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Abstract 

Most neuroimaging studies are affected by small sample sizes and poor reproducibility 

of research findings. Therefore, aggregating data from multiple research centres is crucial to 

the development of the neuroimaging field. For this reason, MRI site harmonization is 

essential, as it allows for comparison and joint analysis of MRI data from multiple studies. 

MRI site harmonization aims to remove inter-site variability, while maintaining variance of 

interest. However, neuroimaging studies generally have low numbers of subjects to estimate 

the harmonization model. This paper examines the effect of dataset size on the quality of MRI 

site harmonization, and whether this effect is dependent on age differences between sites and 

the size of site differences. In order to evaluate the quality of MRI site harmonization we 

calculated the extent to which the correlation between GMD and age was recovered. To 

answer our research questions, we studied the performance of MRI site harmonization using a 

variety of training dataset sizes in an empirical study. Our empirical study shows no clear 

effect of the size of the training dataset. In addition, we studied the performance of MRI site 

harmonization in a simulation study, where we varied the number of subjects in the training 

dataset, the age differences between the centres, and the size of the centre effects. Our 

simulation study shows that the effect of training dataset size is minimal. The effect is only 

present when sites differ largely in mean age and when site effects are small. Thus, in all other 

conditions, inter-site variability is successfully removed, while variance of interest is 

preserved. This leads us to the conclusion that the limited effect of training dataset size 

suggests that prospects for the quality of harmonization in multi-centre studies with small 

datasets are promising.  
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Introduction 



 
 

Recently, concerns have been raised in the field of neuroimaging as a result of small 

sample sizes and poor reproducibility of research findings, among other things (Zhu et al., 

2019). Since many studies that make use of MRI data are bound to small sample sizes, 

aggregation of MRI data from multiple studies is crucial to the development of the 

neuroimaging field. In the field of neuroimaging, MRI data is subject to significant inter-site 

variability. Variability introduced by processing data at different sites is referred to as “batch 

effects” (Chen et al., 2011). These batch effects evidently complicate comparison of data across 

scanning sites (Pinto et al., 2020). In recent years, applied researchers have become increasingly 

interested in reducing inter-site variability. A standard procedure for reducing the inter-site 

variability is the harmonization of data, which removes variability due to scanner site and 

maintains variability due to biological and demographical factors. Harmonization therefore 

allows for comparison and joint analysis of MRI data from multiple studies. Several studies 

have covered the application of different harmonization methods on MRI data; see Chen et al., 

2011; Nan et al., 2022 for a review of multiple harmonization methods on several imaging 

modalities, including MRI. It has been demonstrated that the ComBat harmonization technique 

is a promising harmonization method. ComBat adjusts the data by removing site effects using 

linear regression, while adjusting for known covariates. In order to make the variance similar 

across sites, ComBat add site-specific scaling factors. ComBat also uses empirical bayes to 

improve the estimation of site parameters for small sample sizes. Although the ComBat 

harmonization technique is promising, datasets from most neuroimaging studies are generally 

small, and possibly too small to adequately estimate the harmonization model. To date, little 

attention has been devoted to the quality of MRI site harmonization for small datasets. The aim 

of this thesis is to evaluate the effect of the training dataset size on the quality of MRI site 

harmonization. To this end, a data simulation study will be performed to examine the effect of 

the training dataset size on MRI site harmonization. A simulation study is used to test the 

behaviour of the ComBat model under controlled conditions. Additionally, I will accompany 

the data simulation study with an empirical application. 

Research questions 

In this thesis, I will examine whether the training dataset size affects the quality of MRI 

site harmonization in an empirical dataset. Next, I will examine the same matter in a simulation 

study. I hypothesize that the larger the size of the training dataset, the better the performance of 

MRI site harmonization, since the use of more training data adds information to the 

harmonization model. In addition, I will examine whether the effect of training dataset size is 



 
 

dependent on between-site differences in mean age. By increasing the demographical variance 

in the data, it will be more difficult for ComBat to differentiate between demographic and site-

related variance. This increases the complexity of the harmonization model and might therefore 

require more data to accurately train the model. Also, I will examine whether the effect of 

training dataset size is dependent on the size of the site effects in the dataset. I hypothesize that 

the effect of training dataset size is larger when site-related variance is large, as the increase of 

inter-site variability will increase the complexity of the model. As a consequence of this, the 

model will require more data.  

Method  

Empirical Application 

Participants 

 A multi-site dataset from the Leiden Alzheimer Research Nederland (LeARN) project 

(Handels et al., 2012; Jansen et al.,2017) was used in this study, which was collected at four 

memory clinics in the Netherlands; Leiden, Maastricht, Nijmegen and Amsterdam. The LeARN 

dataset consisted of 61 possible or probable Alzheimer’s Disease (AD) patients, 61 Mild 

Cognitive Impairment (MCI) patients and 67 Significant Memory Concern (SMC) patients, 

resulting in a total of 189 subjects.        

 Table 1 gives an overview of the demographic characteristics of the sample. This dataset 

was chosen because it was readily available and contains MRI data from multiple research 

centres. With this empirical dataset, I examined the effect of training dataset size on the quality 

of MRI site harmonization. In addition, I used characteristics of this dataset as a starting point 

to simulate random samples in the simulation study.   

Missing data 

 The percentage of missing data across all variables in the empirical dataset varied 

between 0 and 10%. Therefore, a total of 32 of 10206 data points were incomplete. Important 

to note is that no MRI variables contained missing data, and missing data was only found on 

covariates. It is essential to the ComBat harmonization technique that there is no missing data. 

Therefore, missing data was handled by imputation of the median. Acuña & Rodriguez (2004) 

showed that missing data should be handled by imputation of the median when the data in the 

variables containing missing data is skewed. The skewness found on the GDS and MMSE 

variables could likely be attributed to floor- and ceiling effects respectively.  



 
 

MRI Acquisition 

 Subjects underwent on-site structural MRI scans, calculating grey matter density 

(GMD) in 48 locations in the brain, representing the 48 cortical regions of the probabilistic 

Harvard-Oxford cortical atlas (Smith et al., 2004). Scanners were site-specific; a Philips 

Achieva 3T scanner was used at the Leiden University Medical Centre and the Maastricht 

University Medical Centre, a Siemens TrioTim 3T was used at the Nijmegen University 

Medical Centre, and a GE Signa HDxt 3T scanner at the VU University Medical Centre in 

Amsterdam.  

MRI Analysis 

Grey matter density represents the percentage of grey matter, which is quantified by a 

number between 0 and 1. This is achieved by soft segmentation of brain voxels into grey matter, 

white matter or cerebral spinal fluid (Gennatas et al., 2017). The voxel grey matter density 

values were then averaged within each of the 48 cortical regions. See de Vos et al., 2020 for 

further information on the MRI data acquisition and data processing of this dataset.  

Centre effects 

Due to the subjects being scanned at different sites, inter-site variability was likely to be 

present in the data. In other words, means and standard deviations of the GMD variables were 

subject to a centre effect introduced by the different scanners. The harmonization process tends 

to remove these centre effects. To visualize this, Figure 1 shows the GMD values of all subjects 

both before and after harmonization. The x-axis represents the 189 subjects present in the 

empirical dataset. The y-axis represents the 48 cortical regions of the probabilistic Harvard-

Oxford cortical atlas. Comparison of the two plots in Figure 1 showed that site effects were 

present in the data. The scan site correction process was not biased towards one direction, as 

the correction was different for every variable, and site specific. To assess the size of the centre 

effect that is present in the empirical data, two sets of 48 one-way ANOVAs were conducted to 

calculate the effect of centre on GMD in all 48 cortical brain regions. We conducted two sets 

of 48 ANOVAs to differentiate between variability due to centre effects and variance of interest, 

as in one set of ANOVAs several covariates were included. These ANOVAs revealed that the 

mean effect size of centre, excluding covariates, before harmonization was η2 = .26 . However, 

the mean effect size of centre including covariates (i.e., age, CDR, years of education, GDS, 

MMSE, diagnosis and sex) was η2 = .31. These results seem odd, as we expect a decrease in 

effect size since the addition of covariates explains extra error variance. However, Table 1 



 
 

shows us that the four centres differ only slightly on most covariates. The distribution of the 

centre effect sizes both with and without the addition of covariates, and both before and after 

harmonization are displayed in Figure 2.  

Table 1 

Demographic Characteristics of the LeARN Dataset 

Characteristic Scanning site 

 Leiden Maastricht Nijmegen Amsterdam 

N 40 68 43 38 

Age 70.9 ± 9.0 66.6 ± 11.6 71.6 ± 9.0 65.0 ± 7.5 

CDR .58 ± .27 .52 ± .16 .49 ± .37 .62 ± .32 

Years of 

education 
11.1 ± 3.7 10.4 ± 3.2 11.1 ± 3.7 11.6 ± 3.4 

GDS 3.8 ± 3.1 3.26 ± 2.5 2.79 ± 1.8 3.44 ± 2.8 

MMSE 26.4 ± 2.5 27.5 ± 2.6 25.7 ± 2.8 25.4 ± 3.0 

Diagnosis      

  AD 15 13 14 19 

  MCI 13 24 13 11 

  SMC 12 31 16 8 

Sex     

   Male 20 42 25 30 

   Female 20 26 18 8 

Note. CDR = clinical dementia rating, GDS = geriatric depression scale, MMSE = mini-mental 

state examination, AD = Alzheimer’s disease, MCI = Mild cognitive impairment, SMC = 

Significant memory concern. Age, CDR, Years of education, GDS and MMSE are presented 

as mean ± standard deviation. Diagnosis and Sex are presented as frequencies. 

Figure 1 



 
 

Result of the harmonization process. The 48 scanned brain regions are represented on the y-

axis. The 189 subjects are represented on the x-axis, sorted by site. 

 

 

 

 

 

 

 

 

Figure 2 



 
 

Distribution of the centre effect sizes. The boxplot on the left represents the effect sizes of 48 

one-way ANOVAs of the effect of centre on GMD excluding covariates. The boxplot on the right 

represents the effect sizes of 48 one-way ANOVAs of the effect of centre on GMD including 

covariates. The y-axis represents the eta-squared effect size. The red line represents the mean 

centre effect sizes after harmonization. 

 

Simulation study 

Data was simulated, for each centre separately, for a total of 1000 repetitions, from a 

multivariate normal distribution: Χijk ~ N(µij, Σij), where µij is the mean vector of the 35 GMD 

variables and an age variable of centre 1 up to 4 in the empirical dataset, and Σij is the n × n 

positive definite covariance matrix of centre 1 up to 4 in the empirical dataset. Data was 

simulated using the faux package (v1.1.0; DeBruine., 2021). Thus, four centre-specific datasets 

were created, which were aggregated after every repetition to form one multi-centre dataset. In 

short, a dataset consisted of four centres, each containing 100 subjects, resulting in a total of 

400 subjects per dataset. Each subject had 35 variables representing GMD in 35 brain regions 

and an age variable, which results in a total of 36 variables.     

 We wanted the variable properties to be plausible and realistic, hence the use of the 

parameters from the empirical dataset as population parameters. For each subject, 35 variables 

representing GMD in different brain regions along with an age variable were simulated. We 

simulated 35 GMD variables, as opposed to 48 variables in the empirical dataset, for the reason 

that the faux package required more subjects per centre in the empirical dataset than simulated 

variables to produce a dataset. Since the lowest number of subjects scanned at a specific centre 



 
 

was 38 (at the VU University Medical Centre in Amsterdam), no more than 38 variables could 

be simulated. We decided to use 35 GMD variables as this is a round number. The simulation 

study was performed to answer three research questions, for which data-simulation parameters 

were altered accordingly.         

 Firstly, in order to answer our second research question, age differences between sites 

were given to the data. Specifically, the mean age value in the mean vectors of two of the four 

centres were altered to introduce an age difference of 10 or 20 years. The mean age value in the 

mean vectors of the remaining two centres was 60. Thus, two centres had a mean age of 60, and 

two centres had a mean age of either 70 or 80, causing a small and large age difference 

respectively. As mentioned above, GMD is negatively correlated with age. Therefore, it was of 

importance that GMD values were corrected for the increase of age. For every centre, we 

calculated the effect of age on each of the 35 simulated GMD variables. Next, we created a 

matrix of the age effect on all 35 GMD variables for all subjects. At the end, this matrix was 

added to the unaltered simulated data to account for the increase in age, resulting in an age-

corrected dataset.          

 Secondly, to answer our third research question, site effects were manipulated by 

multiplying, for every centre separately, the mean vector of GMD in 35 brain regions with a 

factor. This factor was different for every condition, depending on the intended size of the site 

effect. As a consequence of this, the between centre variance decreased when this factor was 

smaller than 1, and increased when the factor was larger than 1. We chose multiplication factors 

that resulted in datasets with a desired centre effect sizes (i.e., eta-squared) of .01, .06, .14, .26, 

corresponding to a small, medium and large effect defined by Cohen (1988). In addition, we 

simulated data with an eta-squared of .26, as this was the mean effect size found in the empirical 

application excluding covariates. We will refer to this effect size as ‘huge’ in the following 

sections.           

 An age variable was simulated to aid in the evaluation of harmonization success. This 

evaluation is based on previous research (Ramanoël et al., 2018), which found that an increase 

in age is associated with a decrease in GMD. Therefore, if the correlation between GMD and 

age increased after harmonization, we concluded that the harmonization removed, at least, some 

of the centre effect. Since it is unclear whether remaining site differences are a result of an 

insufficient harmonization process, or result from demographical and/or biological variance, 

objectively estimating harmonization success is rather difficult. Therefore, the estimation of an 

intended effect (i.e., the correlation between GMD and age) is perceived as the golden standard 

for the determination of harmonization success. As a reference, Table 2 shows the mean, 



 
 

standard deviation and range of the simulated mean correlation between GMD and age for all 

1000 simulated datasets, which gives a general idea of the intended effect.  

Table 2 

Descriptive statistics of the mean correlation between GMD and age for all simulated datasets 

 M SD Min Max 

Centre 1 -.38 .04 -.50 -.20 

Centre 2 -.46 .04 -.55 -.30 

Centre 3 -.47 .05 -.61 -.30 

Centre 4 -.09 .04 -.24 .06 

 

Procedure 

 After data simulation, these data were subjected to a MRI site harmonization method 

called ComBat (Johnson et al., 2007). The ComBat harmonization technique has been found to 

successfully remove unwanted site-related variability, while preserving biological and 

demographic variability in the data (Fortin et al., 2017). ComBat builds on other harmonization 

procedures that remove site effects using linear regression, while adjusting for known 

covariates. Additionally, ComBat adds site-specific scaling factors in order to make the 

variances similar across sites. Furthermore, it uses empirical bayes to improve the estimation 

of the site parameters for small sample sizes (Fortin et al., 2018). In spite of the fact that ComBat 

was originally developed to mitigate non-biological variability in gene expression microarray 

data (Johnson et al., 2007), recently ComBat has been further developed to mitigate batch 

effects in MRI data (Fortin et al., 2017). In this study a modified version of the ‘ComBat’ 

function from the ‘sva’ package in R was used. In this package, the ComBat function was 

adapted in such a way that a function for fitting and applying the harmonization model could 

be applied separately (Radua et al., 2020). This enabled us to only use a subset of the subjects 

(size of training data) to fit the harmonization model, and apply it to all of the subjects using 

cross validation.          

 In the empirical application, the number of subjects in the training dataset had six 

conditions: 20%, 33%, 50%, 67%, 80% and 100% of the subjects per centre. Afterwards, the 

remaining subjects were used to validate the harmonization model using cross validation. The 



 
 

model consisted of 48 GMD variables, a centre variable, and six covariates (i.e., age, CDR, 

years of education, GDS, MMSE and sex). We used a cross validation approach to accomplish 

that all subjects were used for testing the harmonization model.    

 The simulation study examined the effect of three factors. Firstly, the main effect of 

training dataset size on MRI site harmonization quality was examined. The number of subjects 

in the training dataset had eight conditions; 5, 10, 20, 33, 50, 67, 80 and 100 (all) subjects per 

centre. Subsequently, the remaining subjects were used to validate the harmonization model 

using a cross validation approach. Secondly, we examined whether the effect of training dataset 

size on MRI site harmonization quality was dependent on between-site differences in mean age. 

We created three conditions; no age difference, a ten-year age difference and a 20-year age 

difference. Thirdly, we examined whether the main effect of training dataset size on MRI site 

harmonization quality was dependent on the sizes of site effects within the data. We created 

four conditions; small site differences, medium site differences, large site differences and huge 

site differences. We used a harmonization model consisting of 35 GMD variables, a centre 

variable and an age variable for all conditions. 

Evaluation 

As mentioned above, an age variable was simulated along with 35 GMD variables. We 

calculated the correlation between GMD and age before harmonization. MRI site harmonization 

success was then evaluated by the extent to which the correlation between GMD and age was 

recovered after harmonization.        

 In the empirical application, we examined the effect of training dataset size on MRI site 

harmonization quality in a within-subjects ANOVA design using training dataset size as a 

within subject factor and pearson correlation values between age and the GMD variables as the 

outcome variable.          

 In the simulation study, the main effect of training dataset size on MRI site 

harmonization quality was examined in a within-subjects ANOVA design. Moreover, we 

examined whether the effect of training dataset size on MRI site harmonization quality was 

dependent on between-site differences in mean age in a mixed design (8 x 3) ANOVA. In this 

ANOVA the size of between-site age differences functioned as a between-subjects variable, the 

training dataset’s size as a within-subjects variable, and the mean value of the pearson 

correlation between GMD and age of the 35 GMD variables for all repetitions as the outcome 

variable. To answer this research question, we tested the interaction effect between training 

dataset size and age difference. Furthermore, we examined whether the main effect of training 



 
 

dataset size on MRI site harmonization quality was dependent on the sizes of site effects within 

the data in a mixed design (8 x 4) ANOVA. In this ANOVA the size of the site-effects 

functioned as a between-subjects variable, the training dataset’s size as a within-subjects 

variable, and the mean value of the pearson correlation between GMD and age of the 35 GMD 

variables for all repetitions as the outcome variable. To answer this research question, we tested 

the interaction effect between training dataset size and the size of site differences. All effects 

were examined with an ANOVA using the rstatix package (v0.7.1; Kassambara., 2020). 

 To assess the size of these effects we used generalized eta-squared (η2
G) as an effect 

size. Bakeman (2005) encouraged the use of η2
G, due to its comparability across studies and its 

appliance to both within- and between-subjects designs. Furthermore, reporting of η2
G is 

recommended by Lakens (2013), since η2
G excludes variation from other factors, such as the 

inclusion of covariates, which makes it possible to compare the effect size with a design in 

which these factors were not manipulated. On the contrary, η2
G includes variance resulting from 

individual differences, which makes η2
G comparable with between-subjects designs where 

variance resulting from individual differences cannot be controlled for.    

 All source code of this thesis is available at 

https://github.com/liamvandenheuvel/Master-s-Thesis-Liam-van-den-Heuvel.   

Results 

Empirical Application 

In this empirical study we examined the effect of training dataset size on the quality of 

MRI site harmonization. We calculated the correlations between GMD and age for 48 brain 

regions to evaluate the quality of MRI site harmonization. For each training dataset size we 

calculated the mean correlation over all 48 correlation values. We found a mean correlation of 

r = -.371 for the pre-harmonization condition. We also found that the mean correlation 

increased for all conditions after harmonization, however this effect was not significant (F (1, 

47) = 3.59, p = .064, η2 = .007). The strongest mean correlation after harmonization was found 

when 33% of the subjects per centre were used to train the data (r = -.434). The smallest 

mean correlation after harmonization was found when 80 subjects per centre were used to 

train the data (r = -.387). In addition, a repeated measures ANOVA was performed to 

compare the effect of training dataset size on the correlation between GMD and age, 

excluding the pre-harmonization condition. The repeated measures ANOVA, where the six 

training dataset sizes functioned as a within subjects factor, and the 48 brain regions as cases, 



 
 

revealed that there was a difference in the correlation between GMD and age between at least 

two conditions (F (5, 235) = 11.04, p < .001, η2 = .012). Besides there being no effect of 

harmonization on the correlation between GMD and age, no clear pattern can be found in the 

relation between the correlation value between GMD and age and the size of the training 

dataset. Figure 3 shows the correlations between GMD and age for all training dataset size 

conditions in the empirical study.  

Figure 3 

Correlation between GMD and age for different training dataset sizes, as a measure of 

harmonization success. The 'Pre' condition represents unharmonized data. The x-axis 

represents the percentage of subjects of the total sample in the training dataset. The y-axis 

represents the correlation between GMD and age. These boxplots represent 48 correlations 

per condition, corresponding to GMD in the 48 cortical brain regions in the Harvard-Oxford 

cortical atlas. 

 

 

Simulation study 

Research question 1 

 This research question focused on the effect of training dataset size on the quality of 

MRI site harmonization. We assessed this by using different sizes of training data, ranging 

from five subjects (i.e., 5%) per centre to 100 subjects (i.e., 100%) per centre to train the 

ComBat harmonization model. Figure 4 shows the results. The y-axis represents the average 

correlation between GMD and age over all 35 brain regions and for all 1000 simulation 

repetitions. The x-axis represents all training dataset size conditions. I hypothesized that a 



 
 

larger training dataset resulted in a stronger correlation after harmonization, as you have more 

data at your disposal for harmonization. As can be seen, the correlation between GMD and 

age was approximately the same as training dataset size decreased. The strongest mean 

correlation (r = -.309) was found when 5 subjects per centre were used to train the data. The 

smallest mean correlation (r = -.301) was found when 67 subjects per centre were used to 

train the data. A repeated measures ANOVA was performed to compare the effect of training 

dataset size on GMD, excluding the unharmonized data. This repeated measures ANOVA 

revealed that there was no difference in GMD between at least two conditions (F (7, 6993) = 

1.295, p = .248, η2
g = .001). Table 3 shows the means and standard deviations of the 

correlations between GMD and age for all training dataset sizes and Figure 4 shows the same 

results in boxplots. Apparently, harmonization with small datasets is as successful as 

harmonization with larger datasets. Moreover, all training dataset size conditions 

outperformed the non-harmonized sample (F (1, 999) = 26616.4, p < .001, η2
g = .872). 

Although means hardly differ between the conditions, there seems to be an increase in 

variance in conditions where the training dataset size was smaller than 20 subjects per centre, 

which indicates that the quality of MRI site harmonization becomes precarious when there is 

not enough data to train the harmonization model. Additionally, Figure 4 could suggest that 

harmonization caused a decrease in mean correlation for some repetitions, since some of the 

boxplots of the harmonized results overlap with the boxplot of the ‘pre’ condition. Therefore, 

we calculated the percentage of increased correlations between GMD and age for all 

conditions compared to the situation without harmonization to rule out this explanation. We 

found that, for every repetition, the correlation between GMD and age increases after 

harmonization, meaning that harmonization was beneficial in all instances, even if the training 

dataset size is small.  

 

 

 

 

 

 

Table 3 



 
 

Descriptive statistics of the correlation between GMD and age for all training dataset sizes 

 Subjects per centre in training dataset 

 Pre 100 80 67 50 33 20 10 5 

Mean -.134 -.301 -.301 -.302 -.302 -.302 -.302 -.304 -.309 

SD .028 .028 .030 .031 .032 .027 .029 .035 .046 

Note. The “Pre” column represents descriptive statistics for the unharmonized data. 

Figure 4  

Mean correlation over all repetitions between GMD and age for different training dataset 

sizes. 'Pre' condition represents unharmonized data with 100 subjects per centre. The x-axis 

represents the number of subjects per centre in the training dataset. The y-axis represents the 

correlation between GMD and age. 

 

 

 

Research question 2 

 To assess whether the effect of training dataset size on MRI site harmonization quality 

was dependent on age differences between sites, we created three settings that differed in their 

difference between the mean age of the centres. In the first setting, the mean age of subjects 

was equal between centres. In the second setting, we created a small mean age difference (10 

years) between the centres, and in the third setting we created a large mean age difference (20 

years) between the centres. Figure 5 shows the correlation between GMD and age for all 



 
 

training dataset sizes split out over the three settings. Table 4 shows the means and standard 

deviations of the correlations between GMD and age for all training dataset sizes split out 

over the three settings.        

 Firstly, as shown in Figure 5, when the centres had an equal mean age, the correlation 

between GMD and age was approximately equal when more than 20 subjects per centre were 

used to train the harmonization model. When 20 subjects or less per centre were used to train 

the model, we found a slight decrease in correlation as training dataset size decreased. 

Secondly, in the setting where two groups had a small age difference, the correlation between 

GMD and age was approximately the same when more than 20 subjects were used to train the 

harmonization model. However, we found a decrease in correlation between GMD and age 

when 20 subjects or less per centre were used to train the model. Additionally, when the 

training dataset contained 20 subjects or less per centre, we found a larger decrease in the 

correlation between GMD and age compared to when the two groups had an equal mean age, 

which is in accordance with our hypothesis. Finally, in the setting with a large age difference 

between the two groups, the correlation between GMD and age was approximately the same 

when more than 20 subjects were used to train the harmonization model. However, we again 

found a decrease in correlation between GMD and age when 20 subjects or less per were used 

to train the model. In addition, when the training dataset contained 20 subjects or less per 

centre, we found a larger decrease in correlation compared to both the setting where there was 

no age difference, and where there was a small age difference between the two groups, which 

is in accordance with our hypothesis. It should also be mentioned that, similar to the results of 

research question 1, we saw an increase in variance of the correlation between GMD and age 

when the training dataset contained fewer subjects. This increase in variance was stronger for 

settings with larger age differences between centres. Thus, in correspondence to the results of 

research question 1, the quality of MRI site harmonization becomes precarious when there is 

not enough data to train the ComBat model, and this effect is stronger when there are large 

age differences between sites. Descriptive statistics of the interaction effect of training dataset 

size and age differences between sites on MRI site harmonization quality are presented in 

Table 4.          

 Subsequently, a repeated measures ANOVA was performed to evaluate the interaction 

effect between training dataset size and size of mean age differences between centres on 

GMD. The repeated measures ANOVA revealed a significant but small interaction effect (F 

(14, 20979) = 19.71, p < .001, η2
g = .005).  



 
 

Table 4 

Descriptive statistics of the correlation between GMD and age for all training dataset sizes in 

a setting with no age difference, a small age difference and a large age difference. 

 None Small Large 

 M SD M SD M SD 

Pre -.507 .030 -.456 .033 -.423 .038 

100 -.521 .028 -.521 .028 -.520 .028 

80 -.520 .036 -.519 .034 -.520 .035 

67 -.519 .036 -.519 .036 -.519 .035 

50 -.519 .035 -.517 .035 -.518 .035 

33 -.515 .031 -.516 .030 -.513 .031 

20 -.512 .036 -.511 .033 -.507 .035 

10 -.505 .042 -.502 .043 -.493 .046 

5 -.496 .054 -.491 .063 -.476 .067 

Note. “Pre” represents descriptive statistics for the unharmonized data. 

  

 

 

 

 

 

 

 

 

 



 
 

Figure 5 

The correlation between GMD and age over all repetitions for all training dataset sizes in a 

setting with groups having an equal age, a small age difference and a large age difference. 

The x-axis represents the number of subjects per centre in the training dataset. The y-axis 

represents the correlation between GMD and age. 

 



 
 

Research question 3 

 To assess whether the effect of training dataset size on MRI site harmonization was 

dependent on the size of site differences, we created four settings where the data contained 

small, medium, large and huge site differences. These settings represent site effects with a 

partial η2 of .01, .06, .14 and .26 respectively. Likewise, a site effect size of .26 was used in 

the analysis of research question 1. Figure 6 shows the correlation between GMD and age 

over all repetitions for all training dataset sizes, for the four settings.   

 Firstly, as can be deduced from Figure 6, when there was a small site effect, the 

correlation between GMD and age was approximately the same in the conditions where more 

than 10 subjects per centre were used to train the model. However, the correlation between 

GMD and age decreased when fewer than 10 subjects per centre were used. Another point 

that can be made is that the mean correlation between GMD and age for the unharmonized 

data is higher than all mean correlations between GMD and age for the harmonized data. This 

implies that when there are only small site effects, harmonization might not always be 

beneficial for data analysis.         

 Secondly, when there was a medium site effect, the correlation between GMD and age 

was approximately the same in the conditions where more than ten subjects per centre were 

used to train the model. In addition, we found an increase in variance when the training 

dataset contained only five subjects per centre. Similar to when there was a small site effect, 

the mean correlation between GMD and age for the unharmonized data was higher than the 

correlation between GMD and age when five subjects per centre were used to harmonize the 

data, implying that, when there is a medium site effect, harmonization could harm data 

analysis when the training dataset contains a small number of subjects per centre.

 Thirdly, when there was a large site effect, the correlation between GMD and age was 

approximately the same in the conditions where more than ten subjects per centre were used 

to train the model. In addition, we found an increase in variance when the training dataset 

contained only five subjects per centre. As opposed to the settings with a small and medium 

site effect, in the setting of a large site effect, the mean correlation between GMD and age for 

the unharmonized data was lower than all mean correlations between GMD and age for the 

harmonized data. Thus, in a setting with a large site effect, data analyses benefit from the 

harmonization of data.         

 Finally, when there was a huge site effect, the correlation between GMD and age was 

approximately the same in the conditions where more than ten subjects per centre were used 



 
 

to train the model. Again, we found an increase in variance when only five subjects per centre 

were used to train the model. Descriptive statistics of the interaction effect of training dataset 

size and site effect on MRI site harmonization quality are presented in Table 5 

 Following these analyses a repeated measures ANOVA was performed to compare the 

effect of training dataset size and site effect on GMD. A repeated measures ANOVA revealed 

that there was an interaction between the effects of training dataset size and size of site 

differences (F (21, 27972) = 10.56, p < .001, η2
g = .003).    

Table 5 

Descriptive statistics of the correlation between GMD and age for all training dataset sizes in 

a setting with a small, medium, large and huge site effect respectively. 

 Small Medium Large Huge 

 M SD M SD M SD M SD 

Pre -.365 .023 -.341 .022 -.312 .021 -.280 .020 

100 -.351 .021 -.351 .031 -.351 .031 -.351 .031 

80 -.350 .036 -.351 .031 -.351 .031 -.351 .031 

67 -.351 .031 -.352 .031 -.352 .031 -.352 .031 

50 -.349 .027 -.350 .027 -.351 .027 -.351 .027 

33 -.349 .024 -.351 .024 -.351 .024 -.352 .023 

20 -.346 .024 -.349 .024 -.350 .025 -.351 .025 

10 -.340 .029 -.344 .030 -.347 .030 -.349 .031 

5 -.329 .040 -.335 .040 -.340 .042 -.343 .042 

Note. “Pre” represents descriptive statistics for the unharmonized data. 

 

 

 

 



 
 

Figure 6 

The correlation between GMD and age over all repetitions for all training dataset sizes in a 

setting with are small, medium and large site effect respectively. The x-axis represents the 

number of subjects per centre in the training dataset. The y-axis represents the correlation 

between GMD and age. 

 



 
 

Discussion 

The aim of this thesis was to study the effect of training dataset size on MRI site 

harmonization. I hypothesized that the larger the size of the training dataset, the better the 

performance of MRI site harmonization. In addition, I studied whether the effect of training 

dataset size was dependent on age differences between sites, and the size of site effects. I 

hypothesized that the effect of training dataset size was larger when between-site differences 

in age were large. Also, I hypothesized that the effect of training dataset size was larger when 

site-related variance was large.        

 In summary, we found that harmonization had a positive effect on the correlation 

between GMD and age. However, we found no clear pattern in the relation between the 

quality of site harmonization and training dataset size in our empirical study. Therefore, our 

study confirms that MRI site harmonization, particularly ComBat site harmonization, has a 

positive effect on multi-site data, which is in line with previous research on this topic (Chen et 

al., 2011; Nan et al., 2022). Findings from our empirical study do not provide evidence that a 

larger number of subjects per centre in the training dataset translates to a higher quality of 

MRI site harmonization.  

In our simulation study, we found no effect of training dataset size on the quality of 

site harmonization when the centre effect size was representative of neuroimaging research 

(i.e., η2 = .26) and the mean age of subjects did not differ between centres. Apparently, the 

number of subjects per centre in the training dataset does not affect the quality of MRI site 

harmonization in that situation, which contradicts our hypothesis. We did, however, find an 

increase in variance of the quality of site harmonization when the number of subjects per 

centre in the training dataset was 20 or lower. This suggests that the quality of MRI site 

harmonization becomes precarious when there is not enough data to train the ComBat model, 

and this should therefore be taken into consideration when working with small datasets. In 

addition, we found that, for every repetition, and for every training dataset size, the quality of 

site harmonization increased after harmonization. This suggests that multi-site MRI data 

always benefits from harmonization, regardless of the size of the training dataset, given that 

the centre effect size is representative of neuroimaging research and the mean age of subjects 

does not differ between centres.         

 The conclusion as to whether the effect of training dataset size was dependent on age 

differences between sites is that the effect of training dataset size was larger when age 

differences were large, which is as hypothesized. Also, when the number of subjects per 



 
 

centre in the training dataset was 20 or lower, we found a decrease in the quality of MRI site 

harmonization. These findings suggest that a training dataset of at least 20 subjects per centre 

is required to train the harmonization model when there are small differences between centres 

on covariates of which its effects overlap with the centre effect, and more subjects are 

required when these differences between centres are larger. An overlap between site variance 

and site differences on covariates increases model complexity, since it is more difficult for the 

harmonization model to separate the two sources of variance, and thus more data is required 

to train the model. The conclusion as to whether the effect of training dataset size was 

dependent on the size of site effects is that the effect of training dataset size was larger when 

site effects were small, which contradicts our hypothesis. However, we also found that when 

there are only small site effects, harmonization might not always be beneficial for data 

analysis, since harmonization in these cases impaired recovery of the anticipated effect.  

 This study makes several noteworthy contributions to the field of MRI site 

harmonization. Firstly, this study showed MRI site harmonization can be applied to small 

datasets. This is highly significant, as large multi-centre collaboratives such as the ENIGMA 

consortium and the ADNI mostly contain data from research centres with more than 20 

subjects, which makes harmonization feasible according to our results. However, researchers 

have to take into account that smaller datasets come with more variable harmonization 

quality. This implies that in these situations, for some studies harmonization might be more 

successful than for other studies. Secondly, our findings showed that large differences on 

covariates, of which its effect overlaps with the centre effect, negatively affect the quality of 

MRI site harmonization for small datasets. Large differences do not only affect the quality of 

site harmonization, but also the variance of the quality of site harmonization. Thirdly, our 

results showed that large site effects have a negative influence on the quality of MRI site 

harmonization for smaller datasets. Again, larger site effects do not only influence the quality 

of site harmonization, but also its variance. Finally, our findings showed that when site effects 

are (too) small, MRI site harmonization, particularly harmonization using ComBat, has a 

negative effect on multi-centre datasets. Therefore, knowledge of the size of the batch effects 

in the data is crucial when deciding on whether to apply MRI site harmonization to the data.

 The findings of this study have to be seen in light of some limitations. First, our 

empirical dataset apparently lacked the sufficient amount of power to detect small effects, 

which therefore makes the results from our empirical study less reliable. The results of the 

empirical study could also suggest that this particular harmonization model was simple 

enough to be accurately fitted using smaller parts of the data. Underfitting could also explain 



 
 

why harmonization was unsuccessful in the small site effect condition. Second, the site effects 

that were present in the empirical dataset, and were thus present in the simulated datasets, 

have distorted the relation between GMD and age. Therefore, this study did not have a ground 

truth to compare our results to. Although the ground truth was missing, results from the 

empirical study give a general idea on the relation between GMD and age. Third, our data 

generation procedure was extremely laborious. Although a cross validation approach was 

necessary in our empirical study, our simulation study did not require this diligent approach. 

Instead of using a cross validation approach, both the training and test dataset could have been 

simulated from the same distribution, which would have saved us a considerable amount of 

time and effort. Since the datasets are independent in both approaches, results would likely 

not have been different. Finally, even though simulation studies come with significant 

benefits, such as the flexibility of altering variables to examine their effects and the reduction 

in costs and time efficiency, it is still difficult to simulate realistic data. Empirical data is 

subject to variance from multiple sources, which therefore makes the data extremely complex 

to simulate.           

 A challenging task for further research is to increase harmonization model complexity. 

This could be done by adding additional covariates to the model, which would reduce the 

model bias. Also, the variance of the covariates could be increased to increase model 

variance, and thus model complexity. However, altering model complexity would increase the 

risk of either underfitting or overfitting the harmonization model, which would therefore 

require larger datasets. Moreover, another promising line of research would be to carry out the 

same analyses on other MRI scanning techniques, such as Diffusion Tensor Imaging (DTI) 

and functional MRI (fMRI). Results from this study suggest that more subjects are required to 

successfully harmonize DTI images, as these images are generally subject to larger between 

scanner variation. Additionally, since fMRI images are generally subject to smaller between 

scanner variation, our results suggest that harmonization might not always be beneficial for 

multicentre fMRI studies.         

 In conclusion, this study showed that the size of the training dataset does not affect the 

quality of MRI site harmonization. However, an effect of training dataset size is present when 

the effect is dependent on age differences between sites, and on the size of site effects, when 

datasets are small. These results may aid future neuroimaging studies using scans from 

multiple scanning sites. 
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