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Abstract

The well-established ΛCDM cosmological standard model faces severe
challenges, from which one is the question of what the nature of DM is.
It was realized in the mid seventies that the non-trivial vacuum structure
gives rise to a pseudo-Goldstone boson, the axion, that in fact is capable
of solving the DM question very naturally if one finds out the actual ax-
ion mass, ma, that is the only free parameter of the axion theory, that can
only be constrained in way to still leave a vast amount of orders of mag-
nitude to search for it. In this work, I will give a review of the fundamen-
tal theoretical insights that led to the theoretical discovery of the axion,
originating from the strong-CP problem in QCD, and how it fits in the
ΛCDM model, i.e. by investigating the axion as an observer field during
inflation and by discussing different production mechanisms that could
have led to sufficiently large axion populations in the early Universe. Af-
terwards, I will present the gauge-invariant linear cosmological pertur-
bation theory, apply it to axions and in the end, briefly touch upon the
non-linear regime, which is governed by the Schrödinger-Poisson equa-
tion. The work done here is fully devoted to build a strong groundwork
for further investigations with numerical simulations that are part of the
corresponding follow-up work.



To Dr. Jörg Meya - The inspirational man who showed me the beauty of physics
and kindly asked me to always try to make an exciting story out of it.
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Chapter 1
Introduction

The standard cosmological model, the ΛCDM model brings not only a
well-described cosmology, supported by various observations of precision
cosmology and numerical simulations, but also a good amount of open
questions to explore. One of these questions is the search for the nature
of dark matter. Observations show that the vast majority of the Universe’s
matter content is made up of dark matter, which should be cold, stable and
weakly coupled, or, in other words, something that is currently not part of
the standard model of particle physics. However, one fundamental part of
the standard model of particle physics is the quantum chromodynamics,
QCD, which faces the so-called strong-CP problem, whose solution gives
rise to a new particle, the QCD-axion1, that seems to fit the requirements
for a proper DM candidate extraordinarily well. The original QCD-axion
can be generalized in the context of GUTs, like string-theory, to a whole
class of axion-like particles, ALPs. Additionally, ALPs could play an impor-
tant role during inflation, seed the initial density fluctuations that grew
into the large-scale structure we observe today and impacts the cosmolog-
ical constant problem. ALPs even have the chance to give explanations for
the existence of the matter-antimatter asymmetry. They can span a huge
range of masses in theory, where we call ALPs with

10−33 eV ≲ ma ≲ 10−18 eV (1.1)

1Let me note, that the name axion was coined after an American detergent since it is
imagined to clean up nearly all of the cosmological standard model’s problems.[1]
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2 Introduction

ultra-light axions, ULAs, where the lower bound is of the order of the present-
day Hubble constant

mH =
H0

h
≈ 100

km
s ·Mpc

= 2.13 · 10−33 eV (1.2)

and the upper bound is related to the baryon Jeans scale to reflect the dis-
tinctive role of ULAs in structure formation. The results can be tested
against well-established results of precision cosmology, namely the Cos-
mic Microwave Background (CMB), Large-Scale Structure (LSS), galaxy for-
mation in the local universe and at high-redshift and the epoch of reioniza-
tion (EOR), to probe a vast range of masses to constrain the possible axion
masses further. Throughout this work, we often will just use the name ax-
ions, but keep in mind that in fact we are always thinking of it in its most
general sense as a light pseudoscalar field, what will make sense later.

This work is the first of two joint research projects, where in this work
we are going to focus on building a strong framework, in which the nat-
ural existence of axions guides us to more and more fit the idea in the
general, well-established ΛCDM cosmology. We split the investigations in
two parts. The first part, i.e. chapter 2, is fully devoted to a motivation
for and derivation of the existence of the axion as a pseudo-Goldstone bo-
son that acquires its mass fully non-perturbative, that is an observer field
during inflation and that, in general, can be produced via different pro-
duction mechanisms. We will derive the fundamental properties that all
ALPs have in common, consider the implications on what is going to hap-
pen if the PQ-symmetry of the axions is (un)broken during inflation and
decide, based on calculations, which production mechanisms gives rise to
a proper, reasonable ALP population in the early Universe. In the second
part, i.e. chapter 3, we discuss the dynamics of hydrodynamical matter
and scalar matter field perturbations, respectively, and even lift the latter
to a quantum mechanical description that will retroactively give the ini-
tial conditions for the classical treatment. For this purpose, we will follow
the recommendable review article [2] in which starting from GR, the equa-
tions are derived in a gauge-invariant fashion. We then follow the other
recommendable review article [1] for the applications on the axion field,
where we will arrive at the point, that the linear theory we have build up
so far fails and we need non-linear theory in the form of the Schrödinger-
Poisson equation, that gives a good ending point for this and an even bet-
ter starting point for the follow-up research based on the here presented
theoretical groundwork.
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3

If not mentioned otherwise, we work in natural units, i.e. c = h̄ = kB = 1,
and try to convert everything in units of eV, M⊙, pc or K. For Fourier-
transformations we usually transform the coordinates x to k, where the
2π’s are placed below the dk’s. We use the reduced Planck mass mpl ≡
Mpl = (8πG)−1/2, where G is Newton’s gravitational constant and finally,
in flat space, we will work with the mostly positive metric signature, i.e.
ηµν = (−1,+1,+1,+1). New words that are defined or further explained
are written in italic letters.
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Chapter 2
Theoretical description of axions

In this chapter we are going to introduce the idea of axions as the natural
consequence of QCD itself in section 2.1 by describing first the strong-CP
problem and how it is solved directly afterwards. We are then in a position
to distinguish different axion models, where we focus on axion models in-
side the QCD-axion class and use the results to give basic properties to
axion-like particles in general. Then, we consider the axion in the context
of inflation in section 2.2 and distinguish between the axion as a spectator
field or as the field acutally driving inflation. In the end, we are interested
in how cosmic axion populations could have been produced in the early
Universe in section 2.3. Here, we will cover the thermal and non-thermal
production in detail and take a quick glimpse into the production as the
decay product of a heavier parent particle and of a toplogical defect, re-
spectively.

2.1 QCD axions and axion-like particles

2.1.1 The strong-CP problem

In the 1970’s an important problem arose in QCD, namely the strong-CP
problem, which we would like to explore in the following. For a brief re-
view of some important parts of QCD, most importantly the discussion of
the flavour- and chiral-symmetry, respectively, I refer to appendix B.

We start by noting that the QCD-Lagrangian (B.12) is apparently invariant

5



6 Theoretical description of axions

under axial transformations (B.15) if and only if the quark masses vanish.
The corresponding Noether-current, jµ

5 (x), is then given by (B.27)

q(x)→ q′(x) = e−iαγ5
q(x) (2.1)

as was shown in appendix B. For non-vanishing quark masses we now get

∂µ jµ
5 = 2iq̄Mγ5q, (2.2)

where M is the quark mass matrix and since M ̸≡ 0, the current is not
conserved and thus, the axial U(1)A symmetry is not an approximate sym-
metry[3]. Adler[4], Bardeen[5], Bell and Jackiw[6] investigated this prob-
lem by considering one-loop-Feynman diagrams to analyze the divergence
of (2.2), which basically connect two gluon-fields with quarks going in a
triangle-loop[7]. We do not go deeper into the math here, lucky for us,
Adler, Bardeen, Bell and Jackiw already did the job in the above referenced
papers. The main outcome of interest for us is the chiral anomaly1

∂µ jµ
5 = −

N f g2
s

64π2 εµνρσGµν,aGρσ,a = −
N f g2

s

32π2 Gµν,aG̃a
µν ̸= 0, (2.3)

where we introduced the dual gluon field strength tensor G̃ analog to
(C.24). This anomaly should introduce a new term to the QCD Lagrangian
since the action is affected by

δS = α
∫

d4x∂µ jµ
5 = α

N f g2
s

32π2

∫
d4xGµν,aG̃a

µν. (2.4)

Now, one can use the explicit form of G (B.10) to obtain

Gµν,aG̃a
µν = ∂µ

(
εµνρσ Aa

ν

[
Fa

ρσ −
gs

3
f abc Ab

ρ Ac
σ

])
, (2.5)

so that the integral in (2.4) seems to be just a surface integral, for which we
only need a proper boundary condition for it to vanish, so that we recover
the initial U(1)A-symmetry. One could easily say, that Aµ,a = 0, i.e. vac-
uum, at spatial infinity and the integral vanishes as desired[7]. t’Hooft[8]
studied this anomaly as well and discovered that the usually used vacuum
in QCD is more complex than initially assumed. In fact, one can gauge-
rotate the vacuum to reach a new vacuum state in which the anomaly (2.3)
reappears[8]. Hence, U(1)A is no true symmetry of QCD and thus there is

1An anomaly describes the phenomenon that a classical symmetry is broken at quantum
level[1].
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2.1 QCD axions and axion-like particles 7

no pseudo Goldstone boson coming out of the symmetry breaking[3]. The
actual vacuum state we need is the so-called θ-vacuum, which is discussed
in length in appendix C, especially in C.2 and C.4. A major result of us-
ing the proper vacua for this problem is that the QCD-action now gets an
additional term (C.3) corresponding to the Lagrangian

L =
θ

32π2

∫
d4xTr

[
GµνG̃µν

]
, (2.6)

in which the name-giving angle θ enters[7]. This term violates CP symme-
try2 and gives rise to an electric dipole moment, which is constrained to
be[13]

θ · 10−16 · e cm ≈ |dn| ≲ 3 · 10−26e cm, (2.7)

what can be rearranged to give

θ ≲ 3 · 10−10, (2.8)

leaving us with a true fine-tuning problem. Note, that the introduction
of a symmetry-breaking Lagrangian due to the anomaly gives rise to the
picture that anomalies are explicit symmetry breaking effects. Note addi-
tionally, that the in general non-vanishing quark mass matrix complicates
the situation even further because in the electroweak theory, this matrix is
complex in general. To discuss physical processes, we thus need to diago-
nalize it first, which itself is not the big deal, but the used chiral transfor-
mation3 to achieve this introduces an additional term

θQCD = θ + arg[det[M]]. (2.9)

We now need to argue, why the total angle θQCD is extremely small (2.8),
so that the symmetry breaking term (2.6) basically vanishes even though
there is nothing that hinders θQCD from being of order unity, in fact it could
be anywhere in the interval [0, 2π], and additionally there is no argument
that forces the second term of the total angle to cancel the first term. All
these problems together is what we refer to as the strong-CP problem.

2In early papers by Weinberg[9] and Wilczek[10]in 1978 they typically refer to P and T
conservation, but Peccei and Quinn[11] in 1977 already adapted to the CPT-theorem and
simply speak of CP conservation, since this is equivalent to T conservation[12]. We stick
to the latter notation as it comes in handy and to be consistent with literature.

3t’Hooft computed the transition amplitude between the same vacuum states in Eu-
clidean spacetime, i.e. with the path integral formalism we used in appendix C as well
and found that the exponent of the exponential, i.e the considered Lagrangian, is pro-
portional to certain det[M]-terms[8], which is why the additional angle is of the form
(2.9).

7



8 Theoretical description of axions

2.1.2 The natural solution of the strong-CP problem

Let us now try to solve the strong-CP problem that we introduced in the
previous subsection. One can think of different ways to do so, but the
most natural path is by thinking of an additional chiral symmetry that
must be present because it would be able to simply rotate the problem-
atic θ-vacua away. Such a symmetry can either be achieved as we dis-
cussed in appendix B via a massless up-quark for instance, which seems
rather silly since observational data clearly shows non-vanishing quark-
masses in general, or via imposing a new global U(1)-symmetry on the
whole standard model Lagrangian[7]. The latter one was investigated
by Peccei and Quinn[11], who picked up the work of t’Hooft, who orig-
inally discussed ”Euclidean-gauge solitons”[8], which correspond to the
tunneling effect between different QCD-vacua4. He found that the am-
plitude for the tunneling between different vacua vanishes whereas be-
tween the same vacuum states gives rise to terms proportional to the de-
terminant of the quark mass matrix as (2.9). The basic assumption of
Peccei and Quinn is that at least one fermion of the theory acquires its
mass through Yukawa-coupling5, so that the corresponding vacuum ex-
pectation value is nonzero. Then the original Lagrangian should posses a
U(1)PQ-symmetry6. The idea is the following. The strong-CP problem asks
us to minimize the value of θ̄ in order to satisfy the constraint (2.8) or even
better to set θ̄ = 0. A chiral rotation of the form (B.15), i.e. a U(1)-rotation,
adds an additional term to the effective Lagrangian as we discussed in the
previous subsection whilst setting up the strong-CP problem in the first
place. But unlike the original rotation that gave rise to the problem, the
new rotation is supposed to fix the problem. The requirement of at least
one Yukawa-interaction states that we have at least one (pseudo-)scalar
field ϕ in our theory,

L ⊂ ψ̄

[
gYϕ

1
2
(1 + γ5) + g∗Yϕ∗

1
2
(1− γ5)

]
ψ, (2.10)

where gY is the Yukawa-coupling-constant, with nonzero expectation value
⟨ϕ⟩ = λeiβ. The task is now to minimize the potential V(ϕ), which appar-
ently depends on the field itself but also on other parameters like the angle

4Later we see that t’Hooft was already describing the so-called instantons.
5Recall, that we speak of couplings between two fermions and one scalar as Yukawa-
couplings or Yukawa-interactions. Instead of the scalar one can consider a pseudoscalar by
multiplying the scalar field with γ5 as usual[3].

6The subscript PQ refers to Peccei-Quinn as we will later on always speak of the PQ-
symmetry. Of course, in their original work they just spoke of a U(1)-symmetry.

8



2.1 QCD axions and axion-like particles 9

θ̄ = θ + β, for which one finds β = 0 to be the minimum of V(ϕ). The cor-
responding fermion mass term then reads

λψ̄

[
gYeiβ 1

2
(1 + γ5) + g∗Ye−iβ 1

2
(1− γ5)

]
ψ. (2.11)

In order to make this mass term real again, we simply perform the new
U(1)PQ-rotation exp{iγ5θ} for β = −θ, what then gives

θ̄ = θ + β = θ − θ = 0 (2.12)

as the total angle appearing in the Lagrangian (2.9). For each fermion con-
figuration with different βi it is possible to redo the calculation. The con-
dition β = −θ then alters to

arg

[
∏

i
(gY,i exp{iβi}) exp{iθ}

]
= 0, (2.13)

so that each fermion mass needs to be made real by a U(1)PQ-transformation,
which then results in

∑
i

βi = −θ, (2.14)

so that the U(1)-symmetry dynamically sets θ̄ to zero and hence, solves
the strong-CP problem and restores CP-invariance[11]. From now on, we
will denote by PQ-symmetry the U(1)PQ-symmetry in honor of this break-
through and to be consistent with the literature. One should highlight at
this point, that the PQ-solution of the strong-CP problem is in fact a very
natural feature of QCD since the only assumption made is, that at least one
fermion is acquiring mass through Yukawa-coupling which originally was
designed to describe strong interactions. Note, that above, we found that
ϕ actually is a pseudoparticle due to the γ5 factor. Shortly after presenting
the PQ-solution, Peccei and Quinn extended their discussion to the inclu-
sion of electroweak interactions and found that the solution is still valid
and a natural feature of QCD[14].

Now, that we have seen how to solve the strong-CP problem, we would
like to go back to what has started the necessity of this discussion in first
place, namely the instantons that correspond to the transition between θ-
vacuum states, first described by t’Hooft[8]. We have discussed the most
important properties of θ-vacua and instantons in appendix C. However,
the transition between vacua is a non-perturbative effect, which is crucial

9



10 Theoretical description of axions

for instanton effects as we will see later. The idea is that since we already
saw in the PQ-solution, there is a new pseudoscalar field ϕ that dynam-
ically sets θQCD = 0, i.e. it couples to the GG̃-term in (2.6), so one can
simply take

θQCD = C
ϕ

fa
, (2.15)

where the constant of proportionality, C, describes the color anomaly, that
we describe late, ϕ is the canonically normalized axion field and fa is the
axion decay constant. Finally, we arrived at the axion entering our theory.
Note, that shortly after Pecceis and Quinns publication, Weinberg[9] and
Wilczek[10] already theorized the axion-implication of the PQ-solution.
Since QCD naturally introduces the axion to us, we would like to call it
the QCD-axion to distinguish it from other axions we discuss in the next
subsection.

In order to keep the property of setting θQCD = 0 dynamically we de-
mand that ϕ has a shift-symmetry, ϕ → ϕ + const., and only derivatives
of the axion field appear in the action. The shift-symmetry is a crucial
property of the instanton, which is protected to all orders in perturbation
theory since instanton-effects are purely non-perturbative and all possible
quantum corrections will be suppressed by powers of fa[1]. This ensures
that contributions to θQCD can be absorbed by the axion field via the shift-
symmetry, so that the action and the potential induced by the instanton-
effects solely depend on the overall axion field. Let us make this clear by
an example. The vacuum energy Evac depends on θQCD

Evac ∼ cos θQCD ∼ θ2
QCD, (2.16)

which was shown by t’Hooft[8] or see (C.5) and the derivation of that
property in appendix C.4. Since the θ-vacua are topologically distinct, the
transition between different vacua is forbidden[8], which leads to the so-
called superselection rule for θ-vacua

⟨θ|anything|θ′⟩ = δθθ′ (2.17)

and the fact that such a process cannot minimize the vacuum energy. After
introducing the axion field, the vacuum energy is now

Evac

(
θQCD + NDW

ϕ

fa

)
, (2.18)

10



2.1 QCD axions and axion-like particles 11

but due to the shift-symmetry we can absorb θQCD in the field to get

Evac

(
NDW

ϕ

fa

)
(2.19)

and since ϕ is a dynamical field, the vacuum energy can be minimized[1].

That the shift-symmetry is protected from quantum corrections can be
rewritten as the fact that quantum effects break violate the classical sym-
metry, which is just the definition of an anomaly. Say, we call QPQ the
PQ-charge, so that a PQ-rotation is given by

xi → x′i = exp
{

iQPQ,i
ϕ

fa

}
xi, (2.20)

where xi is a field with PQ-charge QPQ,i, then the color anomaly, C, is given
by

Cδab = 2Tr
[
QPQTaTb

]
, (2.21)

where the trace goes over all fermions in the theory and Ta,b are the gen-
erators of the SU(3)-representation of the fermions (see (B.7) and the text
thereafter). The color anomaly sets the number of vacua that ϕ has in the
range [0, 2π fa] and according to the shift-symmetry of ϕ we get ϕ → ϕ +
2π fa and since ϕ is an angular variable we have C ∈ Z[1]. Srednicki[15]
showed that this is in fact always achievable. Due to this property of the
color anomaly we rename it for later purposes already to being the domain
wall number[1], NDW ≡ C.

From [11] we already know that there are interaction terms between the
axion- and quark-fields, so that we are able to compute a mass for the
axion, ma, since after QCD-confinement at T ∼ ΛQCD, we can effectively
replace the q̄q-terms by their vacuum expectation values ⟨q̄q⟩. By simply
assuming fa to be large, so that ma is going to be small, we can consider
only up- and down-quarks and note, that under this assumption

cos
(

NDW
ϕ

fa

)
∼ (mu + md)⟨q̄q⟩

f 2
a

= m2
π

f 2
π

f 2
a

, (2.22)

where mπ is the pion mass and fπ is the pion decay constant, holds. In the
end we get the renormalized axion mass

ma =
m2

π f 2
π(

fa
NDW

)2
mumd

(mu + md)2

[
1 +

m2
π

m2
η

[
−1 +O

(
1− mπ

mη

)]]
. (2.23)

11



12 Theoretical description of axions

Note, that if mπ = mη the quantum effects cancel and the axion would
be massless, which is why one is led to say that the instantons, whose
non-perturbative effects achieve mπ < mη, give mass to the axions for
T < ΛQCD[1]. Wilczek mentioned that the axion seems to acquire mass
through processes in which two instantons interact with each other, where
one instanton splits in a pair of left- and right-handed up-quarks whilst the
other instanton splits in a pair of left- and right-handed down-quarks, so
that the four quarks can effectively interact at a four fermion-vertex[10].
By plugging in numbers for the known meson masses and fπ we get to
first order[1]

ma,QCD ≈ 6 · 10−6 eV ·

1012 GeV
fa

NDW

 . (2.24)

Further, for T < ΛQCD these instanton effects break the shift symmetry of
the axion explicitly to a discrete symmetry,

ϕ→ ϕ + 2π
fa

NDW
, (2.25)

which agrees to our earlier findings that the color anomaly is an integer.
This symmetry breaking implies the QCD-axion potential7

V(ϕ) = muΛ3
QCD

[
1− cos

(
NDW

ϕ

fa

)]
(2.26)

induced by the instantons[1], where the cosine potential comes from Evac,
see appendix C.4, and is already shifted, so that the potential is minimized
at ϕ = 0 as we need to solve the strong-CP problem. If one considers SU(2)
in the electroweak theory (short: EWT), one finds electroweak instantons
as well since the weak force breaks the CP-symmetry and the electroweak
instantons also lead to a shift of the minimum of the axion potential, which
has to be corrected for by the PQ-symmetry[14]. As we have shown in de-
tail in appendix C, the instanton action for a gauge group G with coupling
constant gi is (C.4)

Sinst. =
8π2

g2
i

, (2.27)

with which one can set the prefactor of the axion potential since (C.5)

Vi(θ) ∼ cos(θ) exp{−Sinst.(gi)} (2.28)

7Note, that for a generic ALP the potential reads V(ϕ) = Λ4
a

[
1± cos

(
NDW

ϕ
fa

)]
, where

it is typical to choose the minus sign in order to set ϕ = 0 as the potential minimum[1].

12



2.1 QCD axions and axion-like particles 13

holds. By comparing the coupling constants of QCD and the EWT, one
finds immediately that, for instance, the W-boson potential only weakly
breaks CP-invariance compared to QCD, so we can safely neglect the EW-
effects for our considerations[16]. For further discussions of the implica-
tions of instantons I like to refer to the early papers of Peccei and Quinn[17]
and t’Hooft[18] that reviewed this topic in detail. For the general notion of
instantons and their basic properties that are relevant for this work, I refer
to appendix C.

Let us highlight the link (2.24) between the axion-mass, ma, and the ax-
ion decay constant, fa. If fa is sufficiently large, the axion mass is suf-
ficiently small or, in other words, the QCD-axion is extremely light and
stable. Thus, the QCD-axion fulfills the first properties we discussed in
appendix A in order to be an appropriate DM candidate. Note, that the
axion comes out naturally of QCD with the possibility of having suitable
properties. So even though the standard model of particle physics is not
offering us the correct DM particle directly, there is a chance that it is just
hidden under the cover of QCD.

2.1.3 QCD-axion models and ALPs in general

The QCD-axion we introduced in the previous subsection can be described
in different ways. In fact, string theory teaches us that there is a whole class
of particles, Axion-Like Particles or ALPs for short, that fulfill the require-
ments to be called an axion. Through different theoretical descriptions one
gets different implications of the behavior of the considered ALP, which
we will discuss in the subsequent sections. Thus, a careful distinguishe-
ment between the most-relevant ALPs is necessary. Now, we would like
to describe three differen QCD-axions. We start by describing the PQWW-
axion as the natural continuation of the historical story we told in the pre-
vious subsection, even though it will turn out that the PQWW-axion is
ruled out by experiment. We then continue with KSVZ- and the DFSZ-
axion, which will be important throughout the rest of this work. If not
stated otherwise, I will follow closely the presentation of Marsh[1].

Let us start with the Peccei-Quinn-Weinberg-Wilczek-axion. A single ad-
ditional complex scalar field φ is introduced to the standard model as a
second Higgs doublet, so that one Higgs field gives mass to the u-type
quarks, namely the up-, charm- and top-quark, whereas the second Higgs

13



14 Theoretical description of axions

field gives mass to the d-type quarks, namely the down-, strange- and
bottom-quark. This fixes the representation of φ in the SU(2)⊗U(1) sym-
metry group and the whole Lagrangian is then taken to be invariant under
a global PQ-symmetry, which shift the angular part of φ by a constant, as
we discussed in the previous subsection. The PQ-field couples, as dis-
cussed, via Yukawa-interactions to the standard model particles to give
mass to the fermions as in the usual Higgs mechanism with the potential

V(φ) = λ

(
|φ|2 − f 2

a
2

)2

. (2.29)

The potential takes the vacuum expectation value ⟨φ⟩ = fa/
√

2 at the EW
phase transition, which fixes the symmetry breaking scale fa ≈ 250 GeV.
After the symmetry breaking, there are four real, electromagnetic (short:
EM) neutral scalars left, i.e. one that gives mass to the Z-boson, one is the
standard model Higgs boson, one heavy radial φ field and one angular
φ field. The angular degree of freedom appears as ⟨φ⟩eiϕ/ fa after canoni-
cally normalizing the kinetic term and ϕ manifests itself as the Goldstone
boson of the spontaneously broken PQ-symmetry. Due to the global PQ-
invariance, the PQ-charges of the fermions are fixed. By expanding in
powers of f−1

a one get quark couplings of the form

mq
ϕ

fa
iq̄γ5q (2.30)

and the chiral anomaly induces couplings to the gauge bosons via fermion
loops, which is a result of effective field theory since the fermion loops are
integrated out for low-energy processes. We will come back to this with
somewhat more detail at the KSVZ-axion. However, the couplings to the
gauge bosons are of the form ϕ

fa
GG̃ for the strong interaction and like-

wise ϕ
fa

FF̃ for the EM interaction. Obviously, we seek for the gluon-term
in order to solve the strong-CP problem. Note, that all axion couplings
are suppressed by the symmetry-breaking scale fa, which in the PQWW-
model is fixed to the EW vacuum expectation value, which is too small,
i.e. the couplings are too large and the PQWW-axion is thus excluded by
experiment, see for instance the constraints on the couplings coming from
collider experiments presented in[19].

Let us now turn to the Kim-Shifman-Vainshtein-Zakharov-axion. A heavy
quark doublet, QL, QR ∈SU(3), is introduced. The PQ scalar field field
φ has charge 2 under chiral rotations and is now a standard model sin-

14



2.1 QCD axions and axion-like particles 15

glet, which interacts with heavy quarks via the PQ-invariant Yukawa-
Lagrangian

LY = −λQ φQ̄LQR + h.c., (2.31)

which provides the quark masses, where λQ is a free parameter. Now,
as in the PQWW-model, there is a global PQ-symmetry, which is sponta-
neously broken and produces the potential (2.29). At the classical level,
the Lagrangian is still unaffected by the chiral rotations and φ is thus, not
yet coupled to the standard model. However, at the quantum level, chiral
rotations on Q affect the gluon-term via the chiral anomaly, in which the
KSVZ model sets NDW = 1. At low energies, after PQ-symmetry breaking,
φ can be replaced by its vacuum expectation value and the Q-fields obtain
a large mass

mQ ∼ λQ fa, (2.32)

since fa is thought to be very large. Let us now come back shortly to the
basic idea of effective field theory, that at low energies q we can replace a
fundamental by an effective action by integrating out fields with masses
bigger than the considered energy, m > q. A typical example is the muon
decay in the EWT. The action for this process contains a term

ig2Wµ l̄iγµνi + h.c., (2.33)

where g2 is the EW coupling, li is the charged lepton field, νi are the neu-
trinos and Wµ is a charged W-boson with mW = 80.4 GeV. At small mo-
mentum transfer, we have q2 ≪ m2

W and the original W-boson propaga-
tor, which is proportional to (q2 + m2

W)−1, can be replaced by an effective
four-fermion interaction, which is proportional g2

2/m2
W . Hence, after in-

troducing the Fermi interaction constant

GF =

√
2

8
g2

2
m2

W
(2.34)

one obtains the effective action, that now contains a term

GF(ēνe)(ν̄µµ) + h.c, (2.35)

that describes the mentioned four-fermion interaction. Likewise we can
consider a KSVZ axion that acts with two gluons, see the left-hand side
of figure 2.1. The virtual quarks then induce an effective action between
the axion field ϕ and the two gluon fields g at loop-level, so that at low
momentum-transfer, i.e. for q2 ≪ m2

Q, the heavy quarks can be integrated
out and the effective action now contains a term

ϕ

32π2 fa
GG̃. (2.36)

15



16 Theoretical description of axions

Figure 2.1: Left:Fundamental interaction between an axion, a with two gluons, g,
via a massive quark-loop, where from the fundamental Lagrangian one can use
the vertices aqq and gqq. We assume that all quarks in the loop have the momen-
tum pµ. Right: Effective interaction between an axion, a with two gluons, g. The
quark-loop was integrated out, so that one is left with an effective interaction ver-
tex agg in the effective Lagrangian. Note, that the vertex is giving a factor f−1

a [1].

Note, that for the KSVZ-axion we have already set NDW = 1. Hence,
the effective coupling, see the right-hand side of fig.2.1, is f−1

a . Back to
our description of the KSVZ-axion, we note that the induced topological
term, i.e. the interaction between the gluons and the axion, is the only
additional term to the standard model Lagrangian and that there are no
unsuppresed tree-level8 couplings to standard model matter fields. There
is an axion-photon coupling that gives an EM anomaly that depends on
the EM-charges of the quark-fields. Later we will see how other couplings
can be induced by loops and mixing.

Next, we would like to describe the Dine-Fischler-Srednicki-Zhitnitsky-
axion. It couples to the standard model via the Higgs sector and contains
two Higgs doublets, Hu, Hd, just like in the PQWW-model, but φ is, unlike
in the PQWW-model, a standard model singlet. Again, we impose a global
PQ-symmetry, which is spontaneously broken, so that we get the potential
(2.29). Now, the PQ- and the Higgs-fields interact via the scalar potential

V = λH φ2HuHd, (2.37)

which is PQ-invariant if φ has PQ-charge +1 and the Higgs fields carry
PQ-charge−1 each. After PQ-symmetry breaking, φ can again be replaced
by its vacuum expectation value, but now the parameters in (2.29) and λH

8Recall, that connected Feynman graphs without loops are called tree-graphs and the cor-
responding order of perturbation theory is called the tree-level[20].
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2.1 QCD axions and axion-like particles 17

must be chosen so that for the Higgs field remains consistent with the
observed standard model mass of mH = 125 GeV and the EW vacuum
expectation value

vEW =
√
⟨Hu⟩2 + ⟨Hd⟩2. (2.38)

The Higgs field must also couple to all the standard model fermions to pro-
vide their masses through Yukawa couplings and in order for these cou-
plings to be PQ-invariant, the standard model fermions must carry proper
PQ-charges. After symmetry breaking also the Higgs fields are replaced
by their vacuum expectation values, which induce axial current couplings
between the axion and the standard model fermions from well-known
terms like (2.30). These currents induce the coupling between the axion
and the gluons again via the color anomaly. Unlike in the KSVZ-model,
all standard model quarks carry PQ-charges, so that the color anomaly is
NDW = 6. Following the same steps as in the KSVZ-model we can con-
sider processes as the one in figure 2.1, but unlike in the KSVZ-model,
where we integrated out heavy quark fields, we now integrate out light
quark fields giving the same interaction as before. Note, that unlike in the
KSVZ-model, in the DFSZ model we find tree-level couplings between the
axion and the standard model fermions.

As stated in the beginning of this subsection, there are many more de-
scriptions of ALPs. All of them have several properties in common, which
we like to summarize now. First, the classical action has a global PQ-
symmetry. Second, the spontaneous symmetry breaking scale fa leads
to an angular degree of freedom, ϕ/ fa, that contains a shift-symmetry.
Third, the PQ-symmetry is anomalous and thus, explicitly broken at quan-
tum quantum effects by non-perturbative instanton-effects that protect the
classical shift-symmetry. Fourth, the protected shift-symmetry, ϕ → ϕ +
2nπ fa with n ∈ Z, manifests the axion as a pseudo-Golstone-boson, that
obtains a periodic potential V(ϕ/ fa), when the non-perturbative quantum
effects switch on at some scale Λa. The same effects induce the axion mass,
which is proportional to Λ2

a/ fa.

Let us briefly discuss the couplings of ALPs to the standard model. First of
all, we define the QCD-axion to be coupled to GG̃ with coupling strength
unity due to the replacement (2.15). Since the axion is a pseudo-Goldstone
boson, the coupling to fermions must be of the form (B.27) and since is
has a shift-symmetry, only derivatives of the axion field are allowed in the
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18 Theoretical description of axions

coupling, so in order to couple to fermions, we get terms of the form

∂µ

(
ϕ

fa

)
(ψ̄γµγ5ψ). (2.39)

An important consequence of these couplings is that the mediated force is
spin-dependent and thus, the axion does not mediate long-range scalar
forces between macroscopic objects[1]. One can show, that for an EM
anomaly, there is also a coupling to EM

ϕE⃗ · B⃗ = −ϕ

4
Fµν F̃µν, (2.40)

what we do not want to derive in more detail[1]. However, with these
couplings at hand, the general interaction Lagrangian reads

Lint = −
gϕγγ

4
ϕFµν F̃µν +

gϕNN

2mN
∂µϕ(N̄γµγ5N) +

gϕee

2me
∂µϕ(ēγµγ5e)

gϕNNγ

4
ϕ(N̄[γµ, γν]γ5N)Fµν, (2.41)

where N is a nucleon. A dimensional analysis shows that all four coupling
constants in the above interaction Lagrangian are either dimensionful or
dimensionless but related to dimensionful constants, so that in the end
all of them are suppressed by f−1

a [1], what explains the weak coupling of
axions to standard model particles, since we assume fa to be large.

2.2 Axions in inflation theory

As we saw previously, for the existence of the axion, the breaking of the
PQ-symmetry is crucial. Since, we assume that ALPs are generated in
the early Universe in order to properly account for structure formation,
what we discuss in more detail in the next chapter, we are forced to con-
sider the axion in the context of inflation, which is theorized to take part
in the radiation-dominated epoch, and thus, in the early Universe. One
distinguishes between the axion field that is just being influenced by in-
flation and the axion field that is actually driving inflation. We now want
to briefly discuss both cases. For a brief review of basic inflation theory, I
refer to appendix E and to the references therein for way more details.

First of all, we start with the Universe’s temperature during inflation,
which is set by the Gibbson-Hawking temperature

TI =
HI

2π
, (2.42)

18



2.2 Axions in inflation theory 19

where HI is the inflationary Hubble scale[1]. The basic idea of Gibbson
and Hawking goes as follows[21]. One can fully describe a black hole
(short: BH) by its mass, M, angular momentum, J, and charge, Q. For
given parameter set (M, J, Q) a certain BH can have an infinite amount of
internal configurations that represent the different possible initial condi-
tions the body that collapsed to the BH fulfilled because from a classical
point of view, the collapsed body could have been made out of an infinite
amount of particles with arbitrary small mass. Seen from quantum me-
chanics, in order to have a gravitational collapse, the energies of the parti-
cles would have been restricted by the requirement that their wavelengths
have to be smaller than the size of the black hole, so it seems reasonable
to say that the number of configurations have to be finite. This in turn
means that one can define an entropy S ∼ log(number of configurations)
for the BH and this then leads naturally to an associated temperature

T = G2
[(

∂S
∂M

)
J,Q

]−1

to the BH, which gives rise to thermal radiation[21].

Gibbson and Hawking discuss this effect then for various cases, eventu-
ally leading to (2.42) as the radiation emitted from the de-Sitter horizon[1].
See [21] for details. However, one can map the inflationary Hubble scale,
HI , to measurable parameters[1]

HI

2π
= Mpl

√
AsrT

8
, (2.43)

where As is the scalar amplitude and rT is the tensor-to-scalar ratio9. Since
rT < 0.032, see [22], we know that cosmological fluctuations are domi-
nantly scalar and since

√
As ∼ 10−5 we can assume that they are adiabatic.

We will dig deeper in the evolution of cosmological perturbations in the
next chapter. However, this little groundwork was necessary, so that we
can distinguish between fa < TI , for which the PQ-symmetry is unbroken
during inflation, and fa > TI , for which the PQ-symmetry is broken dur-
ing inflation[1]. Let us discuss both cases briefly in the following.

Let us start with the unbroken, fa < TI , case. This basically means that
during inflation, when the PQ-symmetry is not broken, the vacuum ex-

9Both, the scalar amplitude, As, and the scalar spectral index, ns, are parameters result-
ing from power spectra measurements. Their corresponding tensor pendants, At and nt
are set by inflation in order to fit the observations. The tensor-to-scalar ratio is then, as
the name suggests, defined as rT := At/As and strongly constrained by CMB measure-
ments as described in [22] for instance. They show that the current, very small, upper
limit rT < 0.032 can be achieved at a 95% confidence level. See [22] for details.
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20 Theoretical description of axions

pectation value of ϕ is zero and it is only after inflation, when TI drops
below fa that the symmetry breaks. Consider the Universe to be made out
of several patches, then patches that are not in causal contact with each
other, will pick a random θ = ϕ/ fa value. There is no preferred θ at this
point because fa is larger than the scale of non-perturbative effects and it
requires fa to drop below that scale so that these effects can switch on in
order to employ a potential on the axion field, so that it can acquire mass.
Since this is not the case, there is no potential and thus, [−π,+π] is a uni-
form distribution from which one draws θ randomly. Thus, the average

⟨θ2
i ⟩ = π2/3 (2.44)

is fixed[1]. The subscript i just denotes the different patches we mentioned
above. We will see later in subsection 2.3.2 that one can compute a relic ax-
ion density out of this phenomenon for QCD-axions10. Additionally, the
global symmetry breaking we just mentioned gives rise to topological de-
fects, that are the initial condition for the production mechanism briefly
discussed in subsection 2.3.3.

Now, let us turn to the broken, fa > TI , case11. Basically, we can start with
the same processes, namely that the PQ symmetry breaks and gives sev-
eral patches with different θ-values. The crucial difference to the previous
case is now, that since this symmetry breaking happens during the era of
inflation, each patch is expanded rapidly, so that in the end all patches are
in causal contact an thus, we have one single value of θ ∈ [−π,+π]. Since
θ can be any value in this interval, we can regard θ as a free parameter un-
like in the unbroken case. Even though we will discuss cosmological per-
turbations later, let me add, that this case also sources inflationary isocur-
vature fluctuations, δϕ = TI , which react with the initial field displace-
ment, ϕi, what sets a minimum value to the otherwise free θ-parameter[1]
due to

⟨ϕ2
i ⟩ = ϕ2

i + ⟨δϕ2⟩ = f 2
a θ2

i + T2
I
(2.42)
= f 2

a θ2
i +

(
HI

2π

)2

, (2.45)

10We explicitly refer to QCD-axions since they typically have fa values of order 1012 GeV,
which fit to the bound set by TI[1]. The so called ADMX-experiment[23] was designed
specifically for QCD-axions in this mass range. The recent results[24] show that at 90%
confidence level, QCD-axions in the mass range of (65.5− 69.3) µeV can be excluded.

11Note, that this, unlike the unbroken case, now allows for very high values of fa ∼
1016 GeV in order to describe general ALPs. This will play an important role later in
subsection 2.3.2.
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2.2 Axions in inflation theory 21

what will become clearer later.

Let us now turn to the other case of the axion field driving inflation. In ap-
pendix E the slow-roll parameters of slow-roll inflation were defined that
basically say that the inflation potential must be very close to being flat
and very shallow. Recall that the axions have a shift-symmetry that pro-
tects their potential from all quantum corrections, so the properties of the
potential should be preserved. Hence, one could consider the axion field
as the ϕ field from appendix E that drives inflation, but since this field is
supposed to decay at a certain point, we can exclude the QCD-axion since
we have theorized it to be stable, or at least long-lived compared to the
age of the Universe. In fact, if axions are supposed to compose DM, they
cannot drive inflation simultaneously[1]. There are several models that
try to explain inflation using the axion field. Let us very quickly go over
them in the way Marsh[1] did as we will focus on ALPs as DM candidates.
Please refer to the references therein for detailed discussions of the specific
models mentioned.

The simplest model of axion-driven inflation is the so-called natural infla-
tion, where the usual axion potential with NDW = 1,

V(ϕ) = Λ4
a

[
1± cos

(
ϕ

fa

)]
, (2.46)

is used. Originally, Λa ∼ mGUT and fa ∼ Mpl are used, what is exactly
what Lyth[25] required for inflation to produce observable values of rT,
namely rT ≳ 10−2. In the context of quantum gravity, one can argue that
fa ≳ Mpl is technically forbidden, so that one has to enter the string-theory
sector with fa < Mpl. Typically, to this bound corresponding models, like
axion monodromy, do not produce power-law initial power spectra, so one
considers assisted inflation that indeed do so. In this model one considers
a collection of coupled fields. The friction between them due to Hubble
expansion adds an additional damping term in the equations that effec-
tively slows the collective motion of the fields down in order to satisfy the
slow-roll conditions. In the context of axion fields one speaks of N-flation
with N identical potentials of the form (2.46). In addition to such a collec-
tive behavior the Kim-Nilles-Peloso model allows for rotation between the
fields. Even more models were reviewed in [26].
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22 Theoretical description of axions

2.3 Production mechanisms

Now that we argued for the existence of the axion, let us turn to the ques-
tion how cosmic populations of axions are produced. One can think of
initially producing these axion populations in different ways, from which
we like to discuss the thermal production (see subsection 2.3.1) and the
production via misalignment (see subsection 2.3.2) in detail in the follow-
ing and just briefly think of the axion as the decay product of a heavier
parent particle or as the decay product of a toplogical defect (for both see
subsection 2.3.3).

2.3.1 Thermal production

Let us assume that in the early Universe, axions are in thermal contact
with the standard model radiation, so by the same mechanisms to pro-
duce relic neutrino or WIMP12 abundances. A generic ALP13 couples, in
general, more weakly to the standard model particles than the QCD axion,
which is the only class of axion models in which the coupling to standard
model particles is really specified[1]. However, let us consider different
production channels. Baiscally, by considering the effective interaction La-
grangian presented in [28]

Lint = i
gaNN

mN
∂µa(N̄γµγ5N) + i

gaee

2me
∂µa(ēγµγ5e) + gaγγaE⃗ · B⃗ (2.47)

we can construct different processes. First of all, there are Bremsstrahlung-
processes like

e− + e− ↔ a + e− + e− or N + π ↔ N + a, (2.48)

where N is a nucleon and in general N = π is allowed, so processes of
the form a + 1 + 2 ↔ 3 + 4 and a + 1 ↔ 2 + 3. Second, we can consider
Primarkoff-production

γ + Q↔ Q + a, (2.49)

where Q is a quark and third, there is Compton-scattering

e− + γ↔ e− + a or e− ↔ e− + a, (2.50)
12WIMP is short for weaky-interacting massive particle, which is like the axion just another

dark matter candidate. So far the only detected WIMP, the massive neutrino, is not
sufficient to dominate the dark matter energy density we observe in today’s Universe,
but there is an ongoing effort to search (in-)directly for WIMPs, what is presented for
example in [27].

13In this subsection we denote an axion by a instead of ϕ to make its appearance in reac-
tions clear.
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2.3 Production mechanisms 23

where the latter two processes are of the form a + 1 ↔ 2 + 3 again. Pro-
cesses of the form a + 1 + 2 ↔ 3 + 4 and a + 1 ↔ 2 are ruled out by
experiment[28]. So we are left with processes of the form a + 1 ↔ 2 + 3,
what we can use to compute the thermal axion abundance, na. The result-
ing abundance relative to the thermal photon abundance is given by

na

nγ
=

1
2

g∗,s(TCMB,0)

g∗,s(Ta
dec)

, (2.51)

what is derived in full detail in appendix D. Using the same notation, one
can consider for example axion-pion conversion with nucleons that exist
after QCD phase transition at roughly 200 MeV and are non-relativistic
with

nN ≈ (mT)
3
2 e−x. (2.52)

Further the absorption cross-section is given by

⟨σ|v|⟩abs ∼
m2

N(
fPQ
N

)2

(
T

mN

)2

m−2
π , (2.53)

where we used gaNN ≈ mN/( fPQ/N). The axion absorption rate is

Γabs = mN⟨σ|v|⟩abs ∼
T3

m2
π

 mN(
fPQ
N

)
2

x−
1
2 exp(−x), (2.54)

so that the usual ansatz Γ ∼ H yields

Γabs

H
∼
( ma

10−4 eV

)2
x−

3
2 exp(−x). (2.55)

For high temperatures, there are no nucleons available and for low tem-
peratures Γabs/H cuts off exponentially. However, for high temperatures
we can consider photo-/gluon-production in the quark-gluon plasma if
the quark species Q is relativistic. Then,

⟨σ|v|⟩abs ∼
α

T2

 mQ(
fPQ
N

)
2

⇒ Γabs ∼ αT

 mQ(
fPQ
N

)
2

(2.56)

⇒ Γabs

H
∼ x

( mQ

1 GeV

)2 ( ma

0.1 eV

)2
, (2.57)
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which is valid for T ≳ mQ. The maximum value is obtained at quark-
hadron phase transition, so to estimate the relic abundance of thermal
axions we can simply integrate from the quark-hadron phase transition
onwards to get

Y∞ =
0.278
g∗,s

1− exp

−
( ma

10−4 eV

)2 exp{−xqh}

x
5
2
qh


 , (2.58)

where we approximated∫ ∞

xqh

exp(−x)x−
5
2 ≈

exp{−xqh}

x
5
2
qh

(2.59)

and xqh = mN/Tqh, where the subscript stands for quark-hadron. With
these equations at hand we get

ma
!
≳ 10−3 − 10−2 eV. (2.60)

For ma ≲ 10−3 eV they interact too weakly to ever get produced. From this
we can get

na = s0Y∞ ≈ 83cm−3 10
g∗,s

and Ωthh2 =
ma

130 eV
10
g∗,s

. (2.61)

Using Ωthh2
!
≲ 0.12 from observations, h = 0.7 and g∗,s = 17.25 after QCD

phase transition, we get

0.12 ≳ Ωthh2 =
ma

130 eV
10
g∗,s
⇒ ma ≲ 26.91 eV, (2.62)

so that our considered light axion can only give a fraction of todays ob-
served DM density unless they are in the range of the upper bound[28].
Additionally, we should note, that in order to derive (2.51) we assumed
that the axions decoupled while relativistic. The immediate consequence
is that they will remain relativistic and therefore can only be considered as
HDM, whereas we argued in appendix A that the standard cosmological
model strictly demands CDM. We therefore conclude that axions cannot
that are produced thermally in the early Universe are negligible for our
considerations and hence, we need to search for another production mech-
anism. Further, the axion couplings in (2.47) scale with f−1

a , so that only
low- fa or, equivalently, high-mass axions are produced[1], what interferes
with the computed mass above and again with our desire to seek for light
particles.
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2.3.2 Non-thermal production via misalignment

In order to be able to treat the production of axions via misalignment prop-
erly, we need to make a small lookahead on the next chapter. Here, if not
stated otherwise, we follow [1]. Let us start by stating that in order to de-
scribe the axion, we consider, as before, a scalar field, ϕ. The action for a
minimally coupled real scalar field in the theory of General Relativity is
given by[29]

Sϕ =
∫

d4x
√
−g
[
−1

2
∂µϕ∂µϕ−V(ϕ)

]
, (2.63)

which is only valid after symmetry breaking since this is necessary to ini-
tialize the axion as a pseudo-Goldstone boson and it is only valid after
non-perturbative effects switch on since this is necessary for the axion
to acquire mass. That the latter does not happen instantaneously will
introduce a time-dependence, which can be converted to a temperature-
dependence as usual, on the equations. In fact, the axion mass will reach
an asymptotic value for T ≪ Tnon-perturbative. If this is the case before the
axion contributes a significant amount of the energy density and the Uni-
verse is still young enough, so that the axion field is not oscillating, then
we can simply take the asymptotic value to be constant over all times.
However, we can vary the action as we are used to with respect to ϕ in
order to get the equation of motion (short: EOM)

1√−g
∂µ(
√
−ggµν∂ν)ϕ−

∂V
∂ϕ

=: □ϕ− ∂V
∂ϕ

= 0 (2.64)

and we can also vary the action with respect to the metric in order to get
the energy-momentum tensor

Tµ
ν = gµα∂αϕ∂νϕ− δ

µ
ν

2

[
gαβ∂αϕ∂βϕ + 2V(ϕ)

]
. (2.65)

In case of a perfect fluid, one can interpret the components of the energy-
momentum tensor as follows.

T0
0 = −ρ, T0

i = (ρ + P)vi, and Ti
j = Pδi

j + Σi
j, (2.66)

where ρ is the energy-density, P is the pressure, vi is the velocity and Σi
j

is the anisotropic stress. This interpretation is possible for axions since we
assume that they have very small masses and thus must have very high
occupation numbers, which validates the fluid interpretation here. How-
ever, recalling the flat RW-metric (D.3), one can express the D’Alembertian,
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26 Theoretical description of axions

□, we found in (2.64), as

ϕ̈ + 3Hϕ̇ + m2
aϕ = 0. (2.67)

Note, that this is basically the equation of a harmonic oscillator with an
additional friction term counting for the Universe’s expansion and note
additionally, that the RW-metric implies that the velocity and anisotropic
stress in (2.65) vanish, so that we get

ρ̄a =
1
2

ϕ̇2 +
1
2

m2
aϕ2 and P̄a =

1
2

ϕ̇2 − 1
2

m2
aϕ2 (2.68)

as the background energy density and background pressure, respectively.
As discussed in appendix A, the scale factor sclaes as a power-law with
time, a ∼ tp. Then, the EOM can be solved exactly

ϕ = a−
3
2

(
t
ti

) 1
2

[C1 Jn(mat) + C2Yn(mat)], (2.69)

where n = (3p− 1)/2, Jn(x) and Yn(x) are Bessel functions of the first and
second kind, respectively. With the proper initial conditions one can solve
now for the coefficients C1,2. When the PQ-symmetry breaks, H ≫ ma,
so that ϕ is overdamped as can be seen directly in the EOM (2.64), so that
ϕ̇i = 0 is a reasonable initial condition. Corresponding to (2.15) we can
additionally state ϕ(ti) = faθi as the second initial condition. Note, that
in both conditions we used the subscript i for an initial value. The sec-
ond condition now justifies the name for this production mechanism since
the initial axion field is initially displaced from its potential minimum and
thus needs realignment of the vacuum in order to get back to its mini-
mum. As already said, for H > ma the motion of ϕ is overdamped and
governed by the friction term due to expansion, so that it has a constant
scaling with the scale factor and thus, the axion’s equation of state param-
eter is wa = −1 and the axion basically just contributes to DE. As time goes
by, eventually H < ma occurs, meaning the motion is then underdamped
and oscillation of ϕ begins. Since ρa ∼ a−3 now, the axions behave as
ordinary matter, so that the oscillation should occur around wa = 0. We
will prove this later. Let aeq be the scale factor at matter-radiation equality,
then H(aeq) ∼ 10−28 eV. This means, that if ma > H(aeq), the axions start
oscillating in the radiation-dominated epoch.

Let aosc be the scale factor when axion field oscillation begins, then since
ρa(a) ∼ a−3 we can approximate

ρa(a)a3 ≈ ρa(aosc)a3
osc (2.70)
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2.3 Production mechanisms 27

for a > aosc. Since we said that the energy density is almost constant for
a < aosc, we can also approximate

ρa(aosc) ≈
1
2

m2
aϕ2

i , (2.71)

so that we only need the axion mass, ma, and the initial field displacement,
ϕi, to get the energy density of the axion population generated via mis-
alignment. By considering the EOM (2.64) one immediately would sug-
gest 3H(aosc) = ma as a good ansatz for aosc and in fact it turns out that
for real-Universe models, this is a well-fitting approximation[30]. One can
now use the well-known H(t)-solutions during the radiation- and matter-
dominated epoch, respectively, one can compute approximately14 the en-
ergy density parameter of ULAs as a function of ϕi

Ωa ≈
〈(

ϕi

Mpl

)2〉
·


1
6(9Ωγ)

3
4

(
ma
H0

) 1
2 aosc < aeq

9
6 Ωm aeq < aosc ≲ 1

1
6

(
ma
H0

) 1
2 aosc ≳ 1

, (2.72)

where the angular brackets are used to either average over the θ-interval
or simply use the given ϕi-value corresponding to the drawn θ in the un-
broken or broken PQ-symmetry case, respectively, as we have discussed
in section 2.2. Now, for H ≪ ma we can make a WKB-approximation with
the ansatz

ϕ(t) = A(t) cos(mat + ϑ), (2.73)

where ϑ is an arbitrary phase and the amplitude A(t) is, in consistence
with the slow-roll inflation model, slowly varying, i.e.

Ȧ(t)
ma
∼ H(t)

ma
≪ 1. (2.74)

Pluggin this ansatz in the EOM (2.64), to leading order we get A(t) ∼ a−
3
2 .

Recalling (2.71) this leads to

ρa ∼ ϕ2
i ∼ A3 ∼ a−3, (2.75)

giving the expected scaling behavior for ordinary matter, so the produced
axions actually contribute to the matter content of the Universe. The axion
field oscillations rapidly with frequency 2ma, so ⟨wa⟩t = 0 is the average

14Please refer to [31] for a short, but detailed derivation.
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28 Theoretical description of axions

equation-of-state parameter for axions for t≫ 1/ma, which proves that wa
oscillates around wa = 0. Note, that this result is independent of the back-
ground evolution. In order to contribute significantly to the DM energy
density, ULAs should have fa ≳ ϕi > 1014 GeV. Now recall from section
2.2 that this corresponds to fa > HI/2π = TI and thus to the broken PQ-
symmetry scenario. Thus, for general ALPs, or ULAs in particular, we will
always consider them in the broken case.

Let us now consider the QCD-axion, but note, that we will go over the
arguments rather quick. The temperature-dependent axion mass is given
by

m2
a(T) = αa

Λ3
QCDmu

f 2
a

(
T

ΛQCD

)−n
, (2.76)

where n ≈ 8. By using the Friedmann equation in the radiation-dominated
epoch, one can additionally show

3H2M2
pl =

π2

30
g∗T4. (2.77)

When taking g∗ = 61.75 for T ≳ TQCD and recalling that one can approx-
imately use 3H(Tosc) = ma, then the QCD-axion with fa < 1015 GeV has
Tosc = 1 GeV. Again, the energy density scales as that of ordinary matter
thereafter independent of the axion mass and one can thus compute ma
from (2.76) for large temperatures. However, one can show that

Ωah2 ∼ 2 · 104
(

fa

1016 GeV

) 7
6

⟨θ2
i ⟩ if fa < 2 · 1015 GeV and (2.78)

Ωah2 ≈ 5 · 103
(

fa

1016 GeV

) 3
2

⟨θ2
i ⟩ if fa > 2 · 1017 GeV. (2.79)

It was shown that we can safely use (2.78) for all fa < 6 · 1017 GeV. Till now,
we have used the harmonic potential

V(ϕ) =
1
2

m2
aϕ2, (2.80)

but for θ ≳ 1 we must take anharmonic corrections into account, which
are caused by axion self-interactions. We are thus led to replace

⟨θ2
i ⟩ → ⟨θ2

i Fanh(θi)⟩, (2.81)
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where F(x) → 1 for x small and monotonically increasing for x → π. For
our typical cosine potential (2.26) one can find

Fanh(x) =

[
ln

(
e

1− x2

π2

)] 7
6

. (2.82)

With this replacement at hand, recall (2.78) for Ωah2 and further recall that
in the broken PQ-symmetry case (2.45) and for the unbroken case (2.44)
holds, respectively, then we obtain

Ωah2 ≈ 2 · 104
(

fa

1016 GeV

) 7
6

·


π2

3 Fanh

(
π√

3

)
(1 + αdec)(

θ2
i +

H2
I

(2π fa)2

)
Fanh

(√
θ2

i +
H2

I
(2π fa)2

)
,

(2.83)
where the upper (lower) equation obviously corresponds to the unbroken
(broken) case. It is interesting to note, that αdec ∈ [0.16, 186] is a rather
large interval, which opens the possibility that all fa ≲ 9 · 1010 GeV axions
could give the correct Ωah2 if αdec is chosen accordingly. Now recall from
appendix A that the DM energy density parameter is

ΩDMh2 ≈ 0.12, (2.84)

so that
Ωah2 ≤ ΩDMh2 ≈ 0.12 (2.85)

is an upper bound the QCD-axions should suffice.Let the PQ-symmetry be
unbroken during inflation, then ⟨θi⟩ = π2/3 is fixed and we immediately
get an upper bound for fa. In order to satisfy other known bounds from
observation we get

1 · 109 GeV ≲ fa ≲ 8.5 · 1010 GeV. (2.86)

Let the PQ-symmetry now be broken during inflatin, then θi is a free pa-
rameter and we can chose it according to fa to satisfy the dark matter den-
sity parameter bound given above. Additionally we can choose θ → π, so
that Fanh diverges in order to compensate very low fa values. If one sets
the boundary for this tuning process at the order 10−2 for θi, we get

8 · 109 GeV ≲ fa ≲ 1 · 1015 GeV. (2.87)

Let us summarize this subsection by appreciating that the axion produc-
tion via misalignment is model-independent, that fully builds up on the
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30 Theoretical description of axions

axion-defining properties. Furthermore, it only depends on gravitational
interaction as the EOM were derived for an action (2.63) in the setting
of pure General Relativity. It thus appears as a very natural and elegant
mechanism to provide an explanation for a relevant initial axion popula-
tion.

2.3.3 Decay product of heavier parent particle X or of top-
logical defect/string

Let us assume that there is a heavier parent particle, X, with mX > ma,
which is coupled to the axion field and decays producing a population
of relativistic axions. If the decay happens after the axions have decou-
pled from the standard model, they remain relativistic throughout the his-
tory of the Universe and can be used to describe dark radiation, which is
parametrized via the effective number of relativistic neutrinos. One as-
sumes the decay to be instantaneous when the parent particle dominates
the energy density of the Universe[1]. If parent particle does not domi-
nate the energy density of the Universe when it decays, they may act as
so-called curvatons, which are theoretical particles that would be responsi-
ble for the initial curvature fluctuations. For details on that, please refer to
[32]. Dark radiation would affect the CMB, see [33] for details, where the
main effect is an additional damping in the high-multiple acoustic peaks.
This results if one fixes the angular size of the sound horizon, then one has
to compensate the change in matter-radiation equality by either a different
Hubble constant or by a different DE density[1]. However, the damping
tail of the CMB is well-measured and so it puts strong constraints on the
effective number of neutrinos. Typically, the whole idea appears in mod-
els with SUSY and extra dimensions, where the main outcome is that the
heavy parent particle in fact is a heavy modulus with masses larger than
10 TeV in order to produce a suitable axion population[1]. Note again, that
these are way too heavy for our considerations.

As we are already talking about theories with higher dimensions, we can
consider the following ideas. One knows that the breaking of a global
symmetry results in a so-called toplogical defect and in the case of the PQ-
symmetry, global axionic strings are produced and the toplogical defects
correspond to domain walls if NDW > 1. We can distinguish now wheter
the PQ symmetry is broken during inflation or not. If it is broken, the top-
logical effects are vanished by inflation, so let us assume it is unbroken
during inflation. The decay of axionic strings would produce a popula-
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tion of cold axions with energy densities of the domain walls ρDW ∼ a−2,
which can rather quickly can dominate the energy density of the Universe
if we keep ρm ∼ a−3 in mind. This would lead to a crucial change of the
picture of the Universe’s evolution. This is why these models typically
need another mechanism to get rid off the domain wall problem[1]. The
underlying math is far beyond the scope of this work and thus, we do not
consider these models any further, even though in theory, they are capable
of producing cold axion and thus CDM populations to account for.
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Chapter 3
Dynamics of cosmological
perturbations

In this chapter, we are going to first build up the linear cosmological per-
turbation theory in section 3.1 and then going to apply it on axion fields in
section 3.2. In the first section we set up the basic equations, see subsection
3.1.1, holding always based on grounds of GR and then move on to de-
scribe conventional hydrodynamical matter, see subsection 3.1.2. Then we
are ready to tackle the, for us most interesting, scalar matter field pertur-
bations, see subsection 3.1.3, and their quantization, see subsection 3.1.4.
In the second section, we again, first set up the basic equations, see subsec-
tion 3.2.1, and then move on to the mentioned application of linear cosmo-
logical perturbation theory in subsection 3.2.2. In the end, we consider the
non-linear regime in subsection 3.2.3 and with it the Schrödinger-Poisson
equation.

3.1 Gauge-invariant cosmological perturbation the-
ory

In this section we will closely follow [2] if not stated otherwise in order to
work out a gauge-invariant description of cosmological perturbations. I
strongly recommend [2] for a very detailed, but comprehensible, deriva-
tion and presentation of the following ideas. However, the following sub-
sections will equip us with a strong and easily applicable set of equations
and interpretations in order to put the implications of the axion field we
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34 Dynamics of cosmological perturbations

desire to describe in a proper context. First, we are going to consider hy-
drodynamical and scalar matter field perturbations, respectively, in a clas-
sical setup. The description of hydrodynamical matter in subsection 3.1.2
connects well to our intuition about the radiation- and matter-dominated
epochs and also sensitizes us to the necessary steps towards a proper de-
scription of cosmological perturbations. Then we can tackle the classical
description of scalar matter field perturbations in subsection 3.1.3, what
will lay down the crucial foundation we need in order to move on to the
quantum description of this type of perturbations. Hence, in subsection
3.1.4 we are dealing with the spectrum of density perturbations in infla-
tionary Universe models with scalar-field matter, what will connect well
to our axion field description. However, before we can even start thinking
about any of these perturbations, we need to setup the basic equations and
discuss the basic vocabulary in the first subsection.

3.1.1 Aim and Setup

As stated previously, we seek for a gauge-invariant description of cosmo-
logical perturbations. This approach is easier than working in a specific
gauge and then transforming to other gauges in order to tackle different
problems and to straightforwardly interpret the resulting equations. Ini-
tial conditions are treated separately since the quantum theory will give
the initial conditions needed for the classical theory. They are necessary
since we assume that there were small initial perturbations in the very
early Universe that grew over time constituting the large-scale structure
we observe today.

Consider a homogeneous and isotropic spacetime, g(0)µν , what we will call
the background, denoted by a superscript (0), and small deviations, δgµν,
from the background, so that in total, the spacetime is parametrized by the
total metric

gµν = g(0)µν + δgµν. (3.1)

As always, we use the RW-metric,

ds2 = dt2 − a2(t)γijdxidxj = a2(η)(dη2 − γijdxidxj) (3.2)

with
γij := δij[1 +

κ

4
(x2 + y2 + z2)]−2, (3.3)

either in coordinate-time, t, or in conformal time, η, where dt = adη con-
nects them. Usually we will denote a derivative with respect to coordinate
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3.1 Gauge-invariant cosmological perturbation theory 35

(conformal) time by a dot (prime). One distinguishes three types of per-
turbations. Scalar perturbations that give growing inhomogeneities, vector
perturbations that decay if the Universe expands and tensor perturbations
that give gravitational waves. The names result from the way the corre-
sponding fields transform. The most general form of scalar perturbations

δ
(s)
µν = a2(η)

(
2ϕ −B|i
−B|i 2(ψγij − E|ij)

)
, (3.4)

where a vertical bar (comma) in front of an index denotes the covariant
(partial) derivative with respect to the three-dimensional background co-
ordinates. Note, that the covariant derivatives become partial derivatives
in a flat, κ = 0, Universe. Since (3.1) holds, the general form of the metric
perturbations (3.4) gives

ds2 = a2(η)[(1 + 2ϕ)dη2 − 2B|idxidη − ((1− 2ψ)γij + 2E|ijdxidxj)]. (3.5)

The four scalar functions, ϕ, ψ, B and E, are functions of the spacetime-
coordinates xµ and are fixed by four equations that are collected in δgµν.
Since vector and tensor perturbations do not lead to growing inhomo-
geneities, we are not interested in them in this work, so we do not go
deeper in the description of them. In general, one should consider all three
types altogether, but in the linear theory, they can be considered separately,
what simplifies the following discussions.

In order to be able to derive gauge-invariant equations, we need to express
them in gauge-invariant quantities, which we will derive now. Let ξµ =
(ξ0, ξ i) be an infinitesimal perturbation to the spacetime-coordinates, xµ =
(x0 = η, xi), and ξ a from ξ0 independent scalar function, that solves

ξ
|i
|i = ξ i

|i, (3.6)

then the most general coordinate transformation that preserves the scalar
nature of the metric perturbations is

η → η̃ = η + ξ0 and xi → x̃i = xi + γijξ|j. (3.7)

By applying this transformation to the scalar perturbations, one gets addi-
tional terms that can be collected in the four scalar functions constituting
δg(s)µν by defining

ϕ̃ = ϕ− a′

a
ξ0 − ξ ,0, ψ̃ = ψ +

a′

a
ξ0, B̃ = B + ξ0 − ξ ′, Ẽ = E− ξ. (3.8)
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36 Dynamics of cosmological perturbations

However, one can construct two1 gauge-invariant variables

Φ := ϕ +
1
a
[(B− E′)a]′ and Ψ := ψ− a′

a
(B− E′), (3.9)

which form the basic variables in whose terms we would like to write our
equations often during the subsequent subsections and are indeed invari-
ant under the infinitesimal coordinate transformation (3.7).

Since the transformation of the four fundamental scalar variables were de-
pendent solely on the two independent scalar fields ξ0 and ξ (3.8), one has
two degrees of freedom on which one can impose constraints by choosing
a certain gauge2. Although there is a vast amount of different gauges, we
are only interested in the two most famous. The synchronous gauge sets
ϕ = 0 = B and likewise ϕ̃ = 0 = B̃ in (3.7), so that one can solve for ξ0 and
ξ to obtain

η → ηs = η +
1
a

∫
aϕdη and xi → xi

s = xi +γij
(∫

Bdη +
∫ dη

a

∫
aϕdη

)
|j

.

(3.10)
This gauge does not fix the synchronous coordinates totally as one can
perform a residual transformation that leaves the synchronous gauge con-
ditions invariant, but changes the transformation above. This can result
in unphysical gauge modes that cause trouble when interpreting the re-
sults. The longitudinal gauge sets B = 0 = E, so that the coordinates are
totally fixed since these conditions fix ξ0 and ξ via (3.8). By plugging the
conditions in (3.7) we get

η → ηl = η − (B− E′) and xi → xi
l = xi + γijE|j. (3.11)

Note, that by setting B = 0 = E (3.8) becomes3

ϕl = ϕ +
a′

a
(B− E′)′

(3.9)
= Φ, ψl = ϕ− a′

a
(B− E′)

(3.9)
= Ψ (3.12)

1In fact, one can construct an infinite amount of gauge-invariant variables by simply
taking linear combinations of them since they should be gauge-invariant again. We
choose a particular simple form of them.

2It seems to be counterintuitive to choose a specific gauge if our initial goal is to find
gauge-invariant equations. However, choosing a gauge can help to get straightforward
interpretations, what we will encounter later.

3This gauge is also called the conformal-Newtonian gauge, what refers to ϕl = Φ as one
can interpret Φ as the generalization of the Newtonian gravitational potential, what will
become clearer in subsection 3.1.2.
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3.1 Gauge-invariant cosmological perturbation theory 37

and apparently Bl = 0 = El. Of course one could find transformation
laws to switch between the gauges, but let us avoid to use them by care-
fully choosing the proper gauge for our purposes.

Let us now close our setup by considering the Einstein equations

Gµ
ν = 8πGTµ

ν , (3.13)

where

Gµ
ν := Rµ

ν −
1
2

δ
µ
ν R (3.14)

is the Einstein tensor, Rµ
ν is the Ricci tensor and R = Rµ

µ is the Ricci curva-
ture scalar. We explicitly use the Einstein tensor instead of writing the Ein-
stein equations in one line because it will come in handy in the following
discussions. In a homogeneous and isotropic Universe, the background
Einstein equations are

(0)G0
0 = 3

1
a2 (H2 + κ), (0)G0

i = 0 and (0)Gi
j =

1
a2 (2H′ + H2 + κ)δi

j,
(3.15)

where the Hubble parameter, H, uses conformal time now4. Likewise we
get

(0)Gµ
ν = 8πG (0)Tµ

ν , (3.16)

where the background energy-momentum tensor satisfies

(0)Ti
0 = 0 =(0) T0

i and (0)Ti
j ∼ δi

j. (3.17)

For small perturbations we can also split the Einstein tensor in a back-
ground and a perturbed part

Gµ
ν =(0) Gµ

ν + δGµ
ν , (3.18)

where the perturbation should also satisfy the EOM for small perturba-
tions linearized about the background metric

δGµ
ν = 8πGδTµ

ν . (3.19)

4It should always be clear out of the context if we use H in conformal or coordinate time.
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38 Dynamics of cosmological perturbations

With this groundwork we can obtain the Einstein tensor for scalar pertur-
bations

δG0
0 = 2a−2{−3H(Hϕ + ψ′) +∇2[ψ− H(B− E′)] + 3κψ} (3.20)

δG0
i = 2a−2[Hϕ + ψ′ − κ(B− E′)]|i (3.21)

δGi
j = −2−2{[(2H′ + H2)ϕ + Hϕ′ + ψ′′ + 2Hψ′ − κψ +

1
2
∇2D]δi

j −
1
2

D|ij},
(3.22)

where
D := (ϕ− ψ) + 2H(B− E′) + (B− E′)′. (3.23)

Since the equations are not gauge-invariant yet we rewrite them in terms
of Φ, Ψ and (B− E′) to obtain

δG0
0 = 2a−2[−3H(HΦ + Ψ′) +∇2Ψ + 3κΨ + 3H(−H′ + H2 + κ)(B− E′)]

(3.24)

δG0
i = 2a−2[HΦ + Ψ′ + (H′ − H2 − κ)(B− E′)]|i (3.25)

δGi
j = −2a−2{[(2H′ + H2)Φ + HΦ′ + Ψ′′ + 2HΨ′ − κΨ +

1
2
∇2D]δi

j

+ (H′′ − HH′ − H3 − κH)(B− E′)δi
j −

1
2

γikD|kj}, (3.26)

where
D = Φ−Ψ. (3.27)

By applying (3.7) on the Einstein tensor, one finds the corresponding trans-
formation law

δG0
0 → δG0

0 − ((0)G0
0)
′ξ0, (3.28)

δG0
i → δG0

i −
(

(0)G0
0 −

1
3

(0)
Gj

j

)
ξ0
|i and (3.29)

δGi
j → δGi

j − ((0)Gi
j)
′ξ0, (3.30)

so that with ξ0 = −(B − E′) one immediately can construct the gauge-
invariant, denoted by a superscript (gi), variable δG(gi)µ

ν by

δG(gi)0
0 = δG0

0 + ((0)G0
0)
′(B− E′), (3.31)

δG(gi)0
i = δG0

i +

(
(0)G0

0 −
1
3

(0)
Gj

j

)
(B− E′)|i and (3.32)

δG(gi)i
j = δGi

j + ((0)Gi
j)
′(B− E′) (3.33)
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3.1 Gauge-invariant cosmological perturbation theory 39

and likewise δT(gi)µ
ν by simply replacing G by T in the above equations.

The EOM (3.19) can now be written in the gauge-invariant form

δG(gi)µ
ν = 8πGδT(gi)µ

ν . (3.34)

Finally, by plugging (3.24) in (3.31) all terms on the left hand side propor-
tional to (B− E′) and its derivatives cancel, so that by plugging the result
then in (3.34) one gets the general form of the gauge-invariant equations
of cosmological perturbations

4πGa2δT(gi)0
0 = −3H(HΦ + Ψ′) +∇2Ψ + 3κΨ, (3.35)

4πGa2δT(gi)0
i = (HΦ + Ψ′)|i and (3.36)

−4πGa2δT(gi)0
0 = [(2H′ + H2)Φ + HΦ′ + Ψ′′ + 2HΨ′

− κΨ +
1
2
∇2D]δi

j −
1
2

γikD|kj , (3.37)

where D = Φ− Ψ. We are now prepared to discuss hydrodynamical and
scalar matter field perturbations in the subsequent subsections.

3.1.2 Classical description of hydrodynamical perturbations

We begin by considering hydrodynamical matter as first step to gain in-
sights in how well-suited our approach is in terms of how well it matches
the expected results. The evolution of initial adiabatic fluctuations5 or en-
tropy perturbations6 depends on whether we consider the radiation- or
matter-dominated epoch. By careful analysis one can consider the pertur-
bations in the radiation- and matter-dominated epoch separately and then
make an effort in smoothly connecting the results. However, we just want
to very quickly give a brief overview over the basic equations and the fi-
nal results to give a short impression of the application of the formalism
before going deeper into for us relevant applications in the subsequent
subsections.

The energy-momentum tensor for hydrodynamical matter fluctuations is
given by

δT(gi)0
0 = δε(gi), δT(gi)0

i = (ε0 + p0)a−1δu(gi)
i , δ

(gi)i
j = −δp(gi)δi

j, (3.38)

5These are the typical density fluctuations as opposed to the isocurvature fluctuations we
are going to investigate later.

6We will discuss them later in more detail.
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40 Dynamics of cosmological perturbations

where δε(gi) are the energy density perturbations, δp(gi) the pressure per-
turbations and δu(gi)

i the velocity perturbations in gauge-invariant form.
Likewise, the EOM reads

Φ′′ + 3H(1 + c2
s )Φ

′ − c2
s∇2Φ + [2H′ + (1 + 3c2

s )(H2 − κ)]Φ = 4πGa2τδS,
(3.39)

where Φ is the generalization of the Newtonian gravitational potential and
cs is the sound speed. Alternatively, one can write the EOM in terms of the
velocity u as

u′′ − c2
s∇2u− θ′′

θ
u = N (3.40)

with

θ =
H
a

[
2
3
(H2 − H′ + κ)

]− 1
2

=
1
a

(
ε0

ε0 + p0

) 1
2
(

1− 3κ

8πGa2ε0

) 1
2

, (3.41)

N = (4πG)
1
2 a3(H2 − H′ + κ)−

1
2 τδS = a2(ε0 + p0)

− 1
2 τδS. (3.42)

Additionally, one finds

δε(gi)

ε0
= 2[3(H2 + κ)]−1[∇2Φ− 3HΦ′ − 3(H2 − κ)Φ] (3.43)

and
δu(gi)

i = −a−2(H2 − H′ + κ)−1(aΦ)′,i. (3.44)

Let us investigate adiabatic perturbations. The right-hand side of the EOM
vanishes, so that the EOM becomes homogeneous and solvable, for exam-
ple in the radiation-dominated, p = 1

3 ε or the matter-dominated, p = 0,
epoch7. Just for an impression, let me directly give the results for non-
decaying long-wavelength, λ > rHubble, mode inhomogeneities by first
noting |Φ| = const. in both epochs, |δε(gi)/ε0| ≈ −2Φ in the radiation-
dominated and |δε(gi)/ε0| = const. in the matter-dominated epoch. Then
consider the transition between the epochs, where the equation of state
parameter changes from wγ = 1

3 to wm = 0, where both functions drop
by a factor 9/10. Lastly, one has to distinguish if the perturbations enter
the horizon or if they remain outside. In the former case |Φ| = const.
and |δε(gi)/ε0| ∼ η2 holds, whereas in the latter case |Φ| = const. and
|δε(gi)/ε0| = const. holds. In this example, both results were obtained in

7To stick to the author’s notation, I will adapt to ε as the energy density rather than ρ.
Since both are commonly used, one should not be confused.
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3.1 Gauge-invariant cosmological perturbation theory 41

the matter-dominated epoch.

Now, let us turn to the following fact. Additionally to adiabatic perturba-
tions, entropy perturbations generically arise in all multi-component sys-
tems and generate scalar-type perturbations. The right hand side8 does
not vanish. Let us assume that at a certain initial time, there are no adia-
batic perturbations and we only consider entropy perturbations. Their ini-
tial condition9 is Φ → 0 as t → 0. They can be produced in axion models
and in non-simple inflationary Universes and in phase transitions produc-
ing topological defects. Causality forbids creation of adiabatic perturba-
tions on scales larger than rHubble, so only entropy perturbations are possi-
ble. Let me, again to just give you an impression, directly state the results
for long-wavelength perturbations, for which we start in the radiation-
dominated epoch, in which |Φ| and |δε(gi)/ε0| increase linearly, where
the latter one increases slightly faster than the former one, and both are
∼ δS

S from 0 till ηeq. Likewise in the matter-dominated epoch one obtains
|δεm/εm,0| = const.. Now, cold-matter perturbations drop to 2/5 of ini-
tial value at ηeq and coincide with radiation perturbations/δε in general.
Lastly, for η > ηeq we get the same evolution for entropy perturbations as
for adiabatic perturbations. Note, that there is a difference of a factor 2.

3.1.3 Classical description of scalar matter field perturba-
tions

At very large energies, the hydrodynamical matter description fails and
we need a description in terms of fields, so that we now turn to describe
scalar-matter fields, which are far more relevant for our ALP considera-
tions as we already made the mental step to consider the axion field, ϕ,
rather than the ALP itself. However, let us set up the basic equations and
then treat their implications.

8In general, all source terms ∼ δS do not vanish.
9Let me note here the following. The initial conditions for isocurvature perturbations are
gauge-invariant curvature perturbations ζ → 0 at ti. Entropy and isocurvature pertur-
bations coincide for ti = 0, which is why we will usually speak of isocurvature rather
than entropy perturbations in the rest of this work.
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42 Dynamics of cosmological perturbations

The energy-momentum tensor in this case is

δT(gi)0
0 = a−2[−(φ′0)

2Φ + φ′0δφ(gi)′ + V,φa2δφ(gi)] (3.45)

δT(gi)0
i = a−2φ′0δφ

(gi)
,i , (3.46)

δT(gi)i
j = a−2[(φ′0)

2Φ− φ′0δφ(gi)′ + V,φa2δφ(gi)]δi
j. (3.47)

The EOM thus reads
φ̈ + 3H φ̇ + V,φ = 0 (3.48)

First, let us investigate the backgroune, in which an important difference
to hydrodynamical matter appears since the background part of φ0(t) is
time-dependent and has non-trivial dynamics, so that the equation of state
is time-dependent as well. This in turn results in a complicated dynam-
ics of the time-dependent scale factor. For example, consider the 0 − 0-
Einstein equation

H2 = l2
[

1
2

φ̇2
0 + V(φ)

]
(3.49)

and assume that φ is roughly static, so that φ̇2
0 ≈ 0, but V(φ) is very large,

so that l2V(φ) ≈const., what gives a(t) ∼ exp{Ht} since H := ȧ/a. This
exponential inflation corresponds to p ≈ −ε, i.e. w = −1, and l = 8πG

3 .
With the transformation

x := ln(a)⇒ ẋ =
1
a

ȧ ≡ H ⇔ d
dt

= H
d

dx
(3.50)

the 0− 0-Einstein equation above transforms to

H = lV
1
2

[
1− 1

2
l2
(

dφ

dx

)2
]− 1

2

. (3.51)

and further by using the EOM (3.48) we get{
d2φ

dx2 + 3

[
1− 1

2
l2
(

dφ

dx

)2
]

dφ

dx

}
l2V

1− 1
2 l2
(

dφ
dx

)2 + V,φ = 0. (3.52)

Now, by defining the variable

y :=
dφ

dx
(3.53)
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3.1 Gauge-invariant cosmological perturbation theory 43

we obtain
dy
dφ

= −
(

1− 1
2

l2y2
)[

3 +
V,φ
V

l2y

]
(3.54)

and since H ∈ R : |y| ≤
√

2
l follows immediately by demanding that

the term in square brackets is positive semidefinite. When |y| >
√

2
l one

describes Euclidean solutions since t ∈ C. The resulting φ − y diagram
is V(φ)-independent if V(φ) is symmetric in φ and |φ| → ∞ and V(φ)

increases slower than an exponential, so that V,φ
V → 0 as |φ| → ∞. For

the solution close to y = ±
√

2
l holds V ≪ φ̇2 and a(t) behaves as in the

case of hydrodynamical matter, i.e. p = +ε, a(t) ∼ t1/3, but then diverges
with growing t/φ and converges for φ being close to zero back towards
the |φ| =

√
2

l line. Between y = ±
√

2
l exists a separatrix. For |φ| ≫ 1

l holds
that the separatrix is close to dy

dφ = 0, so that

y = − 1
3l2

V,φ

V
+O

((
V,ϕ

V

)2

,
V,φφ

V
, . . .

)
. (3.55)

In the vicinity of this separatrix one gets |Ḣ|H2 = 3
2 l2y2 ≪ 1 for |φ| ≫ 1

l , so
that these solutions describe an inflationary period10 with effective equa-
tion of state p ≈ −ε. Note, that for exponential background expansion one
gets a power-law inflation, which will come in handy in the application of
the formalism on axions in the next section. If trajectories get close to the
stationary line at |φ| > 1

l when ∆y ∼ O(1), so that φ̇2
i (φi) exp{3

√
2|lφi|},

what are constraints on the initial conditions of inflation, a quasi de Sitter
period establishes. The end of inflation is given when φ drops below the
Planck scale at 1/l. Then, φ begins to oscillate. In general, you get the ex-
pected a(t) ∼ t

2
3 and R ∼ −4

3 t behavior with additional correction terms
due to the oscillation11.

Let us now recast the EOM in a gauge-invariant form. For cosmological
perturbations this can be achieved by inverting the corresponding δ

(gi)µ
ν

in (3.35) by plugging in the energy-momentum tensor (3.45) and setting

10This is also called quasi de Sitter solution.
11One gets a(t) ∼ (t − t0)

2
3

(
1 + cos(2m(t−t0))

6m2(t−t0)2 − 1
24m2(t−t0)2 +O((t− t0)

−3)
)

and R =

−
[

4
3 (t− t0)

]
{1− 3 cos(2m(t− t0)) +O((t− t0)

−1) for the correction terms.
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44 Dynamics of cosmological perturbations

Φ = Ψ, i.e.

∇2Φ− 3HΦ′ − (H′ + 2H2)Φ =
3
2

l2(φ′0δ(gi)′ + V,φa2δφ(gi)), (3.56)

Φ′ + HΦ =
3
2

l2φ′0δφ(gi), (3.57)

Φ′′ + 3HΦ′ + (H′ + 2H2)Φ =
3
2

l2(φ′0δφ(gi)′ −V,φa2δφ(gi)). (3.58)

By combining these, the EOM linearized over the background solutions
are

δφ(gi)′′ + 2Hδφ(gi)′ −∇2δφ(gi) + V,φφa2δφ(gi) − 4φ′0Φ′ + 2V,φa2Φ = 0,
(3.59)

where the latter two terms describe the gravitational fluctuations. Now,
use δφ(gi) and obtain

Φ′′ + 2
(

H − φ′′0
φ′0

)
Φ′ −∇2Φ + 2

(
H′ − H

φ′′0
φ′0

)
Φ = 0 (3.60)

⇔ Φ′′ + 2
(

a
φ′0

)′ (φ′0
a

)
Φ′ −∇2Φ + 2φ′0

(
H
φ′0

)′
Φ = 0. (3.61)

Further, use
u :=

a
φ′0

Φ (3.62)

to get

u′′ −∇2u− θ′′

θ
u = 0 (3.63)

with
θ :=

H
aφ′0

. (3.64)

In the asymptotic limit for short-wavelengths we get

u ∼ e±ikη, k2 ≫ θ′′

θ
, (3.65)

so that

Φ ≈
[

C1 sin
(

k
∫

a−1dt
)
+ C2 cos

(
k
∫

a−1dt
)]

eikx, (3.66)

δφ(gi) ≈ 2
3l2

k
a

[
C1 cos

(
k
∫

a−1dt
)
− C2 sin

(
k
∫

a−1dt
)]

eikx. (3.67)
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3.1 Gauge-invariant cosmological perturbation theory 45

Likewise in the asymptotic limit for long-wavelengths we get

u ≈ C1θ + C2θ
∫ dη

θ2 =
A
φ′0

(
1
a

∫ η

a2(η′)dη′
)

, k≪ θ′′

θ
, (3.68)

so that

Φ =≈ A
(

1
a

∫
adt
)·

= A
(

1− H
a

∫
adt
)

, (3.69)

δφ(gi) ≈ Aφ̇0

(
a−1

∫
adt
)

. (3.70)

With these results we can define the following constant of motion

ζ :=
2
3

H−1Φ̇ + Φ
1 + w

+ Φ, (3.71)

where w = p/ε is the known equation of state parameter. That this indeed
is conserved can be checked straightforwardly since for λ outside rH one
can neglect ∇2Φ.

As we have seen above, a period of inflation arises rather naturally, so let
us now turn to inflationary Universe models in general. Say, there is a
period of exponential expansion before reheating at ηre for which p = −ε
and H−1 = rH =const. holds. Then at ηre the vacuum energy density
is converted into usual matter, i.e. massive particles and radiation, in
∆t < H−1, what we call one Hubble expansion. Further, at η > ηre the
Universe evolves as if it is in the radiation-dominated epoch till ηeq as
usual. In the radiation- and matter-dominated epochs, rH increases faster
than a fixed cosmological scale, k. Thus, as we have discussed in appendix
E, initial perturbations inside the horizon are allowed to be produced,
which are then inflated away to scales of galaxies and clusters today if
inflation lasted at least 62 Hubble expansions. Consider short wavelength
perturbations, for which we get Φ ∼ φ̇0. Now, during inflation, when
φ̇0 ≈ −

V,φ
3H holds, Φ̇ is negligible, so that for a quadratic potential one gets

φ̇0 ∼ m. Further, |δφ0| ∼ a−1, so for perturbations with fixed comov-
ing wavenumber, k, |δφ0| is large and eventually the linear theory breaks
down as δφ0

φ0
< 1 does not hold any longer. Say, enough e-foldings took

place, then the mentioned perturbations with fixed k should now be con-
sidered as long-wavelength modes, described by (3.69), so that one obtains
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46 Dynamics of cosmological perturbations

the asymptotic series

Φ ≈ A
(

a−1
∫

adt
)·

= A
(

H−1 −
∫

a(H−1)·dt
)·

= A([H−1]· − [H−1[H−1]·]· + H−1[H−1[H−1]·]· − . . .), (3.72)

δφ(gi) ≈ Aφ̇0(H−1 − H−1[H−1]· + H−1[H−1[H−1]·]· − . . .). (3.73)

During inflation |Ḣ| ≪ H2 holds, so that only the first terms in the serieses
are relevant. Further, φ̇0 ≪ V(φ) and |φ̈| ≪ |V,φ(φ)| during inflation,
what gives

Φ ≈ −A
Ḣ
H2 and δφ(gi) ≈ A

φ̇0

H
. (3.74)

After inflation the scalar field oscillates. Since a(t) ∼ tm one gets accord-
ing to (3.69) that Φ ≈ A

m+1 is time-independent. With the approximated
solutions (3.74) we get

Φ ≈ 1
m + 1

H
δφ(gi)

φ̇0
(3.75)

evaluated at k2 = θ′′/θ, what in many cases occurs when λ ≳ rH. Note,

Φ(t f ) =
1 + 2

3 [1 + w(t f )]
−1

1 + 2
3 [1 + w(ti)]−1

Φ(ti), (3.76)

i.e. the spectrum is nearly scale-invariant and solely depends on ∆w.

3.1.4 Quantum mechanical description of scalar matter field
matter perturbations

Before being able to lift the previously done description of scalar field mat-
ter perturbations to a quantum mechanical one, we first need to quantize
the metric and matter fluctuations simultaneously, what requires a non-
vanishing matter component, what is only possible in an expanding Uni-
verse. Luckily, this condition is naturally satisfied. As we already know,
quantizing matter fields in a non-trivial background leads to particle pro-
duction, which is the basis for structure formation in an inflationary Uni-
verse. We need canonical commutation relations and cannot just quantize
the classical EOM since we only need to quantize physical degrees of free-
dom. Fluctuations are small, typically of Gaussian type, so the computa-
tion of metric and density perturbations reduces to the determination of
the two-point-correlation functions and power spectra. The main physical
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3.1 Gauge-invariant cosmological perturbation theory 47

observable that is connected with density perturbations is the root-mean-
square relative mass function because the two-point correlation function
can be converted to the relative density perturbations and they can in turn
be converted to the root-mean-square relative mass functions. We will de-
note the power spectrum by |δε(k)|2 and the two-point correlation function
is given by

ξε(r) =
δε

ε
(x) · δε

ε
(x + r) (3.77)

where

ξε(r) = 4π
∫ ∞

0

sin(kr)
kr
|δε(k)|2

dk
k

. (3.78)

Our approach will be the following. We express the action in terms of a
single gauge-invariant variable and quantize only this rather than quan-
tizing multiple variables. The initial action is given by

S = − 1
16πG

∫
R
√
−gd4x +

∫
Lm(g)

√
−gd4x, (3.79)

where the first term corresponds to curvature and gravity and the second
term to matter. Now, one needs to expand this action to second order in
perturbation variables since this will lead to the first order perturbation
equations. For the purely gravitational part, δ2Sgr, of the action, δ2S, one
can do the calculation in the so-called ADM-formalism. We do not want to
go deeper into it, but please refer to [2] and references therein for details.
In the end we obtain

δ2Sgr =
1

16πG

∫
{a2[−6(ψ′)2 − 12H(ϕ + ψ)ψ′ − 9H2(ϕ + ψ)2

− 2ψ,i(2ϕ,i − ψ,i)− 4H(ϕ + ψ)(B− E′),ii + 4Hψ′E,ii

− 4ψ′(B− E′),ii − 4Hψ,iB,i + 6H2(ϕ + ψ)E,ii − 4HE,ii(B− E′),jj

+ 4HE,iiB,jj + 3H2E2
,ii + 3H2B,iB,i] +D

gr
1 +Dgr

2 }d
4x, (3.80)

whereDgr
1,2 are total derivative terms not affecting the EOM as usual. Now,

let us turn to the matter part of the action for a flat Universe. We use the
background equations

H2 = l2
[

1
2
(φ′0)

2 + V(φ0)a2
]

, 2H′ + H2 = 3l2
[
−1

2
(φ′0)

2 + V(φ0)a2
]

,

(3.81)
which can be combined to

H2 − H′ =
3
2

l2(φ′0)
2. (3.82)

47



48 Dynamics of cosmological perturbations

With these information at hand we can determine the matter part of the
action (3.79), i.e.

δ2Sm =
∫

d4x
√
−g0

(
δ2
√−g√−g0

L0 +
2δ1
√−gδ1L√−g0

+ δ2L
)

, (3.83)

where, as always, a subscript zero denotes the homogeneous background
values and

L(φ) =
1
2

φ,µ φ,µ −V(φ), (3.84)

what one can Taylor expand to read off δ1,2L. Combining the matter part
(3.83) with the previously obtained gravitational part (3.80) one constructs
the total action δ2S as we wanted to do. Now, one can vary this action with
respect to (B− E′) to get the constraint

ψ′ + Hϕ =
3
2

l2φ′0δφ. (3.85)

Further, we can construct the gauge-invariant variable

v := a
[

δφ(gi) +
φ′0
H

ψ

]
, (3.86)

where δφ(gi) = δφ + φ′0(B − E′). With this gauge-invariant variable at
hand we can rewrite

δ2S =
1
2

∫ (
(v′)2 − v,iv,i +

z′′

z
v2 +

1
3l2

4

∑
i=1
Di

)
d4x, (3.87)

as the scalar field action in flat spacetime with time-dependent mass, m2 =
−z′′/z, where z := a

H φ′0 andDi are total derivatives. We are set to perform
the quantization. The canonically conjugate momentum to v is

π(η, x) =
∂L
∂v′

= v′(η, x), (3.88)

with one gets the Hamiltonian

H =
∫
(v′π −L)d4x =

1
2

∫ (
π2 + v,iv,i −

z′′

z
v2
)

d3x. (3.89)

Now, we lift the variables v and π to operators v̂ and π̂ that satisfy the
standard commutation relations

[v̂(η, x), v̂(η, x′)] = 0 = [π̂(η, x), π̂(η, x′)] (3.90)

and [v̂(η, x), π̂(η, x′)] = iδ(x− x′). (3.91)
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3.1 Gauge-invariant cosmological perturbation theory 49

By varying the action (3.87) with respect to v̂, we get the EOM for v̂,
namely

v̂′′ − ∆v̂− z′′

z
v̂ = 0, (3.92)

which is equivalent to the Heisenberg equations

iv̂′ = [v̂, Ĥ], iπ̂ = [π̂, Ĥ]. (3.93)

We would like to work in the Heisenberg picture with time-dependent
state vectors instead of time-dependent operators. Note, that v̂ can be
expressed in terms of annihilation and creation operators that satisfy the
commutation relations

[âk, âk] = 0 = [â†
k , â†

k ] and [âk, â†
k′ ] = δkk′ , (3.94)

so that we are now able to construct the Fock-representation of the Hilbert
space, i.e. the space in which the for us interesting operators v̂ and π̂
act. For a free scalar field in flat spacetime with constant mass, m, exists a
unique vacuum state, |0⟩, defined by

âk|0⟩ = 0 ∀k, (3.95)

where in the mode expansion, the annihilation operators are the operator
coefficients of the positive-frequency modes,

vk(η) ∼ eiωkη, with ω2
k = k2 + m2. (3.96)

All other states can be obtained by acting on |0⟩ with the proper combina-
tion of creation and annihilation operators. Note, that a unique vacuum
with distinguished time direction gives a time-invariant notion of positive
and negative frequency modes in contrast to what happens when quan-
tizing the homogeneous component of a scalar field in an expanding Uni-
verse, where there is no definite notion of time, so there cannot be a unique
vacuum state. Hence, start by picking a time, η0. Now, find a linear com-
bination of the two fundamental solutions

vl(η0) =

(
k2

l −
z′′

z

)− 1
2

η=η0

and v′l(η0) = i
(

k2
l −

z′′

z

) 1
2

η=η0

(3.97)

of the time-dependent mode equation

v′′l (η) +
(

k2
l −

z′′

z

)
vl(η) = 0. (3.98)
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if (
k2

l −
z′′

z

)
> 0 ∀modes l. (3.99)

A vacuum state can, again, be constructed by

al|0η0⟩ = 0 ∀l, where |0η0⟩ ≡ |ψ0⟩. (3.100)

After some calculation one can obtain for the number operator of the l-th
mode, N̂l

⟨ψ0|N̂1
l |ψ0⟩ = |βl|2, (3.101)

meaning that the initial vacuum state gives a non-vanishing expectation
value for the number operator at η1, denoted by the superscript 1 at the
number operator. This is only true if the positive (+) and negative (-) fre-
quency modes are related by a Bogoliubov-transformation

v(1)+l = αlv
(0)+
l + βlv

(0)−
l , v(1)−l = β∗l v(0)−l , |α|2 − |β|2 = 1, (3.102)

from which one can derive the corresponding transformation of the cre-
ation and annihilation operators

âl = αl b̂l + β∗l b̂†
l â†

l = βl b̂l + α∗l b̂†
l , (3.103)

where the creation and annihilation operators denoted by a b̂ correspond
to the mode expansion of v̂. However, the non-vanishing expectation
value of the number operator can be interpreted as follows. The observer
at η1 sees a non-vanishing number of particles in the vacuum state, |ψ0⟩.
This is the process responsible for the production of initial perturbations
in the early Universe in inflationary Universe models12.

In scalar field Universe the two fundamental solutions (3.97) of the time-
dependent mode equation are no longer applicable since during inflation-
ary period

z′′

z
≈ a′′

a
> 0⇒

(
k2

l −
z′′

z

)
≯ 0. (3.104)

If this happens, one defines the so-called de-Sitter invariant vacuum given
by the conditions

vk(η0) =
1

k3/2 (H0 + ik)eikη0 , v′k(η0) =
i

k1/2

(
H0 + ik− i

H′0
k

)
eikη0 . (3.105)

12Note, that the quantum theory sets the initial conditions for the classical considerations.
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3.1 Gauge-invariant cosmological perturbation theory 51

Note, that these conditions converge with the old solutions for k ≫ H0.
The basic problem is now, that in general, for large k the leading terms in
the expansions of the solutions agree13, but not for small k, in which case
the terms may depend sensitively on the definition of the vacuum. Luck-
ily, we only need the short-wavelength, large k, part of the initial vacuum
spectrum. One can use the following initial conditions.

vk(η0) = k−
1
2 M(kη0) and v′k(η0)ik

1
2 N(kη0), (3.106)

where the normalization condition

NM∗ + N∗M = 2, |M(kη0)| → 1, |N(kη0)| → 1 (3.107)

for kη0 ≫ 1 holds.

With this prework we are now ready to tackle the spectrum of density per-
turbations in inflationary Universe models with scalar field matter. First
of all, start with the EOM (3.61)

Φ′′ + 2
(

a
φ′0

)′ (φ′0
a

)
Φ′ − ∆Φ + 2φ′0

(
H
φ′0

)′
Φ = 0. (3.108)

Note, that the EOM could have been derived directly after we have con-
structed the proper action, but the same EOM come out, so we spare us
this alternative derivation. However, the significant difference is, that Φ̂ is
an operator now, whose mode expansion reads

Φ̂(η, x) =
1√
2

φ′0
a

∫ d3k

(2π)
3
2

[
u∗k(η)e

ikxak + uk(η)e−ikxa†
k

]
. (3.109)

The EOM puts the constraint

u′′k (η) +

[
k2 −

(
1
z

)′′
z

]
uk(η) = 0 (3.110)

on the mode functions uk(η). The Fourier mode coefficients functions,
uk(η) and vk(η), are related via

uk(η) = −
3
2

l2 z
k2

(vk
z

)′
(3.111)

13Typically, one gets vk(η0) ∼ k−1/2 and v′k(η0) ∼ k1/2 for k→ ∞.
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and one can use the initial conditions

uk(ηi) = −
3
2

l2
(

i
k3/2 N(kηi)−

z′(ηi)

z(ηi)

1
k5/2 M(kηi)

)
(3.112)

u′k(ηi) = −
3
2

l2
[

1
k3/2 M(kηi) + 3

z′(ηi)

z(ηi)

(
i

k3/2 N(kηi)−
z′(ηi)

z(ηi)

1
k5/2 M(kηi)

)]
,

(3.113)

which are extremely important asymptotic conditions because they tend
to one for kηi ≫ 1 and ensure independence of the vacuum definition,
what will become clear later. Now, consider the definition of the power
spectrum of metric perturbations, |δk|2 as a measure of the two-point cor-
relation function of Φ̂, i.e.

⟨0|Φ̂(η, x)Φ̂(η, x + r)|0⟩ =
∫ x

0

dk
k

sin(kr)
kr
|δk|2 (3.114)

⇒ |δk(η)|2 =
1

4π2
(φ′0)

2

a2 |uk(η)|2k3, (3.115)

where the upper equation was plugged into the mode expansion (3.109).
The solution of the constraint on the mode functions (3.110) in inflationary
Universe models is

uk(η) =

uk(ηi) cos[k(η − ηi)] +
u′k(ηi)

k sin[k(η − ηi)]
uk(ηi) cos(kηi)−u′k(ηi)k−1 sin(kηi)

{(φ′0)
−1[a−1

∫
a2dη]′}ηH (η)

(φ′0)
−1
(

1
a

∫
a2dη

)′ , (3.116)

where the upper equation corresponds to the short-wavelength and the
lower equation to the long-wavelength case, respectively, so that

|δk| ≈
{

l
4π V,φ/V

1
2 kph > H(t)

l
4π (V

3
2 /V,φ)ηH(k) V2

,φ/V2 H(t) > kph > Hi
a(ti)
a(t)

. (3.117)

Typical examples to investigate are V(φ) = λ
n φn and V(φ) = 1

2 m2φ2, for
which I like to refer to [2]. Note, that initial fluctuations inside the hori-
zon are well-described by the short-wavelength case in (3.116) and then
grow out of the horizon, so that they are then well-described by the long-
wavelength case in (3.116). However, after inflation, one approximately
gets

|δk| ≈
3l2

4π(p + 1)

(
φ̇0H2

Ḣ

)
tH(k)

≈ 3l2

2π(p + 1)

(
V

3
2

V,φ

)
tH(k)

, (3.118)
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which is directly connected to the CMB spectrum. A key result is that
the spectrum of adiabatic perturbations is close to being scale-invariant
with additional model-dependent logarithmic correction factors. How-
ever, From CMB observations, one knows |δk| ≲ 10−5 on large scales,
k. For the quadratic model, this gives m

mpl
< 10−6, what in turn gives

λ < 10−14 as a coupling constant. In order to achieve that quantum fluctu-
ations from inflation do not produce too large density perturbations, there
are either extremely small values of the coupling constant, λ, or a certain
mass hierarchy exists.

Let us sum up the main results of our above considerations. We have a
gauge-invariant description of metric perturbations power spectra caused
by fluctuations of scalar field matter, on which we can apply a gauge that
suits our problem under consideration the best. We see that metric pertur-
bations always exist as we have seen that the non-trivial vacuum-structure
gives naturally rise to particle production. Note, that the results do not de-
pend on the choice of the vacuum state as long as basic initial asymptotic
limit conditions apply. Further, inflation, i.e. its exponential expansion,
increases the amplitude of the metric perturbations and the final power
spectrum appears to be nearly scale-invariant.

3.2 The axion field

If not stated otherwise, we follow [1] closely throughout all the subsections
in this section.

3.2.1 Aim and Setup

We now, finally, want to investigate the dynamics of initial density pertur-
bations due to the for us most interesting scalar field matter, namely the
axion field, ϕ. For this purpose, we would like to, first, set up the system of
basic equations in this subsection and then go on to apply linear cosmolog-
ical perturbation theory in subsection 3.2.2, what will be a more intense,
but rather quick discussion, in which we would like to cover the applica-
tion of different gauges for their corresponding purposes, discuss isocur-
vature perturbations, the sound speed in different cases, discuss transfer
functions and the Halo-Mass functions. This will set a proper ground-
work for the very brief discussion of the non-linear theory in subsection
3.2.3, in which we leave the extensively described linear cosmological per-
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turbation theory, since we will realize that it fails for typical fluctuation
sizes, so that we are naturally forced to deal with the non-linear effects
in form of the Schrödinger-Poisson equation. Its implications are briefly
discussed, mostly in the context of halo density profiles. Let us get started.

As was already mentioned in subsection 2.3.2, the action for a minimally
coupled scalar field, like the axion field ϕ, is given by[29]

Sϕ =
∫

d4x
√
−g
[
−1

2
∂µϕ∂µϕ−V(ϕ)

]
, (3.119)

but note, that apparently, this holds only after the PQ-symmetry break-
ing, which makes sense since this is the necessary step to establish the
axion as a pseudo-Goldstone boson and it is further only valid after non-
perturbative effects apply since this is necessary to give mass to the axions[1].
However, By varying the action with respect to ϕ we get the EOM

1√−g
∂µ(
√
−ggµν∂ν) =: □ϕ− ∂V

∂ϕ
= 0 (3.120)

and moreover, by varying the action with respect to gµν one gets the en-
ergy momentum tensor

Tµ
ν = gµα∂αϕ∂νϕ− 1

2
δ

µ
ν [gαβ∂αϕ∂βϕ + 2V(ϕ)]. (3.121)

Recall, that we use the RW-metric (D.4) for a flat Universe, κ = 0 ⇒
S0(r) = r, along with the Hubble parameter, H := ȧ/a, so that the EOM
reads

ϕ̈ + 3Hϕ̇ + m2
aϕ = 0, (3.122)

where we assumed the potential to be of the form V(ϕ) = 1
2 m2

aϕ2. Note,
that this is precisely the same form as the EOM for a general scalar matter
field as (3.48), so that we can apply the treatment of scalar matter field per-
turbations to the axion field, ϕ, from section 3.1. The RW geometry further
dictates the background evolution of the density, ρa,0, and the pressure,
Pa,0, i.e.

ρa,0 =
1
2

ϕ̇2 +
1
2

m2
aϕ2 and Pa,0 =

1
2

ϕ̇2 − 1
2

m2
aϕ2. (3.123)

3.2.2 Application of cosmological perturbation theory

In section 3.1 we focused on keeping the discussion and the main equa-
tions in a gauge-invariant form, so that we can apply the proper gauges
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whenever they are needed for a smooth discussion and interpretation of
the results. Applied to axions, the two gauges we discussed14, namely the
synchronous and longitudinal (Newtonian) gauge, respectively, where the
former one comes in handy because θ = 0 and the latter one is useful in
the Newtonian limit. Note, that θ corresponds to the fluid description as
follows

θ := ikivi. (3.124)

Additionally, we already define σ in the same fashion to be

(ρ0 + P0)σ := −
(

k̂jk̂i −
1
3

δ
j
i

)
Σi

j. (3.125)

However, consider a perturbed axion field, δϕ, and denote, for the sake of
simplicity, the background axion field simply by ϕ, then the EOM (3.34)
become

δϕ′′ + 2Hδϕ′ + (k2 + m2
aa2)δϕ = −1

2
ϕ′h′ (3.126)

in the synchronous gauge, where h is the corresponding gauge-potential
discussed in subsection 3.1.3, and

δϕ′′ + 2Hδϕ′ + (k2 + m2
aa2)δϕ = (Ψ′ + 3Φ′)ϕ′ − 2m2

aa2ϕΨ (3.127)

in the Newtonian gauge, where Φ and Ψ are the corresponding gauge-
potentials also discussed in subsection 3.1.3. Note, that a prime denotes
the derivative with respect to conformal time, dτ = dt/a, as usual. ”If all
cosmological perturbations are seeded by single field inflation, the initial
conditions are adiabatic”[1], which is a useful information because this al-
lows us to relate the overdensity in photons with the overdensity of any
fluid component15, i, via

δi =
3
4
(1 + wi)δγ, (3.128)

where wa ≈ −1 and δϕ = δa ≈ 0 in the early Universe. Recall, that for DM
we expect wm = 0 as was discussed in appendix A. This is not in conflict
with wa ≈ −1 at early times since as we have discussed in subsection

14There are several so-called Boltzmann-solvers to numerically solve the relevant equations
for us. One of them is called CAMB, which uses the synchronous gauge and another one
is AXIONCAMB, which additionally has a full ALP-treatment implemented[1]. This
will be of greater relevance in the follow-up project, so that we do not go deeper into
them in this work.

15Recall, that the fluid description is valid, which was discussed in subsection 2.3.2
around equation (2.66).
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3.1.3 we obvserve an oscillatory behavior for the axion field, ϕ, as one
can expect from the EOM (3.120). Further, we found out that the field
oscillates around wa = 0, fitting to the expected DM behaviour, which
is fixed at later times, when the oscillations decay since the axions start to
cluster in the potential wells set by the photons in the radiation-dominated
epoch. Hogan and Rees[34] discuss the formation of axion miniclusters
from initial isocurvature perturbations16, which is a typical problem one
has to deal with in the unbroken PQ-symmetry case from section 2.2. Such
an isocurvature perturbation between two species i and j can be written as

Sij = 3(ζi − ζ j), (3.129)

where ζi is the curvature perturbation corresponding to species i,

ζi := −Ψ− H
δρi

ρ̇i
, (3.130)

so that the total curvature perturbation can be described as

ζ =
∑i(ρi + Pi)ζi

∑i(ρi + Pi)
. (3.131)

Note, that these equations are gauge-invariant. We can set initial condi-
tions for k ≪ aH for all modes k and for τ ≪ 1. In the broken PQ-
symmetry case, the only perturbed species are the axions with δa = 1.
Since the equations are linear, one can first solve the equations and the
multiply the corresponding spectrum and normalization, where the spec-
trum is a typical power law with spectral index (1 − nI) = 2εinf, with
εinf defined in (E.27). Nevertheless, as we have already seen in subsection
3.1.3, the equation of state parameter, wa, is time-dependent and satisfies
the Friedmann equation (A.3)

ρ′a = −3Hρa(1 + wa). (3.132)

With the equation of state parameter at hand, one gets the adiabatic back-
ground sound speed

c2
ad = wa −

w′a
3H(1 + wa)

. (3.133)

Note, that equation of state parameter and sound speed are the relevant
initial conditions for the background equations. Note further, that one

16Think of isocurvature perturbations as perturbations in the relative number density of
a particle species that leaves the total curvature unperturbed[1].
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is now able to rewrite the EOM as two first order equations for δa and
ua = (1 + wa)va, namely the heat flux,

δ′a = −kua −
(1 + wa)h′

2
− 3H(1− wa)δa − 9H2 (1− c2

ad)ua

k
(3.134)

and u′a = 2Hua + kδa + 3H(wa − c2
ad)ua, (3.135)

where we used c2
s = 1, what will become clear in a bit and δϕ = 0 as

explained above. Later, when a > aosc, we already have observed the
rapid oscillation of wa. The same is true for c2

ad. Due to these rapid oscilla-
tions, one needs to make an approximation similar to wa = 0 for a proper
description and to spare numerical calculation costs. In the synchronous
gauge, the EOM for the fluid description read

δ′ = −(1 + w)(θ +
h′

2
)− 3H(c2

s − w)δ (3.136)

and θ′ = −H(1− 3w)θ − w′

1 + w
θ +

c2
s

1 + w
k2δ, (3.137)

since the anisotropic stress vanishes in the RW-geometry we assume due
to the isotropy of space. The same equations in Newtonian gauge[35] read

δ′ = −(1 + w)(θ − 3ϕ̇)− 3H(c2
s − w)δ (3.138)

θ′ = −H(1− 3w)θ − w′

1 + w
θ +

c2
s

1 + w
k2δ− k2σ + k2Ψ. (3.139)

One can define the sound speed in perturbations by

c2
s :=

δP
δρ

. (3.140)

From the Einstein equations

δρa = ρaδa, (3.141)

δPa = ρa

[
δa + 3H(1− c2

ad)(1 + wa)
ua

k

]
, (3.142)

and ρa(1 + wa)va = ρaua (3.143)

we get
δPa = ⟨c2

s ⟩tρaδa (3.144)

and after using a WKB-approximation as before, we can write

ϕ = a−
3
2 [ϕ+ cos(mat) + ϕ− sin(mat)] (3.145)

and δϕ = δϕ+(t, k) cos(mat) + δϕ−(t, k)− sin(mat), (3.146)
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so that we can find for δϕ = 0 the effective sound speed

c2
s,eff := ⟨c2

s ⟩t =
k2

4m2
aa2

1 + k2

4m2
aa2

, (3.147)

which is crucial to describe the differences of structure formation in the
ULA- and CDM-picture, respectively. However, with c2

s,eff at hand, we can
rewrite the EOM (3.136) as

δ′a = −kua −
h′

2
− 3Hc2

s,effδa − 9H2c2
s,eff

ua

k
(3.148)

and u′a = −Hua + c2
s,effkδa + 3c2

s,effH
2ua. (3.149)

Let us now assume that axions make a significant amount of the observed
DM content of the Universe. The Poisson equation in Newtonian gauge
reads

k2Ψ2 = −4πGa2ρδ. (3.150)

Using the Poisson equation and the EOM (3.138) in Newtonian gauge, one
gets a single equation for δ, i.e.

δ̈a + 2Hδ̇a +

(
k2c2

s,eff

a2 − 4πGρa

)
δa = 0. (3.151)

Note, that we switched from conformal time to coordinate time17. Note
additionally, that the mass term consists of a contribution due to pressure,
k2c2

s
a2 , and a counteracting contribution due to the density, −4πGρa. Both

contributions are to be understood during gravitational collapse, what be-
comes clear for k2c2

s,eff → 0 because obviously we then observe the domi-
nation of the density over the pressure term, i.e. a so-called Jeans instability
causing the collapse. In the opposite case, the pressure term dominates
over the density term and the fluctuations can oscillate without further
growth. Note, that for k2c2

s = 4πGρa, the pressure and density contribu-
tions are in equilibrium, which is why we denote this situation as the axion
Jeans scale, what we can express as

k2
J = (16πGaρa,0)

1
2 ma = 66.52a

1
2

(
Ωah2

0.12

) 1
2 ma

10−22 eV
Mpc−2, (3.152)

17Once again, I would like to highlight, that this is precisely the same EOM as for CDM
with exactly the same growing, δa ∼ a, and decaying, δa ∼ a−3/2, of perturbations.
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where we evaluated c2
s,eff in the limit k/(maa) < 1 to obtain

c2
s,eff ≈

k2

4m2
aa2 . (3.153)

In the same limit and by considering the matter-dominated epoch with the
known ρ̇a = ρcrita−3 scaling, one can solve the EOM (3.151) for δ by

δa = C1D+(k, a) + C2D−(k, a) (3.154)

with the linear growth functions

D+(k, a) =
3a1/2

k̃2
sin
(

k̃2

a1/2

)
+

(
3a
k̃4
− 1
)

cos
(

k̃2

a1/2

)
(3.155)

D−(k, a) =
(

3a
k̃4
− 1
)

sin
(

k̃2

a1/2

)
− 3a1/2

k̃2
cos

(
k̃2

a1/2

)
, (3.156)

where

k̃ =
k

(maH0)1/2 ∼
k
k J

. (3.157)

Note, that for low k̃ one gets

D+(k, a) ∼ a and D−(k, a) ∼ a−3/2 (3.158)

as we expected. This behavior changes with growing scales, k̃, so that
at some intermediate scale, the actual behavior depends on time. At early
times, there is a mixture of the typical power laws with oscillations whereas
at late times, the oscillations decay and we observe, again, the power law
behaviors alone. However, at large scales, i.e. above the Jeans scale, k J ,
we obtain the expected oscillatory behavior with constant amplitude, i.e.
no perturbation growth. Linear growth functions are especially useful
because of the following phenomenology. In the standard cosmological
ΛCDM model, growth is scale-independent, i.e. independent of k, for
redshifts z ≲ O(102) because the baryon acoustic oscillations have frozen
in and the density parameter of radiation has become sufficiently small to
be neglected. This gives us the opportunity to measure the current power
spectrum at z = 0 and then modify it with a so-called transfer-function,
TX(k, z), to a z > 0. In general, one can use transfer functions, which are
also scale-dependent, so that

PX(k, z) = T2
X(k, z)PΛCDM(k, z) (3.159)
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holds for a model X, but as already mentioned, we can simply state T2
ΛCDM(k, z) =

T2
ΛCDM(z). Then, for the linear growth from z = 0 to a z > 0, we obtain

PΛCDM(k, z) =
(

D+(z)
D+(0)

)2

PΛCDM(k) (3.160)

where

D+(z) =
5Ωm

2H(z)

∫ a(z)

0

H3
0da′

a′H(a′)
. (3.161)

Further, we are now able to make a connection to WDM and DM com-
posed by ULAs. Recall, that in subsection 2.3.1 we found that thermal
axions decouple whilst being relativistic, so that they accouont for HDM
causing structure formation suppression, which is not what we observe.
However, besides axions, there are other theoretical particles that could
have been decoupled at an intermediate temperature forming WDM, e.g.
sterile neutrinos or gravitinos with mX ∼ 1 keV. The redshift-independent
transfer functions

TWDM(k) = (1 + (ak)2µ)
− 5

µ and TULA(k) =
cos(x3

J (k))

1 + x8
J (k)

(3.162)

give good results18 for WDM with mX ≳ 0.1 keV and for ULAs with ma ≳
10−24 eV, respectively, where µ = 1.12,

α = 0.074
( mX

keV

)−1.15
(

0.7
h

)
Mpc, (3.163)

xJ(k) = 1.61
( ma

10−22 eV

) 1
18 k

k J,eq
(3.164)

with k J,eq = 9
( ma

10−22 eV

) 1
2 Mpc−1. (3.165)

Note, that the four parameters above are fitting parameters for the numer-
ical simulations done by [1]. By considering the transfer functions in more
detail, one observes that TWDM is a power-law, what makes sense since
WDM is composed of thermally produced particles with T ∼ a−1 in gen-
eral and comoving scales of order of the horizon when the temperature
is roughly of the same order as mX. Further, one sees that the transfer
function, TULA, for ULAs describes the same behavior as we discussed

18The calculations were made under the basic assumption that all the DM content is com-
posed by a single DM species.
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above, namely that the Jeans scale, k J,eq, sets the scale when the exponen-
tial growth transforms to an oscillation.

The power spectrum itself is interesting to know for the description of
galaxy formation. The Halo-Mass Function (short: HMF) is given by

dn
d ln(M)

= −1
2

ρm

M
f (ν)

d ln(σ2)

d ln(MI
, (3.166)

with ν := δcrit
σ , where σ2(M, z) is the variance of fluctuations, δcrit(M, z) is the

linearly extrapolated critical density and M is the halo mass. The HMF
”gives the expected number of halos per logarithmic mass bin, per unit
volume, for a given cosmology”[1]. For f (ν) one can use the so-called
Sheth-Tormen function

f (ν) = A

√
2q
π

ν(1 + (
√

qν)−2p) exp
{
−qν2

2

}
(3.167)

with A = 0.3222, p = 0.3 and q = 0.707. Further, one defines

σ2(M, z) :=
1

2π2

∫ ∞

0

dk
k
(k3P(k, z))2W2(k|R(M)), (3.168)

where W is a window-function that is used to smooth the power spectrum,
i.e.

W(k|R) = 3
(kR)3 (sin(kR)− kR cos(kR)), with M =

4
3

πρmR3. (3.169)

We see, that the power spectrum gives the variance and so we already
have one of the two HMF parameters. The second one is obtained as
follows. Consider a Λ = 0, i.e. an Einstein-de Sitter Universe. Then,
one can solve spherical collapse analytically obtaining a constant, mass-
independent critical density for scale-independent growth as we have dis-
cussed above, that can be scaled to any redshift by

δcrit(z) =
1.686 D+(0)

D+(z)
. (3.170)

One can replace the scale factor fraction with a scale-dependent growth
factor, G(M, z), i.e.

δcrit(M, z) = 1.686 G(M, z), (3.171)
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to allow for Λ ̸= 0, where G imposes a direct connection between the
typical CDM-model we want to obey and the axion model by

G(k, z) =
δa(k0, z)δa(k, zearly)

δa(k, z)δa(k0, zearly)
·

δCDM(k0, z)δCDM(k, zearly)

δCDM(k, z)δCDM(k0, zearly)
. (3.172)

Note, that k0 < k J(zearly) and Ωa = ΩCDM should be satisfied, where in the
former condition we should note additionally, that if k0 is too small, then
Λ becomes the dominant density amount and in the latter condition, zearly
should be chosen, so that BAO have been frozen in already. Marsh states,
that for ”DM axions in a close-to-ΛCDM cosmology, reasonable choices
are k0 = 0.002h Mpc−1 and zearly ≈ 300[1]. With the second parameter
of the HMF at hand, one can now investigate the HMF in detail. The
main result is, that at low M and at high z, ULAs suppress halo forma-
tion compared to CDM. Recall from section 2.2 that in the unbroken PQ-
symmetry case, there is the possibility that axion miniclusters form. For
QCD-axions, these miniclusters satisfy M ≈ 10−9M⊙. These miniclusters
could be denser than halos if they are more massive than corresponding
halos and thus, would be of interest to observe today because after ful-
filling these conditions, they should have been able to exist till today. For
QCD-axions we also observe a cut-off in the HMF at M < 10−9M⊙ as a
result of the Jeans scale.

3.2.3 Brief treatment of the non-linear theory

Up till now we were working in linear theory and now want to make a
first step in the non-linear theory19, that will be a crucial foundation for
the follow-up project. However, let us consider non-relativistic velocities,
which is reasonable since virial velocities in galaxies are typically, vvir ≪ c
and additonally, it is reasonable to work in the Newtonian limit since Ψ≪
1 everywhere except when one is close to a BH. Note, that Ψ must satisfy
the Poisson equation (3.150). Consider only wavelengths above the axion
Compton wavelength, then

□ = −(1− 2Ψ)(∂2
t + 3H∂t) +

1
a2 (1 + 2Ψ)∇2 − 4Ψ̇∂t (3.173)

holds to leading order in Ψ. Further,

ρa =
1
2

[
(1− 2Ψ)Φ̇2 + m2

aϕ2 +
1
a2 (1 + 2Ψ)∂iϕ∂iϕ

]
(3.174)

19Note, that δgalaxies ≳ O(105), so that we cannot perform perturbation theory, obviously.
We are simply forced to take an alternative approach in this case.
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and since ϕ oscillates in the early Universe, we make a WKB-approximation

ϕ =
1

ma
√

2

(
ψe−imat + ψ∗eimat

)
, (3.175)

where ψ is a complex scalar field. In the limits mentioned above, we can
write

Ψ ∼ ε2
non-rel.,

k
ma
∼ εnon-rel. and

H
ma
∼ εWKB (3.176)

and work to O(ε2
non-rel,WKB), so that ρa = |ψ|2, what in turn recasts the

Poisson equation (3.150) to the form20

∇2Ψ2 = 4πGa2|ψ|2δ, (3.177)

so that one clearly sees how Ψ is generated out of |ψ|2. All in all, by using
the d’Alembertian (3.173) instead of the familiar one in the Schrödinger
equation, we arrive, after applying the Poisson equation above at the non-
linear Schrödinger-Poisson equation

iψ̇− 3
2

iHψ +
1

2maa2∇
2ψ−maΨψ = 0, (3.178)

namely the EOM for the complex scalar field ψ. Let us write ψ = R exp{iS}
and plug it in, then we find the velocity

v⃗a :=
1

maa
∇S (3.179)

of an effective fluid. By splitting the actual fluctuations from the back-
ground, one finds the EOM in terms of δa

δ̇a +
v⃗
a
∇δa = −

1 + δa

a
∇ · v⃗a, (3.180)

and ˙⃗va +
v⃗a · ∇

a
v⃗a = −

∇(Ψ + Q)

a
− Hv⃗, (3.181)

where we defined the quantum potential

Q := − 1
2m2

aa2
∇2√1 + δa√

1 + δa
, (3.182)

20We write the Poisson equation in coordinate-space here. To go to Fourier space, we
simply replace ∇ → −ik as usual.
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which is in fact the only model parameter necessary for the axion gradient
energy and the Jeans scale because it introduces an additional term in the
force equation on a fluid element, i.e.

F = −∇(Ψ + Q)

a
(3.183)

as was seen in the EOM above. Via this effective fluid description, one
carefully can connect the linear perturbation theory with non-linear sim-
ulation tools, which typically rely on fluid descriptions. Like in the previ-
ous subsection, where we dealt with the linear theory, let us take a quick
look on halos. From pure CDM N-body simulations one knows that the
Navarro-Frenk-White (short: NFW) density profile seems to be universal
and has the shape

ρNFW(r)
ρcrit

=
δNFW(c, r)
r
rs

(
1 + r

rs

)2 , (3.184)

where c is the halo concentration, defined so that for the virial radius rvir =
crs holds and rs is the scale radius. ULAs have a direct impact on the
density profile due to their wave-like effects we discussed above, what
implies that we cannot just simply consider CDM, but have to take an ULA
modification into account. However, we expect that the resulting density
profile gives the NFW profile again if we smooth it over sufficiently many
Jeans scales. One typcially considers so-called soliton-solutions of the EOM
(3.120) with stationary wave and constant energy, E, solutions

ψ = χ(r)e−iEt (3.185)

since this system possesses the scaling symmetry

(r, χ, Ψ, E, M(< r), ρ)→
( r

λ
, λ2χ, λ2Ψ, λ2E, λM(< R), λ4ρ

)
, (3.186)

where λ is the scale factor, ρ = χ2 is the soliton density and M(< r) is the
soliton mass inside r. Due to the scaling symmetry, one has to solve the
resulting system of differential equations after plugging in the stationary
wave ansatz in just once. Marsh finds that the initial condition χ(0) = 1
gives E0 = −0.692 for the zeroth energy-eigenvalue[1]. By considering
the scaling symmetry, one can find the characteristic radius, rsol, for the
soliton solution to be

rsol ∼ m−
1
2

a ρ
− 1

4
sol , (3.187)
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which is the same scaling as the jeans scale, what is expected because they
are derived in the non-relativistic limit after dimensional analysis. With
rsol one can write down the soliton density profile

ρsol(r) =
ρsol(0)(

1 +
(

r
rsol

)2
)8 , with rsol = 22

(
ρsol(0)

ρcrit

)− 1
4 ( ma

10−22 eV

)− 1
2 kpc.

(3.188)
Apparently, the soliton density must match the NFW profile continuously
after smoothing as explained above, what is a current problem to solve.
Nevertheless, rather generically, one can simply write

ρ(r) = θ(rε − r)ρsol(r) + θ(r− rε)ρNFW(r) (3.189)

with the familiar Heavyside-function, θ(r). With the density profile at
hand, one can now match observational data to fix the axion mass for in-
stance.
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Chapter 4
Summary

In the following I would like to sum up what we have done throughout
this work. I will give two equivalent summaries in English and German.

4.1 In English

We basically told two stories in this work. First, we had two different
problems, namely the dark matter question in the standard cosmological
ΛCDM model, described in appendix A, and the strong-CP problem in
QCD, described in subsection 2.1.1. For a brief summary of the for us in-
teresting results of QCD, see appendix B. In the ΛCDM model we seek
for a proper DM candidate, whose properties are constrained by a vari-
ety of cosmological observations and numerical simulations. Although,
we usually try to fit one of the known particles of the standard model of
particle physics to such problems, there is apparently no appropriate can-
didate to solve the CDM problem. However, by solving the strong-CP
problem of QCD, one of the key components of the standard model of
particle physics, we find a naturally occuring particle in subsection 2.1.2,
the axion, whose properties fit beautific to the properties of the desired
CDM. The basic idea of the solution is that the vacuum structure is non-
trivial and that different vacua exist, between which tunneling processes
should be possible in some way, which then leads to instantons describ-
ing these effects, which are manifestly non-perturbative. We discussed
the properties of instantons at length in appendix C. This is crucial since
the global U(1)PQ-symmetry is not exact, so that the spontaneous symme-
try breaking establishes the axions as pseudo-Goldstone bosons, whereas
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the non-perturbative effects give rise to a potential that leads to a non-
vanishing axion mass, ma. We then distinguished the class of QCD-axions
coming, obviously, from the QCD story we told so far and the ALPs in
general, that are the generalization of axions in the context of GUTs, like
string theory. Nevertheless, our analysis of the QCD-axions was sufficient
to impose general conditions on the properties of ALPs. We discussed this
topic along with three different QCD-axion models in subsection 2.1.3. Af-
ter we have established the idea of ALPs, we discussed the axion field, ϕ,
as an observer field during inflation in section 2.2, where we had to distin-
guish between the breaking of the PQ-symmetry during or after inflation,
what leads to different phenomenology. We briefly touched upon infla-
tion driven by axions, but did not go deeper into that, since this leads to
the loss of axions as DM candidates, which is not what we want. A brief
review of the idea of inflation was done in appendix E. To close the setup
of axions in chapter 2, we considered four different production mecha-
nisms. We started with the thermal production in subsection 2.3.1, that
led to the production of axions as HDM or dark radiation, so that we rule
this production channel out for our work. A very detailed derivation of
the thermally produced axion abundance was done in appendix D. Then
we went on to the production via misalignment in subsection 2.3.2, that
perfectly fits our initial ideas of different vacuum states, that have to be re-
aligned. This production channel is, in opposite to the thermal production,
strictly non-thermal, what underlines, how well suited it appears to be for
a reasonable initial axion DM population on cosmological scales. Lastly,
we just briefly discussed the production of ALPs as a deacay product of
a heavier parent particle and of topological defects (strings) in subsection
2.3.3, but since this production mechanism is far beyond the scope of this
work and well-suited in a string theory setup, we kept the discussion at a
minimum.

In the second part of the work, we focused mainly on two great review
articles to present the fundamental dynamics of the initial density pertur-
bations. Therefore chapter 3 starts with the extensive discussion of linear
cosmological perturbation theory in section 3.1 with the presentation of
the main aspects of [2], who have derived all relevant equations in a man-
ifestly gauge-invariant form, giving us a maximum amount of flexibility
to continue our work. In subsection 3.1.2, we have seen how conventional
hydrodynamical perturbations behave in different cases, mostly to give us
an impression of the conventional theory and to get used to the machinery
of the formalism. We then quickly went over to scalar matter field pertur-
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bations in subsection 3.1.3, first, in the context of a classical theory, that al-
ready gave insights in the natural appearance of a period of inflation and
the fundamental dynamics of the scalar field, what after inflation begins
to oscillate. Although, we carefully have to distinguish between short-
and long-wavelength perturbations, respectively, we found out, that the
spectrum of density perturbations approximately does not depend on the
exact dynamics during inflation rather than solely on the difference in the
equation of state parameters between the end and start of inflation, giving
rise to a nearly-scale invariant spectrum. Afterwards, in subsection 3.1.4,
we turned to the task of lifting the classical theory to a quantum mechan-
ical level. Whilst doing so, we saw that again, it cannot hold anymore,
that the vacuum has a trivial structure, what immediately leads to the ex-
istence of particles in an initially empty vacuum state, when observed at
some later time. We thus, independently of the strong-CP problem solu-
tion come back to the crucial idea of non-trivial vacuum states. However,
we then went on to describe density perturbations in inflationary Universe
models. With this groundwork, we are set to discuss the axion field as the
most interesting example of a scalar matter field, following the example of
[1] in section 3.2. Again, after setting up the basic framework in subsec-
tion 3.2.1, we turned to small initial fluctuations in subsection 3.2.2, that
are well-described by linear cosmological perturbation theory. We investi-
gated the dynamics of isocurvature perturbations and discussed the sound
speed, what us then again led to the idea of an oscillation axion field after
inflation. Note, that the sound speed is used to describe the differences be-
tween a ULA-DM and a CDM cosmology. The results match exactly with
the known picture of appendix A. We then considered transfer function,
which base on linear growth functions, that also give the same scaling laws
as in the ΛCDM picture. However, this discussion can be used to describe
the differences between the power spectra of different cosmologies, like
CDM, ULA-DM and as an interesting opponent, even WDM. This discus-
sion was closed by an investigation of the HMF. However, nowadays we
typically observe large fluctuations, so that the linear perturbation theory
is no longer applicable. Hence, we are forced to consider the non-linear
theory, which is luckily for us, a quick outcome of a very few basic as-
sumptions that are justified well by observation. They immediately lead
to the Schrödinger-Poisson equation that underlines the wavelike charac-
ter of the axions in a non-relativistic setup and its impact on gravity and
thus, structure formation. We then went on to use the wavelike behavior
to discuss the shape of halo density profiles, that are closely related to N-
body simulations, what leaves us with an ideal starting point to pick up
work in the next project.
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4.2 In German

Grundlegend haben wir in dieser Arbeit zwei Geschichten erzählt. Zuerst
haben wir zwei Probleme vorliegen, nämlich die Frage, was Dunkle Ma-
terie (kurz: DM) im kosmologischen ΛCDM Standardmodell ist, was wir
in Anhang A beschrieben haben. Das zweite Problem ist das starke CP-
Problem der Quantenchromodynamik (kurz: QCD), welches wir in Un-
terabschnitt 2.1.1 dargestellt haben. Für eine kurze Zusammenfassung der
wichtigsten Ergebnisse der QCD siehe Anhang B. Im ΛCDM Standard-
modell suchen wir nach einem geeigneten DM Kandidaten, wessen Eigen-
schaften durch eine Vielzahl kosmologischer Beobachtungen und nume-
rischer Simulationen eingeschränkt sind. Obwohl wir normalerweise im
Standardmodell der Teilchenphysik nach einem geeigneten Kandidaten
suchen, scheint es so, als sei keiner der bekannten Standardmodell-Teilchen
ein geeigneter Kandidat. Daher widmen wir uns zunächst dem Lösen des
starken CP-Problems der QCD. Auf ganz natürliche weise, kommt das
Axion in Unterabschnitt 2.1.2 als Teilchen bei der Lösung des starken CP-
Problems heraus, dessen Eigenschaften erschreckend gut auf die der ver-
langten kalten DM passen. Die grundlegende Idee ist, dass das Vakuum
eine nicht-triviale Struktur aufweist und dass es im Grund verschiedene
Vakuumszustände gibt, zwischen denen auf bestimmte Art und Weise
getunnelt werden kann, die wiederum durch Instantonen beschrieben wer-
den, die manifest nicht-perturbativ1 sind. Wir haben die Eigenschaften
der Instantonen in Länge in Anhang C diskutiert. Das ist sehr wichtig,
denn die globale U(1)PQ-Symmetrie is nicht exak, so dass die spontane
Brechung das Axion als Pseudo-Golstone Boson etabliert, wohingegen die
nicht-perturbativen Effekte erst das Potential aufwerfen, aus welchem die
Axionen-Masse abgeleitet werden kann. Nachfolgend haben wir die Klasse
der QCD-Axionen von der der axionartigen Teilchen (kurz: ALP für ”ax-
ion like particles”) unterschieden. Erstere umfasst logischerweise Axio-
nen, die aus der QCD resultieren, während letztere die Verallgemeinerung
aus den großen vereinheitlichen Theorien, wie zum Beispiel der String-
Theorie, ist. Nichtsdestotrotz war unsere Analyse der QCD-Axionen aus-
reichend, um allgemeine Eigenschaften von ALPs zu formulieren. Das
gesamte Thema haben wir in Unterabschnitt 2.1.3 diskutiert. Nachdem

1Die direkte Übersetzung von perturbation aus dem Englischen ist Störung, was allerd-
ings zu sehr abstrusen Formulierungen wie ”nicht-störerisch” führt, die ich hier durch
den generischen Gebrauch des eingedeutschten perturbativ vermeiden werde. Eine
Ausnahme hierbei stellt die Störungsrechnung/-theorie im Allgemeinen dar, da dies
der geläufige Ausdruck in der deutschsprachigen Literatur ist und wir von diesem nicht
abweichen wollen.
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wir die Idee der ALP etabliert hatten, haben das Axionenfeld, ϕ, als Beo-
bachterfeld der Inflation in Unterabschnitt 2.2 betrachtet, wo wir zwischen
der Brechung der PQ-Symmetry während und nach der Inflation unter-
scheiden mußten, was zu unterschiedlichen Phänomenologien führt. Wir
haben nur kurz das Axionenfeld als den eigentlichen Treiber der Infla-
tion betrachtet, wofür wir allerdings das Axion als DM Kandidaten ein-
tauschen müßten, was uns widerstrebt und wir diesen Pfad daher nicht
weiter beschritten. Ein kurzer Überblick über Inflationstheorie wurde in
Anhang E gegeben. Um Kapitel 2 über die grundlegende Axionen-Theorie
zu schließen, haben wir vier verschiedene Produktionsmechanismen be-
trachtet. Wir starteten in Unterabschnitt 2.3.1 mit der thermalen Produk-
tion, die allerdings zu heißer DM und dunkler Strahlung führte, weshalb
wir diesen Produktionskanal ausschlossen. Eine sehr detaillierte Herlei-
tung der thermalen Axionenpopulation ist in Anhang D gegeben. Dann
haben wir die Produktion durch Falschausrichtung des Vakuums in Un-
terabschnitt 2.3.2 betrachtet, was perfekt auf unsere ursprünglichen Ideen
einer nicht-trivialen Vakuumsstruktur passt. Dieser Produktionskanal ist
im Gegensatz zu der thermalen Produktion strikt nicht-thermal, was un-
terstreicht, wie gut dieser für eine nennenswerte Axionen-DM Population
im frühen Universum geeignet ist. Abschließend haben wir noch das Ax-
ion als Zerfallsprodukt eines schwereren Elternteilchens bzw. eines toplo-
gischen Defekts (Strings) in Unterabschnitt 2.3.3 betrachtet, was allerd-
ings weit ausserhalb der Reichweite dieser Arbeit liegt und typischer Be-
standteil in String-Theorien ist, weshalb wir die Diskussionen auf einem
Minimum gehalten haben.

Im zweiten Teil der Arbeit fokussierten wir uns auf zwei sehr empfehlens-
werte Artikel, die einen Überblick über die Dynamiken der jeweiligen
ursprünglichen Dicht-Perturbationen geben. Daher startet Kapitel 3 mit
einer ausgedehnten Diksussion der linearen kosmologischen Störungsthe-
orie in Abschnitt 3.1 mit einer Prs̈entation der wichtigsten Ergebnisse von
[2], die alle Gleichungen in eichinvarianter Form hergeleitet haben, was
uns ein maximales Maßan Flexibilität bietet, um unsere Arbeit fortzuset-
zen. In Unterabschnitt 3.1.2 betrachten wir erst einmal konventionelly
hydrodynamische Perturbationen in verschiedenen Fällen, hauptsächlich,
um uns einen ersten Eindruck der Maschinerie des Formalismus zu geben.
Danach gehen wir in Unterabschnitt 3.1.3 zu massiven Skalarfeld Pertur-
bationen über, erst einmal in einem klassichen Kontext, was uns bereits
das natürliche Auftreten von Inflation und die fundamentale Dynamik
aufzeigt, nämlich, dass das Axionenfeld nach dem Ende der Inflation zu
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oszillieren beginnt. Obwohl wir vorsichtig zwsichen kurz- und langwelli-
gen Perturbationen unterscheiden müssen, finden wir heraus, dass das
Spektrum der Dichte-Perturbationen approximativ nicht von der genauen
Dynamik während der Inflation, sondern viel mehr von der Differenz der
Zustandsgleichungsparameter von Ende zu Beginn der Inflation abhängt.
Danach haben wir uns in Unterabschnitt 3.1.4 der Aufgabe gewidmet,
die klassische Theorie auf eine quantenmechanische Theorie zu erheben.
Im Zuge dessen sahen wir erneut, dass die Idee von der trivialen Vaku-
umsstruktur nicht länger aufrecht erhalten werden kann. So kommen wir
unabhängig der starken CP-Problem Lösung wieder bei der wichtigen
Idee der nicht-trivialen Vakuumsstruktur an. Wir konnten dann Dichte-
Perturbationen in inflationären Universumsmodellen beschreiben. Mit die-
sem Grundstein, waren wir bereit das Axionenfeld als das interessanteste
massive Skalarfeld zu betrachten, wobei wir dem Beispiel von [1] in Ab-
schnitt 3.2 gefolgt sind. Wieder haben wir zuerst die Rahmenbedingun-
gen für die weiteren Analysen in Unterabschnitt 3.2.1 geschaffen. Danach
haben wir uns zuerst kleinen Perturbationen in Unterabschnitt 3.2.2 gewid-
met, die sehr gut durch lineare kosmologische Störungstheorie beschrieben
werden. Wir haben die Dynmik von Iso-Krümmungs Perturbationen un-
tersucht und die Schallgeschwindigkeit diskutiert, die uns wieder zum
Oszillationsverhalten des Axionenfelds nach Ende der Inflation führte.
Man beachte, dass die Schallgeschwindigkeit benutzt wird, um Unter-
schiede zwischen ULA-DM und CDM Kosmologien aufzuzeigen Die Er-
gebnisse stimmen mit dem bekannten Bild aus Anhang A überein. Dann
haben wir die Transferfunktionen betrachtet, die auf linearen Wachstums-
funktionen beruhen, die ebenfalls das gleiche Skalierungsverhalten wir im
ΛCDM Modell widergeben. Diese Diskussion kann auch benutzt werden,
um die Unterschiede zwischen den Leistungsspektren verschiedener Kos-
mologien aufzuzeigen. Dieser Abschnitt wurde durch die Untersuchung
von Halo-Massen-Funktionen abgeschlossen. Heutzutage beobachten wir
allerdings typischerweise große Perturbationen, so dass die lineare Stö-
rungstheorie nicht mehr anwendbar ist und wir gezwungen werden, uns
mit der nicht-linearen Theorie zu beschäftigen, welche recht schnell aus
nur wenigen grundlegenden Annahmen folgt, die gut durch Beobach-
tungen gerechtfertig sind, und direkt die Schrödinger-Poisson Gleichung
ergeben, die den Wellencharakter der Axionen in einem nicht-relativist-
ischen Rahmen und ihren Einfluss auf Gravitation und die daraus resul-
tierende Strukturformation widerspiegelt. Darauf aufbauend haben wir
die Form von Halo-Dichteprofilen untersucht, die eng mit N-Körper Sim-
ulationen verknüpft sind, was uns einen idealen Startunkt für das nach-
folgende Projekt bietet.
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Conclusion and Outlook

One can conclude that the axion appears to be a naturally arising and
very suitable candidate to solve the DM question in ΛCDM cosmology.
Its fundamental shift-symmetry protects its mass to all orders in perturba-
tion theory. Its coupling to standard model particles shows that it couples
very weakly to them since all coupling constants scale with powers of the
axion mass, which thought to be extremely small for ULAs. The axion
can be produced on cosmologically relevant scales in the early Universe
via the misalignment of the non-trivial vacuum states, what naturally ex-
plains the existence of initial density perturbations. The evolution of these
perturbations is well-described by linear cosmological perturbation the-
ory at first, but later on must be traded for the non-linear treatment via the
Schrödinger-Poisson equation, when the perturbations become to large.
Nevertheless, the results match pretty well the observed results and stan-
dard cosmological theory, so that in fact, their existence should be observ-
able.

Marsh[1] states, that one should pay particular attention to large scale
structure measurements since ”ULAs suppress structure formation on clus-
ter scales”[1] and as we have briefly treated in the context of thermal pro-
duction, thermally produced axions could contribute to HDM and dark
radiation. Additionally, the direct detection experiments of axions should
be rethought to allow for new approaches since the conventional methods
make rather slow progress in scanning the huge possible mass range of ma.
Finally, there should also be a huge effort in numerical simulations. A vast
investigation of CDM and WDM models exists already in great detail, but
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it lacks of a proper treatment of low-mass cases, like the ULA mass range.
In order to simulate CDM, one just needs the initial conditions and the dy-
namics of the initial density perturbations. We are basically set to redo the
simulations with modified initial conditions, e.g. the suppressed power
spectrum, and modified dynamics, e.g. the impact of wavelike behavior.
This is going to be our task in the upcoming work.
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Dank für das, was ihr mir ermöglicht.
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Appendix A
Brief review of the ΛCDM model

This appendix is dedicated to the standard model of cosmology, namely
the ΛCDM model, whose properties we would like to present in a con-
densed way. For a more detailed story on the historical development I
recommend chapters 1.4.2. and 1.4.4. in [36] and the references therein for
the scientific details.

However, one could start the story with Albert Einstein who published
his theory of general relativity in 1916 and studied solutions of the corre-
sponding field equations[36].

Rµν −
1
2

Rgµν = 8πGTµν. (A.1)

Interestingly, he immediately found that all the solutions require an ex-
panding or contracting Universe, but since he was convinced of a static
Universe, he introduced a cosmological constant, Λ, to the field equations

Rµν −
1
2

Rgµν −Λgµν = 8πGTµν, (A.2)

which solely purpose is to compromise the gravitational attraction, so
that the Universe he studied can be static[36]. Note, that this is allowed
since ∇µTµν does not change since Λ = const. and metric compatibility,
∇µgµν = 0, is a fundamental metric property in general relativity. Note,
that these static solutions are unstable, what we would like to demon-
strate quickly. First, from Einsteins Field equations (A.1) and the fact that
the cosmological principle dictates that Tµν can only be time-dependent,
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since the Universe is isotropic in space, so that we can write it as T00 =
ρ(t), Ti0 = 0, Tij = −P(t)gij, where ρ(t) is the density and P(t) is the pres-
sure as usual, we can derive(

ȧ
a

)2

=
8πGρ

3
− κ

R2
0

1
(a/a0)2 Friedmann eq. and (A.3)

ä
a
= −4πG

3
(ρ + 3P) Acceleration eq., (A.4)

where R0 is the present-day curvature of the Universe and κ ∈ {−1, 0,+1}
depending on if we describe a negatively curved, flat or positively curved
Universe, respectively, a is the scale factor, where a0 = 1 is its present-day
value and a dot denotes the derivative with respect to cosmological time
t. Now, the first law of thermodynamics is

dQ = dE + PdV. (A.5)

The cosmological principle implies that the net energy transfer between
neighboring infinitesimal elements of the Universe is zero, dQ = 0. Note

that ρc2 c=1
= ρ gives an energy density, where ρ ∼ a−3, so that ρV should

give an energy since V ∼ a3 is a volume. Collecting these information the
first law of thermodynamics becomes

0 = dE + PdV = d(ρV) + PdV = Vdρ + ρdV + PdV.
:ρV⇒ 0 =

dρ

ρ
+

dV
V

+
P
ρ

dV
V

=
dρ

ρ
+

(
1 +

P
ρ

)
dV
V

. (A.6)

Further,

V ∼ a3 ⇒ dV
V

= 3
da
a
⇒ 0 =

dρ

ρ
+ 3

(
1 +

P
ρ

)
da
a

·ρ/dt⇒ ρ̇ + 3
ȧ
a
(ρ + P) = 0 Fluid eq., (A.7)

which we will use now. Recall that the equation of state is P = wρ, where
w is the equation-of-state parameter. We have wm = 0 for non-relativistic
matter, wγ = 1

3 for relativistic matter, respectively. From (A.7) we see that
the second term vanishes if P = −ρ or, equivalently, if w = −1. Then we
get ρ̇ = 0 and since the energy density is constant we associate this case
with he cosmological constant, i.e. wΛ = −1. Note, that from (A.1) we
can read off ρΛ = Λ

8πG , which is indeed constant. We are thus led to say
that the cosmological constant is related to dark energy. Now, we rewrite
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the Friedmann equation (A.3) to include the energy density contribution
of the cosmological constant explicitly, leading to(

ȧ
a

)2

=
8πGρ

3
− κ

R2
0

1
a2 +

Λ
3

, (A.8)

which is possible since ρ is just the sum of all energy density contributions
and now we exclude the dark energy contribution from the sum and make
its constant contribution explicit. The same holds for pressure, which is
why we do the same for the acceleration equation (A.4)

ä
a
= −4πG

3
(ρ + 3P) +

Λ
3

(A.9)

For a static Universe, we demand ȧ = 0 = ä and from observations we
know that today non-relativistic matter is the dominant energy density
contribution, so that we use wm = 0 or likewise P = wρ = 0. Plugging
everything into the expanded acceleration equation we get

0 !
=

ä
a
= −4πG

3
ρm +

Λ
3

, (A.10)

where we safely neglected relativistic matter as explained. From this we
see the instability of a static Universe solution immediately because if the
Universe is expanded (compressed) just infinitesimally, ρm decreases (in-
creases) slightly, since ρm ∼ V−1, leading to ä becoming positive (nega-
tive) leading to a non-vanishing ȧ or, equivalently, to a Universe expand-
ing (compressing). The expanding behaviour of the Universe was later
observed by Hubble so that a static Universe is ruled out[36]. Note, that
Einstein included Λ in (A.1) to be able to describe a static Universe, but
as we discussed above, even though the Universe is expanding, Λ itself is
related to a constant energy density ρΛ, namely the dark energy density.
In fact, for all w<− 1

3 the acceleration equation (A.4) yields an accelerating
expansion for which we call the corresponding energy density collectively
as dark energy, but the wΛ = −1 case is in that sense special that it corre-
sponds to a constant energy density. However, dark implies that right now
we do not understand the physics behind dark energy even though there
are several experiments, described for instance in [37], that put observa-
tional constraints on the dark energy density parameter, ΩΛ,0 =

ρΛ,0
ρcrit,0

,

where ρcrit = 3H2

8πG is the critical density and H is the Hubble parameter.
The subscript 0 denotes, as usual, the present-day value. Today we ap-
proximately observe ΩΛ,0 ≈ 0.7.
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Let us turn to the next building block of the ΛCDM model, namely the
Cold Dark Matter, CDM, part. There are several experiments, described
in [37], that lead to the existence of dark matter. Historically relevant is
the first evidence studied by Zwicky in 1933, where he studied veloci-
ties of galaxies in the Coma Cluster with the outcome that they cannot
be explained solely by the observed matter content of the galaxies[36]. A
second evidence, which gives a nice visualization, comes from observing
X-rays from merging galaxy clusters and simultaneously measuring the
weak gravitational lensing effect. The X-rays emitted by the colliding hot
gas shows the expected shock formed by the two colliding clusters. Addi-
tionally, the weak gravitational lensing shows two massive clusters pass-
ing through each other, forming a huge offset related to the colliding hot
gas. This offset can be explained by the existence of non-baryonic dark
matter haloes in the galaxy clusters, where the dark matter is observed to
be collisionless in order for the haloes to pass through each other as was
observed. The natural question arising from this observations is what the
dark matter actually is. I do not want to go deeper into this discussion,
but the main results are that no known particle in the standard model of
particle physics is an appropriate candidate and so the field is open to all
kinds of speculations[38], like the axions we discuss in this project. How-
ever, the observed dark matter has properties we should consider now, so
that we can align our theoretical considerations with these observational
constraints to be consistent with experiment. First of all, thinking of dark
matter as particles, it is relevant to know when the dark matter particles
decoupled from the thermal bath. If they decoupled whilst being relativis-
tic, like the first propositions of dark matter particles being massive neutri-
nos suggested[36], they would have high kinetic energies allowing them
to wipe out small-scale structure in the early Universe, which leads to top-
down structure formation which is inconsistent with large-scale structure
observations[37]. That leaves us with dark matter being cold or warm,
both able to give the observed structure formation from small to large
scales. Numerical simulations and observations, e.g. cosmic shear[37]
based on gravitational lensing, tend to agree perfectly with the predictions
of cold dark matter[36], so we go along with them and adapt to a cold
dark matter (CDM) model. From observations we know that Ωm,0 ≈ 0.3,
but the baryonic matter contributes only Ωb,0 ≈ 0.05. This gives a baryon-
matter-ratio Ωb,0/Ωm,0 ≈ 0.16, so that one sees immediately that most of
the Universes matter is present in the form of non-baryonic dark matter.
Recall that the baryonic matter consists of stars, interstellar matter and
mostly the diffuse intergalactic medium[39].
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Appendix B
Brief review of QCD

In this appendix we want to quickly go over the for us most important re-
sults of Quantum Chromodynamics, QCD, the quantum field theoretical de-
scription of the strong interaction. We will construct the QCD-Lagrangian
LQCD and discuss the flavour- and chiral-symmetry, respectively. For a
way more detailed derivation of these results and far more information,
I strongly recommend the reader to the standard textbook of Quantum
Field Theory by Peskin and Schröder[12]. Here, I will follow the example
of Münster [3] for a brief review of QCD.

The building blocks of hadrons, e.g. protons and neutrons, are quarks that
are described by Dirac-fields, q, which is why quarks have a fermionic
nature. Note, that one is typically familiar with denoting Dirac-fields by
ψ, but for clarity we refer to quark-fields directly as q, which can be thus
written as

q =

 q1
...

q4

 = (qα), α = 1, . . . , 4. (B.1)

There are six quark-flavours, N f = 6, categorized in the three duplets up
and down, charm and strange, top and bottom, so that we have to expand
our previous quark-notation

qα → qα f , (B.2)

where f = u, d, c, s, t, b denotes the corresponding flavours up, down,
charm, strange, top, bottom, respectively. Since quarks are fermions, in

81



82 Brief review of QCD

order to satisfy Pauli’s exclusion principle, we finally have to introduce a
third quantum number, the colour, denoted by i = 1, 2, 3 or i = r, g, b for
the basic colours red, green and blue, respectively. These colours, that are
described by colour-triplets, are responsible for the characteristic SU(3)-
symmetry group of QCD. Most of the times, we do not need to include
all three quantum numbers at the same time in our considerations. Now
that we have set up the quark fields, let us introduce their masses, m f ,
and assume that different quark flavours carry different masses. Let us
construct the quark Langrangian, Lquark, that can contain only lorentz-
invariant couplings, as usual, and must satisfy the above described SU(3)
gauge symmetry. So for free quarks we can immediately write down

Lquark = q̄(iγµ∂µ −m f )q, (B.3)

where a bar denotes, as usual, the Dirac adjoint, i.e. the composition of
transposition and complex conjugation of a Dirac spinor. We denote anti-
quarks with this notation. Let us check if Lquark is invariant under SU(3).
For that, recall that for all U ∈ SU(3) the identity U†U = 1 = UU† holds,
so that the colour transformation

qi f → q′i f = Uijqi f , (B.4)

where i and j are colour-indices, indeed gives

Lquark → L′quark = q̄′i f (iγ
µ∂µ −m f )q′i f = U†

ijq̄i f (iγµ∂µ −m f )Uijqi f (B.5)

= q̄i f (iγµ∂µ −m f )qi f = Lquark, (B.6)

where we used that U commutes with all operators, acting on flavour- and
spinor-indices. Having the gauge group SU(3) at hand we can explore the
transformation (B.4) a bit more. Note, that we can write all U ∈ SU(3) as

U(x) = exp{−iAa(x)Ta}, (B.7)

where Aa(x) are eight parameters and Ta are the eight generators of the
SU(3) symmetry group. Eight is the number of choice as in general SU(N)
has N2 − 1 generators and for each generator we get a corresponding pa-
rameter. Specifically for QCD we can identify Aa

µ(x) as the eight gluon
fields, describing the exchange particles of the strong interaction, and we
can further identify Ta = λa/2, where λa are the Gell-Mann matrices, a
set of eight traceless hermitian matrices corresponding to the Lie-algebra
of SU(3), which satisfy the commutation relation [λa, λb] = 2 fabcλc, where
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the f ’s are structure constants of the algebra. Knowing all that we can
replace ∂µ in (B.3) by

∂µ → Dµ = ∂µ − igAa
µ(x)Ta, (B.8)

where g is a coupling constant. With this replacement we construct the
local SU(3) symmetry. Further, we can construct the field-strength tensor,
Ga

µν, of gluons. For this, we omit the explicit spacetime-dependence of the
gluon-fields and compute

[Dµ, Dν]
(B.8)
=

[
∂µ − igAa

µ
λa

2
, ∂ν − igAb

ν
λb
2

]
=
[
∂µ, ∂ν

]
− ig∂µ Ab

ν
λb
2

+ ig∂ν Aa
µ

λa

2
− (ig)2Aa

µ Ab
ν

[
λa

2
,

λb
2

]
= −ig∂µ Ab

ν
λb
2

+ ig∂ν Aa
µ

λa

2
+ g2Aa

µ Ab
ν

1
4
· 2 fabcλc

=: −igGa
µν

λa

2
, (B.9)

where in the end we just relabeled some indices and factored out some
factors to define the gluon-field-strength tensor, i.e.

Ga
µν(x) = ∂µ Aa

ν(x)− ∂ν Aa
µ(x)− g fabc Ab

µ(x)Ac
ν(x). (B.10)

From this form it is immediately clear that it transforms properly under
SU(3) flavour-transformations (B.4). With the gluon field-strength tensor
we can construct the Yang-Mills Lagrangian

LYM :=
−1
4

Ga
µνGµν,a = −1

2
Tr
[
GµνGµν

]
, (B.11)

which is basically the kinetic term of the gluons. We have rewritten the
Yang-Mills Lagrangian in terms of a trace for usage in the main text of
this project. Adding the free quark Lagrangian (B.3) to the Yang-Mills La-
grangian (B.11) then gives us the desired QCD-Lagrangian

LQCD = q̄(iγµ∂µ −m f )q−
1
2

Tr
[
GµνGµν

]
. (B.12)

Let us now discuss some interesting symmetries of this theory. We begin
with the already introduced flavour symmetry, given by (B.4). From ex-
periment we know that the quark masses differ from each other, so that
m f in (B.12) is in fact a mass matrix

m f → M := diag(mu, md, mc, ms, mt, mb). (B.13)
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In order to keep up the global flavour symmetry (B.4) with the free quark
Langrangian, we demand that the mass matrix (B.13) and the transforma-
tion matrix (B.7) commute, which is no longer given, since this requires
m f = m for all flavours f . Depending on what flavours one is consid-
ering one can construct an approximate flavour symmetry since the up-
and down-quarks have rather similiar masses and are light compared to
the other quarks and the strange-quark is heavy compared to the other
quarks, but this is of no interest for us. In the case that we would have
a global flavour symmetry, we would find the corresponding conserved
Noether-currents to be

jµ
a (x) = ∑

f , f ′
q̄ f (x)γµ(Ta) f f ′q f ′(x), (B.14)

which we call vector-current, since it properly transforms as a Lorentz-
vector.

We continue by considering a chiral symmetry, which is given by the axial
transformation

q f → q′f = [exp(−iωaTaγ5)] f f ′q f ′ . (B.15)

Infinitesimally we find

δq = −iδωaTaγ5q and δq̄ = −iδωaTaq̄γ5, (B.16)

what we use along with the gamma matrix identity {γµ, γ5} = 0 to get the
infinitesimal forms of the two terms of the free quark Lagrangian (B.3)

δ(q̄iγµ∂µq) = δωaq̄(γµ + γ5 + γ5γµ)Ta∂µq = 0, (B.17)

δ(q̄Mq) = −iδωaq̄γ5(MTa + TaM)q, (B.18)

where we see that once again because of the massive quarks, M is not com-
muting with the generators Ta and thus the mass term is non-vanishing
and so for massive quarks we find no axial symmetry. Let us construct,
more generally, the chiral symmetry group with the chiral projectors

PL :=
1− γ5

2
and PR :=

1 + γ5

2
, (B.19)

where the subscripts L and R mean left and right, respectively. They sat-
isfy the projector conditions

P2
L,R = PL,R, PLPR = 0 = PRPL and PL + PR = 1. (B.20)
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With the projectors, we can seperate the quarks in left- and right-handed
quarks, simply by applying the projectors to the general quark fields, i.e.

q = qL + qR, where qL = PLq and qR = PRq. (B.21)

Note, that
q̄L = q̄PR and q̄R = q̄PL (B.22)

due to the fact that {γµ, γ5} = 0 and that transposition is expressed by
multiplying with γ0. With these relations and (γ5)2 = 1 we immediately
can write down

q̄LγµqR = 0 = q̄RγµqL, (B.23)

so that

q̄iγµDµq = q̄LiγµDµqL + q̄RiγµDµqR, (B.24)
q̄q = q̄LqR + q̄RqL. (B.25)

We now can rewrite the original axial transformation (B.15) as a chiral
transformation simply by replacing ωa with ωa

L for left-handed and ωa
R for

right-handed quarks, respectively. The corresponding symmetry groups
are just SU(N f )L and SU(N f )R, which are both isomorphic to SU(N f ). For
vanishing quark masses we thus obtain a chiral symmetry with 2(N2

f − 1)
parameters under SU(N f )L⊗SU(N f )R. In the special case of ωa

L = ωa
R =

ωa we recover the axial transformation and are thus led to say that the
flavour symmetry is the diagonal subgroup of the chiral symmetry group.
Again, quarks are massive, but one can consider quark subsets and thus an
approximate chiral symmetry. This is particularly interesting for the chi-
ral symmetry transformations because by considering the up- and down-
quark subset one observes a spontaneous symmetry breaking from the
massless symmetry group SU(2)L⊗SU(2)R to the flavour symmetry sub-
group SU(2), so that we expect three massless Goldstone-bosons, which
we find to be the three pions. In reality, even the up- and down-quarks
carry non-negligible masses and so in fact we have some additional ex-
plicit symmetry breaking as described above in case of massive quarks
and thus, the pions carry some mass as well and are then called pseudo
Goldstone-bosons.

Recall that for ωa
L = ωa

R = Ωa we would recover the flavour transfor-
mations (B.4) from the axial transformation (B.15). If we instead took the
infinitesimal form of the axial transformation separated in a left- and right-
handed part, we can define ωa

L = −ωa
R =: ωa. Let us plug this in the
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infinitesimal axial transformation to get

q′ = (1− iωaTa)q = (1− i(ωa
LPL + ωa

RPR)Ta)q
= (1− i(−Ωa)(PL − PR)Ta)q

= (1− iΩaγ5Ta)q, (B.26)

where in the last line we used PL − PR = −γ5, which can be seen imme-
diately from the definition of the projectors (B.19). Now, recall from (B.14)
that we can write the vector-current in the form jµ = q̄γ5Taq. The addi-
tional γ5 we just found in the infinitesimal axial transformation leads us
thus to the corresponding conserved Noether-currents

jµ
5,a = q̄γµγ5Taq = jµ

R,a − jµ
L,a, (B.27)

which be call axial-current since they properly transform as axial-vectors
under Lorentz-transformations.
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Appendix C
Selected properties of instantons

The purpose of this chapter is simply to explicitly compute, show or mo-
tivate some selected properties of instantons. I.e. we want to compute the
winding number

ν =
1

32π2

∫
d4x(F, F̃) , (C.1)

for a given field configuration, expressed by the field-strength tensor F
and its dual F̃, the expectation value of e−HT for a Hamiltonian H and
total time T in a so-called θ-vacuum |θ⟩

⟨θ|e−HT|θ⟩ ∼
∫
DAe−Seiνθ , (C.2)

the θ-vacuum action

Sθ =
θ

32π2

∫
d4x(F, F̃) ≡ θν , (C.3)

the one-instanton action

S0 =
8π2

g2
G

, (C.4)

where gG is the coupling constant of the gauge group G and finally, the
energy of a θ-vacuum

E(θ) ∼ cos(θ)e−S0 . (C.5)

If not stated otherwise, we closely follow [40] throughout this chapter even
though we differ slightly in notation and rearrange the given arguments.
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C.1 Winding number ν

Let us consider the gauge group SU(2)={ M ∈ Mat(2, C)|MM† = 1 =
M†M, det M = 1 }, which is a non-abelian compact Lie group. Since all
M ∈SU(2) has the form

M =

(
a0 + ia3 a2 + ia1
a2 − ia1 a0 − ia3

)
, (C.6)

where a0,...,3 ∈ R and |a0|2 + ... + |a3|2 = 1, we can use the Pauli matrices
σ1,2,3 to rewrite M in the form

M = a01 + i(a1σ1 + a2σ2 + a3σ3) =: a01 + i⃗a · σ⃗ , (C.7)

where in the last equation we defined the vectors a⃗ and σ⃗ as a shorthand
notation with |a0|2 + |⃗a|2 = 1. We see that topologically, SU(2) is S3={
(a0, ..., a3) ∈ R| |a0|2 + ... + |a3|2 = 1 } and we have to study homotopy
classes of mappings S3 →S3. For this class of mappings we can immedi-
ately write down some standard mappings

g(0)(x) = 1 (trivial mapping), (C.8)

g(1)(x) =
a0 + i⃗a · σ⃗

r
, r := |⃗a|2 (identity mapping), (C.9)

g(ν)(x) =
[

g(1)(x)
]

, ν ∈ Z (family of mappings). (C.10)

We call ν the winding number, which measures how often the hypersphere
is wrapped around G. To get a better intuition for this, let us consider
U(1)= {z ∈ C| |z| = 1} for a moment. We are familiar with this gauge
group from electromagnetism and U(1) describes the unit circle in the
complex plane, which is topologically S1 and thus, we consider mappings
S1 →S1. The standard way of parametrizing a circle is in polar coordinates
(r, θ), where r = 1 is fixed for S1 and θ ∈ [0, 2π), where we explicitly ex-
clude 2π to ensure that a function g : [0, 2π) → S1 is single-valued, i.e.
is periodic in θ with g(θ + n · 2π) = g(θ), where n ∈ Z. Again, we can
immediately write down some standard mappings

g(0)(x) = 1 (trivial mapping), (C.11)

g(1)(x) = eiθ (identity mapping), (C.12)

g(ν)(x) =
[

g(1)(x)
]
= eiνθ, ν ∈ Z (family of mappings). (C.13)
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Again, ν is the winding number. Now imagine a two-dimensional plane
with S1 depicted as a circle and additionally an arbitrarily formed closed
curve γ1 around this circle. We can continuously deform γ1 so that we
are only left with the turns the curve made around S1. We denote the new
curve by γ′1. Note, that since γ1 and γ′1 are connected by a continuous
transformation, they are homotopically equivalent and hence, the wind-
ing number of both curves is the same. By convention, we count the clock-
wise (counterclockwise) turns around S1 positively (negatively). The total
amount of turns around S1 is the winding number ν. In the special case
that the closed curve does not contain S1, γ is contractable, i.e. continuously
deformable to a single point, and ν = 0. An example for ν = 1 is given in
fig.C.1 and an example for ν = −2 is given in fig.C.2.

Figure C.1: On the left hand side you can see one realization γ1 of an arbitrary
closed curve in two dimensions around the center S1. After a continuous defor-
mation γ1 is transformed into γ′1, visualized on the right hand side. The new
curve contains no deformations, so that you can read off ν = 1 as the wind-
ing number. The arrows on the curves indicate the clockwise orientation of the
curves around their center.

Now that we got an intuition for the winding number, we can come back
to SU(2). One can show that every mapping S3 →S3 is homotopic to one of
our standard mappings, which we do not want to prove here. It is basically
the mathematical statement of what we visualized before in U(1), that we
can easily read off the winding number after continuous deformation of
an arbitrary closed curve γ, which is then immediately associated to an
element of the family of mappings g(ν). Define

ν :=
1

48π2

∫
dθ1dθ2dθ3εijk(g∂ig−1, g∂jg−1g∂kg−1) , (C.14)

where θ1,2,3 are the three angles that parametrize S3 since the radius r = 1
is fixed by definition. The Jacobian of ε cancels the Jacobian of the angles,
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Figure C.2: On the left hand side you can see one realization γ2 of an arbitrary
closed curve in two dimensions around the center S1. After a continuous defor-
mation γ2 is transformed into γ′2, visualized on the right hand side. The new
curve contains no deformations, so that you can read off ν = −2 as the winding
number. The arrows on the curves indicate the counterclockwise orientation of
the curves around their center.

so the explicit choice of the angles is irrelevant to the definition. We explic-
itly use the Cartan product to be representation-independent. We define
the Cartan product below.

An algebra of a Lie group G is called the Lie algebra, which has a commuta-
tive connection, denoted by ”+” and a multiplication, denoted by the Lie
brackets ”[.,.]”. The latter satisfies the usual axioms for commutators and
the Jacobi identity

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 , (C.15)

where x, y, z are elements of the Lie algebra, which are called generators
if the algebra is irreducible. Generators are traceless. One commonly
used representation Ta of the algebra elements is the matrix representa-
tion we are familiar with, for instance, by describing rotations via a ro-
tation matrix.[41]. For SU(2) the generators are Ta = − i

2 σa, which satisfy
[Ta, Tb] = εabcTc, where εabc is called the structure constant. In fact, all
anti-hermitean matrices satisfy this condition and it is always possible to
choose the generators such that Tr[TaTb] ∼ δab, where the constant of pro-
portionality is dependent on the chosen representation. Further, we define
the Cartan inner product to be

(Ta, Tb) := δab , (C.16)

so that (Ta, Tb) ∼ Tr[TaTb]. Recall that for Pauli matrices Tr[σaσb] = 2δab
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holds, so that for the specific example of SU(2) we obtain

Tr[TaTb] =
i2

4
Tr[σaσb] = −1

2
δab (C.17)

⇒ (Ta, Tb) = −2Tr[TaTb]. (C.18)

In case of SU(3) we choose Ta = − i
2 λa, where λa are the eight Gell-Mann

matrices, for which Tr[λaλb] = 2δab, so that we get the same relation as
above for SU(3). Note that we will later see that this is no coincidence.

Getting back to our integral form of the winding number (C.14), we can
now with the previously obtained relation between the Cartan inner prod-
uct and the trace for SU(2), we get

ν :=
1

24π2

∫
dθ1dθ2dθ3Tr[εijkg∂ig−1g∂jg−1g∂kg−1]. (C.19)

We could now use this property to show that ν is a homotopy invariant
and that it is in fact the winding number we introduced before. We rec-
ommend the short and elegant proof in [40] and do not give it here. Let us
now define

Aµ := gAa
µTa , (C.20)

where g = const. is called the gauge coupling constant and Aa
µ(x) are the

gauge potentials. We further define the field-strength tensor

Fµν := ∂µ Aν − ∂ν Aµ + [Aµ, Aν]. (C.21)

Note that [Aµ, Aν] = 0 in electromagnetism. In a pure gauge field theory,
the Euclidean action is simply given by

S =
1

4g2

∫
d4x(Fµν, Fµν). (C.22)

A gauge transformation is a function g(x) from Euclidean space into the
gauge group G, i.e. g(x) = exp{αa(x)Ta}, where αa(x) are arbitrary func-
tions. Under such transformation, the potential Aµ and the field-strength
tensor Fµν transform as

Aµ → gAµg−1 + g∂µg−1 and Fµν → gFµνg−1 , (C.23)

respectively, which is why the action S is gauge-invariant. Let us quickly
check that S converges properly. We assume that we can expand Aµ in
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powers of r−1. We must ensure that Fµν vanishes, which implies that Aµ

is a gauge transformation of the null potential, so that Aµ = g∂µg−1 +

O(r−2), where g is a function of the four-space to the gauge group G of
order one, i.e. a function of angular variables only. Hence, for large r,
Fµν ∼ ∂µ Aν ∼ O(r−3) and d4x ∼ O(r4), S converges properly for large r.

The dual of an antisymmetric tensor, denoted by a tilde, is conventionally
defined as

F̃µν :=
1
2

εµν
λσFµν , (C.24)

where the factor 1/2 is chosen, so that constructing the dual of a dual
tensor gives the original tensor back, since the full contraction of two ε
gives a factor four. With this definition at hand, we further define

Gµ :=2εµ
νλσ(Aν, ∂λ Aσ +

2
3

Aλ Aσ) = εµ
νλσ(Aν, Fλσ −

2
3

Aλσ) (C.25)

→ ∂µGµ =
1
2

εµνλσ(Fµν, Fλσ) = (Fµν, F̃µν). (C.26)

With these definitions we are finally able to compute (C.19). We start with

∫
d4x(Fµν, F̃µν) =

∫
d4x∂µGµ =

∫
d3S r̂µGµ , (C.27)

where in the last equation we used Gauss’ Theorem, d3S is the surface
element of the hypersphere and r̂ is the normal vector of the same surface.
By considering the explicit expression for Gµ (C.25), we see that the first
term is of O(r−4) and thus vanishes for large r, whilst the second term
gives (C.14) up to a multiplicative constant, in which we bring the 48π2 to
the other side. Now we replace the integral by 48π2ν and together with
the additional factor 2/3 in Gµ we obtain

ν =
1

32π2

∫
d4x(F, F̃), (C.28)

which is precisely (C.1) what we wanted to show. We computed ν ex-
plicitly for the gauge group SU(2), but due to a theorem of R. Bott[42],
everything we computed for SU(2) above holds for an arbitrary simple Lie
group, most importantly for us, it holds for SU(N).
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C.2 Vacuum expectation value and θ-vacuum ac-
tion

Consider a finite four-dimensional Euclidean spacetime volume V at a
given time T. Like always, we can generalize our results in the end by
sending V and T to infinity. We start with a finite volume because it eases
our intuitive picture of what we will compute. For example, in a scalar
field theory with spontaneous symmetry breaking, the expectation value
of the field in the center of the box depends on the applied boundary con-
ditions only, not on the actual boxsize. Fortunately, the only relic of the
boundary conditions for a sufficiently large box is the winding number.
Before we attempt to prove this assertion, we set our system up.

Say, the considered volume is a box with sides L0, ..., L3 with one corner
placed at the origin of the coordinate system. On the walls of the box,
the tangential components of Aµ are given in a way consistent with the
convergence condition of the action, i.e. Aµ = g∂µg−1. For the sake of
simplicity we drop terms of higher orders in r−1. Since the tangential com-
ponents of Aµ are given on the walls, g is given on the walls as well up to
a multiplicative constant. The functional integral (C.2) we get in the end
is gauge-invariant, thus we can choose a gauge solely for the sake of sim-
plicity. Let us choose the gauge A3 = 0, which still allows for arbitrary x3-
independent gauge transformation. Since A3 = 0 it follows that ∂3g = 0,
what means that g is automatically constant on the walls of the box, ex-
cept for one of the 3-walls, on which it is given as a function g1(x0, x1, x2),
that is equal to one on the boundary of this wall. Now we imagine a sec-
ond box that is set up in the same fashion, but with g2(x0, x1, x2) and sides
L0, L1, L2, L3 + ∆, where 0 < ∆ ∈ R+. Now we can prove the following
theorem. ”If g1 and g2 are in the same homotopy class, then any field
configuration defined in the original box, consistent with the boundary
conditions, can be extended to a field configuration in the larger box, con-
sistent with its boundary conditions, and the same gauge at the cost of an
increase in action of O

(
1
∆

)
”[40].

Proof: By assumption, g1 and g2 are in the same homotopy class. Thus, it
exists a continuous function of four variables, g(x0, x1, x2, s), 0 ≤ s ≤ 1, so
that g(x0, x1, x2, 0) = g1 and g(x0, x1, x2, 1) = g2. Let g(x) be a function
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defined in the expanded volume by

g(x) = g
(

x0, x1, x2,
x3 − L3

∆

)
. (C.29)

The initially assumed vector potential Aµ = g∂µg−1 for µ ̸= 3 and zero
otherwise would give the transition without any addition to the action, but
is, unfortunately, inconsistent with the chosen gauge A3 = 0. Hence, we
first perform a gauge transformation with which Aµ = g∂µg−1 for µ = 3
and zero otherwise. Now we see that A3 ∼ ∆−1. Recall the definition of
Fµν (C.21), so that the only non-vanishing components of Fµν are Fµ3, i.e.

Fµ3 = ∂µ A3 − ∂3Aµ + [Aµ, A3], (C.30)

where the first term is proportional to ∆−1 by definition of g(x), the sec-
ond term vanishes for µ ̸= 3 and is also proportional to ∆−1 for µ = 3 and
the third term is always zero, since for µ = 3 we get [A3, A3] = 0 and for
µ ̸= 3 we get [0, A3] = 0. Taking all this into account, we see that F ∼ ∆−1,
F2 ∼ ∆−2 and d4x = dx0dx1dx2dx3 ∼ ∆, so that we get that S ∼ ∆−1,
which is what we wanted to show.

Note, that if ∆ → ∞, then S → 0, so that indeed the only property of the
boundary conditions that matter for large boxes is the winding number
that gives the homotopy class of the boundary conditions that must be the
same. If this would not be given, we need at least one additional instan-
ton in the volume, which automatically gives an additional increase by at
least 8π2/g2, independent of ∆. We compute this value in the next section.
Now that we realized that we only have to care about the winding num-
ber ν we can consider the functional integral and integrate over all field
configurations, where ν < ∞. To achieve this, we multiply an additional
Kronecker delta (recall that ν ∈ Z) δνn in the integrand. The result of the
integral for a fixed volume V, total time T and winding number n is

F(V, T, n) := N
∫
DAe−Sδνn , (C.31)

where DA = DA0DA1DA2 since A3 is fixed by the gauge A3 = 0. From
(C.1) follows that for large times T = T1 + T2,

F(V, T1 + T2, n) = ∑
n=n1+n2

F(V, T1, n1)F(V, T2, n2). (C.32)
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To illustrate this, let us consider U(1) for a moment. The winding number
is given analog to the SU(2) case as

ν =
i

2π

∫ 2π

0
dθ

dg−1

dθ
, (C.33)

so that if g(θ) = g1(θ)g2(θ), then ν = ν1 + ν2. This can be seen easily since
ν is unchanged by continuous deformation, so we can deform g so that
g1 = 1 for θ ∈ [0, π) and likewise g2 = 1 for θ ∈ [π, 2π). The integrand
then is the sum of a part due to g1 giving ν1 and a part due to g2 giving ν2.
The same argument holds for SU(2) just with semihyperspheres instead
of semicircles and finally explains the behavior of F for large T. Since the
original winding number n has to be constant for large T, n = n1 + n2 must
hold. Thus, we observe a convolution of the two F which is unexpected.
We want to compute the expectation value for exp(−HT) in one energy
eigenstate. From basic quantum mechanics we know that this expectation
value behaves like an exponential with the well known multiplication be-
havior,

exp(a + b) = exp(a) · exp(b). (C.34)

We now reinstate this behavior by Fourier transformation of F which trans-
forms a convolution in n-space into a multiplication in θ-space, i.e.

F(V, T, θ) = ∑
n

einθ F(V, T, n) = ∑
n

einθ N
∫
DAe−Sδνn = N

∫
DAe−Seiνθ ,

(C.35)
where in the second equality we change the order of integration and sum-
mation and then use the Kronecker delta to get rid of the summation over
n, so that our convolution (C.32) becomes

F(V, T1 + T2, θ) = F(V, T1, θ1) · F(V, T2, θ2). (C.36)

As we found the correct composition law now, we can identify F with the
expectation value of exp(−HT) up to a normalization constant N in the
energy eigenstate |θ⟩. We justify this notation later when computing the
one-instanton action. With this identification we write

F(V, T, n) = N⟨θ|e−HT|θ⟩ = N′
∫
DAe−Seiνθ (C.37)

where N′ is another normalization constant. However, by neglecting this
constant, we find

⟨θ|e−HT|θ⟩ ∼
∫
DAe−Seiνθ , (C.38)
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96 Selected properties of instantons

which is the property (C.2) we wanted to show. By carefully observing this
property, we can further identify the exponent of the second exponential
as an action in Minkowski space, which we call the θ-vacuum action due to
its explicit θ-dependence, namely

Sθ := νθ =
θ

32π2

∫
d4x(F, F̃) , (C.39)

where we inserted the integral formula (C.1) in the second equality to ob-
tain the third property (C.3).

C.3 One-instanton action S0

Consider the integral (C.22) with the shorthand notation (Fµν, Fµν) ≡ (F, F),

∫
(F, F)d4x =

[∫
(F, F)d4x

∫
(F, F)d4x

] 1
2

(C.40)

=

[∫
(F, F)d4x

∫
(F̃, F̃)d4x

] 1
2

≥
∣∣∣∣∫ (F, F̃)d4x

∣∣∣∣ , (C.41)

where the first equality is trivial, the second equality holds by construc-
tion of the dual field strength tensor (C.24) and the inequality is the well-
known Schwartz inequality, which is only a true equality if and only if
F = ±F̃. Now we plug in the explicit expressions (C.22) for the (F, F) and
(C.1) for the (F, F̃) integral, respectively, to obtain

4g2S ≥ 32π2|ν| ⇒ S ≥ 8π2

g2 |ν| (C.42)

where the equality is only given in the case ν = ±1. For ν = 1 we obtain
the one-instanton action

S0 =
8π2

g2 (C.43)

which is (C.4), what we wanted to show. Note, that we exclude ν = 0
as the trivial mapping and the choice of the positive ν sign is convention.
Note additionally that the notation S0 is by this argumentation slightly
misleading, but we stick to it to be consistent with the literature.
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C.4 Energy of a θ-vacuum

To compute the energy of a θ-vacuum, we will approach the problem in
three steps. First, we consider a single potential well, then a double poten-
tial well and finally, a periodic potential. We proceed like this to first check
that our technique works as it should, then to introduce the idea of an in-
stanton and then to obtain the general energy formula for a θ-vacuum.

Let us start by considering a spinless particle of unit mass in a one-dimensional

potential V(x) with Hamiltonian H = p2

2 + V(x). We tackle this system
with Feynman’s Path Integral formalism, which is easy generalizable to
quantum field theory. Instead of working in Minkowski space, we rather
would like to work in Euclidean space, which is simpler to treat. To go
from Minkowski coordinates xµ Euclidean coordinates xµ

E we simple have
to perform a Wick rotation on the time-coordinate x0, i.e. x0

E = −ix0,
which is nothing else than an analytic continuation that now allows for
complex times. By this transformation, we now work with the Euclidean
metric gµν ≡ δµν. This transformation also applies to the action S in
Minkowski space that becomes the action SE = −iS in Euclidean space.
We drop the subscript E for convenience. For more details on analytic
continuation, refer to [41]. In Euclidean space, we get the following path
integral formula.

⟨x f |e−HT|xi⟩ = N
∫
Dxe−S, (C.44)

where the left hand side is the propagator of the particle to propagate from
an initial state |xi⟩ to a final state |x f ⟩ with Hamiltonian H in time T and
the right hand side is the path integral with normalization constant N.
On the left hand side, we can insert a complete orthonormal set of energy
eigenstates |n⟩, H|n⟩ = En|n⟩, ∑n |n⟩⟨n| = 1 to expand the propagator in
terms of the systems energies En and wave-functions as

⟨x f |e−HT|xi⟩ = ∑
n
⟨x f |e−HT|n⟩⟨n|xi⟩ (C.45)

= ∑ e−EnT⟨x f |n⟩⟨n|xi⟩. (C.46)

Thus, the leading term in this expansion for large T gives the energy and
wave-function of the lowest-lying energy eigenstate. The right hand side
can be easily evaluated in the semiclassical limit (h̄ → 0). Note that we
have set h̄ = 1, but we can keep track of the powers of h̄ in our equations,
e.g the exponential with h̄ ̸= 1 reads as exp(−HT

h̄ ). Consider a poten-
tial well centered at the origin and choose xi = 0 = x f , so that the only
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solution that satisfies this condition is x̄ = 0, from which S = 0 follows
immediately. This gives E0 = 1

2 h̄ω[1+O(h̄)], where we explicitly kept the
h̄ to quickly compare the result with the expected result from basic quan-
tum mechanics. Indeed, we find the expected ground state energy up to
a correction of O(h̄) due to the used path integral formalism that takes
into account all paths with their corresponding actions as weighs instead
of just the classical path one would choose in basic quantum mechanics.
For a detailed calculation, see [40] for example.

Let us now take the next step and consider a double-well potential. As-
sume it is symmetric around the origin, i.e. V(−x) = V(x), and that the
minima are located at x = ±a with V(±a) = 0 and V′′(±a) = ω2. We
attempt to compute propagators from one minimum into itself but also
propagators from one minimum to the other. Hence, the first step is to find
solutions of the classical equations of motion consistent with the boundary
conditions. We already mentioned the two obvious solutions. The particle
either remains in the minimum or propagates to the other one. However,
we take the big times limit T → ∞. In the case x(t = −∞) =one mini-
mum and x(t = +∞) =the other minimum we deal with a solution of the
equations of motion

0 = E =
1
2

(
dx
dt

)2

−V(x)⇒ dx
dt

= (2V(x))
1
2 ⇒ t = t1 +

∫ x

0
dx′(2V(x))−

1
2 ,

(C.47)
where t1 is an integration constant, i.e. the time at which x vanishes. We
call this solution an instanton with center at t1[40]. Let us quickly give this
name some content. In fact, all the time, we talk about certain field config-
urations. The especially interesting potential minima are pure gauge con-
figurations we search for as introduced earlier. The propagation from one
such gauge configuration to another is then nothing else than the propa-
gation of the field configurations between different vacua. Since this is a
process in time rather than a space translation, we give it the name prefix
instant- to stress this behavior[13]. By replacing t → −t we find the solu-
tions with a → −a that are called anti-instantons. First, let us compute the
action

S0 =
∫ + T

2

− T
2

dt

[
1
2

(
dx
dt

)2

+ V

]
=
∫ + T

2

− T
2

dt
(

dx
dt

)2

=
∫ +a

−a
dx(2V(x))

1
2 ,

(C.48)
where we first replace V(x) with (C.47) and then use the same equation to
replace one dx

dt and the other is used to replace dt by dx in the integral. We
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now wish to evaluate the functional integral by summing over all config-
urations with n instantons (or anti-instantons) centered at t1, ..., tn, where
T
2 > t1 > ... > tn > −T

2 with T large compared to the instanton scale.

First, for n widely separated instantons (or anti-instantons), we get S =
n · S0. Second, consider the time-evolution operator exp(−HT) as a prod-
uct of operators associated with the evolution between the points in time
shortly before and after the position of an (anti-)instanton. This breaks the
problem in n single-well potential problems. For one of them we obtain(

ω
π

) 1
2 exp(−ωT/2)Kn, where K is a constant that ensures that we get the

correct result for a single (anti-)instanton. Third, we integrate over the
locations of the particle centers described above as

∫ + T
2

− T
2

dt1

∫ t1

− T
2

dt2...
∫ tn−1

− T
2

dtn =
Tn

n!
. (C.49)

Fourth, we are not free to distribute instantons and anti-instantons arbi-
trarily. E.g. if we start at −a, the first object we encounter must be an
instanton, the next an anti-instanton and so on and so forth. Furthermore,
if we want to end in this case at−a, n must be even and likewise if we want
to end at +a in this case, n must be odd. Now we take all our findings into
account to get

⟨−a|e−HT| − a⟩ =
(ω

π

) 1
2 e−

ωT
2 ∑

n even

(
Ke−S0 T

)n

n!
(1 +O(h̄)). (C.50)

Equivalently, we get ⟨+a| exp(−HT)|+ a⟩ as an expansion summed over
odd n. Whilst the summation over even n gives a cosine term, the sum-
mation over odd n gives a sinus term, so that for the mixed propagator we
obtain

⟨±a|e−HT| − a⟩ =
(ω

π

) 1
2 e−

ωT
2

1
2

(
eKe−S0 T ∓ eKe−S0 T

)
(1 +O(h̄)). (C.51)

Comparison with (C.46) reveals that we have two low-lying energy eigen-
states with the energies

E± =
1
2

ω± Ke−S0 . (C.52)

For our purposes, the explicit form of K is irrelevant in this case. Note that
we have set h̄ = 1 again since we already demonstrated earlier that our
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formalism gives the correct results.

Let us finally consider a periodic potential with minima a ∈ Z for simplic-
ity. The n instantons and ñ anti-instantons are distributed arbitrarily about
the real axis with initial position x = m and instantons (anti-instantons) go
to x = m + 1 (x = m− 1). Each (anti-)instanton must begin where its pre-
decessor ended. Thus, ∆n := n− ñ must equal the change in x between
the initial and final position eigenstates, ∆j := j+ − j−, which is ensured
by an additional Kronecker delta (recall that we explicitly constructed the
positions as integers) in the double sum in the propagator. By the same
considerations as for the double-well potential we find

⟨j+|e−HT|j−⟩ =
(ω

π

) 1
2 e−

ωT
2 ∑

n
∑̃
n

(
Ke−S0 T

)n+ñ

n!ñ!
δ∆n,∆j . (C.53)

Now we use the identity

δab =
∫ 2π

0

dθ

2π
eiθ(a−b) (C.54)

with a = ∆n = n− ñ and b = ∆j to obtain

⟨j+|e−HT|j−⟩ =
(ω

π

) 1
2 e−

ωT
2 ∑

n
∑̃
n

(
Ke−S0 T

)n+ñ

n!ñ!

∫ dθ

2π
eiθ(n−ñ−∆j)

=
(ω

π

) 1
2 e−

ωT
2

∫ dθ

2π
eiθ∆j ∑

n

(
Ke−S0eiθT

)n

n! ∑̃
n

(
Ke−S0e−iθT

)ñ

ñ!

=
(ω

π

) 1
2 e−

ωT
2

∫ dθ

2π
eiθ∆j exp

(
Ke−S0eiθT

)
exp

(
Ke−S0e−iθT

)
=
(ω

π

) 1
2 e−

ωT
2

∫ dθ

2π
eiθ∆j exp

(
Ke−S0 T

(
eiθ + e−iθ

))
=
(ω

π

) 1
2 e−

ωT
2

∫ dθ

2π
eiθ∆j exp

(
Ke−S0 T · 2 cos(θ)

)
. (C.55)

Again, by comparing with (C.46) we can read off the energy eigenvalues
to be

E(θ) =
1
2

ω + 2K cos(θ)e−S0 (C.56)

what gives
E(θ) ∼ cos(θ)e−S0 , (C.57)

which is exactly the fifth property (C.5) we wanted to show. This justifies
retroactively the notation of the energy eigenstate |θ⟩.

100



Appendix D
The thermal axion abundance

We now want to compute the thermal abundance of axions relative to
the thermal photon abundance. We will loosely follow the order of ar-
gumentation presented in the book of Kolb and Turner[28]. However, we
will start by deriving the so-called Boltzmann-equation and then modify
it properly as a first approximation since we assume the axions to be in
thermal equilibrium with the thermal bath. Later we will see that the era
of inflation in fact gives a departure from this equilibrium, but we will see
at the end that this does not matter effectively.

Let f (xµ, pµ) be the particle’s phase space distribution, then its evolution
is described by the Boltzmann-equation

L̂[ f ] = Ĉ[ f ], (D.1)

where
L̂ = pµ∂µ − Γµ

νρ pν pρ∂µ (D.2)

is the Liouville-operator and Ĉ is the collision-operator, which we will spec-
ify below. Due to the Christoffel symbols, Γµ

νρ, in L̂ we take gravitational
effects into account. We use the RW-metric

ds2 = −dt2 + a2[dr2 + r2dΩ2] (D.3)

for a flat Universe. RW is short for Robertson-Walker, two of the many peo-
ple who contributed significantly to arriving at this result. For the sake
of shortness, we will always refer to it as the RW-metric, even though
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in the literature, it is typical that one finds FLRW for Friedmann-Lemaitre-
Robertson-Walker or even more scientists mentioned. However, note that
most importantly for us is that the RW-metric is the most general metric
that obeys the cosmological principle. We explicitly state that we use it for
a flat Universe because the RW-metric in general reads

ds2 = −dt2 + a2[dr2 + S2
κ(r)dΩ2], (D.4)

where κ ∈ {−1, 0,+1} describes a negatively curved, flat or positively
curved Universe, respectively and

Sκ(r) =


R sin(r/R) κ = +1
r κ = 0
R sinh(r/R) κ = −1

, (D.5)

where R is the Universe’s radius of curvature. Back to the κ = 0 case, in
these coordinates, f is spatially homogeneous and isotropic and thus can
be written as

f (t, | p⃗|) ⇔ f (t, E). (D.6)

Additionally, the non-vanishing Christoffel-symbol can be easily computed
via the Lagrangian

L =

(
−gµν

dxµ

dλ

dxν

dλ

) 1
2

(D.7)

and the variational principle by comparing with the geodesic equation

d2xµ

dλ2 = Γµ
αβ

dxα

dλ

dxβ

dλ
. (D.8)

Since we only have to consider α = 0 we are left with

Γ0
ij =

ȧ
a

gij (D.9)

as the only non-vanishing Christoffel-symbol of interest with which we
get

L̂ = E
∂

∂t
− ȧ

a
gij pi pj ∂

∂E
⇒ L̂[ f ] = E

∂ f
∂t
− ȧ

a
gij pi pj ∂ f

∂E
. (D.10)

The number density is generally given as

n(t) =
g

(2π)3

∫
d3p f (E, t), (D.11)
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what we can derive with respect to t to get

dn(t)
dt

=
g

(2π)3

∫
d3p

d f (E, t)
dt

E=const.
=

g
(2π)3

∫
d3p

∂ f (E, t)
∂t

. (D.12)

Now we divide (D.10) by E to get

Ĉ[ f ]
E

=
L̂[ f ]

E
=

∂ f
∂t
− ȧ

a
| p⃗|2

E
∂ f
∂E
⇒ ∂ f

∂t
=

Ĉ[ f ]
E

+
ȧ
a
| p⃗|2

E
∂ f
∂E

, (D.13)

what we plug into (D.12) and obtain

dn(t)
dt

=
g

(2π)3

∫
Ĉ[ f ]

d3p
E

+
g

(2π)3
ȧ
a

1
E

∫
| p⃗|2 ∂ f

∂E
d3p. (D.14)

For the second term on the right-hand side we demand

g
(2π)3

ȧ
a

1
E

∫
| p⃗|2 ∂ f

∂E
d3p !

= −3
ȧ
a

g
(2π)3

∫
d3p f (D.15)

→
∫ | p⃗|2

E
∂ f
∂E

d3p = −3
∫

f d3p. (D.16)

For convenience, we write | p⃗|2 ≡ p2 and note that d3p = p2dpdΩ and
since E2 = p2 + m2 holds, we get

EdE = pdp⇒ ∂

∂E
=

dp
dE

∂

∂p
=

E
p

∂

∂p
(D.17)

to further rewrite the previous integral as∫ p2

E
∂ f
∂E

d3p =
∫ p2

E
E
p

∂ f
∂p

p2dpdΩ =
∫

∂ f
∂p

p3dpdΩ (D.18)

= −
∫

f
∂p3

∂p
dpdΩ = −3

∫
f p2dpdΩ = −3

∫
f d3p ≡ n(t), (D.19)

where in third equality we integrated by parts with respect to p and in the
fourth equality we recognized d3p we expanded above. With this we can
replace the second term in (D.14) and rearrange the terms to get

dn
dt

+ 3
ȧ
a

n =
g

(2π)3

∫
Ĉ[ f ]

d3

E
. (D.20)

Let us now consider the general collision process

ψ + a + b + . . .↔ i + j + . . . , (D.21)
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104 The thermal axion abundance

so that the collision term is given by

g
(2π)3

∫
Ĉ[ f ]

d3pψ

Eψ
= −

∫
dΠψdΠadΠb · · · dΠidΠj · · ·

· (2π)4δ(4)(pψ + pa + pb + . . .− pi − pj − . . .)

· [|M|2ψ+a+b+...→i+j+... fa fb · · · fψ(1± fi)(1± f j) · · ·
− |M|2ψ+a+b+...←i+j+... fi f j · · · (1± fa)(1± fb) · · · (1± fψ)], (D.22)

where fa,b,...,i,j,... are the phase space densities of the species a, b, . . . , i, j, . . .,
fψ is the phase space density of ψ, on whose evolution we are focusing
on, + and − signs in the parentheses correspond to bosons and fermions,
respectively,

dΠi :=
g

(2π)3
d3pi

2Ei
, (D.23)

g are the internal degrees of freedom, the δ(4)-term enforces energy and
momentum conservation and |M|2 are the matrix elements for the men-
tioned processes, averaged over the initial and final spins and includes the
appropriate symmetry factors for identical particles in the initial and final
state coming from Quantum Field Theory.

We now make the following assumptions. First, T-symmetry holds, i.e.

|M|2ψ+a+b+...→i+j+... = |M|2ψ+a+b+...←i+j+... =: |M|2, (D.24)

and second, all species can be described by Maxwell-Boltzmann statis-
tics instead of Fermi-Dirac and Bose-Einstein statistics for fermions and
bosons, respectively. Note, the former one gets exact for (mi − µi)/T ≪ 1
besides the fact that they are all three quite similiar anyways and much
smaller than one for p ∼ ppeak. However, in the absence of Bose conden-
sation or Fermi degeneracy the blocking/stimulated emission factors, i.e.
the 1± f terms in parentheses, become

1± f ≈ 1 and fi(Ei) = exp
{
−Ei − µi

T

}
(D.25)

for all species in kinetic equilibrium. The collision term then reads

g
(2π)3

∫
Ĉ[ f ]

d3pψ

Eψ
= −

∫
dΠψdΠadΠb · · · dΠidΠj · · ·

· (2π)4δ(4)(pψ + pa + pb + . . .− pi − pj − . . .)

· |M|2[ fa fb · · · fψ · · · − fi f j], (D.26)
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so that the Boltzmann equation (D.20) becomes

ṅψ + 3Hnψ = −
∫

dΠψdΠadΠb · · · dΠidΠj · · ·

· (2π)4δ(4)(pψ + pa + pb + . . .− pi − pj − . . .)

· |M|2[ fa fb · · · fψ · · · − fi f j], (D.27)

where we replaced H ≡ ȧ/a as usual. Note, the term 3Hnψ describes the
dilution effect of the expansion of the Universe and the right-hand side
describes the interactions that change the number of ψ-particles present.
Thus, if the right-hand side vanishes, i.e. there are no interactions, then
simply

ṅψ + 3Hnψ = 0⇒ ṅψ = −3Hnψ ⇒
dnψ

nψ
= −3

da
dt

1
a

dt = −3
da
a

(D.28)

⇒ ln(nψ) = −3 ln(a) + const. = ln
(

1
a3

)
+ const. (D.29)

⇒ nψ =
1
a3 + const. ∼ a−3, (D.30)

what is the expected behaviour for an expanding Universe since the total
number Nψ = const. and the volume V ∼ a3, so that nψ ∼ V−1 ∼ a−3.

Let us scale out the expansion effects by using the entropy density, s, to
define

Y :=
nψ

s
, (D.31)

where sa3 =const. is conserved in a comoving volume, so that

0 =
d
dt
(sa3) = ṡa3 + 3sa2 ȧ = ṡa3 + 3sa3H ⇒ ṡ = −3sH, (D.32)

what we can use to rewrite the left-hand side of the Boltzmann equation
(D.27) in the form

ṅψ + 3Hnψ =
d
dt
(Ys) + 3HsY = Ẏs + Yṡ + 3HsY

= Ẏs + Y(−3sH) + 3HsY = sẎ. (D.33)

The collision term in (D.27) depends on the temperature, not the time, so
we introduce a new variable, x := m/T, that relates the temperature to the
mass scale of the considered collision particle. Since inflation should have
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106 The thermal axion abundance

taken place during the radiation-dominated epoch, x and t are related. To
find this relation, we consider the Friedmann equation(

ȧ
a

)2

=
8πGρ

3
=

8πGρ0

3
a−3(1+w) w= 1

3=
8πGργ,0

3
a−4, (D.34)

where the subscript γ denotes radiation and w = 1/3 is the density of
state-parameter for the radiation-dominated epoch what we discussed in
appendix A. Now, we use the density parameter

Ωγ,0 :=
ργ,0

ρcrit
, ρcrit =

3H2
0

8πG
(D.35)

to get (
ȧ
a

)2

= Ωγ,0H2
0 a−4 ⇒ ȧ2 = Ωγ,0H2

0 a−2 ⇒ ȧ = Ω
1
2
γ,0H0a−1

⇒ ada = Ω
1
2
γ,0H0dt⇒ 1

2
a2 = Ω

1
2
γ,0H0t, (D.36)

where we used a(t = 0) = 0 to set the integration constant to zero. By
setting a = 1 we find

1
2
= Ω

1
2
γ,0H0t0 ⇒ t0 =

(
2Ω

1
2
γ,0H0

)−1

(D.37)

as the current time. During radiation-domination, however, we can use
this equation for all times and simply drop the subscript 0 to get

t =
(

2Ω
1
2
γ H
)−1

. (D.38)

Recall (D.35) to get

t2 =
1

4ΩγH2 =
1

4H2
3H2

8πGργ
=

3
32πG

1
ργ
⇒ ργ(t) =

3
32πG

1
t2 (D.39)

as the t-dependent density of the Universe during radiation-domination.
Let us now find another expression for ρ(t). We will reinstate c, h̄ and kB
solely because it will help us in the end to identify mpl. We can write the
energy density as

c2ρ(t) =
g

(2πh̄)3

∫
f (p, t)E(p)d3p =

g
2π2h̄3

∫
f (p, t)(p2c2 + m2c4)

1
2 p2dp,

(D.40)
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where we used E2(p) = p2c2 + m2c4 as usual. As discussed earlier, we
consider the particle species in thermal equilibrium, so that we can use

f (p, t) =
[

exp
{

E(p)− µ

kBT

}
± 1
]−1

(D.41)

with + or − for fermions or bosons, respectively. We neglect the chemical
potential, µ, to get

c2ρ(t) =
g

2π2h̄3

∫ ∞

0
dp

p2(p2c2 + m2c4)
1
2[

exp
{

E(p)−µ
kBT

}
± 1
] . (D.42)

During radiation-domination we can safely assume the particle species to
be relativistic, so we take the relativistic limit pc≫ mc2 above to simplify

c2ρ(t) ≈ g
2π2h̄3

∫ ∞

0
dp

p3c

exp
[

pc
kBT

]
± 1

(D.43)

and define
x :=

pc
kBT
⇔ p =

kBTx
c
⇒ dp =

kBT
c

dx (D.44)

to continue with

c2ρ(t) ≈ g
2π2h̄3

∫ ∞

0

kBTdx
c

(
kBT

c

)3
x3c

exp(x)± 1

=
gc

2π2h̄3

(
kBT

c

)4 ∫ ∞

0
dx

x3

exp(x)± 1

=
gc

2π2h̄3

(
kBT

c

)4

·
{

π4

15 bosons
7
8

π4

15 fermions
. (D.45)

Since the total energy density is a sum of its constituents, we can split the
solution explicitly in a part for bosons and one for fermions as

c2ρtot =
π2

30(h̄c)3

[
∑

i∈bosons
gi(kBTi)

4 +
7
8 ∑

i∈fermions
gi(kBTi)

4

]

=
π2

30(h̄c)3 (kBT)4

[
∑

i∈bosons
gi

(
Ti

T

)4

+
7
8 ∑

i∈fermions
gi

(
Ti

T

)4
]

=:
π2

30(h̄c)3 g∗(T), (D.46)
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where in the last line we defined g∗(T) ≡ g∗ to be the effective number of
degrees of freedom. We can use this expression for the density to replace it
in the time equation (D.39), what becomes

1
c2

π2

30(h̄c)3 g∗(kBT)4 =
3

32πG
1
t2 . (D.47)

Solving for t gives

t2 =
90h̄3c5

32π3Gk4
B

1
g∗

1
T4 =

45h̄2c4

16π3k4
B

g−1
∗

m2
pl

T4 =
45

16π3 g∗
mpl

T2 , (D.48)

where in the second equality we recognized m2
pl = h̄c/G and in the third

equality we reinstated c = h̄ = kB = 1. Finally, after taking the square root
and using our transformation x = m/T we get

t =
(

45
16π3

) 1
2

g−
1
2∗

mpl

T2 ≈ 0.301g−
1
2∗

mpl

T2 = 0.301g−
1
2∗

mpl

m2 x2. (D.49)

Recall ṅψ + 3Hnψ = sẎ and use

dt
dx

= 0.602g−
1
2∗

mpl

m2 x (D.50)

to get∫
dΠψdΠadΠb · · · dΠidΠj · (2π)4δ(4)(pψ + pa + pb + . . .− pi − pj − . . .)

· |M|2[ fa fb · · · fψ · · · − fi f j] = ṅψ + 3Hnψ = s
dY
dt

= s
dY
dx

g
1
2∗

0.602
m2

mpl

1
x

⇒ dY
dx

= −0.602g−
1
2∗

mpl

m2
1
sx

∫
dΠψdΠadΠb · · · dΠidΠj · · · · (2π)4

· δ(4)(pψ + pa + pb + . . .− pi − pj − . . .)|M|2[ fa fb · · · fψ · · · − fi f j]

(D.51)

and thus at the final form of the Boltzmann-equation

dY
dx

=: − x
H(m)s

∫
dΠψdΠadΠb · · · dΠidΠj · · · · (2π)4·

δ(4)(pψ + pa + pb + . . .− pi − pj − . . .)|M|2[ fa fb · · · fψ · · · − fi f j], (D.52)
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where we defined H(m) := 1.67g1/2
∗ m2/mpl and further H(m) := x2H(x).

With the Boltzmann equation at hand we can finally compute the freeze-
out of certain particle species. First, we consider a 2↔ 2process generally
and later plug in the specific, for us very interesting, case of photons. Af-
terwards we redo the calculation for axions to give the number density of
axions relative to those of photons since the latter one is well-measured by
CMB observation.

Now, a general 2↔ 2 processs is

ψψ̄↔ XX̄. (D.53)

Let us assume that the species is stable (or long-lived compared to the
age of the Universe), so that this is in fact its only mentionable produc-
tion mechanism. Let us further assume that all the species X, X̄ follow a
thermal distribution with vanishing chemical potential and that XX̄ inter-
act stronger than Xψ for example, so that the XX̄ can be thought to be in
equilibrium. A typical exmaple for such a process is

ν + ν̄↔ e− + e+, (D.54)

where the electron-positron pair interacts electromagnetically whilst the
neutrinos interact weakly. However, we can write down the Boltzmann-
equation (D.52)

dY
dx

= −0.602g−
1
2∗

mpl

m2
1
sx

∫
dΠψdΠψ̄dΠXdΠX̄(2π)4|M|2

· δ(4)(pψ + pψ̄ − pX − pX̄)[ fψ fψ̄ − fX fX̄]. (D.55)

Note, that the δ(4)-term implies Eψ + Eψ̄ = EX + EX̄ and further note that
we assumed

fi = exp
{
−Ei − µi

Ti

}
(D.56)

with µi = 0 and Ti ≡ T for all species i in thermal equilibrium, so that

f EQ
ψ f EQ

ψ̄
= exp

{
−

Eψ + Eψ̄

T

}
= exp

{
−EX + EX̄

T

}
= fX fX̄, (D.57)

so that
fψ fψ̄ − fX fX̄ = fψ fψ̄ − f EQ

ψ f EQ
ψ̄

. (D.58)
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The above equation only holds for ψ’s and ψ̄’s in thermal equilibrium be-
cause otherwise Ti ̸≡ T for all i. With this results we can write∫

dΠψdΠψ̄dΠXdΠX̄(2π)4|M|2 · δ(4)(pψ + pψ̄ − pX − pX̄)

· exp

−EEQ
ψ + EEQ

ψ̄

T

 =: ⟨σψψ̄→XX̄|v|⟩
(

nEQ
ψ

)2
(D.59)

and likewise for the ψ’s and ψ̄’s out of equilibrium by simply dropping
the superscript EQ in the above equation. We can combine both equations
to replace the integral in the Boltzmann equation (D.55) to get

dY
dx

= − x
H(m)s

[
⟨σψψ̄→XX̄|v|⟩ (sY)2 − ⟨σψψ̄→XX̄|v|⟩ (sYEQ)

2
]

= −
x⟨σψψ̄→XX̄|v|⟩s

H(m)

(
Y2 −Y2

EQ

)
. (D.60)

Note, that if there are more annihilation channels, say to a final state F, we
get additional terms in the equation, which are all of the form above but
with ⟨σψψ̄→F|v|⟩ instead, so that after summation over all of them we can
describe the whole process simply by the total annihilation cross-section
⟨σtot|v|⟩, which gives

dY
dx

= −x⟨σtot|v|⟩s
H(m)

(
Y2 −Y2

EQ

)
. (D.61)

Recall that x = m/T, so that the relativistic limit is x ≪ 3, where we explic-
itly use 3 instead of 1 in order to even overcome the effects of expansion
in the general Boltzmann equation (D.27). x ≪ 3 now gives dY

dx ∼const.,
what implies that for a certain freeze-out x f we can say Y(x ≲ x f ) ≈ YEQ,
i.e. freeze-out happens while the species is still relativistic, what we call
hot relics since xT ≫ m for x ≪ 3. However, in the relativistic limit we
simply get

YEQ =
nEQ

ψ

s
= const.. (D.62)

Let us now compute nψ and s in the relativist limit in general. We start
with

n =
g

(2π)3 =
∫

f (p, t)d3p =
g

2π2

∫ ∞

0
f (p, t)p2dp, (D.63)
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where we integrated out the angles to get a factor 4π since our initial as-
sumption is that the cosmological principle holds. As always, µ = 0, so
that

f (p, t) =
[

exp
{

E(p)
T

}
± 1
]−1

=

[
exp

{√
p2c2 + m2c4

T

}
± 1

]−1

=:
[
exp{

√
a2 + b2} ± 1

]−1
, (D.64)

with
a :=

m
T

and b :=
p
T

. (D.65)

With dp = Tdb we get

n =
g

2π2

∫ ∞

0
T3b2

[
exp{

√
a2 + b2} ± 1

]−1
db

=
gT3

2π2

∫ ∞

0

b2

exp{
√

a2 + b2} ± 1
=

gT3

2π2 ·
{

2ζ(3) bosons
3
4 · 2ζ(3) fermions

=
ζ(3)gT3

π2 ·
{

1 bosons
3
4 fermions

, (D.66)

where in the second equality we used the relativistic limit to evaluate the
integral. Now, we want to compute the entropy density, s. Therefore, we
start with the first law of thermodynamics

dU = TdS− PdV + µdN
µ=0⇒ dS =

1
T
(dU + PdV)

=
1
T
(d(ρV) + PdV) =

1
T
(d((ρ + P)dV)−VdP), (D.67)

where we used U = ρV and the second equality in the second line added
VdP − VdP = 0. To derive an expression for dP we start with the first
equality in the second line of the above equation

dS =
1
T
(d(ρV) + PdV) =

1
T

(
V

dρ

dT
dT + (ρ + P)dV

)
. (D.68)

By comparison with the chain rule for S

dS(V, T) =
(

∂S
∂T

)
V
+

(
∂S
∂V

)
T

dV, (D.69)
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we can read off two equations(
∂S
∂T

)
V
=

1
T

dρ

dT
V ⇒ ∂2S

∂V∂T
=

(
∂

∂V

)
T

(
∂S
∂T

)
V
=

1
T

dρ

dT
and (D.70)(

∂S
∂V

)
T
=

1
T
(ρ + P)⇒ ∂2

∂T∂V
=

(
∂

∂T

)
V

(
∂S
∂V

)
T

=
1
T

[
dρ

dT
+

dP
dT

]
− 1

T2 (ρ + P), (D.71)

which we can set equal to get

1
T

dρ

dT
=

1
T

[
dρ

dT
+

dP
dT

]
− 1

T2 (ρ + P)⇒ dP =
ρ + P

T
dT. (D.72)

Plugging this back in (D.67) gives

dS =
1
T

d [(ρ + P)V]− V
T2 (ρ + P)dT = d

[
ρ + P

T
V
]

. (D.73)

Recall that the entropy density is apparently defined as s := S/V, so that
dS = d(sV) and we can read s off directly as

s =
ρ + P

T
. (D.74)

In the radiation-dominated epoch we have P = 1
3 ρ, so that s = 4

3
ρ
T . Let us

compute the energy density ρ in the relativistic limit, which by now has
become clear how this is done by starting at (D.11) and plugging in µ = 0
along with b as defined in (D.65) and then performing the limit . However,
we will arrive at

ρ =
gT4

2π2

∫ ∞

0

b3

eb ± 1
=

gπ2T4

30

{
1 bosons
7/8 fermions

. (D.75)

Back to s, by considering multiple species with individual energy densities
we get

s =
4
3

π2

30

[
∑

i∈bosons
giT3

i +
7
8 ∑

i∈fermions
giT3

i

]
=:

4
3

π2

30
g∗,sT3. (D.76)

With nEQ
ψ and s at hand we can compute

YEQ =
nEQ

ψ

s
=

ζ(3)g
π2 T3

4
3

π2

30 T3g∗,s
·
{

1 bosons
3
4 fermions

=
45ζ(3)

2π4
g

g∗,s)
·
{

1
3
4

. (D.77)
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For photons (γ) that only can have two different polarizations we have
g = 2 and can use T = TCMB,0 along with the fact that they are bosons to
get

Yγ
EQ =

45ζ(3)
2π4

2
g∗,s(TCMB, 0

. (D.78)

By knowing ζ(3) ≈ 1.20 we get

Yγ
EQ ≈ 0.278

2
g∗,s(TCMB,0)

. (D.79)

For axions (a) we have to consider a slightly different process since they
are produced in collisions a + 1 ↔ 2 + 3 rather than a + ā ↔ 2 + 3. The
main consequence is that in our derivation of the Boltzmann equation in-
stead of Y2 we get Y · YEQ since species 1 is also assumed to be in thermal
equilibrium. Recalling

dY
dx

= −⟨σtot|v|⟩s
xH(x)

(YYEQ −Y2
EQ) = −

Γtot

xH
(Y−YEQ), (D.80)

where in the first equality we used H(m) = x2H(x) and in the second
equality we used Γ := ⟨σtot|v|⟩ · n of species 1 with n = Ys and H(x) ≡ H.
we can now solve this differential equation to obtain∫ Y∞

Y(0)

dY′

Y′ −YEQ
= −

∫ x

0

Γtot

x′H
⇒ ln(Y′ −YEQ)|Y∞

Y(0) = −
∫ x

0

Γtot

xH
dx′

⇒
Y(x)−YEQ

Y(0)−YEQ
= −

∫ x

0

Γtot

x′H
dx′ ⇒

1− Y(x)
YEQ

1− Y(0)
YEQ

= −
∫ x

0

Γtot

x′H
dx′. (D.81)

We assume that initially there are no axions, so that Y(0) = 0 and thus,
1Y(0)/YEQ = 1, so that

1− Y(x)
YEQ

= −
∫ x

0

Γtot

x′H
dx′

⇒ Y(x) = YEQ

[
1− exp

{
−
∫ x

0

Γtot

x′H
dx′
}]

. (D.82)

Again, we consider the relativistic limit, x ≪ 1, so that exp(−1/x) ≪ 1
and Y(x) ≈ YEQ, which is again given by

Ya
EQ =

nEQ
a

s
≈ 0.278

g
g∗,s

{
1 bosons
3
4 fermions

. (D.83)
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Axions are pseudo Goldstone bosons and thus, the axion field has only
one degree of freedom, namely the value of θ, so that g = 1 and we have

Ya
EQ ≈

0.278
g∗,s

. (D.84)

Denote the temperature at axion decoupling as Ta
dec, then with nEQ

a = Ya
EQs

we get

nEQ
a =

0.278
g∗,s(Ta

dec)
. (D.85)

With nEQ
γ ≡ nγ and nEQ

a ≡ na we finally arrive at

na

nγ
=

1
2

g∗,s(TCMB,0)

g∗,s(Ta
dec)

(D.86)

as we sought after in the beginning of this appendix
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Appendix E
Brief review of the theory of
inflation

This appendix is fully devoted to a very brief review of the most important
phenomenology and basic equations of nowadays’s well-accepted slow-
roll inflation as this is the kind of inflation we are considering in this work.
Historically seen, inflation was invented independently by Starobinsky[43]
and Guth[44]1. Both of them and many others, attended a conference in
1982, organized by Hawkins and Gibbons on the very early Universe,
what Guth describes in [46]. During this conference, Wilczek is quoted
to have said ”The idea is so simple, and yet it provides a qualitative un-
derstanding of some of the deepest puzzles of cosmology!”[46]. Let me
note that by now, the original inflation models had to be reviewed sev-
eral times in order to fit into the well-accepted picture of the Universe’s
evolution and properties. However, as stated in the beginning, we are not
interested in the full story, for which one could work through the compre-
hensive review by Langlois[47].

First of all, why should we think about an additional era in the Universe’s
history? The ΛCDM-model described in appendix A suffers three major
problems we would like to discuss now. First, there are strong evidences

1Vilenkin made the following, interesting historical note on that. ”In fact, Starobinsky’s
paper appeared before Guth [...] suggested the standard version of inflation, although it
was Guth who fully explained the advantages of inflationary scenarios.”[45]
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pointing to the Universe being flat[48], so that

1 = ∑
i

Ωi,0 = Ωγ,0 + Ωm,0 + ΩΛ,0 = Ωtot, (E.1)

where the subscript stands for total, must be satisfied. Recall the Fried-
mann equation (A.3)

H2 =
8πGρtot

3
− κ

a2 , (E.2)

where we have used the definition of the Hubble parameter, H := ȧ/a,
and the usual convention a0 = 1 for convenience. Now let us replace the
density by the density parameter via the critical density, ρcrit =

3H2

8πG ,

H2 = H2Ωtot −
κ

a2 , (E.3)

what gives

Ωtot − 1 =
κ

a2H2 . (E.4)

As stated above, we must fulfill a flat geometry, so κ
!
= 0, what leads to

the condition, that Ωtot = 1 precisely. In fact, this solution appears to
be unstable, for what Liddle[38] gave a very short argument, namely the
Friedmann equations give the time dependencies

(a2H2)−1 ∼ t and (a2H2)−1 ∼ t
2
3 (E.5)

for a radiation- and matter-dominated Universe, respectively. As derived
above, (a2H2)−1 ∼ Ωtot − 1, so that we see that the deviation of Ωtot from
one is increasing with time, simply meaning, that either Ωtot = 1 precisely
or the Universe cannot be observed to be flat today. The question is how
Ωtot can be fine-tuned so precisely.

Second, without any doubt, the speed of light is finite, so that a photon
emitted at the Big Bang can only have travelled a finite distance till to-
day since the age of the Universe is finite as well. It is well-measured that
the CMB can be considered isotropic and the CMB-photons all have the
same temperature[38]T0. Analogue to the argument we made in subsec-
tion 2.2, every patch of the observable Universe must have been in causal
contact in order to achieve thermal equilibrium, so that the temperature
is overall the same. This breaks down when we observe photons coming
from opposite sides of the sky, since their corresponding patches clearly
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cannot have been in causal contact, since their emitted photons are reach-
ing us today, not even reaching the other side of the sky to exchange any
information[38]. The question is how these patches were able to be in
causal contact in the early Universe, although today they appear not to be.

Third, in the very early Universe, when Grand-Unified-Theories (short:
GUT) seem to be applicable, there is no reason to exclude magnetic monopoles
from the particle picture as we are used to do. We do not need to go into
detail here, but one can show that

Ωmono ∼ 1013, (E.6)

what is disastrous as this is not only exceeding Ωtot = 1 by far, but the
question arises where all these monopoles are since we were not able to
detect them yet. This question was initially the purpose for Guth to invent
his theory of inflation[38].

Let us now turn to the question how inflation is able to elegantly fix these
problems. Suppose, there is an era in the radiation-dominated epoch,
that expands the Universe exponentially, i.e. the expansion is accelerated.
Hence, recall the acceleration equation (A.4)

ä
a
= −4πG

3
(ρ + 3P)

G=m−2
pl

= − 4π

m2
pl
(ρ + 3P), (E.7)

where we have replaced G by the corresponding Planck-mass as we as-
sume inflation to be in the very early Universe. In order to describe an
acceleration, we demand ä > 0 and since the prefactor of the parenthe-
ses is constant and negative and the prefactor of ä is strictly positive, we
demand ρ + 3P < 0, what immediately gives

ρ + 3P < 0⇔ ρ < −3P
P=wρ
= −3wρ

:(−3ρ)⇒ −1
3
> w (E.8)

as the equation of state parameter for an accelerated period of expansion.
As before, we could use w = −1 as this gives a constant energy density,
which is convenient for the computations. Let this expansion be expressed
by the exponential scaling law

a f = ai · eN, (E.9)

where ai and a f are the initial and final scale factor, respectively and we
call N the number of e-foldings in the inflationary expansion. We assume
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the temperature of the Universe at the start of inflation, Ti, to be the same
as at the end of inflation, Tf , because although we know that a ∼ T−1

leads to an exponential reduction in the Universe’s temperature during
inflation, the kinetic energy to drive inflation is then converted back into
heat, so that the temperature should be the same. This process is called
reheating. What is meant by ”kinetic energy to drive inflation” will become
clearer later in this appendix. However, recall (E.4) and note that since w =
−1 gives a constant energy density for the era of inflation, the Friedmann
equation (A.3) implies that H2 =const., so that we get the scaling

Ωtot − 1 =
κ

a2H2 ∼ a−2. (E.10)

Now, we take Ωtot = Ωi at the time, when inflation occurs and Ωtot = Ω f
at the time, when inflation ends to get

Ωi − 1
Ω f − 1

=
a2

f

a2
i

(E.9)
= e2N. (E.11)

Along with the observational constraint[48] |Ω0− 1| < 10−2 one can com-
pute |Ω f − 1| ≲ 10−53 ≈ e−122 and thus with the above equation we obtain

Ωi − 1 = e2N(Ω f − 1) ≲ e2N · e−122, (E.12)

so that N = 61 is needed as we only need to consider the absolute values,
so that Ωi ≈ 0 drops out. This means, that we need at least 61 e-foldings to
solve the flatness problem. The next problem is the question how different
patches of the Universe could have been in causal contact, even though
they appear not to be so today. By using the RW-metric (D.3) for a flat
Universe and considering a light ray, i.e. a radially propagating photon
with ds2 = 0 and dΩ = 0

0 = ds2 = −dt2 + a2dr2 ⇔ dt = −rdr, (E.13)

where we use the negative solution to describe outgoing light rays, we can
compute the comoving horizon size at the beginning of inflation, ti, to be

rH =
∫ ri

r0

dr
(E.13)
=

∫ ti

0

dt
a

=
∫ ti

0

dt

ai

(
t
ti

)1/2 =
2ti

ai

(E.9)
=

2ti

a f
eN. (E.14)

Note, that we used a ∼ t−1/2, what holds for the radiation-dominated
epoch. We can approximate ti ∼ tGUT, but do not know a f yet. Above, we
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explained that due to reheating, we assume Ti = Tf and analogue to the
time-approximation we can then approximate Tf ∼ TGUT, so that along
with a ∼ T−1 we can rewrite a f as

a f
a0=1
=

a f

a0
=

T0

Tf
∼ T0

TGUT
, (E.15)

what after plugging in numbers gives

a f ∼ 3 · 10−28, (E.16)

so that we can approximate the horizon size at the beginning of inflation
to be

rH(ti) ∼
2tGUTTGUT

T0
eN ∼ 2 · 102 · eN cm. (E.17)

From the CMB power spectrum we can infer the comoving scale, λ, that
corresponds to the diameter of the last-scattering surface centered on us to
be

λ ∼ 1029 cm. (E.18)

To be in causal contact, these scales have to be inside the horizon, i.e.

1029 cm ∼ λ
!
< rH(ti) ∼ 2 · 102 · eN cm⇒ eN ≳ 1027 ≈ e62, (E.19)

so that we need at least 62 e-foldings, in order for all patches of the hori-
zon to be in causal contact in the early Universe. Due to the exponential
expansion, these patches get largely separated an thus, they do not have
to be causal contact necessarily, what is exactly what we observe today. Fi-
nally, by taking the slightly stronger constraint, N > 62, we can compute
the density reduction of magnetic monopoles to be

ρmono
i

ρmono
f

∼
Vf

Vi
∼

a3
f

a3
i
= e3N > e3·62 = e186. (E.20)

This underlines very clearly how small ρmono
f is and explains why no mag-

netic monopoles have been detected yet. If they exist, they are simply too
rare. Note, that this argument assumes the number of magnetic monopoles
to be constant. In 1982, Linde[49] presented, based on Guth’s initial infla-
tion model a new model that was able to solve not only the monopole but
also the flatness and horizon problem. Shortly after, but independent of,
Linde, the same problems were solved by Albrecht and Steinhardt[50] by
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considering first order phase-transitions in GUT.

Now, that we saw how inflation can solve the big problems we faced in the
beginning, let us finally turn to the question how we could model such an
era of rapid acceleration. Guth[44] and Starobinsky[43] proposed a single
scalar field, ϕ, with the inflation potential V(ϕ). When ϕ is deflected from
the true vacuum state, i.e. the potential minimum, it simply propagates
back to it. Imagine for simplicity a V(ϕ) = ϕ2 potential and ϕ as a ball,
then if ϕ ̸= 0 the ball will roll down the potential hill back to ϕ = 0. In
general the EOM for an arbitrary V(ϕ) can be written[37]

ϕ̈ + 3Hϕ̇ +
dV(ϕ)

dϕ
= 0. (E.21)

Note, that one could add a term −∇2ϕ, where ∇ is taken with respect to
proper spatial coordinates. In inflationary models, this term is considered
negligible since one considers a small region of the Universe that is then
inflated, what typically wipes out all small-scale fluctuations, so that the
derivations in spatial directions basically do matter and we can assume
that ϕ is the same everywhere[37]. Analogue to (2.68) we can write

P =
1
2

ϕ̇−V(ϕ) and ρ =
1
2

ϕ̇2 + V(ϕ). (E.22)

Recall, that we argued above that w < −1
3 or, equivalently, 3P < −ρ must

hold for an accelerated era of expansion. From the equations above we
then interfere

3
2

ϕ̇2 − 3V(ϕ) < −1
2

ϕ̇2 −V(ϕ)⇒ ϕ̇2 < V(ϕ), (E.23)

so the potential-term has to dominate over the kinetic term initially. Now,
consider an infinitesimal time interval, δt, over which δϕ is the corre-
sponding deviation from ϕ, then we can associate to this deviation a ki-
netic term of the form ϕ2/(δt)2. Since V(ϕ) is bigger than the kinetic term,
we get

V(ϕ) >
ϕ2

δt2 ⇒
dV(ϕ)

dϕ
>

2ϕ

δt2 ∼ O (ϕ̈) , (E.24)

so that one can neglect the ϕ̈-term in the EOM (E.21) leading to

3Hϕ̇ = −dV(ϕ)

dϕ
(E.25)
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is the so-called slow-roll approximation and the corresponding model of in-
flation is what we call slow-roll inflation. This simple argument given by
[37] is rather a motivation than an actual proof, but it is sufficient for our
purpose. Recall the Friedmann equation (A.3), where we again replace
G = m−2

pl , with a constant energy density, corresponding to w = −1, which
we replace now by the dominating potential term to approximate

H2 ≈ 8π

3m2
pl

V(ϕ). (E.26)

With this approximation and the above results, one can show, that the
slow-roll approximation can be expressed by two dimensionless slow-roll
parameters[37]

ϵinf = −
Ḣ
H2 =

m2
pl

16π

(
V′

V

)2

≪ 1 and ηinf =
ϕ̈

Hϕ̇
=

m2
pl

8π

(
V′′

V

)
≪ 1,

(E.27)
whose derivation is not interesting for us2. Note, that a prime denotes the
derivative with respect to ϕ. In fact, the dimensionless parameters basi-
cally say, that V(ϕ) has to be very flat to ensure the slow-roll aspect and
very shallow to ensure a small duration of inflation. Note additionally,
that different inflation models assume different potential terms leading to
different ways to arrive at and interpret the outcomes of inflation. How-
ever, in an intuitive version, think about a plateau that is very slightly
tilted and at some point has a deep potential well with the true vacuum
as its minimum. Now think again of ϕ as a ball, slowly rolling down the
plateau, picking up kinetic energy3 along the way and finally falling down
the hill into the potential minimum, overshooting it and then begin to os-
cillate around it. The latter fits perfectly well to the EOM (E.21) because
it is of the same form as a harmonic oscillator with an additional friction
term corresponding to the Universe’s expansion.

One outcome of inflation is the production of Gravitational Waves (short:
GW). We do not go into the production mechanism, but refer to [51] for a
comprehensive introduction to and discussion of the topic. In 1977, Lyth
pointed out that if GW are an outcome of inflation, their detection could

2Note, that Marsh[1] defines the slow-roll parameters with an additional factor 2π, which
is just a rescaling that does not influence the behavior of V(ϕ).

3This is what was meant by the kinetic energy that is used to drive inflation and that is
given back afterwards.
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be used to constrain the inflation potential for instance, but the contem-
porary observational bounds on the tensor-to-scalar ratio, rT, imply a po-
tential depth several orders of magnitude larger than one should expect
and additionally the connection to GW is only possible if the fluctuations
δϕ are of order of the Planck-scale, which would imply that inflation can-
not be an ordinary extension of the standard model[25]. The bound on
δϕ has become known as the Lyth-bound. In 2021 Cai et al.[52] presented
a new mechanism in order to produce sufficiently large GW that produce
observable tensor modes within the Lyth-bound by proposing that there
is the massive ϕ field that interacts with a massless scalar χ field. While
the fluctuations of the ϕ field provides the necessary source of the GW,
the χ field generates ”the observed nearly scale-invariant power spectrum
for curvature perturbations, which are shown to be within current obser-
vational bounds”[52]. With this mechanism it is indeed possible to use
GW-observations to put constraints on the inflation potential[52].
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Bulletin de la Société Mathématique de France 84, 251 (1956).

[43] A. A. Starobinsky, A new type of isotropic cosmological models without
singularity, Physics Letters B 91, 99 (1980).

[44] A. H. Guth, Inflationary universe: A possible solution to the horizon and
flatness problems, Physical Review D 23, 347 (1981).

[45] A. Vilenkin, Classical and quantum cosmology of the Starobinsky inflation-
ary model, Physical Review D 32, 2511 (1985).

[46] A. H. Guth, The inflationary universe : the quest for a new theory of cosmic
origins, Addison-Wesley Publishing, Reading, Mass. [etc.], 1997.

[47] D. Langlois, Inflation and cosmological perturbations, in Lectures on
Cosmology: Accelerated Expansion of the Universe, pages 1–57, Springer,
2010.

[48] G. Efstathiou and S. Gratton, The evidence for a spatially flat Universe,
Monthly Notices of the Royal Astronomical Society: Letters 496, L91
(2020).

[49] A. D. Linde, A new inflationary universe scenario: a possible solution of the
horizon, flatness, homogeneity, isotropy and primordial monopole problems,
Physics Letters B 108, 389 (1982).

[50] A. Albrecht and P. J. Steinhardt, Cosmology for grand unified theories
with radiatively induced symmetry breaking, Physical Review Letters 48,
1220 (1982).

[51] H. An, K.-F. Lyu, L.-T. Wang, and S. Zhou, Gravitational waves from an
inflation triggered first-order phase transition, Journal of High Energy
Physics 2022, 1 (2022).

[52] Y.-F. Cai, J. Jiang, M. Sasaki, V. Vardanyan, and Z. Zhou, Beating the
Lyth bound by parametric resonance during inflation, Physical Review
Letters 127, 251301 (2021).

126


	Introduction
	Theoretical description of axions
	QCD axions and axion-like particles
	The strong-CP problem
	The natural solution of the strong-CP problem
	QCD-axion models and ALPs in general

	Axions in inflation theory
	Production mechanisms
	Thermal production
	Non-thermal production via misalignment
	Decay product of heavier parent particle X or of toplogical defect/string


	Dynamics of cosmological perturbations
	Gauge-invariant cosmological perturbation theory
	Aim and Setup
	Classical description of hydrodynamical perturbations
	Classical description of scalar matter field perturbations
	Quantum mechanical description of scalar matter field matter perturbations

	The axion field
	Aim and Setup
	Application of cosmological perturbation theory
	Brief treatment of the non-linear theory


	Summary
	In English
	In German

	Conclusion and Outlook
	Acknowledgments
	Brief review of the CDM model
	Brief review of QCD
	Selected properties of instantons
	Winding number 
	Vacuum expectation value and -vacuum action
	One-instanton action S0
	Energy of a -vacuum

	The thermal axion abundance
	Brief review of the theory of inflation
	References

