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Abstract

A problem for survey datasets is that the data may cone from a selective group of the pop-
ulation. This is hard to produce unbiased and accurate estimates for the entire population.
One way to overcome this problem is to use sample matching.

In sample matching, one draws a sample from the population using a well-defined sampling
mechanism. Next, units in the survey dataset are matched to units in the drawn sample using
some background information. Usually the background information is insufficiently detaild to
enable exact matching, where a unit in the survey dataset is matched to the same unit in the
drawn sample. Instead one usually needs to rely on synthetic methods on matching where a
unit in the survey dataset is matched to a similar unit in the drawn sample.

This study developed several methods in sample matching for categorical data. A selective
panel represents the available completed but biased dataset which used to estimate the target
variable distribution of the population. The result shows that the exact matching is unex-
pectedly performs best among all matching methods, and using a weighted sampling instead
of random sampling has not contributes to increase the accuracy of matching. Although the
predictive mean matching lost the competition against exact matching, with proper adjust-
ment of transforming categorical variables into numerical values would substantial increase the
accuracy of matching. All the matches are used in reducing overfitting of machine learning,
and the results show that all matches are able to increase the prediction precision.
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1 Introduction

In survey sampling, population characteristics can be estimated by using probability sampling

due to the randomization principle which guarantees that each individual of the population has

a known and non-zero selection probability. Therefore, probability sampling can generate unbi-

ased estimates for population quantities. However, if the dataset is gathered from a special group

within the population, the dataset may not be representative which may lead to biased estimates.

A dataset like this is called a selective dataset. For example, an online survey result could be

selective if the target population contains people who are unable to get access to the internet,

and the sample from a specific region could also be selective to estimate the population of the

whole country. A selective dataset can lead to a biased estimate and affect policy decisions. In

order to reduce the selectivity, the sample from the population of a survey should be wide and

representative. The nonresponse problem can also lead to the issue of selectivity. Nonresponse

means that no information is obtained from a number of elements in the sample (Bethlehem, 2015).

Usually, nonresponse can be modeled by assigning a probability of response to every element in the

population based on the background variables (Bethlehem, 2015). However, since the probability

of getting an observation is unknown and the background variables of nonresponding units may

also be missing, it is difficult to model the nonresponse probability based on background variables.

When the nonresponse probability is correlated with background variables, the available feedback

of a survey could result in a very selective group of the population. Hence, it becomes impossible

to produce unbiased and accurate estimates for the entire population.

The best known example of selectivity is the Survivorship Bias, which is the logical error of con-

centrating on the units that passed a certain selection process and overlooking those that did not,

typically because of their lack of visibility. The logical error can lead to false conclusions in several

different ways, which is a form of selection bias. The general idea to overcome the selectivity

issue is to remove the bias during the selection of target units and ensure the selected units are

as representative as possible. This selection process requires that during the collection of research

units, researchers need to take conditions into account that could affect the representation of the

population, like the regional effect, age composition and others. However, if there are only selec-

tive, or biased targets available, one can remove the selectivity through matching. The matching

technique is widely used in clinical research (Chintan, et al., 2017). The majority of clinical studies

are implemented in controlled experiments. In controlled experiments one divides research partic-

ipants into a treated group and a control group; the treated group is treated with treatment and

the control group is left blank or treated with a placebo. The goal of matching is, for every treated

participant, to find one (or more) non-treated participant(s) with similar observable characteristics
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against whom the effect of the treatment can be assessed. By matching treated participants to

similar non-treated participants, matching enables a comparison of outcomes among treated and

non-treated units to estimate the effect of the treatment, thus reducing bias due to confounding.

In the case of removing selectivity, one can match a representative dataset to a selective dataset

based on similar observable characteristics, locate units in the selective dataset which are most

similar to the units in the representative dataset, and use these units for obtaining population

estimates.

Bethlehem (2014) has implemented a pilot study by using the matching method to solve the non-

response problem in a survey. In order to simulate the response distribution, Bethlehem matched

individuals in a group of people who possess high probability of response in the survey with indi-

viduals in a group of people with low probability of response, and asked matched individuals in the

high response rate group to complete the questionnaire instead of the low response individuals. His

simulation study showed that the rate of response substantially shifted to a higher rate through

matching. Following his research, we developed the idea of using matching to remove the selectivity

issue in survey analysis. If a dataset of the research is selective, one can match all units in the

population to the units in the selective dataset to generate a representative dataset, and implement

probability sampling from the representative dataset to estimate the target parameters. However,

matching each unit in the population to the selective dataset is time-consuming; therefore, the

sample matching method is more suitable to solve this problem. The aim of sample matching is

to remove the selectivity in the sample, and to reduce the bias of population estimates. In sample

matching, one draws a sample from the population using a well-defined mechanism. Next, units in

the selective dataset are matched to the units in the sample using background information. Finally,

the sampling weights obtained from the sampling mechanism are used to weight the information

from the selective dataset in order to obtain estimates for population totals.

Why sample matching?

The first question that people might come up with is why use matching to estimate the target

parameters. Usually, building models based on the output variable and predict the population

distribution is a more reliable method, because regression analysis uses the correlation relationship

between background variables and output variables. However, in both regression and machine

learning models, it is assumed that the part of the data that is used to fit the model has the

same distribution as the test set on output variable Y . If the distribution of the output variable

of the training set and test set are different, precision of the model prediction will decrease due

to the bias. If the survey data are collected through a selective dataset, the distribution of the
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output variable will be biased. And if the models are developed through the selective dataset, the

prediction on the test set will be biased. Under this circumstance, if the model was optimized to

have lower loss on the training dataset, it will result in overfitting to the selective dataset. In order

to reduce the overfitting caused by the difference between the distribution of the training set and

the test set, one can use matching to shift the training distribution close to the test set distribution.

There are several methods to reduce overfitting in maching learning in terms of manipulation of

the distribution of dataset. One of the most commonly used methods is data augmentation. The

general idea of data augmentation is to enlarge the frequency of the units which do not very com-

monly appear in the dataset, therefore the dataset will become a large representative dataset which

reduces overfitting. Enlightened by this idea, in the scenario that the training set is selective, one

can shift the distribution of the training set in a similar way to the test set by matching similar

units in the training set to the test set, and train the model based on the adjusted training set.

1.1 Principle of Sample Matching

Sample matching is a two-stage process: first by applying the principle of probability sampling a

random sample is drawn from the population which is called the target sample. The values of the

target variables are missing partly or totally for this target sample. Step two is matching each unit

in the target sample to the selective dataset with outcomes, which is called the panel. In order to

find similar units in the panel, a set of auxiliary variables are required: these variables are known

in both the population and the panel, and are called background variables (Bethlehem, 2015).

Sample matching is to locate units in the panel which are similar to the units from the sample,

generating a matched dataset which can simulate the population distribution (Rivers, 2007).

The key of sample matching is locating the most similar unit in the panel for each unit in the

sample. Therefore the most important step of sample matching is the matching (Rivers, 2007).

Ideally, by sample matching a selective dataset can be shifted to a representative sample of the

population. We assume that the linear correlation between the target variable and background

variables is the same in the population and the panel, thus theoretically by matching the sample

and the panel, we are able to shift the distribution of the target variable to the distribution of the

sample frame (this depends on the quality of the matching). In order to find the most similar unit

in the panel, the background variables are utilized to quantify the similarity between two objects,

the most commonly used measurement method is the use of similarity functions like Euclidean

distance, Manhattan Distance or Cosine similarity. For a numerical dataset, measuring the sim-
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ilarity consists of calculating the distances between units and selecting the unit with minimum

distance. For categorical variables, the usual method is to find the unit which has the maximum

number of background variables with the same category. However, this could results in a huge

number of candidates who possess the same values for the categorical variables. Therefore, de-

veloping methods to quantify the similarity in a categorical dataset is essential for sample matching.

1.2 Matching Methods for Categorical Variables

Rivers (2007) has summarized the general methods for matching: exact matching, proximity match-

ing and propensity score matching. Proximity matching for numerical data is the only method

that has been widely used. However, there are no research works implemented on categorical

datasets. In this study, we will develop several sample matching methods in sample matching with

categorical variables.

In most cases, similarity between units is measured by distance functions like the Euclidean dis-

tance, Manhattan distance, etc. However, calculating distance functions is not viable for cate-

gorical variables datasets, therefore other methods are needed. Exact matching is to match units

with the same values of auxiliary variables, which might appear to be the most suitable method

for categorical variables but has too many limitations. Propensity score matching is to calculate

the propensity scores of all units, and match units which have similar values of propensity score.

Proximity matching is also viable when proper numerical values are assigned to the units and the

distance function can be calculated, which is also known as scaling.

1.3 Research Outline

The goal of this research is to develop sample matching methodology to remove the selectivity of a

categorical dataset, and observe whether sample matching can remove the selectivity phenomenon

in a population estimate. Also, we would like to compare whether the prediction accuracy can be

improved by using sample matching to remove the selectivity of the training dataset. We assume

that the selective dataset is complete on both target variable and background variables. The se-

lected sample is representative but the values of the target variable are missing. Statistically, the

traditional regression method or machine learning can be used to predict the population estimate

for a target variable if the training set of the data is also representative. However, if a selective

dataset is used as the training set of the model, it is believed that the prediction of the model will

be biased. In this research, we will solve this problem by using the sample matching method, and

develop different matching methods for categorical datasets to obtain the population estimate. We

will also try to reduce the prediction bias and improve the prediction accuracy of the model by
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using sample matching to remove the selectivity of the training dataset.

We are interested in how the following factors affect the performance of removing selectivity: (i)

the size of the selective dataset and the population, (ii) the methods of matching, (iii) the methods

of drawing the sample from the population. In this research, we will design and implement an ex-

periment based on these factors, compare the results and select the best combination for removing

the selectivity through sample matching.

The thesis is organized in the following way: Chapter 2 will explain the situation of selectiv-

ity. Chapter 3 will explain the developed matching methods and design of the experiment. The

matching methods include exact matching, proximity matching and propensity score matching. A

comparison of sampling methods (weighted sampling) is also designed and explained in Chapter 3.

In chapter 4, we use sampling matching to reduce the selectivity of the training dataset and test

dataset, build prediction models based on the matched dataset and selective dataset, and compare

the two population estimates to observe whether sampling matching can reduce the prediction bias

due to the selectivity of the training dataset. Chapter 5 will present the comparison of the predic-

tion model and sample matching methods, and also gives the conclusion and discussion of the study.
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2 Removing the Selectivity Problem

2.1 The Selectivity Problem

The selectivity problem can be caused due to several reasons in the survey. Normally, two of the

most common reasons are that the panel data is selective due to different participation of the

population, and the nonresponse problem.

2.1.1 A Selective Panel

In order to study a target feature of the population, conducting survey sampling is often required.

The most effective and economical method for survey sampling is sampling from online information.

However, an online dataset may be selective due to the different possibilities for participating for

different people, which can generate a selective dataset. Most online panels are selective which can

resultf in biased estimates. For example, the result of an online web survey from social applications

like Facebook or Twitter will be selective since the target population through web survey only

covers people who are able to get access to the internet. The composition of the demography is

assumed highly selective on younger aged people; therefore, using an online panel to estimate a

target variable Y can be biased. Assuming that each unit i in the population has an unknown

probability ρi to use the online social application, the expected sample mean of the target variable

is given by

E(ȳ) =
1

n

N∑
i=1

ρiyi, (1)

where yi is the value of the target variable for unit i, N is the population size and n =
∑N
i=1 ρi is

the expected sample size.

If the selectivity problems do not exist, the expected sample mean of a numerical target variable

would be

E(ȳ) =
1

N

N∑
i=1

yi. (2)

It is expected that for different social applications the composition of age would be different. For

example, young students are expected to be the majority users of Facebook, and the majority of

the users of a babysitting website could be middle aged working people; also information from

an old people‘s house is mostly provided by retired old people. The difference is caused by the

different demographic ratio of the dataset, which caused the selectivity of the dataset.

2.1.2 Nonresponse Problem

Another situation which can cause selectivity is the non-response problem. In survey sampling, if

the nonresponse cases are random, it will not affect the distribution which will not cause selectivity.
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However, most of the nonresponse cases are related to several background variables, which can lead

to biased estimates similar to the online survey problem.

Assigning a response probability ri to each unit i of the population, the expected sample mean of

target variable is therefore given by

E(ȳ) =
1

n

N∑
i=1

riyi, (3)

where n =
∑N
i=1 ri.

And if the nonresponse problems do not exist, the expected sample mean of a numerical target

variable would be

E(ȳ) =
1

N

N∑
i=1

yi. (4)

In a nonresponse case, the selectivity is caused by different rates of response for different groups, i.e,

the distribution of the background variables is selective. The difference between the nonresponse

problem and the fundamental problem with a selective panel is that in the nonresponse problem

it is usually known who responded, but it is often unknown who participated in a selective panel.

2.1.3 Bias Caused by Selectivity

In machine learning, the object is to study and construct algorithms that can make predictions on

input data. Such algorithms work by making data-driven predictions through building mathemat-

ical models from input data (Bishop, 2006). The data used to build the final model usually comes

from multiple datasets (James, 2013): training set, validation set and test set. The training set is

the data set that allows one to learn the model and fit parameters, the validation set is used to

tune the hyperparameters of a classifier or regression model. A test dataset is a dataset that is

independent of the training set but follows the same probability distribution as the training set. A

good classifier requires to fit both the training set and test set well, which allows minimal overfit-

ting to take place. Apart from the test set, the prediction of models also assumes that the dataset

of the predictions follows the same probability distribution as the training set. If the distributions

of the training set and test set are different, the trained model will be overfitted to the biased

training dataset and result in biased prediction estimates.

In an online survey case, the available training dataset which is used to fit the models is selective

while we would like obtain an unbiased estimate. In this senario, it is highly likely that the

prediction on the population results in a huge bias due to the fact that the training dataset and

test dataset follow different distributions. In deep learning, data augmentation is used to enlarge

the training dataset in order to enable the training set to cover as many categories as possible. For
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example, in images one can rotate the image, change the lighting conditions to crop it differently. In

this way the training dataset is enlarged and the overfitting of a classifier will be reduced (Gareth,

2013). In our case, we have a selectivity panel, which results in a selective training dataset while

the test set (population) is representative. One can use sample matching to change the distribution

of the training set as closely as possible to the distribution of the test set, and use the matched

dataset as the training set to fit the model. In this way, we remove the difference between the

training and test set distribution, the overfitting will be reduced and the precision of the prediction

is expected to improve.

2.2 Modeling the Bias due to Selectivity
2.2.1 Bias caused by selective panel

Suppose the survey is conducted from a selective panel, the expected mean value of the target

variable is denoted as:

E(ȳ) =
1

n

N∑
i=1

ρiyi, (5)

where N and n =
∑N
i=1 ρi represent the size of the population and expected size of the panel

respectively, ρi represents the probability that the panel covers unit i in the population, and yi

stands for the value of the target variable. In other words,

E(ȳ) =
1

N

N∑
i=1

ρi
ρ̄
yi, (6)

where

ρ̄ =
1

N

N∑
κ=1

ρκ (7)

is the mean of the ρκ over all individuals κ from the population. Bethlehem, Cobben and Schouten

(2011) showed that the bias of the estimate based on the panel is equal to

B =
RY ρSρSY

ρ̄
, (8)

where RY ρ is the correlation between the probability of being covered by the panel and the value of

the target variable (Bethlehem, Cobben and Schouten, 2011). In this case the probability of being

covered by the panel is the probability of using the online social application. SY is the standard

deviation of the target variable Y , and Sρ is the standard deviation of the probability of using

social apps. A number of conclusions can be drawn from the expression of the bias function: The

bias of the estimate will be large if there is a large correlation between the target variable and the

probability of using the social apps. And the bias is small if the probability of being covered by

the panel is large. There will be no bias if there is no correlation between the target variable and

the probability of using social apps.
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2.2.2 Bias caused by nonresponse

Assume that a survey was conducted and there is nonresponse in the survey, the expected mean

value of the target variable is denoted as:

E(ŷ) =
1

n

N∑
i=1

riyi, (9)

where N and n =
∑N
i=1 ri represents the size of the population and panel respectively, ri represents

the probability of response for each unit i in the population, and yi stands for the value of target

variable. That is,

E(ȳ) =
1

N

N∑
i=1

ri
r̄
yi, (10)

where

r̄ =
1

N

N∑
κ=1

rκ, (11)

is the mean of response probabilities over all individuals in the survey population. The bias of the

estimator is equal to:

B =
RY rSrSY

r̄
, (12)

where RY r is the correlation between the value of the target variable and the response probability.

Sr is the standard deviation of the response probabilities and, SY is the standard deviation of the

target variable (Bethlehem, Cobben and Schouten, 2011). From the expression of the bias we come

to the conclusion that the bias is large if the correlation between the target variable and response

probability is large. The bias will be small if the average response rate is large.

Summarizing, in order to reduce the selectivity of a survey from an online dataset, it is essential to

use panels which are as representative as possible. But the problem of selectivity cannot be avoided

since panels always represent part of the population. Another suggestion for panel selection is to

use only panels where participation is hardly related to the target variable.

2.3 Removing Selectivity

The assumption is that the selectivity issue is caused by the skewness of background variables, thus

the main idea of removing the selectivity of the distribution of a target variable is to eliminate the

selectivity caused by the background variables. For example, when the selectivity of the survey

population distribution is caused by the different participation probabilities of the background

variables, say age, one can remove the selectivity by using post stratification. Consider a survey

that studies a population with size N with target variable y and estimates its mean value ŷ from an

online panel, say Facebook for example. The selectivity is caused by the fact that differently aged
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people have different probabilities to use Facebook, say with age category 1, 2, ...C. The distribu-

tion of age in the population is N1, N2...NC . A simple random sample from the Facebook panel

would results in a skewed age group distribution n1, n2...nC which affects the mean estimator. In

order to remove the selectivity in the online panel, one can use post stratification. The population

mean then is estimated by post stratification estimator ŷst = N1

N ŷ1 + N2

N ŷ2 + ... + NC

N ŷC , where

ŷ1, ŷ2...ŷC are the observed mean values in the Facebook panel for age groups 1 to C.

Ideally, by using post stratification the bias caused by background variables is removed (Bethlehem,

2015). However, in real life cases, there could be more than one background variable which caused

the selectivity of the target variable in a selective dataset, and it is also difficult to confirm which

background variable caused the selectivity problem. When there are multiple background variables

affecting the representation of the target variable, it will be difficult to conduct post stratification.

Therefore, post stratification is hard to implement under this circumstance. In order to remove

the selectivity by generating a representative sample from the selective dataset based on known

background variables, one way is to use sample matching. In sample matching, one draws a sample

from the population with a specific mechanism, and matches each unit from the sample to a unit

in the panel based on background variables.

In an online web survey, sample matching is a purposive method to generate a sample when a large

but not representative response dataset is available. Implementation of sample matching requires

two ingredients (Vavreck and Rivers, 2008):

(i) A sampling frame: the sampling frame is required to cover the target population of the survey.

The sampling frame is also required to contain a set of auxiliary variables (background variables)

for each individual. The set of auxiliary variables should also cover the set of auxiliary variables

of the selective dataset.

(ii) A large panel: usually the panel is selective either because of the nonresponse problem or a

selective group of the population participates. The panel contains auxiliary variables which can

be used as background variables for matching, also the value of the target variable is observed for

every unit.

Applying the principle of probability sampling, a sample is selected from the frame. Each unit

in the sample is matched to the most similar unit in the panel based on the auxiliary variables.

The selected units in the panel are used to estimate population quantities (Rivers and Bailey, 2009).
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2.4 Matching Methodology
2.4.1 Exact Matching

The principle of exact matching is simple: find the units in the panel whose values or categories

of background variables are exactly the same as a unit from the sample (Chmura, et al, 2013).

Exact matching is the most precise matching method for categorical variables but highly limited

due to the curse of dimensionality. Exact matching is interesting to study because it is expected

to generate the highest accuracy in sample matching estimation, especially in cases with a small

amount of background variables. Also, when the panel contains only a small number of background

variables, exact matching is viable to implement.

To be able to locate similar units in the panel, a set of auxiliary variables is required. Background

variables in sample matching are used as auxiliary variables, and the values of these variables

should be available in both population and panel. In exact matching, one draws a sample from the

population. Each unit in the sample is matched to the unit in the panel that has the exact same

value. Therefore, the size of the matched set is the same as the sample, the only difference is that

values of the target variable come from the panel. In a situation where for each unit in the sample

there are multiple candidates with the same value as the sample unit, a procedure is needed to

select one unit from the group of similar candidates. One approach is to select a unit at random

from the group.

There are two obvious limitations of exact matching, one is that the exact matching is only viable

for categorical datasets. The second limitation is the curse of dimensionality: the combination

of categories of background variables increase exponentially with the increase of the number of

variables. The huge number of combined categories can lead to numerous blanks in candidates for

the matching.

2.4.2 Proximity Matching

In most cases, exact matching is impossible to implement because of the dimensionality of the

background variables. The matching need not be exact — matching is usually performed using

a distance function that measures the similarity between a pair of respondents — if the pool of

available respondents is sufficiently large and diverse, the matched sample is guaranteed to have

approximately the same joint distribution of the matching variables as the target sample.
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Measuring the similarity based on a distance function is the most commonly used method to find

similar items in data mining. In missing data imputation the measurement of similarity between

two objects in distance hot deck imputation is also based on a distance function. The most pop-

ular method to calculate the distance between categorical variables is to construct a vector and

assign dummy variables to all categories, and the distance between two dummy variables will be

0 if the two units have the same value and 1 otherwise (Chmura, 2013). However, this method of

measurement assumes an equal dissimilarity for each category, which reduces the precision of the

distance function. One method to measure distances for categorical data is scaling the categories

by assigning numerical values to all categories, and calculating the distance based on the numer-

ical values. The advantage of scaling is that the distance function quantifies differences between

categories, which results in more precise matching than obtained by applying dummy variables.

With conventional probability sampling, a simple random sample of size n is drawn from the

population (Y1, Y2, ...Yn) and the population mean can be estimated using

θ̂ =
1

n

n∑
i=1

yi. (13)

n1/2(θ̂ − θ0) ∼ N(0, σ2
0), (14)

σ2
0 = V (Y ) = E(Y − θ0)2. (15)

(Chmura, 2013). In our case, it is easy to draw a sample from the population. Let X1, X2, ...Xn

denote the background variables of the units of such a random sample from the population P , and

for each element of the target sample we find the closest matching element in the panel. If Xi = x,

the index of the closest observation in the panel is denoted by

M(x) = m, (16)

iff

|X̃m − x| ≤ |X̃l − x|, l = 1, 2, ...Npanel, (17)

and let X∗i = X̃m denote the closest match to Xi in the panel, and Y ∗i is the target variable of

the closest match (Chmura, 2013). When the distribution of X̃ is continuous, the closest match is

often unique.

We define the matching estimator θ̃ to be the mean of the matched sample

θ̃ = n−1
n∑
i=1

y∗i . (18)

It is possible to observe how closely Xi matches X∗i . Ideally, if the match is tight, the distribution

of Y ∗i should be close to the distribution of Yi. However, it is not expected that the distribution
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Yi and Y ∗i are highly similar since the conditional variance of Y given X may be large in the panel

and the population (Chmura, et al, 2013).

In our study, as the dataset is composed of categorical data, calculating distances is not viable.

Inspired by Siddique and Belin(2007) and Meulma and Van der Kooij (2013), we combined the pre-

dictive mean matching and optimal scaling regression to calculate the predictive distances between

each units in the dataset. In the following section, this method will be represented by predictive

mean matching via optimal scaling regression. In section 3.4, this method will be introduced in

detail.

2.4.3 Propensity Score Matching

In clinical research, propensity score matching is a technique that attempts to simulate the random

assignment of treatment and control group by matching treated subjects to untreated subjects that

were similarly likely to be in the same group (Rosenbaum and Rubin, 1983). In the case of re-

moving selectivity, one can assign treatment of selectivity to all units in the selective dataset, and

regard the population as the untreated group. For each unit in the untreated group we calculate

the propensity score of being treated, and match the unit to the unit in the treated group with

the most similar value in propensity score.

The estimated propensity score e(xi) for subject i is the conditional probability of being assigned

to a particular group given a vector of observed covariates Xi. In clinical research the units are

assigned to a treatment and a control group. The relevant propensity score on given covariates is

denoted as:

e(xi) = P (Zi = 1|xi), (19)

where Zi = 1 or 0 is used to represent the treatment and control group (Caliendo and Kopeinig,

2008).

Since the propensity is a probability, it ranges in value from 0 to 1. In case of selectivity, we can

use propensity scores to characterize the probability of being assigned to the panel group. For

example, if we assume that younger aged people spend more time on the internet, we have a higher

probability to collect the information of this age demography by means of a web application. If

the panel is selective while the sample is representative, the selectivity of the panel can hopefully

be removed by using propensity score matching.
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3 Methodology

3.1 Variable Selection

D‘Orazio, et al (2006) suggested two main methods for choosing matching variables in terms of

categorical variables: nonparametric measures of association and CART selection.

3.1.1 Categorical Association

A table of nonparametric measures of association is Table 1 (D’Orazio, 2006):

Table 1: Non parametric measurement of association
X measurement scale Y measurement scale Association measure

Nominal Nominal χ2

Φ
Contingency coefficient

Cramer’s V
Uncertainty coefficient

Concentration coefficient
Λ

Ordinal Ordinal Γ
Somer d
Kendall τb
Stuart τc

Ordinal Interval Pearson η
Point biserial (when X is dichotomous)

Interval Interval Pearson‘s correlation coefficient
Spearman rank correlation coefficient

Classical Pearson chi-squared statistic is used to measure the association of categorical variables,

the Pearson chi-squared statistic is denoted as:

χ2 =

l∑
i=1

J∑
j=1

(nij −mij)
2

mij
, (20)

where nij andmij represent the observed and expected cell frequencies of two categorical variables,

i = 1, 2, ...I and j = 1, 2, ...J , where I and J represents the number of categories of two categorical

variables. However, when it comes to the different sample size, the Pearson χ2 is not comparable.

Therefore we are using another statistic Cramer’V, which is normalized by the sample size and the

number of category of two variables:

V =

√
χ2/n

min(I − 1, J − 1)
. (21)
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Cramer’s V has a value between 0 and 1. Usually a value between 0 and 0.25 indicates a weak

association between 2 categorical variables, and a value between 0.25 to 0.35 represents medium

association. If the value is above 0.35 the correlation between variables is considered strong.

The idea of using categorical association is to calculate the value of Cramer’s V for each background

variable and the target variable, and use several background variables with high values of Cramer’s

V for matching. In our study, for operational purposes we will use background variables with

Cramer’s V value over 0.35, which are considered strong correlation between background variables

and target variables.

3.1.2 CART Variable Selection

For the selection of matching variables in statistical matching, classification and regression trees

(CART) are useful when a nonlinear relationship is believed to exist between a univariate Y and

X. It is suggested to select variables that appear in the higher part of the tree which are believed

to have greater explanatory power. CART tree is a method commonly used in data mining. It

is used to assign inputs to a certain category of the target variable based on multiple covariates.

CART algorithm is non-parametric and capable of classifying a categorical target variable without

imposing a parametric structure assumption.

Constructing a decision tree is done top-down by choosing a variable that best splits the set of

the items. In the CART algorithm, Gini impurity is used to measure the homogeneity of the

target variable within the subset. Gini impurity is a measurement of the likelihood of an incorrect

classification of a new instance of a random variable, if that new instance were randomly classified

according to the distribution of class labels from the data set. The definition of Gini impurity is

given as:

IG(P ) =

m∑
i=1

Pi(1− Pi) = 1−
m∑
i=1

P 2
i , (22)

where Pi stands for the probability that event i happened conditional on an event G, and m stands

for the total number of events with condition G. A smaller Gini impurity represents a better clas-

sification of the event.

A smaller value of Gini impurity represents a better classification ability of the background vari-

ables towards the target variable. As all variables in our experiment are categorical, following the

guidance of D‘Ozario, et al, we use the CART method to select the background variables for the

matching. The matching variable selection by CART is implemented as follows,
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•Build a classification tree using the panel with the output variable Y as the response and the

others as explanatory variables, list the order of explanatory variables from the top to the bottom

of the tree, and select the first 4 to 5 variables as important variables for the matching nad further

steps.

3.2 Weighted Sampling

A commonly applied correction technique to remove bias is weighting adjustment, which assigns an

adjustment weight to each survey respondent. Units in under-represented groups receive a higher

weight and units in the groups that are over-represented receive a lower weight. In the compu-

tation of an estimate, not just the values of the variables are used, but also the survey weights.

In sample matching, in order to use as much information as possible from the panel, the sample

should probably resemble the panel as much as possible so that it is relatively easy to match a unit

from the sample to a similar unit in the panel. Therefore, in the sample step we draw a weighted

sample from the population rather than a simple random sample.

In our study, we would like to compare the matching results of a weighted sample with a simple

random sample. Suppose N represents the total number of units in the population, and Npanel

is the number of total units in the panel. Let Nc stands for the number of category c in the

population and Npanel,c is the number of category c in the panel. In simple random sampling, the

probability of being sampled for each unit i from the population is Pi = n/N , where n stands for

the sample size. However, in weighted sampling we first define the sampling weight for category c

based on the panel:

wc =
Nc ∗Npanel
n ∗Npanel,c

. (23)

Therefore, for each unit in the population with category c, sampling weight wc is assigned. The

sampling probability for units with category c in the population is then

Pc =
n ∗Npanel,c
Nc ∗Npanel

. (24)

We use the sampling probabilities to generate a weighted sample with total units n from the pop-

ulation. In practice, we draw a sample with each categories number equals to n ∗Npanel,i/Npanel.

After generating the weighted sample, units in the sample are matched to the units in the panel.

Theoretically, one can use all background variables to generate a weighted sample. However, it is

difficult in practice when there are too many combinations of categories in background variables.

In order to use the maximum information from the panel, one could draw a weighted sample from
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the population by using only a few background variables. Weighting adjustment assigns an adjust-

ment weight to each survey unit. During the computation of the statistics, the weights are used

to estimate the population statistics.

3.3 Exact Matching on Categorical Variables

Suppose datasets D1 and D2 have the population size N1 and N2 respectively, and have the same

background variables X1, X2, ...XK (where K stands for the number of background variables), the

procedure of exact matching is that for each unit di1 in dataset D1, we find the matches in dataset

D2 such that each background variable has the same category or value, which is denoted by

M(di1) = dj2, (25)

iff

xi11 = xj21, xi12 = xj22, ...xi1K = xj2K , (26)

j = 1, 2, ...N2 (27)

(Rivers, 2007). In most cases, the exact matching method can generate multiple candidates for

each unit in dataset D1, all matches for unit di1 possess the exact same values or categories on all

background variables. Multiple candidates for unit di1 form the candidate set Ci which contains

all units in dataset D2 which have the same values on background variables as unit di1. In order

to match all units from D1 to D2, for each candidate set Ci, randomly select one unit as the match

for the unit di1 in dataset D1 to form the match setM . In our study, the online panel is considered

as dataset D1 and the sample is regarded as D2. The match set M is generated by using exact

matching and other matching methods introduced as following. The estimation of matching is

introduced in section 3.7.1, and the results of all matching methods is compared.

3.4 Predictive Mean Matching with Optimal Scaling Regression

Predictive mean matching (PMM) is an attractive way for multiple imputation in a dataset with

missing values, especially for quantitative variables that are not normally distributed (Allison,

2015). In the sample matching case, we combine the sample and the panel to generate a new

dataset, with missing values on output variable Y . Due to the situation that the output variable

Y as unknown in the sample but exist in the panel, the combined dataset contain missing values

on output variable Y . Therefore, we can implement PMM to match the sample and the panel.
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The procedure of PMM which used in our study is inspired by Allison (2015), with the following

procedure:

•For cases with no missing values, estimate a linear regression model of Y on X, producing a set

of coefficients β

• Predict the outcome variable Y with coefficients β for all units in the dataset, including units

with missing values and without missing values as Ŷ .

• For each unit with a missing value on outcome variable Y (sample), identify a group of cases

with observed Y whose predictive values Ŷ are closest to the predicted value of the missing unit.

Among those closest cases, randomly select one unit as the matching and form the matched set

M .

PMM uses linear regression to construct a metric for matching cases with missing data to similar

cases with observed data. However, for a categorical dataset, it is impossible to build a linear

relationship between background variables X and target variable Y . In this circumstance, optimal

scaling regression can be considered to build the regression model for predicting the measure

metrics. In the case of sample matching, Y denotes the target variable and X denotes the vector

of background variables. Because all variables are categorical, it is hard to assume the distribution

and construct linear models. In optimal scaling regression, categorical variables are transformed

into numerical values by creating indicator functions (Meulman and Van der Kooij, 2016). Outcome

variable Y is transformed into qy and each background variable xj is transformed into qj , the

optimal scaling regression model is:

ϑ(y) =

K∑
j=1

βjϕj(xj) + e. (28)

We use qj to denote the numerical value of transformation function ϕ(xj) of background variable

Xj , qj is obtained by the multiplication of an indicator matrix Gj which indicates the categories

and a quantification vector vj which contains the numerical values of all categories for variable Xj

(Meulman and Van der Kooij, 2016). In order to avoid confusion, in this part Xj stands for the j

column of background variable X, xj stands for a vector of Xj , and xij is the ith value in vector

xj . Elements of indicator Gj for variable Xj are defined by the following rules (Meulman and Van

der Kooij, 2016): gjik = 1 if xij = k, and gjik = 0 otherwise (k = 1, ..., Cj , i = 1, ...N). The indicator

matrix uses a dummy variable indicating category. Eg, suppose the variable Xj has 4 categories

1, 2, 3, 4. Given one small part of the dataset with xj = [1, 4, 3, 4, 2], we use an indicator matrix
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Gj to represent xj (Meulman and Van der Kooij, 2016):

xj =


1
4
3
4
2

⇒ Gj =


1 0 0 0
0 0 0 1
0 0 1 0
0 0 0 1
0 1 0 0

 . (29)

The quantification vector vj is denoted as vj = [vj1, vj2, vj3, vj4], which assigns categorical values in

xj a numerical value vj . Therefore, the result of the transformed variable is denoted as qj = Gjvj

for background variables and ϑ(y) = Gyvy for the target variable. Function (30) gives an example

of the quantification transformation of a vector xj for variable Xj .

xj =


1
4
3
4
2

⇒ Gjvj =


1 0 0 0
0 0 0 1
0 0 1 0
0 0 0 1
0 1 0 0

×

vj1
vj2
vj3
vj4

 = qj =


vj1
vj4
vj3
vj4
vj2

 . (30)

In optimal scaling regression, all values of the categorical variables Y and X are all represented

by numerical transformation vectors v and indicator matrix G. The regression equation is ϑ(y) =∑N
j=1 βjGjvj . In order to quantify the goodness of transformation and regression, we define the

residual sum of squares
∑n
i=1(ϑ(yi) −

∑
βjGijvij)

2 which is the sum over all observations as the

loss function of the optimal scaling regression, which is written as

L(β, ϕ, ϑ) = ||ϑ(y)−
K∑
j=1

βkGjvj ||2. (31)

where ϑ(y) represents the transformation of target variables Y , and Gjvj represents the numerical

transformation of the categorical variable Xj , K represents the dimension of the background vari-

ables. Furthermore, the transformation ignores the ordinal information of categories, we call this

transformation a non-monotonic function. In summary, the transformation function ϕ(xj) = Gjvj

is a non-monotonic step function. The loss function can also be written as

L(β, ϕ, ϑ) = ||ϑ(y)−
K∑
j=1

βjϕ(xj)||2. (32)

The loss function has to be minimized by finding optimal parameters β = βj for j = 1, 2...K and

the optimal numerical quantification vij for j = 1, 2...K. After finding the values of vij , each

category of the variables will be assigned a numerical value. The proximity between units can be

calculated through the numerical transformation of categorical variables.

3.4.1 Ordinal and Nominal Transformation

By using the transformation ϕ(xj) = Gjvj we assume that the categorical variables are all nominal

variables, where we merely maintain the classification information in the quantified variable Gjvj .
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If two units a and b belong to the same category of variable j, the transformed information is:

xa,j = xb,j ⇒ ϕ(xa,j) = ϕ(xb,j). (33)

If a categorical background variable is ordered, the variable is a ordinal variable. The order

information should be preserved during the numerical transformation:

xa,j < xb,j ⇒ ϕ(xa,j) < ϕ(xb,j). (34)

The order information is preserved by restricting the ordinal quantifications in vj so that

xa,j < xb,j ⇒ va,j < vb,j . (35)

We define a ordinal transformation function ϕord(xj) to transform categorical variable xj to nu-

merical values, this function maintaines the ordinal information between categorical variables. In

the following algorithms we introduce one method to maintain the ordinal information during the

transformation. During the implementation of optimal scaling regression, we use the optimal scal-

ing regression function in SPSS. SPSS contains several ordinal transformation functions ϕord(xj).

3.4.2 Regression Weights and Transformation Parameters

The regression parameters βj(j = 1, 2, ...K) and quantification vectors vj(j = 1, 2, ...K) are found

by minimizing the loss function L(β, ϕ, ϑ) = ||ϑ(y) −
∑K
j=1 βjGjvj ||2. In order to find the value

for each ϕ(xj) = Gjvj , we separate a variable and its parameter β from the linear combination of

predictors, isolating the current target part βjϕj from the remainder, denoted as
∑
l 6=j βlϕl(xl).

This method is called the blocking method. The loss function can be rewritten as

L(β, ϕ, ϑ) = ||ϑ(y)−
∑
l 6=j

βlϕl(xl)− βjϕj(xj)||2. (36)

We then define an auxiliary variable uj :

uj = ϑ(y)−
∑
l 6=j

βlϕl(xl), (37)

thus uk is the partial residual. Next, the loss function is denoted as

L(βj , ϕj , ϑ) = ||uj − βjϕj(xj)||2, (38)

which is a function of βj and ϕj only. By minimizing the function (36) the optimum value of quan-

tification and regression parameters can be found. The standardization of the transformed variable

ϕj(xj) allows us to compute the regression parameters βj separately from the transformation. The

current value of the regression parameter βj is

β̂j = uTj ϕj(xj). (39)
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Next, the loss function (36) is minimized over all ϕj ∈ Cj(xj) where Cj(xj) stands for the set of

all categorical variables. Updating all βs is one iteration cycle, the loss function will be optimized

by multiple iterations.

The estimation algorithm of nominal transformation is implemented as follows:

Algorithm 1 Nominal Transformation
1. Initialize β and vj by randomly assigning numbers between 0 to 1, compute Gj based on
predictors xj for each predictor variable. Define the maximum number of iterations (maxiter)
and minimum decrease in loss per iteration (crititer).
2. Determine current loss (=SSres = ||ϑ(y)−

∑K
j=1 βjGjvj ||2). Set iteration i = 1, set j = 1.

3. For variable xj , define auxiliary variable:

uj = y −
∑
l 6=j

βlGlvl. (40)

4. Minimize
||uj − βjGjvj ||2, (41)

over quantification vj , giving
ṽj = (βj)D

−1
j GTj uj , (42)

where Dj = GTj Gj .
5. Standardize

vj = N1/2ṽj(ṽTj Dj ṽj)
1/2, (43)

so that vTj Djvj = N , where N is the number of total units.
6. Fix quantification vj and update regression coefficient

β̃j = N−1(Gjvj)
Tuj . (44)

Repeat step 3 to 6 for all K predictor variables, with j = 2...M . After one cycle of updating βj
and vj , calculate the loss SSres = ||ϑ(y)−

∑P
j=1 βjGjvj ||2

7. Check whether SSresbefore
− SSresafter

≤ critier, and i ≤ maxiter:
if true, set i = i+ 1, set j = 1 and repeat steps 3 to 7;
if false, stop the algorithm.

For an ordinal transformation, different from the nominal transformation, the ordinal information

of all categorical variables are maintained during the transformation. The algorithm of ordinal

step quantification is illustrated as below:
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Algorithm 2 Nominal Transformation
1.Initialize β and vj by randomly assigning numbers between 0 to 1, compute Gj based on
predictors xj for each predictor variable. Define the maximum number of iterations (maxiter)
and minimum decrease in loss per iteration (crititer).
2. Determine current loss (SSres = ||ϑ(y)−

∑K
j=1 βjGjvj ||2). Set iteration i = 1, set j = 1.

3. For variable xj , define auxiliary variable:

uj = y −
∑
l 6=j

βlGlvl. (45)

4. Minimize
||uj − βjGjvj ||2, (46)

over quantification vj , giving
ṽj = (βj)D

−1
j GTj uj , (47)

where Dj = GTj Gj .
5. Standardize

vj = N1/2ṽj(ṽTj Dj ṽj)
1/2, (48)

so that vTj Djvj = N , where N is the number of total units.
6. Check the ordinal information: compute the weighted average of quantification that are in
the wrong order, assign the average quantification values to the incorrectly ordered categories.
E.g. if xaj > xbj but the transformed numerical value vaj < vbj , assign the average value
ϕ(xaj) = ϕ(xbj) =

vaj+vbj
2 .

7. Fix quantification vj and update regression coefficient

β̃j = N−1(Gjvj)
Tuj . (49)

Repeat step 3 to 7 for all K predictor variables, with j = 1...K. After one cycle of updating βj
and vj , calculate the loss SSres = ||ϑ(y)−

∑P
j=1 βjGjvj ||2

8. Check whether SSresbefore
− SSresafter

≤ critier, and i ≤ maxiter:
if true, set i = i+ 1, set j = 1 and repeat steps 3 to 8;
if false, stop the algorithm.

The optimal scaling regression is used on the panel to construct numerical transformation for

all categorical variables, and obtain the prediction function ϑ(y) =
∑K
j=1 βjϕj(xj) + e. After the

numerical transformation, all categorical variables in both sample and panel are assigned numerical

values based on the transformation, and predictive outcome variable Ŷ are calculated based on the

prediction function. Finally, we are able to use PMM method to match the panel to the sample,

with whose steps are introduced above.
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3.5 Propensity Score Matching

Propensity scores matching (PSM) is an alternative method to estimate the effect of receiving a

treatment when the treatment to a subject cannot be applied, by pairing the treated and untreated

units with similar values on the propensity score. The matched untreated units can be used to

estimate the effectiveness of the treatment. In sample matching, the treatment and control can be

regarded as the units in the sample, respectively the panel.

3.5.1 Calculating Propensity Score

There are two general methods to calculate the propensity score: logistic regression and CART

(D’Agostino, 1998). Logistic regression is most widely used to estimate propensity scores. Several

adjusted methods to estimate propensity scores such as bagged CART, boosted CART and random

forest are introduced to improve the propensity score matching.

Logistic regression is the most commonly used method for estimating propensity scores. It is a

model to predict the probability that an event occurs.

log
exi

1− exi
= log

P (zi = 1|xi)
1− P (zi = 1|xi)

= α+ βTxi, (50)

Where xi denotes the value of background variable X. In logistic regression, the dependent variable

is binary, zi = 1 represents the treatment and zi = 0 stands for the control. In sample matching,

we define zi = 1 for a unit from the panel and zi = 0 for a unit from the sample.

CART represents a promising alternative to conventional logistic regression for propensity score

estimation. CART does not make any assumptions towards the distribution of the explanatory

variables, nor does it assume a linear relationship between the treatment and covariates. There

are several approaches to improve the estimation of propensity scores based on CART including

boosted CART, random forest and bagged CART.

In this study, the following methods are used to estimate the propensity scores:

• Logistic regression: standard logistic regression with a main effect for each covariate.

• CART: recursive partitioning using the rpart package with default parameters.

• Bagged CART: bootstrap aggregated CART is implemented using the ipred package. We used

multiple bootstrap replicates based on empirical evidence suggesting that with more replicates,

misclassification rates improve and test errors are more stable.

• Random forests: random forests are implemented using the randomForest package with the
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default parameters.

• Boosted CART: boosted regression trees are implemented using the twang package. We used the

parameters recommended by McCaffrey et al., with 20, 000 iterations and a shrinkage parameter

of 0.0005, with an iteration stopping point that minimizes the mean of the Kolmogorov-Smirnov

test statistic.

3.5.2 Adjustment for Propensity Score Matching

Propensity score matching tries to find 1 (or more) individual(s) with a similar propensity score

in the treatment and control groups. There are various methods to match individuals. Once

researchers obtain estimated propensity scores, proper matching techniques can be applied. The

basic method is a 1:1 nearest neighborhood matching, while many of the matching methods incor-

porate the caliper method to improve the quality of matching (Caliendo and Kopeinig, 2008).

• Nearest Neighborhood Matching

In nearest neighborhood matching, the units from the control group are matched with T units

from the treated group with the minimum difference on propensity score. In this method, the

absolute difference between the estimated propensity scores for the control and treatment groups

is minimized.

C(Pi) = minj |Pi − Pj |, (51)

where C(Pi) represents control subject j matched to treated subject i (on the estimated propen-

sity score), Pi is the estimated propensity score for the treated subject i and Pj is the estimated

propensity score for the control subject j.

• Caliper Matching

A pre-determined range of values e is defined usually within one-quarter of the standard error

(0.25s) of the estimated propensity scores, matched units that fall outside of that range are removed:

|Pi − Pj | < e, (52)

where Pi and Pj represent the estimated propensity score of the control and treated subject i

and j, e is the pre-determined value. The caliper matching can also be combined with nearest

neighborhood matching, by selecting nearest neighborhoods with a limited difference in estimated

propensity score.

After calculating the propensity scores of all units, we can match all units in the sample to the

units in the panel to form the matching set M, and estimate the matching results based on the
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methods introduced in section 3.7.

As there are no previous studies on PSM in sample matching, this method is not expected to be

more precise than the other two methods. We regarding the PSM as an explorative matching

method. If the performance of PSM is not substantially performs better than other methods, we

wouldn’t recommend PSM in sample matching.

3.6 Reducing Bias for Random Forest

Random forest is an ensemble method for classification that constructs multiple decision trees at

training time and outputs the class that is the mode of the classification of the individual trees.

Random forest is a modified bagging method which selects a random subset of features as the

candidates split in the learning process. Due to the random selection of both the features and

training set, the algorithm itself is able to reduce overfitting and have high prediction precision.

In the cases that a selective panel is available, the training model would be easily overfitted due

to the selectivity of the training set, which could cause a large prediction bias on the prediction

dataset. In this situation, we will use the sample matching method to remove the selectivity of the

available training panel, and use the matched dataset to train the model to predict the represen-

tative population dataset. (Hastie, Tibshirani and Friedman, 2009)

Three methods of sample matching will be implemented to generate matched datasets, here repre-

sented by Ms along with and without weighted sampling, therefore we obtain 6 Ms in total. We

assume that the selectivity in the matched set has been removed by sample matching, and use the

newly generated matched sets as training sets to train the prediction models. Random forest is

used to train the model, and we use all models to predict the distribution on the representative

population dataset. The results of prediction with and without sample matching will be compared.

It is expected that prediction models with sample matching will substantially increase the accuracy

and reduce the bias of the estimate.

3.7 Experimental Design
3.7.1 Population Estimate

The aim of this study is to find out the best sample matching method which can remove the

selectivity in the panel and reduce bias of population estimates. In this study, we will estimate

the probability distribution of outcome variable "Economical Status". For each category c in the

target variable Y , the estimate is defined as

p̂c =
nc
n
, (53)
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where nc standards for the number of category c in the match and n is the total number of units of

the matched dataset. The estimate by sample matching is compared with the true distribution of

the population, which represents by the value of the proportion of each category of target variable

pc:

pc =
Nc
N
, (54)

Nc stands for the number of units for category c in the population, and N is the population size.

To measure the accuracy of each match, we use a sum of square difference (SSD) to measure the

difference between the population and matches. The SSD of the population estimate is defined as

SSD =
1

n

C∑
c=1

((pc − p̂c)2), (55)

where C is the number of categories of the target variable, pc represents the proportion of category

c in the population, and p̂c is the proportion of category c in the match.

In weighted sampling, the calculation of the population estimate is different from the estimate

with random sampling. As we assign a sampling weight to each unit in the population (calculation

of sampling weights and sampling probability as given in function (23) and (24)), the population

estimate of weighted sampling is

p̂c =

∑
k∈sc wk∑N
k=1 wk

, (56)

where wk is the sampling weight of category k, and si is the set of units in the matched dataset

with category i and q represents all background variables category. The SSD of weighted sampling

is the same as random sampling in function (55). In the following experiments, each match of the

methods will estimate the frequency distribution of the population, and SSD will be used to assess

the matching quality.

3.7.2 Design of the Experiment

The performance of the sample matching methods are measured under a factorial experiment design

of several factors: the size of the sample and panel, the different methods of matching and sampling.

Size of the sample and panel: In order to investigate the effect of the size of sample and the

panel, different size of the samples and panels are generated from the population. For the sample,

7 different sample sizes are generated from the population (0.5%, 1%, 2%, 3%, 5%, 10%). Selective

panels of three different sizes (5%, 10%, 20%) are generated.

Matching methods: All three matching methods will be implemented based on the different sizes

of samples and panels. In PMM, ordinal transformation and nominal transformation have been
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implemented and compared. For the propensity score matching, different methods of calculating

and adjusting the propensity scores have been implemented, and the results of these methods are

compared. The results of three matching methods are compared and the best matching method

based on the results is selected.

Method of sampling: There are two ways of sampling in the experiment: simple random sam-

pling from the population and weighted sampling based on two background variables. The methods

of selecting the background variables include CART and categorical "correlation". It is expected

that the result of weighted sampling will perform better than simple random sampling.

SSD assessment: For each method in section 3, the results of the matching will be assessed by

means of the sum of squared differences, see (55).

The experimental procedure is implemented as follows:

• For each size of the panel (5%, 10% and 20% of the population size), calculate the Cramer’s

V and Gini impurity of each background variable towards the target variable, choose the two

background variables with the lowest value of Gini impurity and highest value of Cramer’s V as

the background variables for weighted sampling. If variables are selected by Cramer’s V and Gini

impurity are different, the experiment is implemented on both of the two groups. Draw a series of

random samples and weighted samples with size from 0.5% to 10% from the population.

• For each group of the panel and its samples, 3 methods of matching are implemented to estimate

the distribution of the target variable.

• Estimate the SSD of matching, the values will be compared for different methods of matching,

different methods of sampling and different sizes of samples and panels.

3.7.3 Implementation of Exact matching

The implementation of exact matching is relatively simple: For each panel, draw a series of differ-

ently sized samples and match each unit in each sample to the units from the panel.

• For each panel, draw a series of samples with simple random sampling and weighted sampling

from the population.

• Start the matching with one background variable with the highest value of Carmer‘s V and lowest

value of Gini impurity. For units in each sample, match each unit to the units in the panel with

exactly the same values of background variables. If there are multiple candidates, randomly select
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one unit from the multiple candidates as the match.

• Add one background variable with the second highest value of Cramer’s V and lowest value of

Gini impurity. Conduct multiple exact matches by increasing the number of background variables.

The matches in the panel are used to estimate the population distribution, SSD is calculated to

measure the matching.

3.7.4 Implementation of Predictive Mean Matching

The procedure of implementing the scaling PMM as follows:

• For each panel, conduct the optimal scaling regression of the outcome variable towards back-

ground variables; both for ordinal and nominal levels of scaling using the panel. Each category of

the background variables will be transformed into a numerical value which can be used to calculate

the distance between units.

• Assign the transformed numerical values to both the background variables in the sample and the

panel.

• Predict the numerical values of the outcome variable with the optimal scaling regression model

and the relevant numerical values of each unit in both the sample and the panel.

• The predictive mean matching: match each unit in the sample to one unit in the panel, based

on the predicted outcome Ŷ .

• The matches in the panel are used to estimate the population distribution of the target variable.

SSD is calculated for the assessment.

3.7.5 Implementing Propensity Score Matching

The procedure of the propensity score matching is implemented as follows:

• For each panel, generate a series of samples of different sizes (0.5%, 1%, 2%, 3%, 5%, 10%), merge

the panel and the sample in one dataset.

• Calculate the propensity score of each unit in the new dataset with different methods: logistic

regression, CART and adjusted CART (boosted CART, random forest).

• Once the estimated propensity scores are calculated, the units in the panel are matched to the

units that have the same or similar propensity scores, the matching follows a 1-to-1 match. The

unmatched subjects are discarded from the analysis.

• Use the matches in the panel to estimate the population distribution, SSD is used as the assess-

ment
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3.7.6 Comparison of Sampling

Apart for the size of samples, the size of panels and matching methods, the method of sampling

is another factor which could affect the result of removing selectivity. The weighted sampling is

a well-defined sampling mechanism by first determining the sampling probabilities of population

units, and drawing a sample from the population based on their sampling probabilities. After

matching with the panel, the population estimate is weighted by using the sampling weights (i.e.

the inverse of the sampling probabilities) obtained from the sampling mechanism.

The procedure of weighted sampling can be implemented as follow:

• Determine the sampling probabilities based on the selected background variables.

• Conduct probability sampling using the assigned sampling probabilities to generate a series of

samples of different sizes.

• Use weighted samples for the matching, test all matching methods with different weighted sam-

ples to generate the matched datasets.

• Estimate the population distribution with the matches and the sampling weights, the estimates

are weighted by the sampling weights.

3.7.7 Increase Prediction Accuracy with Sample Matching

In order to validate our assumption that when a model is developed by using a representative

matched training set which is similar to the prediction dataset, this could substantially increase

the prediction accuracy, we develop 3 sets of random forest models: models trained by using the

original selective dataset, by using matched datasets obtained by random sampling and obtained

by weighted sampling. Three sets of models are tested on the same representative prediction set

and the SSD of predictions is calculated. The general procedure is implemented as follows:

• Generate differently sized selective panels from the whole dataset (5%, 10%, 20%), build random

forest models based on all these selective datasets and set the group of models as RF1.

• For each panel, generate a series of random samples of different sizes (0.5%, 1%, 2%, 3%, 5%, 10%).

For each sample, use 3 different matching methods to match the units in the panel and generate

the matched datasets. Random forest is used to build prediction models based on these matched

datasets, set the group of models as RF2

• For each panel, generate a series of weighted samples of different sizes (0.5%, 1%, 2%, 3%, 5%, 10%)

by using the best variable combination (lowest value on SSD in 3.6.5). For each sample, use 3
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matching methods to match the units in the panel and generate the matched datasets. Use random

forest to build prediction models based on the matched datasts and set the group of models as

RF3.

• Use the three groups of models RF1, RF2 and RF3 to predict the target variable for the test set,

calculate the SSD of all the prediction estimates and compare the results of the SSD.
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4 Results

The results of the sample matching methods introduced so far are shown in this chapter. Methods

of sample matching will include exact matching, scaled predictive mean matching and propensity

score matching. All matching methods will be tested combined with simple random sampling and

weighted sampling. The results of random forest prediction based on a selective dataset and a

matched dataset are also interpreted in this chapter.

The results of the experiments will be presented in the following order: the first part will introduce

the dataset, give a description of selective panels and the scenario. In the second part, the results

of variable selection will be shown. Here we use the Cramer’s V value to choose the background

variables for weighted sampling, and use the CART method to choose the matching variables.

The third part will show the results of matching methods together with different methods of sam-

pling. The SSD will be used to measure the results and the results will be shown by line graphs.

In order to observe the variation of the methods, each experiment will be replicated 100 times

and the variance of SSD will be calculated. Due to the different procedures of matching meth-

ods, the replications of the experiments are also distinguished: In exact matching and propensity

score matching, the experiments are duplicated by generating different samples for the matching

and calculating propensity scores. For scaled predictive mean matching, the duplication will be

implemented by generating different samples and multiple coefficients β based on the variance of β.

Lastly, we will compare the random forest prediction with a selective dataset and a matched

dataset. The matched dataset is generated with the best sample matching methods which produce

the minimum value of SSD. Random forest models will be developed on the selective panel and

matches, and will be used to predict the outcome variable. The results are also measured in SSD.

The details are explained in the following sections.

4.1 Dataset, panel and variable selection

The dataset used in this study is the Dutch Population Census of 2001 provided by Statistics

Netherlands. The dataset contains data on 1% of the Dutch population. The data is freely avail-

able for researchers. The data contains 190,000 individuals of the Dutch population, with 13

categorical variables. Apart for the last variable “weight”, all other variables are used in the study.

The variables contain information on gender, age, position in the household, size of the household,

residential area, nationality, country of birth, educational level, economical status, occupation,

working field and marital status. The chosen target variable is Economical status. The details of
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the dataset can be found in Appendix I.

4.1.1 Population and Panel

The first step of the experiment is to generate the population dataset and panel dataset. The

population dataset is generated by sampling 60,000 units from the 190,000 units from the original

dataset, with the population distribution of target variable "Economical status" given by:

Figure 1: Population Distribution of Economic Status

Table 2: Population distribution of Economical Status
Categories Employee Student Independent Unemployed Edu-related Retired Housewife Others

Index 111 112 120 210 221 222 223 224
Frequencies 0.452 0.027 0.036 0.014 0.157 0.102 0.093 0.117

The majority of units has the category "Employee" which contains approximately 45%, the unem-

ployed demography contains approximately 14.25%. In the panel dataset, we generate a selective

panel with lower percentage of employed units and higher percentage of unemployed units.

36



In order to observe the panel size effect towards the matching, 3 selective panels are generated by

stratified sampling from the rest of the orginal dataset with 20,000, 40,000 and 60,000 units. In

the selective panel the percentage of employment declines to 36% and unemployment increases to

20%. All fractions of other categories increase or decrease differently, the details of compositions

of the panels are shown in Table 3 (From Panel 1 to Panel 3).

Table 3: Panel distribution of Economival status
Employee Student Independent Unemployed Edu-related Retired Housewife Others
0.369 0.0223 0.030 0.019 0.129 0.141 0.126 0.162
0.369 0.023 0.029 0.019 0.128 0.142 0.129 0.162
0.368 0.023 0.029 0.019 0.129 0.141 0.128 0.162

4.1.2 Variable Selection

The variable selection in this study consists of two parts: choosing background variables for

weighted sampling and choosing variables for matching. In the simulation, the value of target

variable "Economical Status" is only available in the panels but unknown for the rest of the pop-

ulation. The Cramer’s V values and Gini values are calculated from the panel and the results

are shown in Appendix II. Based on the Cramer’s V value, background variables which are highly

correlated are Age, Educational level, Occupation, Working field and Matrital status. However,

for the CART results, the important variables are different with the change of panel size. Based on

the result, we found variable "Age" and "Occupation" always appear in a high position of the tree

and have a high Cramer’s V value simultaneously, therefore we use these two variables to conduct

weighted sampling. As for the matching variables, due to the unstable results of the CART, we use

the backgroung variables which selected by Cramer‘s V value, therefore variable age, occupation,

educational level and working field.

4.2 SSD and matches

The SSD of the estimates of all methods are compared under each experimental condition. In exact

matching, at most 3 background variables are used for matching due to the curse of dimensional-

ity. In PMM, SSD under ordinal and nominal scaling levels are compared. For propensity score

matching, the ratio of the sample size and panel size are compared because the different sizes of

panels and samples could affect the propensity scores. All methods are compared under different

sizes of panels and samples.
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4.2.1 Results of Exact Matching

Figure 2 gives the comparison of the panel size and sample size effect for groups of background

variables, Table 4 gives the index of background variables combinations. Results of exact matching

are shown for different groups of background variables. The used background variables in exact

matching include age, occupation, working field and education level, with 7 groups of combinations.

In general, factors that are most obvious for exact matching are background variables, panel size

and methods of sampling. SSD of all matches have not shown substantial differences with the

increase of sample size, but has substantial variation with the size of the panel. In all groups, the

sample size shows an unstable and chaotic effect towards the matching, while the effect of panel

size seems to be more obvious. In most groups the SSD of exact matching tends to be lower with

a larger panel size, the results are obvious in group 2, 3, 4, and 7. In COMB2, the SSD of panel1

and panel2 are around 0.017 while it dropped to 0.001 for panel3. In group 3, 4, and 7, SSD

showed a substantial decrease when the panel size goes to 40,000 (panel2), as shown in the graphs.

In other groups, although the SSD does not show a substantial decrease with the increase of the

panel size, one can observe that in most cases, SSD slightly decreases as we enlarge the panel size.

This phenomenon shows that in order to obtain a better result for exact matching, the size of

the panel should approximately be equal to the population size. While a larger panel could be

helpful for a better matching, the effect might not as substantial as the factor of combination of

background variables and sampling method. Furthermore, influencing the panel size is difficult or

even impossible in most cases, it is suggested that focusing on the influence of background variables

and sampling methods could increase the matching accuracy in exact matching.

Table 4: Background variables combinations
COMB1 Educational level, Working field
COMB2 Age, Educational level
COMB3 Age, Working field
COMB4 Age, Working field, Educational level
COMB5 Age, Occupation, Educational level
COMB6 Age, Occupation
COMB7 Age, Working field, Occupation
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(a) SSD of COMB1 (b) SSD of COMB2, Educational

(c) SSD of COMB3, (d) SSD of COMB4

(e) SSD of COMB5, (f) SSD of COMB6

(g) SSD of COMB7

Figure 2: SSD of exact matching with random sampling

The most obvious factor that affects the matching in this experiment is the background variables.

39



As the results show, an enormous difference can be observed between different combinations of

background variables. A large panel size will lead to a better matching result with lower SSD but

a suitable panel size is different when using different background variables. As Figure 3 shows, in

group 2, 3, 4, and 7, the effect of the panel size turns out to be more substantial than for other

combinations. Therefore finding the best combination of background variables is essential for re-

ducing SSD in exact matching. As a larger panel is helpful in reducing the SSD, in the graph the

SSD for all combinations of background variables with the largest panel is shown. Results of the

graph show that the best combinations of background variables are group 6 (age and working field)

and group 7 (age with occupation). The SSD of these groups declined to around 8∗10−5. The SSD

of combinations 2, 3 and 4 are between 0.001 to 0.002, while combination 1 has a value around

0.005. The worst case among all groups is combination 5 whose SSD values are around 0.009,

which is much higher than for other groups. When variable age is included as matching variable,

the matching result outperforms all other combinations without age. The best combination of

background variables in exact matching is age and working field or age and occupation. However,

if all three background variables are used (age, occupation and working field), the SSD of increases,

which indicates a worse combination of background variables. This could be caused by the curse of

dimensionality. As variable age has 17 categories, while occupation and working field have 9 and 13

categories respectively, there are total 64 combined categories available in the dataset (Due to the

curse of dimensionality, several combinations of these categories do not exist. The total number

of combinations is 64 instead of 17× 9× 13). Therefore the curse of dimensionality decreased the

accuracy of exact matching since there is too much background information. As observed in the

line graphs, if variable age was excluded from the matching variables, all combinations of other

background variables perform worse than matches with variable age. There are not too many

differences between the results with 2 combinations (educational level and occupation, educational

level and working field, working field and occupation) while with all three variables included, the

SSD has a substantial decrease compared to a combination with two of these variables. The reason

for that could be that the total combination of categories is smaller compared with variable age,

therefore the effect of curse of dimensionality does not occur.
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(a) SSD of all combinations for Panel2 (b) SSD of all combinations for Panel3

Figure 3: Pairwise comparison of panels for all background variables combinations

The last factor which affects the results of exact matching is the method of sampling. Figure

4 gives the results of weighted sampling with all other conditions the same as experiments in

random sampling. The comparison show that rather than improving the matching and decreasing

the SSD, weighted sampling shows a drawback. In the majority of groups the SSDs of weighted

sampling are higher than those of simple random samples, and this phenomenon is especially clear

in COMB4 and COMB6 from which we can observe that the SSD of weighted samples are higher

than those of random samples. The only outlier is COMB5, which shows SSDs of random samples

around 0.009 while the SSDs of weighted samples drop to around 0.001. In the second graph,

the comparison of background variables of weighted samples shows a similar trend as for random

samples with COMB6 (age and working field) and COMB7 (age and occupation) outperforming

other combinations, and graphs 2, 3, and 4, having similar values for SSDs. COMB5 is an exception

since the SSD of COMB5 is substantially improved by weighted sampling.
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(a) SSD of COMB1 (b) SSD of COMB2

(c) SSD of COMB3 (d) SSD of COMB4

(e) SSD of COMB5 (f) SSD of COMB6

(g) SSD of COMB7

Figure 4: SSD of exact matching with weighted sampling
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4.2.2 Results of Predictive Mean Matching

In predictive mean matching, the observed conditions are different in sample and panel size, meth-

ods of sampling and different scaling level during the optimal scaling regression. Although in

general SSD of PMM is higher than that estimated through exact matching when the optimum

combination of background variables is used, PMM shows a substantial improvement when we use

different scaling level and panel size.

• Sample and Panel Size

Different from exact matching, PMM is more sensitive with respect to the size of the sample. Figure

5 shows the parallel comparison of different panel sizes in terms of SSD. As the line graph shows, in

all individual panels the SSDs generally decrease with the increase of sample size: SSDs decreased

from 0.065 to 0.052 in panel1, and decreased from 0.050 to 0.041 in panel2 while in panel3 the SSD

decreased from 0.036 to 0.034. This seems to be the general trend in all groups of experiments:

with other conditions fixed, a larger sample size results in smaller values for SSD. However, the

panel size effect appears more obvious than the effect due to the sample size. In the comparison,

the SSDs decreased from around 0.06 in panel1(20,000 units) to 0.034 in panel3(60,000 units). In

the groups two and three, the effect of sample size and panel size appears identical to the first

group (see second and third group). Therefore, a conclusion can be drawn that in PMM sample

size slightly affects the matching results while the size of the panel appears to be a substantial

condition that can improve the quality of matching and reduce the SSDs. A large panel would be

more effective in predictive mean matching.
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Figure 5: SSD of PMM for random sampling

•Method of sampling

This experimental condition differs from above in the method of sampling. In this section we

compared PMM results by using random sampling with results obtained by weighted sampling.

Theoretically, weighted sampling is able to generate a sample that closer resembles the panel dis-

tribution, therefore it is expected to result in higher accuracy. However, as in the graph (Figure

6) shows, the SSDs of weighted samples have substantial drawbacks compared to the random sam-

ples. Among all comparisons, the SSDs of weighted samples are substantially higher than those

of random samples. In contrast to the original hypothesis, weighted sampling is not helpful in

increasing the matching accuracy.
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(a) Panel 1 (b) Panel 2

(c) Panel 3

Figure 6: Sampling methods comparison of PMM for different panels

• Scaling Levels

The following graph (Figure 7) shows the PMM results for different scaling levels. In ordinal scal-

ing regression, background variables "Educational Level" and "Age" are set as ordinal variables.

By setting these 2 background variables as ordinal ones, it is expected that the ordinal information

inside the variables contribute to the regression precision. On the other hand, more restrictions

have been added which could affect the regression.

Figure 7 is the comparison of ordinal scaling regression and nominal scaling regression. We can

see that the differences between these two scaling levels enlarge as the sample size increases. For

sample sizes 10,000 and 20,000, even though the results are very close, we can still observe that

the ordinal level performs slightly better than the nominal level. This difference starts to become

obvious as the sample size reaches 40,000, and becomes stable and clear with 60,000 sample units.

The results indicate that the ordinal information will be helpful for PMM. In the lower graph

of Figure 7, a comparison of different scaling levels based on a smaller panel is shown. In this

graph the general trend remains the same as the graph in Figure 7, with ordinal scaling outper-

forming the nominal scaling level and the differences becoming more obvious when the sample
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size increases. In all three panels, the trend of the scaling levels’ effect towards the matching ac-

curacy is almost identical. The usage of ordinal information increases the performence of matching.

Appendix III gives the transformation plots of optimal scaling regression. As the transformation

plots show, some categories in variables "Occupation" and "Working field" are transformed into

numeric values which are quite similar, which could reduce the accuracy of regression and matching.

The reason is that during the transformation a step function was used to transform the categories.

One way to solve the phenomenon that several categories are transformed into similar values is to

add restrictions to the transformation by using a spline function for the scaling. By using a spline

function to scale the categories, restrictions are added during the transformation. Therefore dif-

ferent categories can be transformed into numeric values which are not too close. However, adding

restrictions could reduce the transformation accuracy which leads to a decrease of the accuracy of

matching. We use a spline function to adjust the numerical scaling. The adjusted transformation

plots are shown together with all transformation results in Appendix II. As the plots show, cate-

gories in variable Occupation and Working Field have all been transformed into individual numeric

values and the values are not too close.

Figure 8 presents the results for adjusted scaling matching. By using spline function restrictions,

the spline ordinal level always performs more accurately than nominal spline levels. Figure 8 shows

that with the same level of scaling, scaling with spline restrictions performs better than without

these restrictions. With all scaling level comparisons in the graph, the spline ordinal scaling has

the lowest value of SSD in predictive mean matching.
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(a) Scaling levels comparison for Panel1 (b) Scaling levels comparison for Panel2

(c) Scaling levels comparison for Panel3

Figure 7: SSD of nominal and oridinal scaling levels for PMM
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(a) Scaling levels comparison for Panel1 (b) Scaling levels comparison for Panel2

(c) Scaling levels comparison for Panel3

Figure 8: SSD of ordinal and spline ordinal scaling levels for PMM

4.2.3 Results of Propensity Score Matching

With the propensity score matching method the units are matched based on the most similar value

of propensity scores. All the matches with PSM returned a much higher value of SSD compared to

exact matching and PMM. In PSM, we used two sets of combined background variables to calculate

the propensity scores. Apart from the variables chosen by CART (educational level, occupation,

working field, age), variable marital status is also included for a comparison considering that its

Cramer’s V value is higher than 0.35 which indicates a medium correlation towards the target

variable.

Comparing the results of PSM with other matching methods, PSM performs the worst with an

average SSD over 0.6. The results of PSM also show that the sample size and panel size seem to

have no effect towards the matching. Furthermore, the additional variable marital status shows no

effect towards the matching results, so this variable can be excluded.
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(a) PSM results with random sampling (b) PSM results for weighted sampling

Figure 9: SSD of propensity score matching

4.3 Results of Random Forest Prediction

The SSDs of PMM were substantially higher than that of exact matching in all experiments. In

the study of predictions, we expect that models built based on a matched dataset will result in

lower prediction bias than the selective panels due to the reason that the distribution of matches

are closer to the distribution of the test dataset. In this section, prediction SSD of a same test

set from panel models and matched models will be compared. Considering that the datasets are

purely categorical, random forest is used to train the model and the population is used for testing.

All matches are designed to shift the distribution of the training dataset closer to the distribution

of the test set (population).

We use random samples for our test. In exact matching, the aim is to test whether a model built

based on a match with lower SSD for the estimated proportion would be more accurate. Three

groups experiments are implementd: Group I consists of background variables with “Age" and

"Occupation" which is the best combination of background variables among all matching meth-

ods. Group II consists of variables "Age", "Occupation" and "Working Field", with slightly higher

SSD than Group I. Group III uses the match with background variables "Occupation", "Work-

ing Field" and "Educational Level". The selected three groups have different SSDs for the exact

matching estimate. The aim of this experiment is to test whether a matching dataset with lower

SSD would improve the accuracy of the prediction models.

The accuracy of the matching dataset is compared with predictions directly based on the selective

panels, and SSDs are used to measure the accuracy of predictions. The results under each experi-

ment condition are shown in Figure 8.
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As the plot shows, accuracy of predictions under the matched datasets has been improved com-

pared to the predictions based on the selective panels, but the differences are not too obvious.

Under most panel size conditions, a matched set of Group II in exact matching performs better

than any other matches and results in the lowest value of SSD in prediction. Group I which is

the most accurate matching estimate of the population performs slightly better than Group III,

thought sometimes SSDs are even higher than Group III. The PMM dataset shows no obvious

difference with the panel predictions, but for some panel size conditions, the SSDs of PMM show

a decrease compared with direct predictions based on panels.

Figure 10: MSE of random forest predictions

Result of the comparison show that predicting models based on a matched dataset could increase

the accuracy of models, however our original hypothesis that a model built on a matched dataset

which is closer to the population will have more accurate prediction is incorrect. In the above

result, Group III of exact matching has the lowest SSD while the performance with respect to

removing selectivity is worse than Group II.
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5 Discussion

In this thesis, we investigated possible methods of sample matching to remove selectivity in a

survey dataset. Methods of sample matching include two parts: the way of drawing samples from

the population and the way of matching. The main topic is methods of matching which include

exact matching, predictive mean matching and propensity score matching. All matching methods

are developed specifically for a categorical dataset. The results of sample matching, which are

called the matches, are used to estimate the population distribution of target variable "Economic

Status". It is expected that sample matching is able to remove the selectivity issue in a dataset

and the matches can improve the accuracy for further analysis (e.g. regression predictions). The

performance of all methods are compared with each other by the means of SSD, and models are

developed based on relevant matches to predict the distribution of target variables. The per-

formances of the methods are tested under several different conditions. In the method of exact

matching, experiments examine different combinations of background variables. Predictive mean

matching simulations differ with respect to scaling levels. For propensity score matching, the main

differences are the size of the selective panel and representative samples. All methods are tested

under difference sizes of panel and sample. The object is to observe how different methods and

conditions affect the matching result, and whether sample matching is able to reduce the prediction

bias in random forest classification. The target variable was the population proportion of "Eco-

nomic Status" from the Dutch Population Census 2001 dataset. Assuming that the distribution of

the target variable is available but selective, and the rest of the dataset was used as the population

distribution whose values of the target variable are unknown.

The result was that among all the methods, exact matching with random sampling is able to gener-

ate the most accurate estimate of the target variable distribution of the population. The involved

background variable is the combination of "age" and "occupation". In general, exact matching

outperforms all other methods of matching, and exact matching with random sampling can im-

prove the accuracy of the matching. Estimates of PMM are not as accurate as exact matching in all

cases, but one interesting phenomenon is that by adjusting the conditions in PMM, the accuracy

can be substantially improved. The experiment results show that propensity score matching is not

suitable since this results in biased estimates.

In this study, we have compared the scaling methods of stepwise function and monotonic spline

function. The study shows that adding a constraint into the scaling (using spline transformation

functions) can substantially improve the accuracy of the PMM estimate. Furthermore, maintaining

the ordinal information between categorical values also positively affects the results of the PMM
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estimate. This interesting phenomenon indicates that a further study on the proper methods of

scaling could be conducted to improve the matching accuracy. To further explore PMM match-

ing, perhaps more matching variables characteristics and their influence on the scaling can be

investigated. This requires a deep study on matching variable selection, or the methods could be

implemented in another dataset whose background variables X have a stronger explanatory ability.

The scaling methods for PMM might outperform the exact matching.

As the random forest results show, removing selectivity by sample matching is able to reduce the

bias of random forest prediction compared to the models based on a selective panel. However, the

results of experiments contradict the original hypothesis that a more accurate matching dataset

(with smaller SSD value) would also be more accurate with respect to reducing prediction bias.

The most accurate prediction is not based on the most accurate match, but an intermediate match

which has a relatively small SSD. Further study on reducing prediction bias can focus on which

levels of accuracy of a match can optimally fit the population predictions.

In summary, the sample matching method is able to remove the estimation bias due to the selec-

tivity of the data set. For purely categorical datasets we have not discovered matching methods

that perform better than exact matching. The key of exact matching lies in the selection of match-

ing variables. If the selected background variables fail to cover sufficient information towards the

target variable, the matches would result in high bias. However, if too many matching variables

are chosen, this will also harm the matching results due to the curse of dimensionality. The newly

developed scaling predictive mean matching has not shown a better performance than exact match-

ing, however the methods of scaling remains an interesting topic for further study. In the final

experiment, it is shown that removing selectivity in the panel by sample matching is able to reduce

the overfitting issue, while the best fitted matching requires a further study.
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7 Appendix

7.1 Appendix I: Dutch Census 2001 Data

Variable Category Description
111 Employee
112 Student with job
120 Independent worker
210 Unemployed

Economical Status 221 Education-related
222 Retired
223 Houseman/Housewoman
224 Other inactive
998 unknown
1 Man

Gender 2 Woman
8 Unknown
1 0-4 years
2 5-9 years
3 10-14 years
4 15-19 years
5 20-24 years
6 25-29 years
7 30-34 years
8 35-39 years
9 40-41 years

Age 10 45-49 years
11 50-54 years
12 55-59 years
13 60-64 years
14 65-69years
15 70-74 years
16 75-79 years
17 80 years older
98 unknown
1110 Child
1121 Married without children
1122 Married with children
1131 Living together without children

Position in the household 1132 Living together with children
1140 Alone living old person
1210 Living alone
1220 Different household
9998 Unknown
111 1 person
112 2 people
113 3 people

Size of household 114 4 people
125 5 people
126 6 people or more
998 Unknown
1 Same COROP area
2 Other COROP area, or outside the Netherlands

Residential last year 9 Not applicable (person less than 1 year old)
998 Unknown
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1 The Netherlands
2 From other countries in Europe

Nationality 3 Others
998 Unknown
1 The Netherlands
2 From other countries in Europe

Country of Birth 3 Others
998 Unknown
0 Pre-primary
1 Primary
2 Lower secondary
3 Upper secondary

Educational level 4 Post secondary
5 Tertiary
6 Without any education
98 Unknown
1 ISCO 1; legislators, senior officials and managers
2 ISCO 2; professionals
3 ISCO 3; technicians and assistant professionals
4 ISCO 4; clerks
5 ISCO 5; service, shop, market sales workers

Occupation 6 Other
7 ISCO 7; craft and relative workers
8 ISCO 8; plant and machine operators and assistants
9 ISCO 9; elementary occupations
998 Unknown
999 Not working
111 NACE A+B. Agriculture, hunting, forestry and fishing
122 NACE C+D+E; mining, manufacturing and electricity
124 NACE F; construction
131 NACE G; wholesale, retail trade, repair
132 NACE H; hotels and restaurants
133 NACE I; transport, storage, communication

Working field 134 NACE J; financial intermediation
135 NACE K; real estate, renting and business activities
136 NACE L; public administration, defence
137 NACE M; education
138 NACE N; health, social work
139 NACE O; other community, social personal service activities
200 Not working
998 Unknown
1 Unmarried
2 Married

Marital status 3 Widow
4 Divorced
8 Unknown
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7.2 Appendix II: Cramers’V Value and Gini Impurity

Table 5: Cramer’s V value for Panel 1
Target Variable Background Variables Cramers’V

Gender 0.3489
Age 0.5579

Position in the household 0.3340
Size of Household 0.2319

Residential last year 0.2123
Nationality 0.0920

Country of Birth 0.0952
Educational level 0.3498

Occupation 0.4033
Working field 0.4091
Marital status 0.4464

Table 6: Cramer’s V value for Panel 2
Target Variable Background Variables Cramers’V

Gender 0.3481
Age 0.5597

Position in the household 0.3348
Size of Household 0.2306

Residential last year 0.2034
Nationality 0.0836

Country of Birth 0.0893
Educational level 0.3574

Occupation 0.4057
Working field 0.4076
Marital status 0.4429

Table 7: Cramer’s V value for Panel 3
Target Variable Background Variables Cramers’V

Gender 0.3504
Age 0.5579

Position in the household 0.3327
Size of Household 0.2298

Residential last year 0.1908
Nationality 0.0811

Country of Birth 0.0855
Educational level 0.3534

Occupation 0.4047
Working field 0.4104
Marital status 0.4336

Table 8: Variable Importance for CART
Panels Variable importance
Panel 1 Age, Occupation, Position in the household, Educational level, Working field, Gender.
Panel 2 Occupation, Working field, Age, Educational level, Marital status, Position in the household.
Panel 3 Age, Occupation, Educational level, Marital status, Position in the household, Gender.
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7.3 Appendix III: Transformation Plots

(a) Age (b) Educational level

(c) Occupation (d) Working field

(e) Economical Status

Figure 11: Panel 1: Nominal Transformation
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(a) Age (b) Educational level

(c) Occupation (d) Working field

(e) Economical Status

Figure 12: Panel 1: Ordinal Transformation
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(a) Age (b) Educational level

(c) Occupation (d) Working field

(e) Economical Status

Figure 13: Panel 1: Spline Nominal Transformation
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(a) Age (b) Educational level

(c) Occupation (d) Working field

(e) Economical Status

Figure 14: Panel 1: Spline Ordinal Transformation
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(a) Age (b) Educational level

(c) Occupation (d) Working field

(e) Economical Status

Figure 15: Panel 2: Nominal Transformation
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(a) Age (b) Educational level

(c) Occupation (d) Working field

(e) Economical Status

Figure 16: Panel 2: Ordinal Transformation
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(a) Age (b) Educational level

(c) Occupation (d) Working field

(e) Economical Status

Figure 17: Panel 2: Spline Nominal Transformation
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(a) Age (b) Educational level

(c) Occupation (d) Working field

(e) Economical Status

Figure 18: Panel 2: Spline Ordinal Transformation
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(a) Age (b) Educational level

(c) Occupation (d) Working field

(e) Economical Status

Figure 19: Panel 3: Nominal Transformation
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(a) Age (b) Educational level

(c) Occupation (d) Working field

(e) Economical Status

Figure 20: Panel 3: Ordinal Transformation

67



(a) Age (b) Educational level

(c) Occupation (d) Working field

(e) Economical Status

Figure 21: Panel 3: Spline Nominal Transformation
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(a) Age (b) Educational level

(c) Occupation (d) Working field

(e) Economical Status

Figure 22: Panel 3: Spline Ordinal Transformation
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