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Abstract 

Multidimensional Scaling (MDS) is an iterative optimization technique used to find 

underlying structures of proximity data by constructing a lower-dimensional coordinate 

matrix. The resulting plot can provide valuable insights into the structures of the data. 

However, MDS is susceptible to falling into local minima, especially in datasets with 

measurement error or for unidimensional solutions. To address this issue, the use of Iterated 

Local Search (ILS) has been proposed. ILS involves using a localsearch algorithm to find an 

initial solution, then adds perturbations to this solution. The perturbed solution is used as the 

next initial solution in the localsearch to explore better local minima in the vicinity. In this 

thesis, effectiveness of ILS with MDS as the localsearch algorithm is investigated. Also, two 

new perturbation methods based on switching objects with one of its k-Nearest Neighbours 

(k-NN) were compared with random perturbation. A simulation study was conducted to tune 

the perturbation parameters: perturbation strength and perturbation size, on unidimensional 

and two-dimensional data of different dataset sizes. Multiple random starts was used as 

baseline to determine usefulness. The tuned ILS procedures were then compared with MDS 

using classical scaling and multiple random starts on four well-known real-life datasets. The 

results indicated that ILS is an effective metaheuristic for MDS, and that for unidimensional 

solutions, stronger and more perturbation is needed, whereas two-dimensional solutions 

benefit from weaker and less perturbation. All three ILS procedures were capable of finding 

similar or even better solutions than known MDS methods: classical scaling and multiple 

random starts. Therefore, we recommend using ILS instead of classical scaling and multiple 

random starts, or in combination with classical scaling. Further research can explore the use 

of k-NN perturbation in other metaheuristics such as genetic algorithms and tuning ILS 

parameters such as the acceptance criterion. 

Key words: Multidimensional Scaling, Stress, Local minima, Iterated Local Search, Random 

Perturbation, k-NN perturbation. 
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1. Introduction 

Multidimensional Scaling (MDS) is a method widely used for exploring structures in 

proximity data. Proximity data can be similarities or dissimilarities between pairs of objects: 

an example of dissimilarity data are the distances between cities, an example of similarity 

data is a correlation matrix between intelligence tests. (Mair, Borg & Rusch, 2016). MDS 

transforms the proximities in such a way, that the Euclidean distances in p dimensional space 

between pairs of objects represent their proximities as accurately as possible. “The Euclidean 

distances can then be transformed into a coordinate matrix in p dimensions which gives 

researchers an accessible visualization of the underlying structures between the variables: 

objects closer to each other indicate higher correlation between the variables they represent” 

(Borg, Groenen & Mair, 2013).        

 Kruskal (1964) developed a loss function (1) to assess the badness of fit between the 

Euclidean distances of the coordinate matrix and the observed proximities called raw Stress 

(σr):  

  ,  

where X is an n x p coordinate matrix, with n being the number of objects. dij(X) is the 

Euclidean distance between object i and object j. δij is the dissimilarities between object i and 

j, and ωij is the weight given to ij pair of objects. Raw Stress is not very informative: a large 

value does not necessarily indicate bad fit as raw Stress increases with scaling of the 

proximities. For example: proximities expressed in kilometres compared to meters yield the 

same solution, but in meters the raw Stress increases 1000 times. A remedy for this 

dependency on scale, is Stress-1 (σ1) (2), in which raw Stress is expressed in relation to the 

size of X (Kruskal, 1964).  

.  

When the visualization perfectly reproduces the observed data, δij - dij(X) is zero for 

every pair of objects, thus the resulting Stress-1 is equal to zero. However, MDS solutions are 

mostly non-zero because of insufficient dimensionality: for any given dataset it may be 

impossible to represent the proximity data in lower dimensions. But a higher number of 

dimensions makes visualizing MDS solutions increasingly difficult: a solution in four 

(1) 

(2) 
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dimensions is already virtually impossible for humans to interpret. Therefore, the aim should 

be to find the best solution in three or lower dimensions. However, with lower dimensionality 

the likelihood increases of the optimization of Stress-1 to get stuck in local minima: 

suboptimal solutions with higher levels of Stress-1 than the global minimum, where small 

changes to the solutions lead to higher Stress-1 (Groenen and Heiser, 1996).  

 The minimization of Stress-1 is done by starting with an initial configuration (IC) and 

repeatedly moving the objects in Euclidean space until the improvement of Stress-1 stops. 

However, depending on the IC used, MDS will find different solutions with different or same 

levels of Stress-1. A good starting point for an IC is classical scaling (Torgerson, 1952). It 

takes the observed data into account: it converts the observed data by means of Torgerson 

Scaling (Torgerson, 1952) into an initial configuration. However, it has its weaknesses: when 

measurement error and outliers are present in the observed data, it no longer guarantees 

finding the correct underlying structure (Borg and Mair, 2017). Also, it is inflexible: classical 

scaling uses the same transformation over the observed data to achieve a singular solution. 

With these weaknesses, a MDS solution using only classical scaling should not be relied on 

(Mair, Borg and Rusch, 2016).         

 It is recommended to also check the fit of the solution using multiple random starts 

(MR) (Mair, Borg and Rusch, 2016). As the name implies, MR starts MDS multiple times 

with completely random initial configurations. By using multiple random initial 

configurations, many different solutions can be found. After which the solutions with the 

lowest Stress-1 can then be inspected and compared with the solution found by classical 

scaling. However, MR also has its weaknesses: it is shooting blindly without taking the 

observed data in account and is more susceptible to falling into local minima. Also, it is slow: 

even with the current computing power, many multiple random starts of MDS on big datasets 

can reach high runtimes.         

 A possible remedy for the weaknesses of the two previously mentioned IC’s is the 

Iterated Local Search (ILS) metaheuristic. The general framework of ILS is as follows: run a 

problem-specific approximation algorithm, from now on called localsearch (in this thesis: 

MDS). The solution of this localsearch can be evaluated by a cost function and should be 

minimized (in this thesis: Stress-1). Instead of randomly trying the localsearch with random 

restarts, ILS starts the localsearch and applies perturbation to the resulting solution. The 

perturbed solution is then used as the starting point of the next iteration of the localsearch. 

“Adding perturbation helps retain a part of the structure and at the same time, makes it 

possible to escape from a local minimum towards an even better solution.” (Lourenco, Martin 



   

 

5 

 

and Stützle, 2001). This process continues until an acceptance criterion is met, for example if 

the solutions no longer return a better Stress-1 after a certain number of iterations, or the 

maximum number of iterations is passed.      

 Compared to multiple random starts and classical scaling, ILS is flexible, for example: 

different perturbation methods, perturbation strength and perturbation size can be used and 

tuned depending on the chosen localsearch, and the dimensionality and size of the desired 

solution. ILS has already been applied successfully for combinatorial optimization problems 

such as the Traveling Salesman Problem, Vehicle Routing Problem and Aircraft Landing 

Problem (Kramer, 2009; Lourenco, Martin and Stützle, 2001; Cuervo, Goos, Sörensen, 

Arráiz, 2014). However, so far MDS has not been used as the localsearch in an ILS. This 

thesis will implement ILS with MDS as the localsearch and tune the three earlier mentioned 

parameters: Perturbation method, perturbation strength and perturbation size, with the aim to 

find a better local minimum compared to classical scaling and finding a better local or global 

minimum faster than multiple random starts.      

 ILS performs best when the perturbation method takes into account properties of the 

problem and are well matched to the localsearch. An example: for the Traveling Salesman 

Problem the double-bridge move performs well in multiple studies (Martin, Otto & Felten, 

1992; Lin, Sun & Salous, 2016). This thesis looks into the performances of different 

perturbation methods for MDS with the aim to be able to make suggestions for as a good 

starting point for further research. The first perturbation method is random perturbation (RP) 

and is based on mutation in genetic algorithms as stated in Haupt & Haupt (2004): add a 

random value from a normal distribution to the coordinates for a number of objects. Random 

perturbation will be compared to two newly developed perturbation methods based on k 

nearest neighbours (k-NN) perturbation. In k-NN perturbation, the initial solution is perturbed 

by switching a number of objects with one of its k nearest neighbours. This keeps the 

structure of the initial solution intact as the perturbed solution keeps the same coordinates, 

with only the objects allocated differently. The small changes in the position of objects can 

help the next iteration of MDS to escape the current local minimum and continue finding 

even better local minima in the vicinity of the solution space. Also, if the localsearch gets 

stuck in a local minimum because two objects were switched, k-NN can help to jump out of 

this local minimum by switching these objects into opposite directions. The first k-NN 

perturbation method will use the observed data to find the k-NN for each object, while the 

second method will use the distances of the current best solution to find the k-NN. In the next 

section, all algorithms and parameters will be elaborated on further.    
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 This thesis studies if ILS with MDS as localsearch can find solutions with lower 

Stress-1 values, faster, compared to the earlier mentioned methods (MR and CS). Also, the 

applicability of k-NN perturbation will be compared to random perturbation. This thesis will 

consist of two parts: a simulation study and a section with applications using real life 

examples. The simulation study will be used to tune perturbation strength and size for every 

perturbation method on different sized unidimensional and two-dimensional datasets. 

Secondly, ILS with the tuned perturbation methods will be compared to multiple random 

starts to determine the usefulness of ILS. In the second part, well-known real-life datasets 

will be used to compare ILS, using the tuned perturbation methods, with MDS using classical 

scaling and multiple random starts. Lastly, the results will be summarized, recommendations 

for further research and limitations of the current study will be stated in the discussion 

section. 

2. Algorithms 

Multidimensional scaling by majorization 

Multidimensional scaling (MDS) input data is typically an n x n matrix ∆ of proximities. ∆ is 

symmetric, non-negative, has a zero diagonal and is filled with dissimilarities (δij). This thesis 

focusses on ratio MDS of which the aim is to minimize Stress-1 (2) by finding an n x p 

matrix X of coordinates of which the Euclidean distances between object i and objects j 

corresponds as much as possible with the proximities δij. A well-known optimization 

algorithm for MDS is Scaling by MAjorizing a COmplicated Function (SMACOF) (de 

Leeuw, 1977). This thesis will use SMACOF as localsearch because of its simplicity and the 

guarantee of monotonically converging of Stress. The next paragraph will give a short 

overview of SMACOF, more detailed information on SMACOF can be found in de Leeuw & 

Mair (2009).          

 SMACOF iteratively adjusts the positions of the objects in lower-dimensional space 

with the goal to minimize the pairwise dissimilarities in the original space and the pairwise 

distances in the lower-dimensional space. The adjustment of the positions of the objects is 

done by optimizing a complicated function using majorization. Majorization is done by first 

finding a simpler function that majorizes the complicated function, and then iteratively 

minimizes the simpler function. The resulting majorization can then be solved using the 

Guttmann transformation (Gutmann, 1968) and outputs an updated solution. Raw Stress for 

the new solution is then compared with the raw Stress of the current solution. SMACOF stops 
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its iterative majorization when the difference between the current raw Stress and the new raw 

Stress is lower than a user defined acceptance criterion, when raw Stress is equal to zero or 

when it has reached its maximum number of iterations.  

 2.2. Iterated Local Search 

For this thesis, ILS will be explained in context of MDS with SMACOF as 

localsearch. ILS starts with an initial solution (X*) found using SMACOF using a random 

start. In the perturbation phase, X* is perturbed, this perturbed solution will be called X’ (see 

figure 1). In the localsearch phase, SMACOF is run using X’ as the initial configuration. The 

resulting solution (X*’) is compared with X* on Stress-1 during the acceptance phase. If 

Stress-1 of X*’, is lower than the Stress-1 of X*, then X*’ will become the new best solution 

X*. In the next perturbation phase, perturbation is added to X* and the perturbed solution 

will be used as initial configuration in the next localsearch phase. This loop continues until 

the maximum number of iterations is reached or an acceptance criterion is met: the solution 

no longer improves, or a known global minimum is found. The pseudocode of the used ILS is 

found in Figure 2. The perturbation methods used in the perturbation phase will be discussed 

further in the next section. 

Figure 1 

Perturbation visualized. 

 

Note: the figure uses the more general s*, s’ and s*’ instead of X*, X’ and X*’ which is used 

in context of MDS. 

From: “A beginner’s introduction to iterated local search.” by H. R. Lourenço, O. Martin and 

T. Stützle, 2001, Proceedings of MIC, Volume 4, pp. 1-6). 
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Figure 2. Pseudo code of an ILS using SMACOF as localsearch. 

Input: dissimilarity matrix (Δ), perturbation strength parameter (PS), perturbation size 

parameter (PSi), acceptance criterion (ε), maximum number of ILS iterations (MaxIter), 

known best local minimum (global), maximum number localsearch iterations (Maxlocal)  

1. Set maxIter; Iter = 0;  

2. X* ← generate initial solution using SMACOF with random initial configuration 

using Δ as input, acceptance criterion ε and maximum number of iterations Maxlocal. 

3. While (iter < MaxIter) do 

4. | Perturbation phase 

X’ ← Add perturbation to X* using RP/k-NN perturbation with PS and PSi 

5. | Localsearch phase 

X*’ ← SMACOF using X’ as initial configuration acceptance criterion ε and

 maximum number of iterations Maxlocal.  

6. | Acceptance phase 

if: Stress-1X*’ < Stress-1X* 

X* ← X*’ 

7. | break if Stress-1X* ≤ global 

8. iter = iter + 1 

9. End while 

10. Return X* and Stress-1X*. 

2.2.1 Perturbation 

“Perturbation is defined as making changes in the sequence of objects by adding error to the 

object's coordinates.” (Wagenaar & Padmos, 1971). The added perturbance may cause 

objects to switch places in the solution space if the perturbance is strong enough and in 

‘opposite’ directions. The localsearch will continue with finding a new solution using the 

perturbed solution as starting point. Some important factors of perturbation are perturbation 

strength (PS), perturbation size (PSi) and perturbation method (PM).    

 How much the perturbed solution keeps the same structure as the initial solution 

depends on PS: how much perturbation is added to an object, and PSi: the percentage of 

objects that is perturbed. If the perturbation strength is too weak, the next resulting solution 
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will resemble the previous solution too much. This results in the next iteration of the 

localsearch to return to the previous local minimum. If the perturbation strength is too strong, 

the perturbed solution will no longer resemble the previous solution at all. This causes the 

next iteration of the localsearch to jump towards a different local minimum instead of 

exploring the neighbourhood of the current local minimum for better local minima, which is 

similar to using multiple random starts. Similarly, If the perturbations size is low, for 

example only one objects is perturbed, then the perturbed solution keeps the structure of the 

current solution, bar the single object. This could result in not enough difference for the next 

localsearch to escape the current local minimum. Conversely, if all objects are perturbed, the 

resulting perturbed solution can differ in structure completely and will, again, become similar 

to multiple random starts.         

 How perturbation strength is defined, differs between the proposed perturbation 

methods. Random perturbation intends to switch objects given opposite direction and a 

proper size for the perturbation. The perturbation is a randomly picked value from a normal 

distribution, which is added to the coordinates (xij) of a number of objects to achieve a 

perturbed coordinate (x’ij) (3) (Haupt & Haupt, 2004): 

  

where  

σX* = standard deviation of the current best solution X*. 

θ = factor used to increase or decrease perturbation strength.    

 For random perturbation, the perturbation strength is defined by the θ factor. 

Increasing θ increases the standard deviation of the normal distribution, resulting in a wider 

range from which values can be chosen.  

2.3. k-NN perturbation 

In this thesis, a new method of perturbation has been developed: k-NN perturbation. A 

number of objects will be switched with one of its k nearest neighbours. In k-NN 

perturbation, perturbation strength is defined as the size of k: with a higher k, the chosen 

objects have the chance of switching with a more distant object, resulting in a more strongly 

perturbed solution. Compared to random perturbation, k-NN perturbation has a couple of 

benefits. The first benefit is a higher chance of switching outliers: For random perturbation it 

is possible that the added of the perturbation is not enough for the outlier to jump the gap 

between it and the rest of the objects, or if the added perturbation moves objects in the same 

(3) 
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direction on the solution space. Whereas, if the outlier is selected for k-NN perturbation, it 

will always switch with one of its k nearest neighbours even if these objects are quite distant. 

The second benefit is that k-NN perturbation will always make a switch. Random 

perturbation does not guarantee a switch if the perturbation is not strong enough or, again, in 

the same direction as the nearest neighbour.       

 In this study two different methods of determining k nearest neighbours for every 

object are applied:  

1. k-NNΔ: k-NN perturbation using the observed data. Determine the k nearest 

neighbours for a number of objects by using the dissimilarities found in the observed 

data (Δ). Randomly switch the coordinates of one of the k nearest neighbours with the 

chosen object to perturb.  

2. k-NNX: k-NN perturbation using the coordinate matrix (X) of the current best solution. 

Order the Euclidean distances of X, to determine the k nearest neighbours for a 

number of objects. Randomly switch the coordinates of one of the k nearest 

neighbours with the chosen object to perturb.  

The difference lies between when and how many times the k-nearest neighbours are 

determined: in the first method, this is done every time ILS reaches the perturbation phase. In 

the second method, this is done only once at the start of the ILS algorithm. The first method 

has the benefit of using the structure of the observed data as the starting point of the 

perturbation. The second method makes changes using the structure of the current best 

solution, which might help the next iteration of the localsearch to keep exploring better local 

minima in the vicinity of the current best local minimum.  

3. Simulation study 

3.1. Methods 

The effectiveness and applicability of ILS with the three different perturbation methods will 

be studied using a Monte Carlo simulation study. The first goal is to find the best 

combination of perturbation strength and perturbation size for every perturbation method for 

different sized unidimensional and two-dimensional datasets. Then, a comparison will be 

made between ILS with the three tuned perturbation methods, MR will be used as baseline to 

determine usefulness.           

 In Table 1, an overview of the used factors and factor levels are presented. 

Perturbation strength for ILS with both k-NN perturbation methods equates to the number of 
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k nearest neighbours an object can switch with. In the simulation study k was varied between 

5%, 10%, 25%, 50% of the total number of objects, with a minimum of k = 1. For ILS with 

random perturbation, perturbation strength will be determined by the factor θ, which will be 

varied between .05, .25, 1 and 2. Perturbation size is defined by the percentage of objects that 

will be perturbed. In this simulation study, 10%, 25%, 50% and 100% of the objects will be 

perturbed. The last two factors are dataset size (n) and the dimensionality of the dataset (p).

 All simulations were done in R (R Core Team, 2020). The MDS function from the 

smacof package (v2.1-5: P. Mair, J. De Leeuw, P. J. F. Groenen & Ingwer Borg, 2022) will 

be used as the localsearch in ILS and to perform multiple random starts. MDS will be used 

with the ratio MDS-type, a maximum number of iterations of 500 and an acceptance criterion 

of ε equalling 1*10-12. All three ILS procedures will be run one hundred times for every 

combination of PS, PSi, n and p, with a maximum number of iterations of 500. For the 

baseline, multiple random starts, the MDS function will be run five hundred times using a 

random initial configuration for all dataset sizes and dataset dimensionalities. Again, the 

MDS function will have a maximum number of iterations of 500.     

        

Table 1  

Overview of simulation study factors.  

Factor Levels 

Procedures k-NNX, k-NNΔ, RP, MR 

PS k = 5%, 10%, 25%, 50% 

θ = .05, .25, 1, 2 

PSi 10%, 25%, 50%, 100% 

n 20, 50, 100 

p 1, 2 

 

3.1.2 Data generation 

Six different datasets will used: three two-dimensional and three one-dimensional datasets. A 

coordinate matrix (X) is generated with random coordinates picked from a normal 

distribution, N(0,1). The Euclidean distance matrix of X will be used as the observed 

dissimilarity data (Δ). The generated data has zero error and three different sizes (n = 20, n = 
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50, n = 100). Findings of Smit (2018) found no increasing problems with local minima at a 

higher number of objects, therefor 100 is chosen as the maximum number of objects.   

3.1.3 Outcome variables 

An overview of all outcome variables is available in Table 2. The first and main outcome 

variable is the ability to find the global minimum (Global). With zero error and an acceptance 

criterion of ε = 1 • 10-12, a solution with Stress-1 < 1 • 10-6 will be classified as the global 

minimum. The percentage of times a method can find the global minimum (%Global) will be 

used to determine the consistency of each method. Minimum, mean and maximum Stress-1 

(Stress) values of the best local minima per method are used as the second outcome variable 

to determine the consistency in finding better solutions. The third outcome variable is the 

expired runtime at the moment of finding the best local minimum or global minimum. Lastly, 

#MDS is the number of times the ILS performed the localsearch phase before finding its best 

solution. #MDS will be used to evaluate the efficiency of ILS compared to multiple random 

starts. 

Table 2  

Overview of outcome variables. 

Variable  Definition 

Global Whether the global minimum was found (Stress-1 < 1 • 10-6) (yes/no). 

%Global Percentage of times the global minimum was found. 

Stress Stress-1 of the best local minimum/global minimum. 

Runtime Mean elapsed time between the start of the procedure and the moment 

of finding the lowest Stress-1 value of all runs. 

#MDS Average number of times the MDS function was called at the moment 

of finding the best solution. 

 

3.1.4 Data analysis. 

ILS using the three perturbation methods are evaluated on their ability to find the global 

minimum per combination of the factors PS and PSi. If multiple combinations are able to find 

the global minimum per dataset size and dimensionality, then the percentage of times the 

global minimum was found will be used to evaluate the consistency. If procedures are not 

able to find the global minimum, then the best combination of factors is determined with 
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Stress as outcome variable. If no significant differences in Stress are observed, then Runtime 

as the outcome. Lastly, #MDS will be used to determine how efficient a single ILS is 

compared to multiple random starts when looking at how many times the MDS function was 

called.            

 The ILS methods stop when the global minimum is found, therefor it is expected that 

Stress is not normally distributed: Stress will mostly be zero if a method is able to find the 

global minimum in most ILS runs. Therefore, non-parametric tests will be used for data 

analysis: Friedman tests will be used to study if PS and PSi have a significant influence 

within the same method on Stress and Runtime. If significant differences are found, a 

Wilcoxon signed-rank test will be done to find between which levels this difference is found.

 After finding every best combination of factors levels, comparisons between ILS with 

each perturbation method and multiple random starts will be done using Kruskal-Wallis tests. 

A Wilcoxon rank sum test will be used as post hoc test to compare each procedure on Stress 

and Runtime. All comparisons will be evaluated on significance using p < .05.   

 

3.2. Results 1D 

3.2.1 Tuning the parameters for each perturbation method. 

The found Stress per combination of perturbation strength, perturbation size and dataset size 

are found in figures 3, 4 and 5. In Table 3 the best combination of factors for each 

perturbation method are available. The other outcome variables are visualised and found in 

Appendix A and B.          

 ILS using k-NNΔ perturbation was able to find the global minimum with every 

combination of PS and PSi, for every dataset size. When looking at each panel of Figure 3, a 

clear decrease in local minima is visible when perturbation strength increases. At the highest 

level of PS, the global minimum is even found every time whilst using less #MDS, 

independent of PSi. Differences in Runtime between PS levels were significant in the medium 

(H(3) = 80,49; p < .05) and the largest dataset (H(3) = 236,22; p < .001). With higher 

perturbation strength resulting in lower runtime. No significant difference in Stress between 

PSi levels were found.          

 ILS using k-NNX perturbation was also able to find the global minimum at every level 

of PS and PSi. Again, the percentage of the runs that found the global minimum increases 

with higher levels of perturbation strength. This is even more clear in the medium and large 
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datasets, where wide distributions of Stress values were found at k equalling 5% and 10%. At 

k equalling 50%, the global minimum was found every time whilst using the lowest #MDS, 

independent of the perturbation size. Significant differences for Runtime were found between 

the levels of PS for all three datasets: smallest dataset (H(3) = 14,48; p < .05), medium 

dataset (H(3) = 481,07; p < .001) and the largest dataset (H(3) = 151,00; p < .001), with 

higher levels of PS being lower in runtime. Only in the smallest dataset, a significant 

difference between PSi levels was found (H(3) = 4,96; p < .05), with higher perturbation size 

resulting in lower runtime.        

 Lastly, ILS using random perturbation was also able to find the global minimum at 

every level of PS and PSi. But again, higher levels of perturbation strength resulted in finding 

the global minimum more often: at the highest level of PS, the global minimum is found 

every time. Significant differences in Runtime were found between levels of PS in every 

dataset size, with higher perturbation strength resulting in lower Runtime. Again, no 

significant differences in Stress between levels of PSi were found. Runtime did significantly 

differ between PSi levels, with higher PSi resulting in lower Runtime in the medium (H(3) = 

16,48; p < .001) and large dataset (H(3) = 61,94; p < .001). Again, the combination of high 

PSi and PSi resulted in the lowest #MDS needed to find the global minimum.  

 In conclusion, each perturbation method benefits from high perturbation strength, 

which increases the consistency of finding the global minimum. If the perturbation strength is 

high, perturbation size shows no influence on the consistency of finding the global minimum. 

Perturbation size does have an effect when looking at Runtime: higher levels of PSi results in 

lower runtimes needed to find the global minimum. Therefor it is recommended to use a 

perturbation size of 50% of all objects and a high level of perturbation strength k equalling 

50% of the total number of objects for both k-NN perturbation methods and θ = 2 for random 

perturbation.         

 Unidimensional solutions have a bumpier solutions space, which need a stronger 

perturbation on more objects for the next localsearch to escape the current local minima. For 

example, when the current solution misplaces two objects on completely opposite sides on 

the solution space, a weak perturbation will not cause these objects to move in opposite 

direction enough for the next localsearch to escape the current local minimum. 
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Figure 3. 

Stress-1 values of unidimensional solutions found by ILS with k-NNΔ perturbation at different levels of PS. In 

the columns from left to right: different levels of PSi. In the rows from top to bottom: dataset sizes 20, 50 and 

100.  
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Figure 4. 

Stress-1 values of unidimensional solutions found by ILS with k-NNX perturbation at different levels of PS. In 

the columns from left to right: different levels of PSi. In the rows from top to bottom: dataset sizes 20, 50 and 

100. 
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Figure 5. 

Stress-1 values of unidimensional solutions found by ILS with random perturbation at different levels of PS. In 

the columns from left to right: different levels of PSi. In the rows from top to bottom: dataset sizes 20, 50 and 

100.
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3.2.2 Comparing ILS with each perturbation method and multiple random starts. 

The following PS and PSi levels per perturbation method were used as comparison with 

multiple random starts on the unidimensional dataset (see Table 3).  

 

Table 3 

Overview of the best parameter per dataset size and perturbation method for unidimensional 

datasets. 

Perturbation method n PS PSi n PS PSi n PS PSi 

k-NNΔ 20 k = 50% 50% 50 k = 50% 50% 100 k = 50% 50% 

k-NNX 20 k = 50% 50% 50 k = 50% 50% 100 k = 50% 50% 

RP 20 θ = 2 50% 50  θ = 2 50% 100 θ = 2 50% 

 

All results can be found in Table 4. ILS with every perturbation method and multiple random 

starts were able to find the global minimum. However, MR was much less consistent: finding 

the global minimum in a lower percentage of its run. The ILS procedures were able to find 

the global minimum every time, therefor Runtime will be used as outcome variable to 

compare which ILS procedure found the global minimum the fastest. A significant difference 

was found between the procedures in the small (H(2) = 40,59; p < .001), the medium (H(2) = 

13.08; p < .01) and the large dataset (H(2) = 21,67; p < .001). ILS with k-NNΔ and k-NNX 

perturbation only showed significant differences in Runtime in the small dataset (U = 

2870,00; p < .001), with k-NNX perturbation having lower Runtime. RP is faster in the 

medium dataset than k-NNX (U = 3818,00; p < .01) and k-NNΔ (U = 3890,00; p < .01). In the 

other datasets, both k-NN ILS procedures were faster in finding the global minimum. 

 In conclusion: ILS with the three different perturbation methods is better in finding 

the global minimum compared to multiple random starts. No clear difference between each 

perturbation method were found on runtime: random perturbation was faster in the medium 

dataset, but both k-NN perturbation methods were faster in the small and large dataset. Also, 

no clear difference between the two k-NN perturbation methods was found. Using the current 

best solution to find the k-nearest neighbours, was faster in the small dataset, but in the 

medium and large dataset, both k-NN perturbation methods performed similarly on runtime. 

The number of times the ILS needs to call the MDS function during the localsearch phase 

also indicates that ILS is more efficient: needing on average thirteen or less localsearch 
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phases compared to multiple random which runs MDS 500 times. All three ILS procedures 

found the global minimum and were more consistent than MR, indicating that ILS is effective 

for unidimensional datasets, without error.  

 

Table 4 

Summary of the results of ILS with k-NNΔ perturbation, ILS with k-NNX perturbation and ILS 

with RP using tuned parameters, with MR as baseline for unidimensional solutions. 

Procedure n Min 

Stress 

Max 

Stress 

Mean 

Stress 

Runtime SD 

runtime 

Global %Global #MDS 

MR 20 0 .6820 .3827 .0028 .010 Yes 28,4% - 

k-NNΔ 20 0 0 0 .0098 .007 Yes 100% 7 

k-NNX 20 0 0 0 .0072 .006 Yes 100% 7 

RP 20 0 0 0 .0069 .011 Yes 100% 8 

MR 50 0 .6260 .4068 .0084 .002 Yes 10,2% - 

k-NNΔ 50 0 0 0 .0273 .011 Yes 100% 6 

k-NNX 50 0 0 0 .0284 .025 Yes 100% 7 

RP 50 0 0 0 .0666 .076 Yes 100% 13 

MR 100 0 .6038 .4396 .0263 .016 Yes 1,2% - 

k-NNΔ 100 0 0 0 .0889 .028 Yes 100% 5 

k-NNX 100 0 0 0 .0122 .055 Yes 100% 7 

RP 100 0 0 0 .1877 .188 Yes 100% 13 

Note: MR was run 500 times, ILS was run 100 times per perturbation method. 

 

3.3. Results 2D 

3.3.1. Tuning the parameters for each perturbation method. 

All Stress values found by ILS with k-NN∆, k-NNX and random perturbation are found in 

figures 6, 7 and 8. The best combination of perturbation strength and perturbation size can be 

found in Table 5. Runtime and #MDS are visualised in appendices A and B.  

 A clear pattern is visible for ILS with each perturbation method when looking at 

figures 6, 7 and 8 from left to right: Stress increases with higher perturbation size, 

independent of perturbation strength. ILS with k-NNΔ perturbation is able to find the global 
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minimum for every run in every dataset size while using a combination of low perturbation 

strength and perturbation size. The effects of PS on Stress were significant for every dataset: 

small (H(3) = 17,60; p < .05), medium (H(3) = 146,01; p < .001), and large (H(3) = 112.27; 

p < .001), increasing Stress at higher perturbation strength. Similarly, Runtime and #MDS 

increases with higher PS and PSi.        

 Similar findings were present for ILS with k-NNX perturbation: the lowest level of PSi 

is the most consistent in finding the global minimum (left column in Figure 7). At the lowest 

perturbation size, k-NNX performs best using the lowest perturbation strength in the medium 

and large dataset. In contrary, in the small dataset a PS equalling 10% performed significantly 

better than PS equalling 5% on both Stress (U = 53.00, p < .001) Runtime (U = 49445,00; p 

< .001).          

 Again, random perturbation also found lower Stress values, faster at the lowest level 

of PS and PSi in every dataset. ILS RP is even only able to find the global minimum in the 

medium dataset with the lowest levels of PS and PSi. A higher #MDS is needed in every 

dataset than ILS using both k-NN perturbation methods.     

 Concluding, for the two-dimensional datasets, ILS procedures were able to find the 

global minimum in every dataset size. Contrary to the results for unidimensional solutions, 

lower perturbation strength and size resulted finding the global minimum more consistently 

for two-dimensional solutions. Also, lower levels of PS and PSi resulted in lower mean 

Stress-1 and runtime needed to find the best local minimum/global minimum. Therefore, it is 

recommended to use k-NN perturbation with k equalling 5% of the total number of objects 

and random perturbation with a θ of .05. Apply this perturbation strength on 10% of all 

objects.            

 The weaker perturbation needed can be explained by the increase in flexibility of the 

objects to move around in a two-dimensional space, compared to a unidimensional space. 

This results in localsearch having an easier time to explore the space around of the current 

local minimum, without dropping back into the current local minimum. If the PS and PSi 

increases, each next localsearch has to start over in a completely new neighbourhood in the 

solution space instead of finding better local minima near the current local minimum. 
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Figure 6. 

Stress-1 values of two-dimensional solutions found by ILS with k-NNΔ perturbation at different levels of PS. In 

the columns rom left to right: different levels of PSi. In the rows from top to bottom: dataset sizes 20, 50 and 

100. The dashed line indicates the global minimum of Stress-1 equalling 1*10-6.
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Figure 7. 

Stress-1 values of two-dimensional solutions found by ILS with k-NNX perturbation at different levels of PS. In 

the columns from left to right: different levels of PSi. In the rows from top to bottom: dataset sizes 20, 50 and 

100. The dashed line indicates the global minimum of Stress-1 equalling 1*10-6. 

  



   

 

23 

 

Figure 8 

Stress-1 values of two-dimensional solutions found by ILS with random perturbation at different levels of PS. In 

the columns from left to right: different levels of PSi. In the rows from top to bottom: dataset sizes 20, 50 and 

100. The dashed line indicates the global minimum of Stress-1 equalling 1*10-6.
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3.2.4. Comparing ILS with each perturbation method and multiple random starts 

The following PS and PSi levels per procedure were used as comparison with MR on the 

two-dimensional dataset (see Table 5). 

Table 5 

Overview of the best parameter per dataset size and procedure for p = 2. 

Procedure n PS PSi n PS PSi n PS PSi 

k-NNΔ 20 k = 5% 10% 50 k = 5% 10% 100 k = 5% 10% 

k-NNX 20 k = 10% 10% 50 k = 5% 10% 100 k = 5% 10% 

RP 20 θ = .05 10% 50  θ = .05 10% 100 θ = .05 10% 

 

The results of the comparison between ILS with the different perturbation methods and MR 

are available in Table 6.          

 Even though ILS was able to find the global minimum with each perturbation method, 

random perturbation was less consistent in finding the global minimum compared to the two 

k-NN perturbation methods in every dataset size. No clear difference was found on runtime 

between each perturbation method: both k-NN perturbation methods were faster than random 

perturbation in the small (H(2) = 153,59; p < .001) and large dataset (H(2) = 67,25; p < 

.001), whereas random perturbation was faster in the medium dataset compared to both k-NN 

perturbation methods (H (2) = 9,49; p < .01). ILS using random perturbation had to call the 

MDS function the most times before finding its best solution compared to k-NNΔ and k-NNX 

perturbation. Indicating that the random nature of RP hinders it from perturbing the chosen 

objects enough for the next localsearch phase to escape the current local minimum. Both k-

NN perturbation methods needed to call the MDS function a similar number of times before 

finding the global minimum. Multiple random starts was less consistent in finding the global 

minimum compared to ILS with the three different perturbation methods. Also, multiple 

random got stuck in worse local minima resulting in a higher maximum Stress compared to 

ILS with each perturbation method. This leads MR to find higher mean Stress than the three 

ILS procedures.         

 These results indicate that ILS using random and k-NN perturbation are valid methods 

for finding MDS solutions in normally distributed, simulated two-dimensional datasets 

without error.  
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Table 6. 

Summary of the results of ILS with k-NNΔ perturbation, k-NNX perturbation and random 

perturbation using tuned parameters, with MR as baseline for two-dimensional datasets. 

Procedure n Mean Stress Min 

Stress 

Max 

Stress 

Runtime SD 

runtime 

Global %Global #MDS 

MR 20 .017209 8.5*10-7 .1905 .0028 .010 Yes 12,8% - 

k-NNΔ 20 .000001 8.7*10-7 9.9*10-7 .4787 .356 Yes 100% 54 

k-NNX 20 .000001 7.7*10-7 9.9*10-7 .7556 1.72 Yes 100% 85 

RP 20 .000001 7.5*10-7 1.2*10-6 4.893 2.69 Yes 44% 265 

MR 50 .004940 9.2*10-7 .2534 .0084 .019 Yes 2,4% - 

k-NNΔ 50 .000001 6.5*10-7 1.2*10-6 3.902 2.29 Yes 55% 238 

k-NNX 50 .000001 6.2*10-7 1.3*10-6 4.014 2.41 Yes 48% 246 

RP 50 .000001 8.7*10-7 1.3*10-6 3.024 1.74 Yes 6% 240 

MR 100 .001502 9.1*10-7 .2778 .0263 .040 No 1,6% - 

k-NNΔ 100 .000001 9.4*10-7 9.9*10-7 2.174 1.82 Yes 100% 52 

k-NNX 100 .000001 8.3*10-7 9.9*10-7 2.192 2.23 Yes 100% 57 

RP 100 .000001 8.7*10-7 1.1*10-6 6.563 4.46 Yes 82% 216 

Note: MR was run 500 times, ILS was run 100 times per perturbation method. 

 

 

4. Real life applications 

In the simulation study, the best combinations of perturbation parameters for k-NNΔ, k-NNX 

and random perturbation were found for both unidimensional and two-dimensional datasets. 

In the following section, the effectiveness and consistency of ILS with the three tuned 

perturbation methods, will be compared with two commonly used MDS methods: classical 

scaling (CS) and multiple random starts. Four real-life small (≤ 20 objects) and medium (≤ 50 

objects) sized datasets will be used as examples. The medium sized Morse code dataset 

(Rothkopf, 1957) and the Food dataset (Murphy & Ross, 1999) will be used for both 

unidimensional and two-dimensional MDS. The small Churchill dataset (Churchill, 1995) will 

be used for MDS in two dimensions. Lastly, the small Kabah dataset (Robinson, 1951) will be 

used for MDS in one dimension.       
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 Effectiveness is defined as the ability of ILS with the different perturbation methods to 

find solutions with lower Stress-1 than MDS using classical scaling. Also, the percentage of 

runs in which a solution with a lower Stress-1 values than CS (%Stress-1<CS) is found, will be 

used as a measure of consistency. Lastly, the number of unique local minima found per 

procedure is also reported as a measure of consistency. Multiple random starts will be used as 

comparison for the performances of ILS with the three perturbation methods. If the best local 

minimum is known for each dataset, this minimum will also be used for comparison with the 

ILS procedures.          

 As in the simulation study, the MDS function from the smacof package (v2.1-5: P. 

Mair, J. De Leeuw, P. J. F. Groenen & Ingwer Borg, 2022) will be used as localsearch in ILS 

and to perform multiple random starts and classical scaling. ILS will be run 100 times per 

perturbation method, using the PS and PSi values in Table 7. ILS will use MDS with a 

random start to achieve an initial solution. MDS as localsearch in the three ILS procedures 

will have a maximum number of iterations of 500. ILS will have a maximum of 500 

iterations. For multiple random starts, the MDS function will be run 500 times, also with a 

maximum number of iterations of 500. An acceptance criterion of ε equalling 1*10-12 will be 

used for all MDS functions.    

Table 7. 

Overview of tuned perturbation parameters for k-NN∆, k-NNX and random perturbation per 

dataset dimensionality and size.         

Perturbation method p n PS PSi p n PS PSi 

k-NN∆ 1 Small  k = 50% 50% 1 Medium k = 50% 50% 

k-NNX 1 Small k = 50% 50% 1 Medium k = 50% 50% 

RP 1 Small θ = 2 50% 1 Medium θ = 2 50% 

k-NN∆ 2 Small  k = 5% 10% 2 Medium k = 5% 10% 

k-NNX 2 Small k = 10% 10% 2 Medium k = 5% 10% 

RP 2 Small θ = .05 10% 2 Medium θ = .05 10% 

  

4.2 Morse dataset 

The Morse code dataset (Rothkopf, 1957) is a 36 x 36 confusion matrix resulting from an 

experiment in which subjects were asked whether pairs of Morse codes were identical. The 

Morse codes are the 26 letters of the Latin alphabet and the numbers zero to nine. Stress-1 
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values for unidimensional and two-dimensional solutions have been found in earlier research. 

Palubeckis (2013) and Brusco, Köhn and Stahl (2008) found similar Stress-1 for 

unidimensional solutions, being .4798. However, both studies required high computational 

times. Buja and Swayne (2002) found a two-dimensional solution with the lowest Stress-1 

equalling .2836.          

 A summary of the results is available in Table 8. For unidimensional solutions, ILS 

with every perturbation method was able to find lower values than classical scaling. ILS with 

k-NNX perturbation performed most consistent: finding lower Stress-1 values than CS in 93% 

of all runs. ILS with random perturbation was able to find a lower Stress-1 than CS in 84% 

and ILS with k-NNΔ perturbation in 78%. MR performed worse than each ILS: it was not able 

to find lower Stress-1 values than classical scaling, with the lowest being .52945. 

 For two-dimensional solutions, ILS with every perturbation method found the same 

lowest Stress-1 (.29992). ILS using k-NNΔ perturbation was the most consistent: finding its 

lowest Stress-1 value in each of its one hundred runs. ILS using k-NNX perturbation found this 

value in 55% of the runs. In the other runs, it got stuck in nine different local minima. ILS 

using random perturbation was the least consistent of every ILS: it found the lowest Stress-1 

in only 4% of all runs. It got stuck in even more local minima: seventy-nine different local 

minima. Still, every ILS performed better than multiple random starts. MR was the least 

consistent, finding 409 different local minima of its 500 runs and found the same Stress-1 

value as classical scaling in only 1% of its runs. 
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Table 8 

Summary of outcome variables for unidimensional and two-dimensional solutions for ILS 

with k-NNΔ, k-NNX and random perturbation using tuned parameters compared to classical 

scaling (CS) and multiple random starts (MR) for the Morse dataset. 

Procedure p Lowest Stress-1 %Stress-1<CS Number of local 

minima 

Palubeckis (2013) 1 .47980 - - 

CS 1 .50139 - - 

k-NNΔ   1 .48393 78% 100 

k-NNX 1 .48216 93% 99 

RP 1 .48476 84% 100 

MR 1 .52945 0% 499 

Buja and Swayne (2002) 2 .28360 - - 

CS 2 .29992 - - 

k-NNΔ   2 .29992 100% 1 

k-NNX 2 .29992 55% 9 

RP 2 .29992 4% 80 

MR 2 .29992 1% 409 

Note: MR was run 500 times, ILS was run 100 times per perturbation method. 

4.2.2 Food dataset 

The Food dataset originates from a study from Ross and Murphy (1999) in which 94 

undergraduates categorized food items without restrictions on the number of possible groups. 

The resulting dataset was made into a dissimilarity matrix by Hubert, Arabie and Meulman 

(2001), in which the dissimilarities represent the percentage of subjects who did not place the 

same food item in the same group. Different numbers of categorization are possible: 

Palubeckis (2013) performed unidimensional scaling, and Köhn, Steinley and Brusco (2010) 

used p-median clustering to categorize all items in two groups. Palubeckis (2013) had to use a 

subset of 35 objects from the food data, as the complete dataset too computationally heavy. 

No known best local minima are yet published for both unidimensional and two-dimensional 

solutions of the complete dataset.        

 The results of the comparison between ILS with each perturbation method, classical 

scaling and multiple random starts can be found in Table 9. ILS with the three perturbation 
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methods was able to find solutions with lower Stress-1 values than classical scaling. The 

lowest value was found using ILS with k-NNX perturbation: a Stress-1 of .47431. k-NNX 

perturbation was also the most consistent in finding solutions with lower Stress-1 values than 

classical scaling (83% of total runs). Followed by ILS with random perturbation (72% of total 

runs) and k-NNΔ perturbation (48% of total runs). This is better than multiple random starts, 

which was not able to find lower Stress-1 values than CS in any of its runs.   

 Classical scaling found a two-dimensional solution with a Stress-1 of .28459. The 

three ILS procedures and MR were able to find solutions with a lower Stress-1 of .28211. 

Again, ILS performed more consistent than multiple random starts. Multiple random starts 

was only able to find a lower Stress-1 than CS in 7% of its runs, whereas ILS using k-NNΔ 

perturbation was able to find a lower Stress-1 in 47% of its runs. Followed by ILS with k-NNX 

perturbation with 40% and random perturbation with 17%.  

Table 9. 

Summary of outcome variables for unidimensional and two-dimensional solutions for ILS 

with k-NNΔ, k-NNX and random perturbation using tuned parameters compared to classical 

scaling (CS) and multiple random starts (MR) for the Food dataset. 

Procedure p Lowest Stress-1 %Stress-1<CS Number of local minima 

CS 1 .48990 - - 

ILS k-NNΔ   1 .47856 48% 100 

ILS k-NNX 1 .47431 83% 100 

ILS RP 1 .47768 72% 99 

MR 1 .52231 0% 495 

CS 2 .28459 - - 

ILS k-NNΔ   2 .28211 47% 10 

ILS k-NNX 2 .28211 40% 17 

ILS RP 2 .28211 17% 78 

MR 2 .28211 7% 368 

Note: MR was run 500 times, ILS was run 100 times per perturbation method. 

4.2.3 Churchill dataset 

The Churchill dataset consists of correlation coefficients between ten factors that influence 

the image of a department store. The data is acquired from responses to of a random selection 

of shoppers (Churchill, 1995). The data has been used in many MDS methods, such as 
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PERMAP (Heady & Lucas, 1997). The two-dimensional configuration found by Heady & 

Lucas (1997), had a Stress-1 value of .0793. Which they concluded to be the true global 

minimum.           

 A summary of the results can be found in Table 10. All three ILS procedures were able 

to find lower Stress-1 values than classical scaling. k-NNX perturbation performed most 

consistent: finding the same solution with a of Stress-1 equalling .079065 in each run. k-NNΔ 

perturbation performed less consistent: finding the same solution in 51% of the runs, in the 

other runs it got stuck in three different local minima. ILS with random perturbation 

performed the worse of all perturbation methods, as it found the same lowest minimum in 

only10% of its runs. ILS with random perturbation also got stuck in the most different local 

minima. Multiple random starts performed worse compared to ILS with each perturbation 

method: it was able to find the lowest minimum in only 3,2% of the runs and found worse 

solutions than CS in 72,8% of its runs.  

Table 10. 

Summary of outcome variables for ILS with k-NNΔ, k-NNX and random perturbation using 

tuned parameters compared to classical scaling (CS) and multiple random starts (MR) for the 

Churchill dataset. 

Procedure Lowest Stress-1 %Stress-1<CS Number of local minima 

Heady & Lucas .07930 - - 

CS .08557 - - 

ILS k-NNΔ   .07906 93% 4 

ILS k-NNX .07906 100% 1 

ILS RP .07906 52% 44 

MR .07906 100% 124 

Note: MR was run 500 times, ILS was run 100 times per perturbation method. 

4.2.4 Kabah dataset  

The Kabah dataset (Robinson, 1951) contains dissimilarities between deposits of pottery 

found at 17 archaeological dig sites. As similar types of pottery were developed in the same 

period, it can be inferred that high dissimilarities between sites indicate that the pottery was 

made during different points in time. A unidimensional solution can be made which places the 

deposits in chronological order, from oldest to newest. It has one measurement error: the ninth 

deposit is positioned between the seventh and the eight deposit (Pliner, 1996). Lau, Leung and 
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Tse (1998) used nonlinear programming to solve the unidimensional solution but could not 

guarantee the global minimum. Simantirakis (1996) used mixed integer programming and 

could guarantee the global minimum, but at the cost of high computation time.  

 The results of ILS with each perturbation method compared to classical scaling and 

multiple random starts can be found in Table 11. Classical scaling could not place the deposits 

in the correct order: deposits seventeen and fifteen are switched, resulting in a solution with a 

Stress-1 of .26623. Independent of perturbation method, ILS was able to put the deposits in 

the correct order, resulting in a solution with a Stress-1 of .26382. Also, ILS with each 

perturbation method found solutions with a lower Stress-1 values than CS in every run. MR 

performed worse, as it found a solution with a lower Stress-1 than CS in only one run. Still, 

even the solution with the lowest Stress-1 did not order the deposits correctly as deposits, 

switching deposits seven and eight.  

Table 11 

Summary of outcome variables for ILS with k-NNΔ, k-NNX and random perturbation using 

tuned parameters compared to classical scaling (CS) and multiple random starts (MR) for the 

Kabah dataset. 

Procedure Lowest Stress-1 %Stress-1<CS Number of local minima 

CS .26623 - - 

ILS k-NNΔ   .26382 100% 43 

ILS k-NNX .26382 100% 20 

ILS RP .26382 100% 12 

MR .26508 0.2% 499 

Note: MR was run 500 times, ILS was run 100 times per perturbation method. 

5. Conclusion and discussion 

In this thesis, an explorative study was performed on the application of the ILS metaheuristic 

with MDS as localsearch. Also, two new k-NN perturbation methods were introduced and 

compared to random perturbation. ILS with the three perturbation methods was compared 

with known MDS methods: multiple random starts and classical. The simulation study 

concluded that unidimensional MDS solutions benefit from higher perturbation strength and 

size, whereas two-dimensional MDS solutions benefit from lower perturbation strength and 

size. Compared to multiple random starts, each perturbation method was more consistent in 

finding the global minimum. Between perturbation methods, both k-NN perturbation methods 
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performed more consistent than random perturbation on two-dimensional MDS solutions.

 Next, examples of applications were given on unidimensional and two-dimensional 

datasets using ILS with the three tuned perturbation methods. The aim was to find solutions 

with similar or even lower Stress-1 than classical scaling and multiple random starts. For 

unidimensional solutions, ILS performed better than classical scaling and multiple random 

starts. For two-dimensional solutions, ILS performed equally well as classical scaling and 

better than multiple random starts. ILS with random perturbation performed the least 

consistent of the three perturbation methods, having the lowest percentage of runs resulting in 

a better solution than classical scaling. This is possibly due to the random nature of RP: even 

though the distribution, from which the added perturbation is picked gets wider, the chance of 

picking a value close to zero is still possible. If this occurs, no actual perturbation is added, or 

the perturbation is too small which causes the next iteration of MDS to return to the current 

local minimum.          

 Based on the findings of this thesis, the ILS metaheuristic is proven to be effective 

with MDS as localsearch. It is able to find similar or even better solutions than classical 

scaling and is more flexible: perturbation parameters can be tuned based on the 

dimensionality of the desired solution. Also, it is more efficient and consistent than multiple 

random starts. k-NN perturbation also is an effective perturbation method for MDS, 

performing more consistent than random perturbation.     

 Earlier research by Hubert, Arabie and Meulman (2002) investigated the effectiveness 

of pairwise interchange for unidimensional scaling problems. Pairwise interchange iteratively 

swaps one object with its closest neighbour, swaps two pairs of objects or places one object 

between each pair of objects, until the solution no longer improves. Pairwise interchange has 

similarities with k-NN perturbation using a small k and a small perturbation size. In their 

study, this method was studied with datasets with a maximum of 25 objects. The proposed 

ILS with both k-NN perturbation methods was able to find unidimensional solutions for 

bigger datasets with a maximum of 45 objects, by swapping 50% of all objects with the 

closest 50% of all objects. This indicates that a high perturbation strength and size is better for 

the optimization of unidimensional solutions.      

 A possible reason for finding higher Stress-1 values for the Morse dataset than 

Palubeckis (2013) and Buja & Swayne (2002), was the usage of data without error to tune the 

perturbation parameters. If the parameters were tuned on the real-life examples instead, ILS 

might find better solutions. However, ILS proved to be much faster than the methods used in 

the studies of Palubeckis (2013) and Buja & Swayne (2002). Similarly, Palubeckis (2013) had 
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to use a subset of the Food dataset as it would be too computationally heavy to run the full 

dataset, whereas ILS with each perturbation method was able to find unidimensional solutions 

using the complete dataset within reasonable runtimes. Also, high computation times were 

needed to find the global minimum for the Kabah dataset in studies from Leung and Tse 

(1998) and Simantirakis (1996), whereas ILS was able to find the global minimum every 

time, in low runtimes. Lastly, for the Churchill dataset, ILS with each perturbation method 

was able to find better solutions than Heady and Lucas (1997).   

 Follow-up studies can look into comparisons between the proposed ILS procedure 

with other known metaheuristic such as the Quadratic Assignment Interchange heuristics 

(Hubert, Arabie & Meulman, 2002), pairwise interchange (Brusco & Stahl, 2000) and the 

multiple perturbation operator method used in Sabar and Kendal (2015). As this thesis found 

better results for k-NN perturbation than RP, further study into the effectiveness of k-NN 

perturbation as part of the mutation phase in genetic algorithm is also recommended. k-NN 

perturbation has proven to be effective for MDS, follow-up studies can also look into its 

effectiveness on other optimization problems such as the Traveling Salesman Problem. 

 Lastly, the proposed ILS with MDS as localsearch should also be studied further with 

the methods: 

- Look into how well the proposed ILS performs with nonmetric-MDS. How well is it 

able to find better solutions for ordinal data than MR and CS? And how prone is the 

proposed ILS to degenerate solutions while using ordinal data. 

- Only the perturbation method, perturbation strength and perturbation size were varied 

in this thesis. The implementation of a dynamic acceptance criterion and the history 

parameter (Lourenco, Martin and Stützle, 2001) could be studied.  

- Dynamically decrease perturbation strength: start off with high perturbation strength 

and decrease it after each better solution. This also helps the search for better solutions 

in the current neighbourhood of the solution space. Increase the perturbation strength 

if it is apparent that the perturbation is too weak to escape the current local minimum. 

- Perturbation in this thesis was added to randomly chosen objects. Further research 

could look into the effect of adding perturbance to the object(s) which cause(s) the 

most Stress-1.  
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Appendix A 

Runtimes found by ILS per perturbation method in the simulation study. 

Figure 9. 

Runtimes at the moment of finding unidimensional solutions with the lowest Stress-1 using ILS with k-NN∆ 

perturbation at different levels of PS. In the columns from left to right: different levels of PSi. In the rows from 

top to bottom: dataset sizes 20, 50 and 100
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Figure 10. 

Runtimes at the moment of finding unidimensional solutions with the lowest Stress-1 using ILS with k-NNX 

perturbation at different levels of PS. In the columns from left to right: different levels of PSi. In the rows from 

top to bottom: dataset sizes 20, 50 and 100. 
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Figure 11. 

Runtimes at the moment of finding unidimensional solutions with the lowest Stress-1 using ILS with random 

perturbation at different levels of PS. In the columns from left to right: different levels of PSi. In the rows from 

top to bottom: dataset sizes 20, 50 and 100. 
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Figure 12. 

Runtimes at the moment of finding two-dimensional solutions with the lowest Stress-1 using ILS with k-NN∆ at 

different levels of PS. In the columns from left to right: different levels of PSi. In the rows from top to bottom: 

dataset sizes 20, 50 and 100. 
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Figure 13. 

Runtimes at the moment of finding two-dimensional solutions with the lowest Stress-1 using ILS with k-NNX at 

different levels of PS. In the columns from left to right: different levels of PSi. In the rows from top to bottom: 

dataset sizes 20, 50 and 100. 
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Figure 14. 

Runtimes at the moment of finding two-dimensional solutions with the lowest Stress-1 using ILS with random 

perturbation at different levels of PS. In the columns from left to right: different levels of PSi. In the rows from 

top to bottom: dataset sizes 20, 50 and 100. 
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Appendix B 

Number of calls of the MDS function needed by ILS per perturbation method in the simulation study. 

Figure 15. 

Number of calls of the MDS function needed at moment of finding the best local minimum or global minimum 

for unidimensional datasets using ILS with k-NN∆ perturbation at different levels of PS. In the columns from left 

to right: different levels of PSi. In the rows from top to bottom: dataset sizes 20, 50 and 100. 
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Figure 16. 

Number of calls of the MDS function needed at moment of finding the best local minimum or global minimum 

for unidimensional datasets using ILS with k-NNX perturbation at different levels of PS. In the columns from left 

to right: different levels of PSi. In the rows from top to bottom: dataset sizes 20, 50 and 100.
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Figure 17. 

Number of calls of the MDS function needed at moment of finding the best local minimum or global minimum 

for unidimensional datasets using ILS with random perturbation at different levels of PS. In the columns from 

left to right: different levels of PSi. In the rows from top to bottom: dataset sizes 20, 50 and 100.
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Figure 18. 

Number of calls of the MDS function needed at moment of finding the best local minimum or global minimum 

for two-dimensional datasets using ILS with k-NN∆ perturbation at different levels of PS. In the columns from 

left to right: different levels of PSi. In the rows from top to bottom: dataset sizes 20, 50 and 100.
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Figure 19. 

Number of calls of the MDS function needed at moment of finding the best local minimum or global minimum 

for two-dimensional datasets using ILS with k-NNX perturbation at different levels of PS. In the columns from 

left to right: different levels of PSi. In the rows from top to bottom: dataset sizes 20, 50 and 100.
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Figure 20. 

Number of calls of the MDS function needed at moment of finding the best local minimum or global minimum 

for two-dimensional datasets using ILS with random perturbation at different levels of PS. In the columns from 

left to right: different levels of PSi. In the rows from top to bottom: dataset sizes 20, 50 and 100. 
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