic quadratic form ¢
COROLLARY 5.2. For
q= a1X12 + a2X22 + ang + a4X42

foray,... a4 € Z, we can twist the structure on Cy(qo) to a structure on Cy(q) as

1

schemes and morphisms over A = 7 [27 .
aja2a3aq4

Proor. Take ag = —1 and

1
A’:Z{ ao,...,a%

)
2a1a2a304

for a? = a;, 50 oy = 7. Remember from Section 1| that we have a Galois covering
Spec A’ — Spec A with a Galois group G, with order a power of 2.

Then we have an isomorphism ¢ : Cy(go)a — Ci(q)a given on R-points by
the matrix

= 0 0 0 1 0 0o 1

1fo 2L 0 0 0 1 -1 0

2{0 0o L o 0 -ay -ag O

0 0 0 &/ \—a 0 0
Now, every ¢ € G is determined by its action on the «;: for all j, we have
o(a;) = sja; for some s; € {—1,1} and o is determined by the s, ...,ss. Note
that every combination of sg, ..., s4 gives an element ¢ € G if and only if we have

a; & Qag,...,a;-1) for all 5.
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Then we have

S1 + 8084 0 0 S1 — S0S4
o — 1 0 So2 + 8083 —S9 + S0S3 0
79 0 —89 + 8083 89 + 8083 0
S1 — 80584 0 0 S1 + S0S4

For example, if s; = 1 for all 7, this evaluates to the identity matrix. Note that the
a, are all defined over Z and all commute with x. In the following table, we list
the a,, al, and b, for a set of generators o € G (given by their values of s;).

(50a51752a53754) ‘ Qo ‘ a; ‘ ba
0 0 0 1 0 0 0 1
0 0 -1 0 0 0 -1 0 0 1
(-L.1L,1L1L1) 0 -1 0 0 0 -1 0 0 (—1 0>
1 0 0 0 1 0 0 0
0 0 0 —1 0 0 0 —1
0 1.0 0 0 01 0 0 1
(1,-1,1,1,1) 0 01 0 0 1.0 0 (—1 0>
-1 00 0 -1 0 0 0
1 0 0 0 10 0 0
001 0 010 0 1 0
(1,1,-1,1,1) 010 0 001 0 (o 1)
00 0 1 000 1
1 0 0 0 1 0 0 0
0 0 -1 0 0 -1 0 0 1 0
(1,1,1,-1,1) 0 -1 0 0 0 0 -1 0 (0 —1)
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1
01 0 0 0010 0 1
(1,1,1,1,-1) 001 0 010 0 <1 0)
1 00 0 10 0 0
Since the a, correspond to ¢~ 1(°p), we have for all 0,7 € G that a,a, =

aq+. Now, for all ¢ € G, choose a decomposition o = o105 ...0,, in terms of the
generators given in the table. Then set

by = bo,be, . . bo

"

Then we have

Y(bosbo) = Y(boy 5 boy )V (beys bay) - - - Y(bo,, s bs,) = a0
and the result follows. O

3.1. Glueing twists. In this thesis, we only work with our particular qua-
dratic form, and with generic quadratic forms given by diagonal matrices. However,
in future work it would be interesting to twist the structure over Cy(gg) to a struc-
ture on Cy(q) for ¢ not necessarily given by a diagonal matrix. This would go
roughly as follows:

By Lemma[4.3] if we have a quadratic form ¢ given by a matrix m, we can, for
every prime p # 2, diagonalize ¢ over Z [ﬂ for some a with p 4 a. Then we can
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define Cy(g), SO(g) and SO(q) over Z [572—, 1] as twists of C4(qo), SO(go) and
SO(qo). However, we want to define these over Z [5r—].

To that end, we have to glue these twists together. Glueing schemes and
morphisms is described in Exercise 11.2.12 from [Har77] and step 3 in Theorem
I1.3.3 of [Har77]. To glue schemes {X;} together, one needs to provide opens
U;; € X; and isomorphisms ¢;; : U;; — Uj; for all i # j that satisfy some
compatibility conditions.

So, as mentioned, for all primes p, we can diagonalize m over Z [%} for some

i

a; with p{ a; and then twist with Galois descent datum
(Ca(qo) 4, (fi,o € Aut(Ca(go)a;))oec;)

with A;, = Z {m, ai} and A an extension of A; by a couple of square roots.

This twist is then X; = C4(q)a,-
The opens Uj; to glue along would then be Us; = Cy(q)4,; for Ai; = A; [ },

1

a;
which correspond to the twists given by the Galois descent data
(Calgo)ay;» ((fio)ar, € Aut(Calgo) ay,))occ;)

for (the ‘compositum’) A}, a ring containing A] and A’ such that Spec Aj; —
Spec A;; is a Galois covering.

Note that for all 7 there exists a matrix m; such that for all o, f; , is given on
R-points by mi_l("mi). Define ¢;; = mj_lmi and let gp’ij : C4(qo)a;; — Ca(qo)a,,
be defined on R-points by = +— c;jz. Then, for all o € Gj;, for all A;;-algebras R
and for all x € Cy(qo)(R),

Fi.o (T () = myt (Tmy) (Tm ) (Tma)z = m tmam;  (Tme) = @ (fie (),
so (;; is an (iso)morphism of Galois descent data and induces an (iso)morphism
Now, to get an isomorphism 1;; from V;; := SO(q)4,; € SO(q)a, to Vj; :=

SO(q)a,;, € SO(q)4, that is compatible with ¢;;, one can take, on R-points for
m € SO(qo)a,; (R),

1

Yij(m) = cijmc;jl.
However, to get an isomorphism p;; from W;; := SO(q)AU C SO(q) 4, to Wj; ==

SO(q) 4,, € SO(q) 4, that is compatible with t;;, one needs to lift ¢;; € GL4(A};)
to dij € (GLa x GLg2)(A};) such that y(d;;, d;;j) = Acij for some A € A7, It would
take quite some work to prove that such a d;; actually exists and is defined over A y
or some Galois extension of Agj. Maybe it would be possible to adapt the algorithm
in Lemma[2.6]to work for arbitrary rings, but this is beyond the scope of this thesis.

When we have these isomorphisms, the proof that they indeed yield the desired
structure over C’4(q)Z[m] will probably be similar to Lemma



CHAPTER 6

Apotheosis: The Interesting Case

DEFINITION 6.1. Note that every nondegenerate quadratic form over Q be-
comes equal, after a linear change of basis over R, to

k n
ZXF Z X;.
=1

i=k+1
for some k and n. We call (k,n — k) the signature of this quadratic form.

Let ¢ be a a quadratic form with signature (2,2), for which Lemma or

1
DP1;---5Pn

C4(q) is given by A-schemes and A-morphisms, and over A’ this structure becomes
isomorphic to the structure over Cy(qo). We take S = {p1,...,pn}

EXAMPLE 6.1. This is satisfied by ¢ = ¢1, with A = Z[{=], S = {17} and
fy ::f1[1+gq7}'

Lemma gives aring A =7 [ } and a ring A’ such that the structure on

EXAMPLE 6.2. This is also satisfied by a generic quadratic form
q= a1X12 + a2X22 + ang + a4Xf
which has signature (2,2) (i.e. with exactly two of the a; positive), with

1
} , S={p:p|2aa2asas} and A" = A’ [V/=1,\/ay,...,\/ad] .

2@1&2&3@4

A=1Z [
In this chapter we will prove that C4(q) satisfies strong approximation away
from S U {occ}. To this end, we first prove that S/(—)\_/(q), defined in the previous
chapter, satisfies strong approximation away from infinity, using Theorem 7.12 from
[PR94], transferring some properties from ST)EZ]Z) (which equals SLs x SLs) to
S/O\_/(q)7 via the A’-isomorphisms. After this, we will use a morphism S/O\_/(q) — Cy(q),

together with a proof of surjectivity, to show using Lemma that Cy(q) satisfies
strong approximation away from S U {oo}.

1. Isomorphisms

Note that the definition of C4(q) as a twist of C4(qo) starts with giving an A’-
point of Isom(qg, ¢). This A’ equals A, with some roots of quadratic polynomials
adjoined.

REMARK 6.1. Now, given a field k with characteristic not in S (for example,
k=F,, k=Qor k=Q,), take L = k. For each of the quadratic polynomials f
of which we adjoined a root to A to obtain A’, if f is irreducible over L, replace L
by L[X]/(f), so adjoin a root of f to L. Then k C L is a finite field extension such

45
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that Isom(go,q) has an L-point, since we have a (canonical) morphism A’ — L.
Since the structure on Cy(q) is an A’-twist of the structure on Cy(qp), we have that
after base change to L, these structures become isomorphic.

REMARK 6.2. For any prime p & S, take kK = Q,. Then let L as in remark
and take B = O, the valuation ring of L. Note that Spec B — Spec (Z,,) is flat by
Example 3.3.2 from [Pool17| since B is a subring of a field and therefore torsion
free, and of finite presentation by proposition 23 in [Lan94] and Proposition 5.4.5
in [Gou97]. Therefore, it is fppf, so especially it is fpqc. Since the (/a; are integral
over Z,, we have a (canonical) morphism A" — B and Isom(qo, ¢) has a B-point.

—_—~

2. Strong approximation of SO(q)

In this section, we show that SO(q) satisfies strong approximation away from
infinity, using Theorem 7.12 from [PR94]:

THEOREM 6.1. Let G be a reductive algebraic group, over an algebraic number
field K, and let S be a finite subset of V. Then G has the strong approzimation
property with respect to S if and only if
(1) G is simply connected (in particular, G is semisimple);

(2) G does not contain any K -simple component G* with G compact.

We will prove these properties one by one:

—~

LEMMA 6.1. SO(q)q is reductive.

—_~—

ProoF. SO(q)q, is reductive if and only if its unipotent radical (SO(q)g)unip
is trivial. By Remark there exists a finite field extension Q C L such that

SO(q),, = (SLy x SLa) . By Proposition 5.9.2 from [Pool7], we have

—_~— —_~—

((So(q)Q)unip)L = (So(q)L)unip = ((SLg x SL2)L)unip = (((SLz2 x SL2)Q)unip)L~

(SLg x SLg)g has a faithful semisimple representation, since it is a product of the
simple algebraic group (SLg)g with itself. This makes (SLg x SLy)g into a re-
ductive algebraic group: [Mill7], Corollary 22.20 and Example 22.21. Therefore,

—_—~—

((SO(q)Q)unip)L = (((SLg x SL2)@)unip) . is trivial, and (SO((;{)Q)unip must be trivial
as well so SO(q)q is reductive. O

—~—

LEMMA 6.2. SO(q)q is geometrically simply connected.

PRrROOF. There exists a finite field extension Q C L such that SO(q), =
(SLg x SL3)y,. Simply connectedness is preserved under base extension and de-
scent (Section C.3 in [Pool7]) and because (SLg x SLy)q is reductive and satisfies
strong approximation away from infinity, we know by Theorem that it is iir\nﬁly

connected. Therefore, we have that (SLa x SLo), is simply connected, so SO(q);,

—_~—

is simply connected and therefore SO(g) is simply connected. g

—_~—

LEMMA 6.3. SO(q) has no Q-simple component G with G{.y = G(R) compact.
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PRrOOF. Note that both ¢ and gy have signature (2,2), so they are equal up

—~—

to a change of basis over R. Then, SO(q)p = SO(go)g = (SL2 X SLa)r. Note that
the simple components of (SLg x SLa)g are both (SLa)g. Therefore, any Q-simple

component G of SO(q) has either Gg = (SLy)g or Gr = (SLy x SLy)g.

Note that for all a € R, we have (3 ¢) € SL2(R), so (SL2)r(R) = SL2(R) is
unbounded as a subset of R* and therefore noncompact. Since topological spaces of
R-points of isomorphic schemes are homeomorphic, G(R) = Ggr(R) is noncompact
as well. ([

e~

LEMMA 6.4. SO(q) satisfies strong approximation away from co.

ProoOF. We use [PR94], Theorem 7.12. We conclude the proof by remarking
that we have already shown that

(1) SO(q) is reductive: this is Lemma
(2) SO(q) is simply connected: this is Lemma

—~—F

(3) SO(g) has no Q-simple component G* with G, =
is Lemma

G'(R) compact: this

O

—~—

3. Transitivity of the SO(g)-action

—_~—

We want to prove that SO(g) acts transitively on Z,-points of C4(q) for all
primes p € S.
In this section, we fix such a prime and fix a,b € C4(q)(Z,). We want to show

—_~

that the transporter SO(q), , has a Z,-point.

LEMMA 6.5. Let R be a local ring and let z,y € Cy(qo)(R). Then (SLg x SLa)z
has an R-point.

PROOF. Take R a local ring and z,y € Cy(qo)(R).

Then, by Lemma [3.4] there exist Z,5 € (Cz x C2)(R) such that z is mapped to
x and ¥ to y.

By the transitivity of the SLg-action, we have g € (SLa x SLg)(R) such that
9T = ¥, so by definition of the SLy x SLae-action on Cy(qo), gz = y. |

—_~—

Note that SO(q),, has a right action of SO(g),. In this section, we want to

—_—~

use Lang’s theorem, for which we need to show that SO(g), , is a SO(q),,-torsor.

DEFINITION 6.2. For a smooth algebraic group G over a perfect field k, a G-
torsor is a k-variety X with a right G-action such that X3 = Gy, respecting the
Gr-action.

LEMMA 6.6. For the ring B as in Remark[6.3, we have

(S/(—)\/@)a,b)B = (S/(—)\/((J)G)B = ((SLg x SL2)(1,0,0,0)) B

—~

and the first isomorphism respects the (SO(q),)a-action

PROOF. We have an isomorphism ¢ : C4(q)5 — C4(qo)p and isomorphisms

(SO(q)y ) B = ((SL2 X SL2)y(a),o)) 5 and  (SO(q),)s = ((SL2 x SL2)y(a)) B-
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Note that, by transitivity of the SLy x SLy-action on ring-valued points, (SLa x SL2) 4 (a),e(b)

has a B-point go and therefore SO(q)a,b has a B-point g, which gives an isomor-
phism, given on ring-valued points (for R a B-algebra) as

SO(q), () = 80(q),(R), hw g 'h

a

—~—

and this (trivially) respects the right SO(q),-action.
Furthermore, since B is a local ring, the action of SLy x SLy on Cs is transitive
on B-points. Therefore,

(SO(q),)B = ((SL2 % SL2)y(a))B = ((SL2 X SL2)(1,0,0,0)) B>

with the second isomorphism given on R-points by

m — gilmg

for g € SLa(B) such that g - (1,0,0,0)T = ¢(a). O

—~—

LEMMA 6.7. (SO(q),)z, is smooth over Z, and connected.

P

PROOF. First of all, for the ring B as in Remark [6.2] we have

—_~—

(50(q),)B = ((SL2 x SL2)(1,0,0,0)) B-

There also is an isomorphism of schemes, given on ring-valued points by

(G x A2)(R) 2> (SLa % SLa) 1000 (B), (A i) 1 ((3 A’ﬂ) , (AO 1 K)) .

Therefore, (SO(q),)p = ((SL2 x SL2)(1,0,0,0))B is connected and smooth over B.
Since the image of a connected topological space is connected and the base change by
an fpqc (surjective) morphism gives a surjection of topological spaces (SO(q),)s —

—_~—

(50(q),)z,, connectedness is preserved under fpqgc descent. By Appendix C.1 in
[Pool17], smoothness is also preserved under fpqc descent. Now, since Spec B —

—_~—

Spec (Zy) is fpqc, (SO(q),)z, is connected and smooth over Z,. O

—_~—

LEMMA 6.8. SO(q), ,, has a Zy-point.

e~ e~

PRrOOF. Since (SO(q),)r, is a smooth connected algebraic group and SO(q),, ,
is a SO(g),-torsor, Lang’s Theorem (Theorem 5.12.19 from [P0oo17]) tells us that

—_~—

we have an IF-point g € SO(q),, ,(Fp).

—_~—

Since (SO(q),;)z, is smooth, Hensel’s Lemma (Theorem 3.5.63a from [Poo17])

tells us that the function of sets SO(q),, ,(Zp) — SO(q), ,(Fp) is surjective, so we
have g € SO(q),, ,(Zp) (such that g =g mod p). O

—_~—

COROLLARY 6.1. For alla,b € Cy(q), we have g € SO(q)(Z,) such that g-a = b.

—_~—

Therefore, SO(q)(Zy) acts transitively on Ca(q)(Z,) for allp & S.
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4. Strong approximation of Cy(q)

Now we are finally ready to prove the theorem that we have been working
towards in this thesis.

THEOREM 6.2. Cy(q) satisfies strong approzimation away from S U {oco}.

ProoF. Take U C Cy(q)(Aqg,su{c}) @ nonempty open. Then we have a point
x € U. There exists a € Q* such that a 'a € Ca(q)(Il,¢s Zp)- Then a~lU is also
nonempty open.

We have a morphism f : SO(q) — C4(¢)a, given on ring-valued points by
g+ ¢(1,0,0,0). It is actually the composition of the morphisms

—~—

SO(q) x {(1,0,0,0)} = SO(q) x Ca(q) — Ca(q)-
By Lemma [ is continuous on Ag su{so}-points and by Lemma its
restriction to Hpgs Z,-points is surjective.
Therefore, f 1 (a_le is open, and contains a preimage of a 'z, so it is nonempty.

Since, by Lemma [6.4] SO(q) satisfies strong approximation away from oo, we

have a point y € f~Y(a"tU) N S/a(q/)((@) This gives a point
fly) € a7'U N Cu(g)(Q).

Note that multiplication by a sends Cy(q)(Q) to itself. Therefore, af(y) € U N
C4(¢)(Q), which concludes the proof. O






APPENDIX A

Clifford Algebras

This appendix summarizes the relevant parts of section C.2 from [Con14].

Given a domain R and a quadratic form ¢ € R[X1,...,X,], and defining V =
R™and e; = (0,...,1,...,0) € V the standard generators for V' as a R-module, we
define the Tensor Algebra

TV)=Pre---aV.

n=>0 n times

This is an R-algebra with a Z-grading.

We then define the Clifford algebra C(q,V) to be the quotient of T'(V) by the
relations v @ v = ¢(V) for all v € V. This gives an R-algebra with a Z/2Z-grading.

We have the relations e? = g(e;) and

qle; +ej) = (ei +¢;)* = € + eiej + eje; + €5 = qle;) + eiej + eje; + q(e;),
so e;e; = q(e; + e;) — q(e;) — q(e;) — eje;. Therefore, C(q, V) is generated as an
R-module by elements of T'(V) of degree at most n.

We define Cy(q, V'), the "even” part of C(gq, V), to be the subalgebra of C(q, V),
consisting of elements of degree 0 € Z/27Z. We then define Z, C Cy(q, V) to be the
center of Cy(q, V).

We have a O(q)-action on C(g, V'), which preserves the Z/2Z-grading, so it
preserves Cy(g, V') and therefore Z,. Therefore, we have a group homomorphism
O(q) — Auth/R.

The automorphism group of Z, consists of two elements, so it is isomorphic to
Z/2Z. We therefore have an homomorphism

D, :0(q) = Z/2Z.
If n is even, we define
SO(q) = ker D,,.
We have by Theorem C.2.11 in [Con14] that SO(q) is smooth with connected
fibers.
Now, for n = 2m even and ¢ = — X1 Xop, + XoXom—1 — -+ (-1)" X0 Xont1,
we have for all i and j, €2 = q(e;) = 0 and
(D) —eje; j=n—i
ele]_{ —eje; jEN—I
Define
Vi = (1 — (—1)k2€k€n_k)
and v =[], v
Note that for all ¢ and j with j & {i,n — i}, v} = 1 and v;v; = v;v;. so
2
vi=1.
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We have, for all i, j, that
o { —ev; 1€{jn—j}
vie; = . s .
eiv; i€ {j,n—j}

Therefore, e;v = —ve;, so for all 7 and j, we have e;e;v = veze;, so v € Z.
Now, we define v/ = I_TV € Z,. This results in an expression over Z, so this is also
defined in characteristic 2. We have (v/)? = v'.

We have that Z, = R x R, and is generated as an R-module by 1 € R and v’.

Now, suppose that we have some ¢ € Auty, /g, given by p(v') = by + byv'.
Then we have

bo+b1v' = o((v')?) = o(v')? = b5 + (2bobs + 7))V,
so we have by(bg — 1) = 0 and (2bg + b; — 1)b; = 0. Note that by # 0, since ¢ is an
automorphism. This gives either (b, b1) = (0,1) or (bg,b1) = (1,—1), so p(v') = v’
or p(v)=1-v".

Now, note that in characteristic 2, the constraints by = 1 and by = —1 become
the same, however, the constraints by = 0 and by = 1 stay distinct.
For n = 4, we have ¢ = — XX, + XoX3 and v/ = 2ejeze3eq — e1e4 + e2e3.

Then we have, for g € O(q)(R),

D v = det(q)v'—2 912 G13||931 9g34 Y g31 914 1 |932 413 +1
q(g)( ) (9) 922  9g23| |941 G44 2 941 924 2 942 923 2
We now define SO(qp)(R) to be
912 913|931 934 1 g31 914 1 g32 913 1
€O 2 2({5+ i =3
{g (%) | 922 g23| (941 G44 (2 941 924 ) (2 942 923 > 2}

as a closed subscheme (given by a polynomial equation) of SO(qy).

Note that % is not defined in characteristic 2, but when expanding the equa-
tion, the %,S on the left side cancel with the % on the right hand side and the
multiplication by 2 to give an equation over Z.
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