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Abstract

In clinical trials, heterogeneity of treatment effect often exists between

patients with different pretreatment characteristics, such as age, gender,

weight, etc. In response to such issue, various subgroup identification

approaches have been proposed. Two methods among them, Qualita-

tive Interaction Tree (QUINT) and a method adapted from an optimal

treatment regimes (OTR) approach proposed by Zhang et al. (2012), are

compared in this paper. These two methods identify three types of sub-

groups in a situation with two treatments (A and B): one subgroup for

which treatment A is better than treatment B, one for which treatment

B is better than treatment A, and one for which the difference between

the two treatment outcomes is negligible (called ”indifference group”).

A simulation study was conducted to compare the two methods with

regard to their recovery performance (quantified by type I error rates,

type II error rates, Cohen’s κ agreement to the true subgroups, and split-

ting performance of the derived trees) and their predictive performance

(quantified using the difference between the true expected treatment out-

come and the estimated treatment outcome of sample data and population

data). Results of the simulation study suggested that QUINT has its ad-

vantage in recovering the subgroups, and the method adapted from the

OTR approach has its advantage in predicting treatment outcome.

Keywords— subgroup analysis, qualitative treatment-subgroup interaction, in-

difference group, decision tree

1 Introduction

The presence of treatment-effect heterogeneity has always brought up critical consid-

eration in clinical studies. With the recent attention gained in personalized medicine,

it has become a popular topic to investigate how treatments affect differently on dif-

ferent patients. Who gains a large treatment effect and who gains a small effect?

For whom is the treatment beneficial and for whom harmful? Formally, a “treatment

effect” is defined as a measure comparing one treatment to another treatment (or no

treatment). For instance, in randomized controlled trials (RCT), it indicates the dif-

ference in outcome between a treatment condition and a no treatment condition or a

standard care condition, etc. To explore differential treatment effectiveness, methods

to identify subgroups that differ in treatment effect are no doubt a critical core of

interest. With the help of proper identification, subgroups can be treated differently

based on their own characteristics and consequently gain more efficacy compared to a

one-for-all approach.
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Recently, Lipkovich et al. published a nice overview study about data-driven

treatment subgroup identification methods [4]. Among the approaches, some focus on

identifying subgroups of patients for whom treatment A is better than B, and vice versa

(subgroups for whom B is better than A), referred as qualitative treatment-subgroup

interactions, suggesting that the treatment effect differs between subgroups not only

in magnitude but also in the direction of the effect; and some approaches emphasize

on recovering optimal treatment regimes (OTR), that are the treatment assignment

rules which give subgroups of patients their optimal treatment. Qualitative Interaction

Trees (QUINT; Dusseldorp et al., 2014) and an OTR method proposed by Zhang et al.

(2012) are two representative methods of these two kinds of approaches accordingly.

In this paper, QUINT is compared with Zhang’s OTR approach (2012) in situa-

tions with two treatments (A and B). QUINT adapts the regular binary partitioning

algorithm of classification and regression trees (CART, Breiman et al., 1984) in such

a way that the subgroups of interest are identified, whereas Zhang’s OTR approach

first computes a contrast value for every patient, which quantifies the relative expected

benefit of receiving treatment B over treatment A, and then adopts these contrast val-

ues on CART using its regular binary partitioning algorithm. Because both of them

estimate tree-based treatment regimes, the implementation on CART made Zhang’s

OTR approach intriguing to compare with QUINT. The main difference between them

is that QUINT also discovers subgroups with negligible difference in treatment out-

come between A and B (the so-called indifference groups) when growing the trees.

The method proposed by Zhang et al. does not take indifference groups into account.

However, recognizing indifference groups is an important issue with practical relevance.

For instance, theoretically speaking, patients would choose treatment A while being

told that treatment A works better than treatment B on him/her. Yet, when the effect

of treatment A is not remarkable enough, the patient may still choose treatment B

over treatment A due to its better accessibility, such as a lower price, a closer clinic

providing treatment B, etc.

To investigate how to recognize a “remarkable” effect, an interaction probing tech-

nique was proposed by Johnson and Neyman (J-N technique; Johnson & Neyman,

1936). This technique aims at defining a region of insignificance and states that when

an interaction effect appears between a focal predictor X (e.g., a treatment variable)

and a moderator variable z (e.g., a patient characteristic) on an outcome variable y, it

should only be recognized as having significant meaning when the value of the mod-

erator does not fall in the region of insignificance. To illustrate in Figure 1(a), only

under certain value of the moderator z (i.e., < z1 or > z2), will the outcome y differ

between the categories of X. This technique is pre-eminently suited for estimating

trees with three types of subgroups. Figure 1(b) outlines how the three subgroups are

defined on the values of z in a tree. This further contributes to the study of qualita-

tive treatment-subgroup interaction with indifference group being considered, where
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the patient’s characteristics play as the role of the moderator; the treatment is the

focal predictor and the indifference group corresponds to the insignificance region in

J-N technique.

Figure 1: Graphic (a) in the left panel shows that there is an interaction effect
between the focal predictorX and the moderator z on the outcome y. An insignificance
region between z1 and z2 is defined by J-N technique. When the observed z falls in
this region, the interaction between focal predictor X and outcome y is concluded as
without significant meaning. This region serves as a similar role of indifference group in
the method of qualitative treatment-subgroup identification, indicating that the effect
on y under neither category of X is superior. In graphic (b) shows the corresponding
tree of (a), which defined the three subgroups on z.

In a study held by Sies and Van Mechelen (2017), QUINT was compared with

the OTR approach by Zhang et al. but with the assignment of the indifference group

being disregarded by re-assigning such leaves to the treatment with the highest mean

outcome in that leaves [6]. Nonetheless, to compare these two approaches, one may

also determine the indifference group post-hoc for Zhang’s OTR approach based on

its terminal leaves instead of dismissing the indifference group assignment in QUINT.

The details of the post-hoc assignment will be presented in a later section. Here

in this paper, we will focus on QUINT and Zhang’s OTR with post-hoc assignment

(PostZhang) and their performance on recovering the subgroups as well as their predic-

tive performance in terms of the estimated treatment outcome for sample data and the

population. Because the algorithm of QUINT takes indifference groups into account

while growing the tree, we hypothesize that the performance of recovering the true

subgroups by QUINT is better than that by Zhang’s OTR in true scenarios including

indifference groups.

The structure of the remainder of this paper is as follows: In Section 2, QUINT

and Zhang’s OTR approach (2012) with post-hoc indifference group assignment will

be introduced. The simulation study for the comparison of these two methods will

be outlined in section 3 and the results are reported in section 4. The corresponding

discussion will be carried out in Section 5.
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2 Methods

2.1 Qualitative interaction trees (QUINT)

The method of QUalitative INteraction Trees (QUINT) was first introduced by Dussel-

dorp et al. (2014). It is a method targeted on detecting qualitative treatment-subgroup

interaction as well as which variables contribute to such interaction through a binary

tree. The tree aims to partition the study population into three groups signified as P1,

P2 and P3. P1 represents a subgroup of patients gaining larger treatment outcome via

treatment A than treatment B and P2 is a subgroup having the situation the other way

around (treatment B better than treatment A). As for P3, known as the indifference

group, the patients react with no notable difference between either treatment.

The binary tree starts with a root node containing all the patients and performs

binary splits recursively on some patients’ characteristics that can maximize the par-

titioning criterion (C) until no larger criterion value can be found or reaching one of

the other stopping criteria, that is when P1 and P2 do not exist simultaneously after

the first split; or the number of subjects assigned to treatment A or B is smaller than

the predefined number.

The partitioning criterion, C, consists of two components: Difference in treatment

outcome and Cardinality. These two components ensure that each time the split is

chosen in a way such that the difference between outcomes via treatment A and B in

created subgroups P1 and P2 are as large as possible, along with comparable sample

sizes in both groups. Criterion C is defined as

C = w1[log(1 +D1) + log(1 +D2)] + w2[log(N1) + log(N2)], (1)

where D1 and D2 express the weighted average of difference in treatment outcome

across all the current terminal nodes belonging to P1 and P2 and together compose

the Difference in treatment outcome component. N1 and N2 represent the number of

subjects belong to partition class P1 and P2 and consist the Cardinality component.

These two components are weighted by pre-defined weights, w1 and w2. By optimizing

this partitioning criterion, the qualitative treatment-subgroup interaction with largest

possible practical significance can be identified. [3]

2.2 Optimal Treatment Regimes

2.2.1 Original Method by Zhang et al.(2012)

The estimation of optimal treatment regimes (OTR) aims at exploring the assignment

rule that assigns a treatment that works best among a set of possible treatments,
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treatment A and treatment B in our case, to a patient based on his/hers own charac-

teristics [7]. In 2012, Zhang et al. introduced a method that transformed the problem

of estimating OTR with a two treatments setting into a weighted classification prob-

lem. They achieved this by adapting the direction and the magnitude of the estimated

contrast value to the label of class and the cost of being misclassified respectively, on

top of the general framework of OTR approaches where the contrast value of potential

outcomes under the two treatments is estimated. It is noted that the potential out-

comes are adopted from the potential outcome framework of Rubin (1978) and denote

the possible outcomes a patient would have under different treatment conditions [5].

The contrast value estimator applied in Zhang’s method is referred as a doubly

robust augmented inverse probability weighted estimator (AIPWE), which is defined

as follow:

ĈAIPWE(Xi) =
Ti

π(Xi, γ̂)
Yi −

1− Ti

1− π(Xi, γ̂)
Yi−

Ti − π(Xi, γ̂)

π(Xi, γ̂)
µ(Ti = 1, Xi, β̂)− Ti − π(Xi, γ̂)

1− π(Xi, γ̂)
µ(Ti = 0, Xi, β̂), (2)

where the subscript i represents data at patient’s level, X denotes the pre-treatment

characteristics, T denotes the treatment being assigned with value 0 signifying the as-

signment to treatment A and 1 to treatment B, and Y denotes the obtained treatment

outcome; π(X; γ̂) denotes the estimated propensity score. In our study it is estimated

by the sample proportion of getting treatment B (i.e., P (T = 1)), because we con-

sider only randomized trials. µ(Ti, Xi, β̂) denotes a model for potential outcome under

treatment Ti, here a linear regression model on Y using T , X and their interaction

term as the independent variables is implemented. Note that the property of AIPWE

makes the estimators robustness against the misspecification of this regression model.

With these estimated contrast values at hand, the OTR problem is transferred

to a classification problem via the mechanism mentioned in the beginning of this

section. That is, the direction of a contrast values is viewed as a class label, defined as

Ẑi = I{ĈAIPWE(Xi) > 0}; and the magnitude, |ĈAIPWE(Xi)|, is regarded as the cost

of the subject being misclassified. The weighted classification problem with the class

labels as outcomes, the costs of each subject being misclassified as case weights, and

the characteristics as splitting candidates (predictors) is then solved utilizing CART.

Consequently, each patient is classified to one of the two classes with label 1 and 0.

Concerning our scheme with 2 treatments, A and B, we identify the class with label

0 as a subgroup of patients benefits more from treatment A than B and the class

with label 1 as a subgroup that benefits more from treatment B than A. It is worth

mentioning that these two classes coincide with the partition classes P1 and P2 in

QUINT and thus are also referred to as P1 and P2 in the remaining of the paper. In
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the next subsection, we further propose an approach that additionally yields a class

that coincides with the QUINT partition class P3 from Zhang’s OTR method.

2.2.2 Zhang’s Method with Post-Hoc Assignment (PostZhang)

With the use of the method proposed by Zhang et al. (2012), we are able to estimate

regimes that assign patients to one of the two treatments that is believed to benefit

the patients more, depending on their own profile. Yet, it is also valuable to identify

when the benefit is ambiguous and makes neither one be practically superior, just

as the indifference group P3 in QUINT. Hence, we extend the work of Zhang and

accommodate an approach to reassign the terminal leaves (nodes) of trees obtained by

the Zhang’s method with the indifference group being considered. Since the assignment

to the indifference group is done post-hoc, we further refer to this extended method

as “PostZhang” in this paper.

On top of the original method proposed by Zhang, which uses the AIPWE estima-

tors for contrast values and CART for the classification, we introduce Cohen’s d effect

size (standardized mean difference) as a measure to further justify whether a termi-

nal leaf (node) yielded from Zhang’s method should be reassigned to the indifference

group. The standardized mean difference for leaf l, dl, is defined as follows:

dl =
(ȲT=0 − ȲT=1)

sl
(3)

sl =

√
(n0 − 1)s2T=0,l + (n1 − 1)s2T=1,l

n0 + n1 − 2
, (4)

where n0 and n1 respectively denote the sample size for T = 0 and T = 1 in leaf l. As

above defined, dl quantifies the difference in treatment outcomes by mean of its pooled

estimate of the population standard deviation of the treatment groups in the leaf. A

leaf is concluded as having ambiguous benefit from either treatment and should be

reassigned to the indifference group if its dl is smaller than a predefined threshold.

The threshold is a parameter that can be defined by users based on their own

research field. The choice of it usually subjects to a variety of factors, both theo-

retically and practically, such as the disorder itself, study objectives, and treatment

accessibility, etc. However, there is a general guideline proposed by Cohen in 1988,

which is commonly recommended when interpreting the standardized mean difference

(effect size). Cohen stated that an effect size of 0.2, 0.5 and 0.8 should be accordingly

considered as “small effect”, “medium effect” and “large effect” [2]. To be more spe-

cific, a “small effect”, i.e. d = 0.2, should be a good choice as threshold such that the

subgroups of patients having small treatment effect can be regarded as indifference

groups. Yet, the choice of the threshold may vary in our simulation study, and will be

outlined in the following section.
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3 Simulation study

We conducted a simulation study to compare the performance of QUINT and PostZhang.

Performance was assessed both in terms of recovery of true treatment subgroups (called

Recovery Performance), and in terms of the predicted treatment outcome (called Pre-

dictive Performance). Before comparing these two methods, we first investigated each

of them with different specification of tuning parameters and elaborated the choice

of those parameters based on analyses which explored the performance of recovering

subgroups.

3.1 Design

This simulation study was conducted on artificial data sets. These data sets resemble

the scheme of a randomized trial, under which N patients are treated by either treat-

ment A or treatment B. There are J pretreatment characteristics (X1, X2, . . . , XJ) for

every patient. These characteristics are continuous variables that distribute multivariate-

normally with µXj = 0, σXj = 1 for all variables and the covariance σj,j′ = ρ for any

two variables. The design factors with the levels that were manipulated were:

• Sample size N : 300 and 1000

• Number of characteristics J : 5 and 20

• Correlation between characteristics ρ: 0 and 0.4

• Treatment effect in the leaves d: 0.5 (small), 1 (medium) and 2 (large)

Given the design factors, the treatment outcome Yi for patient i with characteristics

Xi = (Xi1, Xi2, . . . XiJ) is formulated as follows:

Yi = 1 + 0.25Xi1 + 0.25Xi2 − 0.25Xi5 − d[1− gP3(Xi)][Ti − gopt(Xi)]
2 + εi, (5)

where a higher value in Yi is defined as having a better treatment outcome. The

error term ε is standard normally distributed. Ti is a binary variable denoting the

treatment being assigned to. It follows a Bernoulli distribution with θ = 0.5, and with

Ti = 0 implying treatment A and Ti = 1 implying treatment B. Function gopt(X)

signifies the optimal treatment given X, while function gP3(X) denotes the indicator

for being in indifference group. This data structure is modified from an initial model

proposed by Sies [6]. We revised the model by adding a term with the P3 indicator,

gP3, to accommodate the scenario with an indifference group being considered. As

illustrated in (5), if a patient belongs to this indifference group, his/her treatment

outcome will not be affected whether he/she is assigned to the optimal treatment or

not. Contrarily, if a patient does not belong to the indifference group and is assigned to

a non-optimal treatment according to his/her characteristics, the treatment outcome

will be penalized by the design factor d.
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The two models used in our simulation study are further determined by the spec-

ification of function gopt and gP3 in (5) :

• Model 1:

gopt(X) = I(X1 > −0.433)× I(X2 < −0.219)

gP3(X) = I(X1 > −0.433)× I(X2 ≥ −0.219)

• Model 2:

gopt(X) = 1

gP3(X) = I(X1 ≤ −0.25),

where I(.) is an indicator function. The split points for each splitting variable in

Model 1 are designed in such a way that the three subgroups (P1, P2 and P3) will have

comparable sizes. Whereas in Model 2, the split point of X1 in P3 indicator is intended

to get 2/5 of the sample being in P3. It is noteworthy that, as shown in Figure 2,

Model 2 reveals a scenario without a qualitative treatment-subgroup interaction in

which Treatment B is always the better choice for patients who do not belong to

the indifference group. This model was implemented to test the type I error rates of

probing a qualitative interaction. (See subsection 3.3 for more details).

Using a fully crossed factorial design, we obtained 2× 2× 2× 3 = 24 design cells.

For each of them, we generated 100 data sets and brought out 2,400 data sets in total

for each model.

3.2 Analysis

As abovementioned, the simulation study was performed in two stages. Firstly, the

tuning parameters were investigated within each of the methods separately to decide

the optimal setting. Secondly, the two methods were compared with parameters set-

tings as determined in the first stage. In the first stage, we focused on evaluating

Recovery Performance and in the second stage Predictive Performance was addition-

ally inspected. See subsection 3.3 for details on these evaluation criteria.

In the first stage of the analysis, we examined QUINT with various values of the

tuning parameter, dmin. It is a parameter used in QUINT method to check whether a

qualitative interaction (i.e., the qualitative interaction condition) is present in a pruned

tree. It is defined as the minimum value of standardized mean difference (Cohen’s d

effect size) that should hold true in at least one leaf of both P1 and P2. According to

results from the simulation study by Duseldorp et al. (2014), dmin=0.3 can generally

strike a good balance between type I error and type II error under sufficient sample

sizes (N > 300). When a data with a small sample size is of interest, a higher

dmin may be considered. Nonetheless, the recommendation was made on a previous

implementation of dmin, where dmin was applied right after the first split to check

for the qualitative interaction. The latest implementation has been changed to utilize
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Figure 2: The true models where the simulated data set are generated from. Left:
Model 1. Right: Model 2. The partition groups are labeled in the terminal leaves
with P1 colored in green and represents a subgroup of patients benefits more from
Treatment A than Treatment B. Group P2 is colored in orange and has the situation
the other way around (Treatment B better than Treatment A). The leaves colored in
gray denote the indifference group P3, which shows no notable difference between two
treatment outcomes. The labels of leaves are numbered ascendingly from left to right.

after trees are pruned. To investigate this new implementation, both dmin=0.3 and

dmin=0.4 with respect to their Recovery Performance were inspected.

As for PostZhang, we investigated different values of the threshold parameter,

threshold.d, which we constructed to determine whether a leaf should be assigned to

the indifference subgroup (P3) post-hoc based on its Cohen’s d effect size. As the

general guideline proposed by Cohen (1988) stated that an effect size of 0.2 is an

effect with small size, we considered 0.2 as a preferred threshold to categorized those

subgroups with small effect to subgroup P3. However, there are ambiguous definitions

for the effect size between 0.2 (small effect) and 0.5 (medium effect). To investigate

it more thoroughly, the threshold with values 0.2, 0.3 and 0.4 1 were inspected. In

addition, the method of PostZhang with a zero-threshold was investigated which refers

to the original method of Zhang. The method with these values of the threshold were

inspected considering their Recovery Performance.

We applied repeated-measures analysis of variance (ANOVA) on the evaluations to

1Although the tuning parameters in QUINT and PostZhang are both measuring the Co-
hen’s d effect size of leaves. The different definitions of the tuning parameters make the values
being tested different between the two methods. Parameter dmin is the minimum value of the
leaf effect size in at least one leaf of P1 and P2 separately in QUINT. The threshold parameter
in PostZhang defines the minimum effect size for all the leaves classified to P1 and P2.
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determine the specification among these values of the tuning parameter. In this stage,

the ANOVA analyses were applied within each method (i.e., QUINT and PostZhang)

using the evaluation outcomes of Recovery Performance as dependent variables, the

specification of the tuning parameter as the within-subject variable, and the design fac-

tors as the between-subject variables. All the interaction terms between independent

variables were included. The ANOVA results were interpreted in terms of generalized

eta squared (η2G) instead of p-value due to the well-known problem of p-value in large

samples. In the simulation study, data with size of 2,400 was applied for each ANOVA

analysis. This large size may induce many trivial results with p-value lower than 0.05.

Alternatively, a threshold of 0.02 on η2G was applied according to the guideline pro-

posed by Bakeman (2005)2. Variables were concluded as having leading influence on

the evaluation outcomes if they yielded η2G that was larger than 0.02.

Subsequently, the second stage of the analysis focused on the comparison between

the two methods, QUINT and PostZhang, regarding their Recovery Performance and

Predictive Performance. The two methods were applied with the setting of tuning

parameters derived in the first stage. Also here, ANOVA analyses were performed

on each evaluation outcome to illuminate the leading factors that influenced the out-

comes. The ANOVAs were applied with method (i.e., QUINT or PostZhang) as the

within-subjects variable and the four design factors (i.e., sample size, number of charac-

teristics, correlation between characteristics and treatment effect size) as the between-

subjects variables. All the interaction terms between these independent variables were

included. Again, as in the first stage, the variables with η2G > 0.02 were concluded as

the factors that influenced the evaluation outcomes.

In the method of QUINT, the data sets were analyzed using R-package quint

(version 2.0). The Difference in treatment outcome component of the partitioning

criterion was calculated in terms of Cohen’s d effect size (crit="es"). The maximum

number of leaves that can be reached when growing trees was set as maxl=6 and maxl=4

for data sets generated from Model 1 and Model 2, respectively.

In the method of PostZhang, the data sets were analyzed using our own code in

R and R-package rpart with 40 as the minimum number of patients for a node to be

split set (minsplit=40), 20 as the minimum number of patients in any terminal leaves

(minbucket=20) and four as the maximum depth of any terminal leaf (maxdepth=4).

The default complexity parameter of 0.01 was used.

3.3 Evaluation Criteria

To assess Recovery Performance, type I and type II error rate of probing a qualita-

tive treatment-subgroup interaction, Cohen’s κ agreement and splitting accuracy were

2Bakeman proposed to apply the same guidelines of Cohen’s f2 to η2G. That is, to consider
the size of 0.02 as small, 0.13 as medium and 0.26 as large [1].
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evaluated.

Despite that there was no hypothesis test being conducted, the terms of ”type

I error rate” and ”type II error rate” were borrowed to refer to the probability of

wrongly detecting and failing to detect a qualitative interaction respectively, under

the hypothesis stated that, ”There is no qualitative treatment-subgroup interaction”.

They were utilized to inspect to what extend the methods can detect the interaction.

Model 2 that represents the scenario with no qualitative interaction was applied for

the evaluation of type I error rate. Whereas type II error rate was evaluated on

data sets generated from Model 1, which suggests a scenario with the presence of

qualitative interaction. The qualitative interaction is said to be detected when both

partition subgroups P1 and P2 are present in the terminal leaves of solution trees.

For the method of QUINT, this always holds true whenever a tree grows because of

the nonempty partition class condition3 it has to meet in its partitioning algorithm.

Contrarily, a qualitative interaction is not ensured when a tree is grown by the method

of PostZhang. For example, when one of the two terminal leaves that was originally

classified to P1 and P2 by the method of Zhang has the leaf effect size smaller than the

predefined threshold.d, the leaf is eventually assigned to the indifference group P3 in

PostZhang and thus no qualitative interaction is indicated in the PostZhang solution

tree.

Cohen’s κ agreement provides an alternative perspective of subgroups recovery

performance. It measures the agreement between the assignment estimated by the

methods and the true assignment. In addition to the common way of measuring as-

signment accuracy (i.e., the proportion of patients that are correctly assigned), Cohen’s

κ adapts the measurement with the probability of getting random agreement being

considered.

Splitting accuracy measures the recovery performance with regard to the structure

of derived trees. This can further be divided into three aspects, tree sizes (number of

splits), splitting variables and split points. Firstly, size accuracy rate and the accuracy

rate with bias of one being allowed, denoted as P (True Size) and P (True Size ± 1)

accordingly, are inspected. They quantified the proportion of derived trees that recover

the true tree size without and with a bias of size one being allowed.

Secondly, the proportion of capturing the correct splitting variables is inspected.

The proportion is computed under certain conditions such that the ability of detecting

true tree structure in each split is on focus. That is, when inspecting the first splitting

variable, the proportion is computed under the condition of grown trees (i.e., trees with

not only a root node). When inspecting the second splitting variable, it is computed

conditionally on the first variable being detected correctly (regardless of the split

3The nonempty partition class condition in the partitioning algorithm of QUINT guaran-
tees that the subsequent leaves after the first split are assigned to P1 and P2. If the condition
is not met, no tree will be grown.
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points). As the true tree is referred to Model 1 defined in subsection 3.1, which

indicates the two splits on -0.433 of X1 and -0.219 of X2, the proportion of recovering

the first and the second splitting variable are denoted separately as P(Detect X1) and

P(Detect X2).

Last but not least, among those splits which perform on the correct variables,

the accuracy rate of splitting at correct split points rounded to one decimal place is

measured, denoted as P (Split on the true split point of X1 |Detect X1) and P(Split on

the true split point of X2 |Detect X2), respectively to the first and the second split.

In addition to all the evaluation criteria measuring Recovery Performance, Pre-

dictive Performance is quantified by the absolute difference (AD) between the true

expected treatment outcome and the estimated expected outcomes of derived trees,

which is measured by the average treatment outcomes predicted by the trees. The true

expected treatment outcome is equal to one (i.e., E(Y ) = 1), according to the true

model presented in (5) (See subsection 3.1). It represents the average outcome yielded

under all patients being assigned to the true subgroups. The ADs are computed on

the sample data as well as a test data. These are further referred to sample AD and

population AD. When predicting the sample treatment outcomes, instead of taking

the leaf optimal treatment mean as the predicted value, the outcomes of patients who

are assigned to the indifference group are predicted by the average outcome of the

belonging leaf, because of the fact that the indifference group suggests no preferable

treatment. Intuitively, the sample AD are the difference between the true expected

outcome, one, and the prediction made on the sample data that built the trees. How-

ever, to test whether the tree solutions (the assignment rules) work not only locally

but also globally, the assignment rules derived from the sample trees are applied on a

population data with size of 1,000,000 manipulated from Model 1. The average pre-

dicted outcomes with comparison to the true expected treatment outcome are referred

to population AD.

Each of the evaluation criteria was obtained on the 2,400 data sets of the subjected

model, namely Model 1 for all the evaluation criteria except for type I error rate, which

was examined on the data sets generated from Model 2.

4 Results

4.1 Specification of the method tuning parameters

As different tuning parameters settings can clearly vary the results, we first searched

for the optimal specification of the tuning parameters within each method, that is dmin

parameter in method of QUINT and threshold.d parameter in method of PostZhang,

before comparing the two methods.
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4.1.1 QUINT: specification for dmin

The ANOVA analysis (Details are outlined in Appendix A.) on type I error rates

with design factors, N , J , ρ and d, as the between subject factors and the dmin

specification as the within subject factor revealed that type I error rates were largely

affected by sample size N (η2G > 0.02) but not by the specification of dmin or other

factors. A larger sample size generally induced a lower type I error rate regardless of

the specification of dmin. Since dmin=0.4 marginally yielded lower type I error rates

on both N = 300 and N = 1000, we suppose that the value of 0.4 could work well on

our simulated data sets in terms of type I error rates. However, the ANOVA analysis

of type II error rates showed that there was an interaction effect between N and d

(η2G = 0.038). As shown in Figure 3, although type II error rates were satisfactory

(< 0.2) in most of the situation, high type II error rates (> 0.5) emerged under small

treatment effect (d = 0.5) along with large sample size (N = 1000), especially in

the condition of dmin=0.4. Such high type II error rates were obviously undesirable.

Thus in order to prevent from this unwanted situation, we proposed the specification

of dmin=0.4 for the simulated data sets with sample size N = 300 and dmin=0.3

for the simulated data sets with sample size N = 1000, which is accordance with

the recommendation by Dusseldorp et al. Due to the fact that treatment effects are

normally unknown beforehand in the real world, the specification was only made for

the sample size (N) but not for the treatment effect (d).

The Cohen’s κ agreement was shown to be affected by the main effect of N and d

according to its ANOVA analysis as shown in Appendix A. The larger the treatment

effect and the sample size, the higher the agreement was. No remarkable difference was

made when applying different values of dmin. (See details in Table 1). This implied

that the earlier proposition of dmin=0.3 for N = 1000 and dmin=0.4 for N = 300

can be made without diminishing the agreement.

Table 1: The average Cohen’s κ agreements of the simulated data sets with regards
to different sample sizes (N=300, N=1000) and different design treatment effect sizes
(d=0.2, 0.5 and 2) with different values of dmin parameter (0.3 and 0.4) being applied
in the method of QUINT.

dmin treatment effect size (d) N = 300 N = 1000

0.3 0.5 0.22 0.26
1 0.53 0.93
2 0.92 0.99

0.4 0.5 0.17 0.12
1 0.49 0.92
2 0.92 0.99
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Figure 3: The plots display the type I error and type II error rate for method of
QUINT with dmin=0.3 and dmin=0.4 with respect to the different treatment effect
sizes and sample sizes. The panels from left to right draw the data set with medium
(d=0.5), large (d=1), and extra large (d=2) designed effect size, respectively. The red
lines represent the type I error rate while the green lines represent the type II error
rate. In addition, solid lines and dashed lines respectively demonstrate the data sets
with N=300 and N=1000.

4.1.2 PostZhang: specification for threshold.d

According to the ANOVA analysis, treatment effect size d slightly altered the type I

error rates. The chance of committing a type I error was smaller when the treatment

effect underlying in the data was smaller. None of the factors other than d, such as

the specification of threshold.d and N was an influential factor. Since the underlying

treatment effect is seldom known, the specification of threshold.d was decided mainly

based on the ANOVA result of type II error rates and the Cohen’s κ agreement.

The ANOVA analysis of type II error rates pointed out that threshold.d, treatment

effect size d, and the interaction effect between them were factors (η2G > 0.02) that

affected the type II error rates. The green lines in Figure 4 outlined the type II

error rates under different treatment effect sizes and threshold.d. Despite the fact

that there was some variation along treatment effect sizes and threshold.d, type II

error rates were satisfactory in most of the time (i.e., type II error rate < 0.2). Only

when treatment effects were small, setting a threshold above 0.3 suffered from a high

risk of committing type II error. To have a conservative specification which could
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Figure 4: The plots display the type I error and type II error rate for method of
PostZhang with threshold.d =0, 0.2, 0.3 and 0.4 with respect to the different treatment
effect sizes. The panels from left to right draw the data set with d=0.5, 1, and 2,
respectively. The red lines represent type I error rate while the green lines represent
the type II error rate.

make the method sensitive to qualitative treatment-subgroup interaction even when

the underlying treatment effect sizes were small, a threshold of 0.2 was preferred.

Regarding the Cohen’s κ agreement, it was said to differ by factors N , d, ρ and

the interaction between N and d according to the ANOVA analysis. Generally speak-

ing, a lower correlation between the characteristics and a larger treatment effect size

enhanced the agreement. A larger sample size also contributed to a higher κ agree-

ment, especially when d was small. Yet, the value of threshold.d did not appear to

influence the agreement. To sum up, to keep our simulation study sensitive to quali-

tative treatment-subgroup interaction even when the underlying treatment effect was

small, we remained to set the tuning parameter threshold.d at 0.2 for the method of

PostZhang.

4.2 Comparison between QUINT and PostZhang

With the analysis made within each method, the tuning parameters for the two meth-

ods were determined as follows:

• QUINT:

dmin=0.4, for N = 300
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dmin=0.3, for N = 1000

• PostZhang:

threshold.d=0.2

Using these tuning parameters, the method of QUINT and the method of PostZhang

were compared regarding their Recovery Performance and Predictive Performance.

The variables that yielded η2G larger than 0.02 in the ANOVAs are shown in Table 3.

Table 2: The average Cohen’s κ agreements of the simulated data sets with regards
to different sample sizes (N=300, N=1000) and different design treatment effect sizes
(d=0.2, 0.5 and 2) with different values of threshold.d parameter (0, 0.2, 0.3 and 0.4)
being applied in the method of PostZhang.

threshold.d d N=300 N=1000

0.0 0.5 0.27 0.49
1 0.50 0.53
2 0.53 0.53

0.2 0.5 0.28 0.52
1 0.51 0.57
2 0.56 0.60

0.3 0.5 0.27 0.52
1 0.52 0.62
2 0.58 0.64

0.4 0.5 0.24 0.45
1 0.54 0.65
2 0.61 0.68

4.2.1 Type I /II Error Rate

The ANOVA analysis in Table 3 showed that the type I error rates did not differ

between the methods of QUINT and PostZhang, nor did it alter on the other factors.

Meanwhile, the type II error rates were mainly influenced by factors method, treatment

effect, the interaction effect between them, and the interaction effect between sample

size and treatment effect. As seen in Table 4, the smaller the treatment effect sizes, the

higher the chance to commit a type II error. In addition while enlarging the sample

size could normally reduce type II error rates, it seemed not the case under small

treatment effect size. It was particularly the case for the method of QUINT. When

the underlying treatment effect size was small (e.g., d = 0.5), rather high type II error

rates appeared by the method. Except for that, type II error rates were satisfactory

(< 0.20) in most of the situations.

4.2.2 Cohen’s κ Agreement

According to the ANOVA results of Cohen’s κ agreement shown in Table 3, method,

sample size, treatment effect, the two-way interaction between method and treatment
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Table 3: The η2G obtained via ANOVA on each evaluation. Only the variables that have η2G
above 0.02 were recorded in the table. Method is a variable with two categories: QUINT and
PostZhang. N , d are the design factors specified in section 3. ”:” signified the interaction
term between factors. The variables without any η2G > 0.02 are neglected in the table.

Method N d Method:N Method:d N :d

Recovery Performance

Type I error rates - - - - - -

Type II error rates 0.032 - 0.216 - 0.026 0.038

Cohen’s κ Agreement 0.088 0.141 0.451 - 0.242 0.023

P(True Size)* 0.303 0.03 0.169 0.044 0.193

P(True Size ± 1)* - - 0.104 - 0.059 0.021

Predictive Performance

Sample AD - 0.122 0.045 - - -

Population AD 0.088 0.099 0.155 - - -
* Among the evaluations of splitting accuracy, only the evaluation relevant to recovering the true

tree size, that is, P (True Size and P (True Size ± 1), were analyzed using ANOVA. The other
measurements concerning the splitting variables and split points were inspected in an exploratory
perspective.

effect, and the two-way interaction between sample size and treatment effect had re-

markable effects on the performance of the subgroup assignment agreement. Generally

speaking, the larger the sample size and the treatment effect, the easier for the methods

to recognize the underlying structure and thus yielded a higher assignment agreement

to the true scenario. Among them, the method of QUINT had an overall better as-

sessment compared to PostZhang. When the treatment effect was large (e.g., d = 2),

QUINT could reach a very good (κ > 0.8) agreement to the true scenario as shown in

Table 4. However, in the condition of small treatment effect, the agreements QUINT

reached were lower than those assessed by PostZhang.

To explore the possible reason that induced the relative low agreement of the

method of PostZhang, we further inspected the proportion of patients in each subgroup

that were correctly classified. Figure 5 showed that the inefficient performance in

recognizing the indifference group was apparently the main reason. It revealed the

fact that the post-hoc indifference group assignment was an approach that could only

identify the indifference group conservatively.

4.2.3 Splitting Accuracy

Suggested by the ANOVA results, method, sample size, treatment effect, interaction

between method and treatment effect, and the interaction between method and sample

size were influential factors against the size accuracy P(True size). As seen in the

solid lines of Figure 6, the method of QUINT significantly outperformed the method

of PostZhang on capturing the exact complexity (size) of the true tree, particularly
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Table 4: The average evaluation outcomes computed marginally on sample size N
and treatment effect d. The evaluation criteria: type I error rates, type II error rates
and Cohen’s κ agreement are displayed.

Method QUINT PostZhang

Type I error rates

d=0.5 d=1 d=2 d=0.5 d=1 d=2

N=300 0.430 0.398 0.293 0.298 0.373 0.480

N=1000 0.245 0.125 0.165 0.345 0.430 0.505

Type II error rates

d=0.5 d=1 d=2 d=0.5 d=1 d=2

N=300 0.345 0.140 0.00 0.235 0.01 0.00

N=1000 0.507 0.002 0.00 0.128 0.00 0.00

Cohen’s κ agreement

d=0.5 d=1 d=2 d=0.5 d=1 d=2

N=300 0.17 0.487 0.923 0.276 0.509 0.556

N=1000 0.26 0.927 0.986 0.521 0.574 0.596

in the condition of the large treatment effect size. In the method of QUINT, the

size accuracy increased along with the sample size and treatment effect size. When

the treatment effect size was medium (i.e., d = 1), the size accuracy was improved

remarkably by adding sample size from N = 300 to N = 1000. Yet, it was not the case

for the method of PostZhang. However, the method of PostZhang could derive the true

tree size with a bias of one (plotted with the dotted lines in Figure 6) being allowed

most of the times. The method of PostZhang even performed better than QUINT

under the small treatment effect size, in terms of the accuracy rate for capturing the

true tree size with a bias of one being allowed.

The further exploration on splitting variables and split points were shown in Table

5. Regarding the first split, both methods have impressive performance on recognizing

the correct variable, X1, when a tree grew. Even when the sample size and treatment

effect size were small (e.g., N = 300, d = 0.5), X1 could be recognized with the

probability around 0.7. In addition, except for the extreme situation when both the

treatment effect and the sample size were small, both methods nicely perform the split

on a split point which was approximate to that of the true model.

The second splitting variable in the true model (i.e., X2) was successfully detected

at the second split most of the situations under X1 was recognized in the previous split

in both methods. However, again when under the extreme situation, that is, small
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Figure 5: the proportion of patients in each subgroup that are correctly assigned in
method of QUINT and method of PostZhang. The red, green and blue lines separately
represent the measurements in subgroup P1, P2 and P3.

Figure 6: The Splitting size accuracy with and without bias of one, with regards to
different treatment effect sizes (d) and sample sizes (N), for the method of QUINT
and PostZhang. The solid line represents the proportion of capturing the exact size of
the true model, P(True size). The dotted line represents the proportion of capturing
the true size plus or minus one, P(True size ±1) .
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Table 5: The evaluation on splitting accuracy criterion with respect to the split-
ting variables and split points. The proportion of recovering the first and the second
splitting variables (X1 and X2) are denoted as P(Detect X1) and P(Detect X2), respec-
tively. They were measured under the conditions mentioned in subsection 3.3. Under
the splitting variables being detected, the chance of these splits performing on the
same split point as in the true model (rounded to the first decimal place) is denoted as
P (Split true X1 point|Detect X1) and P (Split true X2 point|Detect X2), accordingly.
The evaluation were derived from Model 1.

Method QUINT PostZhang

P(Detect X1) (P (Split on the true split point of X1|Detect X1))

d=0.5 d=1 d=2 d=0.5 d=1 d=2

N=300 0.65(0.26) 0.98(0.59) 1.00(0.80) 0.70(0.28) 0.97(0.61) 1.00(0.87)

N=1000 0.99(0.59) 1.00(0.80) 1.00(0.94) 1.00(0.55) 1.00(0.86) 1.00(0.97)

P(Detect X2) (P (Split on the true split point of X2|Detect X2))

d=0.5 d=1 d=2 d=0.5 d=1 d=2

N=300 0.32(0.20) 0.85(0.32) 1.00(0.53) 0.32(0.20) 0.88(0.29) 0.99(0.51)

N=1000 0.85(0.30) 1.00(0.59) 1.00(0.84) 0.64(0.35) 0.98(0.61) 1.00(0.85)

sample size and small treatment effect size, it was harder for the methods to detect

X2 (i.e., chance around 0.32). Nevertheless, such issue could be overcome largely by

adding more sample size, especially for the method of QUINT. Among the schemes

when X2 was recognized, the split points could be accurately observed up to one

decimal place when the treatment effect and the sample size were both sufficiently

large (e.g., d ≥ 1, N = 1000).

4.2.4 Sample and Population Absolute Difference to the True Ex-

pected Outcome

As shown in Table 6, the distances between the tree expected outcomes and the true

expected outcomes were all close to zero, which indicated that the predictive perfor-

mance was satisfying in both methods. According to the ANOVA results (shown in

Table 3), both sample AD and population AD decreased along with increasing sample

sizes and treatment effect sizes. Apparently, when trees were trained using data with

larger sample sizes and greater treatment effect sizes, it was easier to get the optimal

solutions. While sample ADs were obtained without noticeable difference between the

two methods, the population ADs were different between the two methods. Generally

speaking, the population expected outcomes obtained via the method of PostZhang

were closer to the true treatment outcome, which is equal to one.
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Table 6: The average evaluation outcomes computed marginally on sample size N
and treatment effect d. The evaluation criteria: Sample Absolute Difference to the
true treatment outcome (Sample AD) and Population Absolute Difference to the true
treatment outcome (Population AD) in each method are displayed.

Method QUINT PostZhang

Sample AD

d=0.5 d=1 d=2 d=0.5 d=1 d=2

N=300 0.114 0.101 0.078 0.120 0.088 0.085

N=1000 0.098 0.037 0.037 0.052 0.049 0.045

Population AD

d=0.5 d=1 d=2 d=0.5 d=1 d=2

N=300 0.123 0.092 0.044 0.090 0.024 0.011

N=1000 0.095 0.013 0.010 0.025 0.006 0.003

5 Discussion

The study was conducted to compare the two subgroup identification approaches,

QUINT and the method of PostZhang in true scenarios including an indifference group

in terms of their Recovery Performance and Predictive Performance. The hypothe-

sis which stated that QUINT had superior performance on recovering the underly-

ing subgroups was confirmed under the circumstances that the treatment effect sizes

were sufficient. With regard to the predictive performance, the method of PostZhang

showed higher accuracy than that of the method of QUINT.

The first finding that QUINT outperformed the method of PostZhang on recov-

ering the subgroups in the true scenario was supported by the overall higher Cohen’s

κ agreement and the size accuracy rate achieved by QUINT. The assignment rules

recovered by QUINT are more accurate with respect to their complexity (number of

splits) and can classify the patients to the correct subgroups to a great extend. In

contrast, more assignment rules with inaccurate complexity are derived by PostZhang,

along with lower agreements of the subgroups assignment to the true scenario. They

are believed to be subject to the partitioning algorithm of the methods, in which the

indifference group is considered while growing trees by QUINT but not by PostZhang.

Since PostZhang focus on purifying the classes (i.e., the direction of estimated contrast

values) in nodes while growing trees, the algorithm tends to avoid a node behaves like

an indifference group, for example, containing similar numbers of patients who benefit

more from treatment A and who benefit more from treatment B. As a consequence,

the complexity is seldom accurate. In addition, the post-hoc indifference group assign-

ment of PostZhang makes it conservative when recognizing the indifference group. It
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implies that many patients who belong to the indifference group will be classified to

an alternative treatment group and leads to lower subgroup assignment agreements in

comparison to that of the method of QUINT.

Nevertheless, the method of QUINT was also pointed out to have disadvantage

when the treatment effect was small. Under the small treatment effect, PostZhang

achieves higher agreement to the true subgroups assignment and the derived complex-

ity is more precise in terms of the accuracy rate of obtaining tree sizes within one

bias. This can link to the high type II error rates that QUINT suffers from when the

underlying treatment effect in the data is small. When a type II error occurs (i.e., no

qualitative treatment-subgroup interaction is detected) in QUINT, no tree is grown.

Many of the derived solutions will thus have the tree size and the subgroup agreement

equal to zero.

The second finding in our simulation study shows that the method of PostZhang

can yield population expected outcomes that are closer to the true expected outcome,

which is the expected outcome when all patients are assigned to the true subgroups. We

found this results unsurprising due to the fact that it is originated from the method

of Zhang et al., which aimed at seeking the regime that maximizes the estimate of

the expected outcome. It is reasonable that the inefficient in post-hoc indifference

group assignment of PostZhang does not affect the prediction of population expected

outcomes, since those belonging to the indifference group are estimated with the same

value regardless which group they are assigned to. The estimated population expected

outcome of PostZhang remained identical to that derived from the original method of

Zhang and thus have the same advantage of the predictive performance. A previous

comparison study of Sies and van Mechelen (2017) has demonstrated that the method

of Zhang et al. performed the best regarding the expected outcomes among various

subgroup identification approaches including the method of QUINT.

Our simulation study demonstrated the recovery performance and predictive per-

formance of QUINT and PostZhang under the true scenario including an indifference

group. The conclusion is made under a simulated scenario which pertains a rather

simple structure. It is doubtful whether the conclusion is applicable on a more com-

plex scenario, for instance, three or more splits in the true model. The simulation

study conducted by Sies and van Mechelen (2017) has results stated that less propor-

tion of patients are classified correctly in the method of QUINT compares to that of

the method of Zhang et al. under both simple and complex scenarios. However, the

study was conducted under no indifference group being considered. Additional exper-

iments are required to inspect the recovery performance in complex scenarios with the

indifference group being included.

Also, the choice of threshold for the post-hoc indifference group assignment in

PostZhang alters the type II error rates. If one would have some pre-knowledge about

the expected treatment effect size of their study and chose an appropriate threshold

23



based on that, the recovery performance of PostZhang may be improved and resolve

the conservative nature of the method to some extend. Yet, we do not expect the

improvement to be remarkable since it is shown in our study that the agreement did

not differ between the choices of the threshold.

To sum up, although PostZhang is less efficient in identifying the indifference

group, it has advantage of deriving treatment outcomes which are more accurate. It

is a practical issue to consider the indifference group. If one wants to put emphasize

not only on the optimal treatment but also the identification of the indifference group,

then QUINT can provide more insight on the possible characteristics that compose

this group.
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A

ANOVA within the two methods

The results of ANOVA within each methods are shown in the below table. The anal-

yses were conducted using evaluation criteria relevant to the recovery performance as

dependent variables. The different specifications of tuning parameters, that is dmin

with levels 0.3 and 0.4 for the method of QUINT and threshold.d with levels 0, 0.2,

0.3 and 0.4 for the method of PostZhang, were applied as the within-subjects variables

and design factors N , J , ρ and d were the between-subjects variables. In addition,

the interaction effect of these variables were also considered. A variable was said to

have leading influence on the dependent variables if its generalized-eta-squared (η2G)

exceeds 0.02.

Table 7: The η2G obtained via ANOVA on each evaluation within the two methods,
QUINT and PostZhang. The factor ”Method” here are referred to the method with
different specification of dmin and threshold.d for QUINT and PostZhang, respectively.
Only the variables that have η2G above 0.02 are displayed in the table.

QUINT Method N d ρ Method:d N:d

Type I error rates - 0.116 - - - -

Type II error rates - 0.022 0.216 - - 0.038

Cohen’s κ Agreement - 0.099 0.603 - - -

PostZhang - - - - - -

Type I error rates - - 0.021 - - -

Type II error rates 0.078 - 0.152 - 0.067 -

Cohen’s κ Agreement - 0.116 0.193 0.030 - 0.044

B

Sample and Population Expected Outcome

Although the sample ADs revealed no significant difference between the method of

QUINT and PostZhang, the differences appeared when we directly inspected the sam-

ple expected outcomes. The η2G of the factor ”Method”, which indicates the method

implemented (i.e., QUINT or PostZhang), was greater than 0.02 when conducting

ANOVA on sample and population expected outcomes. As shown in Table 8, the

sample expected outcomes derived by PostZhang were higher than that by QUINT.

However, it was possible to be caused by the conservative nature of PostZhang relating

26



the post-hoc indifference group assignment. Many patients who belong to the indiffer-

ence group ended up being assigned to alternative treatment group and were estimated

to gain more benefits than it actually did as the prediction was made using the opti-

mal average treatment outcome in the assigned leaf for the sample expected outcome.

Nevertheless, the prediction made in population was not based on the optimal average

treatment outcomes in leaves, thus the concern did not violate the conclusion that

PostZhang has better predictive performance.

Table 8: The average evaluation outcomes computed marginally on sample size N and
treatment effect d. The evaluation criteria: Sample Expected Outcome and Population
Expected Outcome in each method are displayed.

Method QUINT PostZhang

Sample Expected Outcome

d=0.5 d=1 d=2 d=0.5 d=1 d=2

N=300 1.024 0.978 0.984 1.054 1.049 1.051

N=1000 0.941 1.003 0.998 1.017 1.032 1.026

Population Expected Outcome

d=0.5 d=1 d=2 d=0.5 d=1 d=2

N=300 0.877 0.908 0.956 0.910 0.976 0.989

N=1000 0.905 0.987 0.990 0.975 0.994 0.997
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