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Abstract

In forensics it is relevant to identify the presence of one or several body fluids in a crime stain. This may be done

using traditional methods however, those methods require a part of the available material, therefore leaving less residual

material for the purpose of other analysis. Alternatively, one can use messenger RNA evidence: mRNA expression

levels may vary among body fluids and therefore can be identified. The currently used method provides the forensic

examiner with a categorical statement regarding the existence of the body fluid. However, such a method cannot

express any associated uncertainty, whereas alternatively, a probabilistic method can and hence is a preferable choice.

In forensic science it is common to express the level of uncertainty by means of a likelihood ratio but, due to a bad

choice of statistical model or data scarcity, may be inaccurate.

This thesis first of all carries out experiments using four probabilistic classification methods, namely Multinomial

Logistic Regression, Multilayer Perceptron, Extreme Gradient Boosting and a Fully connected Feed Forward model. In

actual casework the crime stain often consists of multiple body fluids, which is why the classifiers are compared using

synthetic representations of actual mixture samples. Multi-label approaches that enable the classifiers to express the

level of uncertainty about multiple body fluids in a sample are used. The output from the logistic regression model is

directly interpreted as likelihood ratio, whereas for the remaining three classifiers a post-hoc calibration step to improve

the accuracy of the clasiffiers is included. Additional tests are performed to investigate how susceptible the classifiers

are when the relative frequency of the body fluids in the data changes. The main focus is on two target classes, namely

on saliva and a combination of vaginal mucosa and menstrual secretion, because these are most often requested to be

identified in a crime stain and therefore seen as most relevant.

It is concluded that using a separate logistic regression model for each target class in combination with pres-

ence/absence data results in both accurate and reliable likelihood ratios. Results also indicate that these models are

the least susceptible to a change in the frequency with which body fluids occur in the train dataset.

Furthermore, a study using an additional dataset with actual mixtures of two body fluids that are not assumed

representative of forensically realistic mixtures of the same two components is done. Results show that the accuracy

of the classifiers on the mixtures dataset are higher in comparison to the accuracy on the synthetic representations.

This indicates that the results are overly optimistic, hereby verifying that the mixtures’ cell type dataset should not

be used as validation set.

A user-friendly tool is constructed that implements logistic regression to calculate the likelihood ratio from samples

from actual casework. Using mRNA measurements from two cases both the practical use and the interpretability of

the results are shown.
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1 Introduction

1.1 Background

In forensic cases it is relevant to determine both who left a crime stain at a crime scene and what type of material

was in the crime stain. Statements about the latter can be made with RNA measurements (i.e. RNA profiling). The

body fluids that are forensically most interesting are blood, semen, saliva, menstrual secretion, vaginal mucosa, nasal

mucosa and skin. They are often also referred to as cell types. Traditional methods to investigate the existence of cell

types are microscopy, immunological, chemical and enzymatic methods, but have some drawbacks. First of all, they have

to be carried out separately on each cell type which is a time consuming process. These methods also require a part

of the material, leaving less material available for DNA analysis [1]. An alternative is using messenger RNA (mRNA)

evidence, or mRNA-profiling. mRNA is a form of RNA which serves as messenger between two processes in which DNA

is transformed into proteins. Within the DNA there are sections called genes containing instructions for making proteins.

In the first process, called transcription, a gene is transferred to mRNA. When a gene (also called a marker) is used

to transcribe the mRNA from the DNA, the gene is considered to be observed. Subsequently, a signal value may be

observed for that marker. The second process, called translation, is when the mRNA is used to make proteins. The

mRNA expression levels vary among cell types and are often specific for cell types, which is how mRNA can be used to

make statements about the cell types in crime stains.

The Department of Human Biological Traces of the Netherlands Forensic Institute (NFI) currently does body fluid

identification using the categorical n/2 method [2]. This method uses a RNA results table containing six categories

to evaluate cell types. These categories are ‘observed’, ‘observed and fits with’, ‘sporadically observed and fits with’,

‘sporadically observed’, ‘no reliable statement possible’, ‘non-specific due to high cDNA input’ and ‘not observed’. For

each cell type it is determined how often a signal is present relative to the times a signal could have occurred. The

latter depends on the number of RNA profiles and the number of specific markers of the cell type. For example, with

four mRNA profiles and three specific markers the number of signals that can occur is twelve. It is then categorized as

‘observed’ when the signals are present in at least half of the possible positions. In case no signals are measured the

category ‘not observed’ is given. When at least one signal but less than half of the signals is measured it is categorized

as ‘sporadically observed’. An explanation of the remaining categories can be found in Lindenbergh et al. [2]. One of

the shortcomings of this method is that it is impossible to report different levels of (un)certainty since one is making a

categorical statement. Also there is a so-called ‘fall-of-the-cliff-effect’, meaning that there is a hard cut-off between the

categories ‘observed’ and ‘sporadically observed’. When five out of twelve signals are observed the cell type is categorized

as ‘sporadically observed’ whereas, in case of observing six signals the cell type is said to be ‘observed’. In this case the

strength of the evidence increases only a bit whereas, the statement changes drastically. Another shortcoming is that the

same statement is reported when six out of twelve signals are observed as when all twelve signals are observed, so the

method does not report a different outcome when the evidence is stronger. Another drawback is that only the cell type

specific markers are selected whereas, signals of other markers may also contain relevant information [1]. So generally

speaking the n/2 method ignores relevant information when identifying the body fluids in a stain and hence a method

that is capable of incorporating this preferred. A probability model is able to make a probabilistic statement about the

existence of cell types rather than a definite statement. Another convenience when using a probability model is that it is

capable of modelling the unknown variation in the data though, it can only succeed once enough data is available. It will

also use both the evidence of the markers that amplified and markers that did not amplify [1].

In former research probabilistic methods that can identify one cell type in a sample have been proposed. Dorum et

al. in their study have also attempted to identify multiple (i.e. two-component) cell types. In the majority of those

mixtures, the correct two cell types received the highest and second highest probability though, the second highest was a

lot smaller. This is because the classifier was trained in a multi-class setting and the probabilities are calculated relative to

the other probabilities. In another study, performed at the Netherlands Forensic Institute, they experimented with several

probabilistic methods that were trained on a dataset with various synthetic mixtures of cell types to predict multiple cell

types, using multi-label classification, on an actual mixtures dataset. They conclude that in a multi-label setting a model
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is able to correctly classify both single and multiple cell type samples. Unfortunately, the results are unreliable because

the mixtures dataset consists of unrealistic samples and hence their selected method presumably does not apply well to

actual multiple component stains. It however remains relevant to identify a multiplex of cell types since the majority of

forensic casework in which cell types of the donated material is relevant consists of mixtures [1]. The method will for

example be of use in a rape case. If a male suspect claims that he is innocent of abusing the victim, mRNA could be

used as evidence either against or supporting his claim. If the crime stain sampled from the victims body consists of

both vaginal mucosa and semen, this may be evidence against the suspects’ claim. This thesis will perform experiments

with probabilistic classifiers in combination with multi-label methods using mixtures of cell types representative of actual

mixtures. Note that the body fluids that the forensic scientists have to identify most often in actual casework are vaginal

mucosa and saliva. Therefore, this thesis aims at producing accurate and reliable results regarding these two cell types.

1.1.1 Likelihood ratio

In the forensic field a commonly used measure that expresses the level of (un)certainty is the likelihood ratio (LR). With

two hypotheses, one being ”the crime stain contains cell type 1” (H1) and the other being ”the crime stain contains cell

type 2” (H2), the likelihood ratio can be calculated using the following equation:

LR =
Pr(E|H1)

Pr(E|H2)
(1)

where E is the evidence, Pr(E|H1) is the conditional probability of the evidence under the hypothesis that the crime

stain contains cell type 1 and Pr(E|H2) the conditional probability under the alternative hypothesis. The LR measures

the strength of the evidence (i.e. the evidential value) for the first hypothesis compared to the second hypothesis. The

higher the LR, the stronger the evidence that the crime stain contains cell type 1. The posterior probability is calculated

by combining the likelihood ratio with the prior probability as in the following equation:

Pr(H1|E)

Pr(H2|E)
=
Pr(E|H1)

Pr(E|H2)
× Pr(H1)

Pr(H2)
(2)

Note however, that it is a forensic examiners’ job only to calculate the LR and that it is up to a judge to define the

prior. For convenience the likelihood ratio is often converted to the base 10 log likelihood ratio. The strength of evidence

is then expressed on a scale which is symmetrical around zero [3].

1.1.2 Calibration

In practice, the value of the LR is handed to the court, where it is the judges’ task to use the collected evidence to make

their final judgement. One can image that their verdict is influenced by the value of the LR: they may be more inclined

to convict when the evidential value supporting the hypothesis that the crime stain contains the cell type of interest is

high. This is problematic in case the LR points in the wrong direction meaning that the evidence lends greater support

to wrong hypothesis potentially leading for the judges to make a wrong decision. Hence, the forensic researcher must be

confident about the correctness of the reported LR. This is when the LR is well calibrated.

The concept of calibration can be easily explained with the weather forecast example. For a sequence of days a weather

forecaster predicts the probability p of it raining. The ground truth, so whether it actually rained or not, is known at

the end of the day. After x days of weather forecasting, the probability of rain and the ground truth labels whether it

actually rained those days are known. A way of evaluating the performance of the weather forecaster is to look at its

calibration and can be measured using this knowlegde. In case rain occurs on p ∗ x of the days to which he assigns a

probability of p of it raining, the forecaster is considered to be well-calibrated [4]. For example, say there are 10 days to

which the same probability of rain of 0.8 is given, then it should rain 8 out of 10 days.

A probabilistic model, is well-calibrated when the output of the model yields correct LR values, meaning that the

values are not too high or too low. Bad calibration indicates that a significant part of the LRs have a wrong value [5].

Generally speaking, the LRs that belong to H1 are expected to be large (and above 1) whereas LRs that belong to H2 are

expected to be low (and below 1). Because of for example a bad choice of statistical models or data scarcity the LRs may
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not be well-calibrated [6]. Also many existing machine learning models and algorithms are not optimized for obtaining

accurate probabilities which is why their predictions may be miscalibrated [7]. In the former study performed at NFI the

selected methods’ output involved high LR values that cannot be proved to be true due to data scarcity. Therefore, the

correctness of these values is questioned. Moreover, the LR is the ratio of the probability densities of the evidence given

H1 and H2. Often there are little data points in the tails areas of the densities, so where data is expected to occur, it

does not or only weakly. Therefore, the exact LR value cannot be calculated and is unknown. A validation step will be

carried out to ensure that the probabilistic models in this thesis will calculate correct LR values in which 1) calibration

will be measured and 2) a post-hoc calibration step will be performed.

A drawback of implementing a calibration process is that part of all the available will be used, leaving less data

available for training. Besides that, one must pick a suitable calibration technique and possibly determine optimal

parameter values, increasing the risk of making an error. The output for the methods for which no post-hoc calibration

step is incorporated, is directly interpreted as LR value, thereby assuming that the method will produce well-calibrated

LRs. However this is only true when the assumptions made by the model are met [8] which often is not the case. In this

thesis the LRs resulting from so-called ‘complex’ methods will be transformed in a post-hoc calibration step whereas,

LRs derived from ‘simple’ methods will not. This way the accuracy of the LRs from both methods can be compared and

thereby the preferred post-hoc treatment can be determined.

1.1.3 Relative frequency of cell types in the data

The classifiers that have been experimented with require a prior probability for each cell type in order to perform its

calculations and specify it by the relative frequency of the different cell types in the train data [1]. This is valid when

the frequency with which the cell types occur in the data reflects the true relative occurrence. Unfortunately, it is highly

unlikely that this is the case and besides that the true prior probabilities are unknown. Often a flat prior is used, i.e.

assuming that the prior probability for each cell type is the same [9]. It however remains difficult to define a prior for

the cell types in the data and besides that, it is not in the province of the forensic examiner to decide about its value.

It is therefore,desirable for the likelihood ratio to always equal the posterior probability, irrespective of the prior value.

If this is the case, than it is not necessary to specify priors, because no matter the value, the results are the same. In

other words, irrespective of the relative occurrence of the different cell types in the data, the output of a given classifier

is the same. In this thesis it is examined if a change in the relative frequency of the different cell types (i.e. the prior

probabilities) in the train data affects the output of a given classifier.

1.2 Previous work

The first research to experiment with probabilistic models is by Zoete et al. They experimented with a näıve Bayes (NB)

method based on Bayesian networks and a method based on multinomial logistic regression (MLR) [1]. The performance

of both methods has been tested on several criteria. The dataset contains 158 samples and the cell types are blood,

menstrual blood, saliva, semen and skin. In total 19 markers were assessed and the signal values are expressed in rfu

(relative fluorescence units). These were converted into binary values, creating an presence/absence dataset: all signals

with a rfu exceeding the threshold of 150rfu were converted into one and when below this value into zero.

They compared the results from the two methods and the n/2 method. Performance on the probabilistic models was

measured based on the accuracy (i.e. the percentage of correct classifications on the data). They showed that both the

NB method and the MLR method outperform the n/2 method and that methods discriminate well between the cell types.

In their paper, they propose probabilistic methods as an alternative to the existing categorical statement methods but

stress that further research is required to examine which is the best probabilistic model [9].

In another study, Dorum et al.[9] also aimed to predict the origin of a crime stain using probabilistic methods, but

differentiate between the study by Zoete et al. in three ways. First the mRNA is measured differently, namely using the

NGS (Next Generation Sequencing) technology. Secondly, next to evaluating the methods on the presence/absence data,

they also evaluated the methods on quantitative data in the form of read counts. At last they proposed a new probabilistic

method, namely Partial Least Squares Discriminant Analaysis (PLS-DA) that is able to take the quantitative information
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of read counts into account. They used a different dataset to evaluate the models’ performance on. The data consists of

183 samples from six different body fluids, namely blood, semen, saliva, vaginal secretion, menstrual blood and skin. In

total 33 markers were assessed.

They compared the results from the two probabilistic methods from Zoete et al. with the results from PLS-DA.

PLS-DA had a lower prediction error and performed better when trained on the read counts data. They however argue

that more data should be gathered to build an even more robust model. They also suggest that the model should be

tested on several datasets to estimate its prediction performance on real casework examples.

They also predicted the body fluids in 26 two-component mixture samples using PLS-DA model that was trained

on the read count data. In all of the samples at least one of the body fluids in the mixture received a high posterior

probability. For 20 samples the correct body fluids obtained the highest probabilities, however the value of the second

highest probability is very small. This is mainly due to the fact that the model is trained to predict only one label (i.e.

multi-class classification).

In a recent study carried out at the Netherlands Forensic Institute [10], experiments that involve multi-label clas-

sification were performed. They compared the performance in terms of classification accuracy of the n/2 method and

eight probabilistic methods, namely Naive Bayes (NB), Multinomial Logistic Regression (MLR), Partial Least Squares

Discriminant Analysis (PLSDA), Decision tree (DT), Random Forest (RF), Support Vector Machine (SVM), Multilayer

Perceptron (MLP) and K-nearest Neighbors (KN). Their first objective was to determine which of those methods showed

the most promising results regarding the classification of different body fluids on three datasets containing samples from

single cell types. The first dataset is the one used by Zoete et al. The second dataset was the dataset introduced by

Dorum et al. The third dataset was created by the Department of Human Biological Traces of the NFI and consists

of 866 samples from blood, menstrual secretion, saliva, nasal mucosa, vaginal mucosa, sterile semen, fertile semen, skin

and penile skin and a ‘blank’ category. In total 17 markers were assessed. They pre-processed the datasets either by

transforming the data into presence/absence data or by normalizing the signal values per sample.

They conclude that MLP and MLR outperform the n/2 method and that they achieve a higher accuracy in com-

parison to the other probabilistic methods. The remaining experiments were done using these two methods on both the

presence/absence and the normalized data.

The second objective was to determine a probabilistic method that correctly classifies mixture samples. They in-

troduced techniques to enable classifiers to predict more than one label. The first is to train the methods on mixture

samples, rather than single cell type data. As this data was not yet available, in total 20.000 empirical mixture samples

(i.e. synthetic data) were generated. The second addition is including multi-label classification methods, namely the label

power-set method and the binary relevance method, to allow predicting multiple labels. They used a multiple body fluid

dataset, which was also constructed by the NFI, as validation dataset. It consists of 351 samples of 7 mixtures (of two

components) and is made up of the same body fluids and markers as the single cell type dataset created by the NFI. The

combinations of the two methods and two multi-label methods were trained on the synthetic dataset and performance

was measured on the multiple body fluid dataset. The MLP in combination with the label power-set method on the

presence/absence data resulted in the highest classification accuracy. Moreover, the resulting LR values on mixture RNA

data were more accurate than those of Dorum et al.

One of the shortcomings of this study is that the ‘final’ method is selected based on its performance on the mixture

cell type dataset, even though the samples in this data are a poor representation of forensically realistic samples. So, the

validity is measured in an unreliable setting [3]. An improvement would be to determine a probabilistic method based on

data representing actual case data.

1.3 Outline

This thesis carries out experiments with four probabilistic classifiers in combination with multi-label methods and are

trained and validated on synthetic mixture samples that are considered representative of actual mixtures. Two of the

four classifiers are chosen because they showed the most promising results in the study by Scholten, namely MLP and

MLR, the remaining two are Extreme Gradient Boosting and a Fully connected Feed Forward model. The first objective
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is to determine which probabilistic classifier outputs the most accurate and reliable likelihood ratios for the two most

relevant classes, namely vaginal mucosa and saliva. This is when the likelihood ratios are both well-calibrated and highly

discriminating. Another objective is to compare the performance of classifiers from which the output is transformed

in a post-hoc calibration step and a classifier from which the output is directly interpreted as likelihood ratio, thereby

examining which of the two is preferred. The third objective is to determine whether, and if so to what extent, a change

in the relative frequency of cell types in the train data alters the output of a given classifier. The main goal is to

determine a probabilistic method that can replace the n/2 method in identifying cell types in a crime stain. Another

objective is to demonstrate that the mixtures cell type dataset should not be used as validation set. The last objective

is to implement the selected method into a user-friendly environment (i.e. tool built in Microsoft Excel), enabling the

the Department of Human Biological Traces of the NFI to use it. The practical use of the tool is shown by adapting it

to mRNA measurements from old cases and comparing the LRs to the statement that was reported based on the n/2

method.

This outline of the thesis is as follows. In section 2 the materials and methods are described. Section 2.1 goes into

the datasets used for the experiments. Section 2.2 describes the way that the datasets are processed. In section 2.3 the

methods implemented to perform multi-label classification, the probabilistic classifiers and the calibration technique are

elaborated on. Section 2.4 defines the performance measures and illustrates the experimental setup. Section 3 shows

and discusses the results. In section 4 the user-friendly tool is explained and adapted to mRNA measurements from two

actual cases. This thesis ends with a discussion about the experimental results and suggestions for future work.
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2 Materials and Method

2.1 Data

The same data that has been used by Scholten has been used in this thesis.

2.1.1 Single cell type dataset

The dataset was created by the Department of Human Biological Traces of the NFI. In total there are 866 measurements

from samples including blood, menstrual secretion, saliva, nasal mucosa, vaginal mucosa, sterile semen, fertile semen, skin

and penile skin. The expression levels for markers may vary a lot each time a stain is measured [1, 2] which is why it has

been measured approximately four times. To get one sample for a cell type rather than four separate measurements, the

average of the measurements has been calculated. Figure 2a displays the distribution of the samples per cell type. The

number of samples from blood, menstrual secretion, nasal mucosa, saliva en vaginal mucosa is approximately the same,

namely 30. There are less samples in the dataset of the remaining cell types. The number of samples in the dataset is

214.

2.1.2 Mixtures cell type dataset

The mixtures dataset consists of 351 measurements. Each sample has been measured approximately two times and again

the average of these repeated measurements is calculated, resulting in the actual mixture samples. The mixture cell types

are made up of the same cell types and markers as the single cell type dataset and there are seven different two-component

mixture classes. The distribution of the samples over these classes is displayed in figure 2b. There are two times as much

samples from the combination classes menstrual secretion + blood and vaginal mucosa + blood as there are samples for

the other mixtures. The number of mixture sampes in the dataset is 188.

(a) Single cell type dataset. (b) Mixture cell type dataset.

Figure 2: Distribution of samples in the two datasets created by the Department of Human biological Traces.

Since this dataset contains real mixtures of cell types it is reasonable to assume that this is an accurate validation

set. Unfortunately, the samples are an inaccurate representation of forensically realistic mixture samples consisting of the

same two components. Forensically realistic samples are degraded, meaning that markers attenuate regularly or contain

noise. This is rarely the case in the mixtures dataset rather, for most of the samples the correct markers amplify and

it barely consists of noise. Therefore, the dataset is assumed to be ‘too clean’ and contains easy to classify samples.

Using this to evaluate the performance of a given classifier on, it will show to perform better than it actually would on

forensically realistic samples. Therefore, the mixtures dataset will only be used to show that a probabilistic method will

indeed perform better than on a dataset with more realistic samples.
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2.1.3 Markers

For both datasets levels of expression have been measured for 15 cell type specific markers. Additionally, two housekeeping

markers have been measured and they determine whether the mRNA profile is informative [2]. A sample is considered

uninformative when for at least one of the housekeeping markers no signal is measured. The sample will then be

disregarded. The total number of disregarded samples in the single cell type dataset is 16 and 0 in the mixture cell

type dataset.

The proportion of the amplifications for the 15 relevant markers and all cell types in the single cell type dataset are

shown in table 1. This proportion is calculated by the number of times the marker amplifies (i.e. the signal value is

above or equal to 150) divided by the number of measurements. The column names belonging to the blue shaded cells

correspond to the cell type specific markers, so the proportions therein are expected to be the largest. For menstrual

secretion, there are markers for which the proportion of amplifications is higher (1, 0.496, 0.451, 0.566, 0.531) than for the

menstrual specific markers (0.391 0.381, 0.558). This involves the markers for both blood and vaginal mucosa and can be

explained by the fact that menstrual secretion actually a composition of several cell types under which blood and vaginal

mucosa. This however does not hold the other way around: menstrual secretion does not necessarily appear in blood

and/or in vaginal mucosa. The rate of amplifications for the MUC4 marker in nasal mucosa is also high (0.616) even

though it is specific for vaginal mucosa. Because of this cross reaction, BPIFA1 has been added to distinguish between

these cell types. The same holds for the blood specific marker CD93 that amplifies often in nasal mucosa. The remaining

amplification rates in the table that are not cell type specific are considered noise. Note that this is one of the reasons why

the samples in the single cell type dataset are considered to represent realistic samples. The marker STATH is specific for

both nasal mucosa and saliva. Therefore, it may be hard for a given classifier to discriminate between these two classes.

In this dataset, there are no markers that can identify skin or penile skin, which is why a classifier is expected to be

unable to determine (penile) skin cells in a sample.

Table 1: The proportion of the amplifications for the 15 relevant markers and all cell types in the single cell type

dataset using a threshold of 150.

HBB ALAS2 CD93 HTN3 STATH BPIFA1 MUC4 MYOZ1 CYP2B7P1 MMP10 MMP7 MMP11 SEMG1 KLK3 PRM1

1 Blood 1 0.960 0.579 0 0 0 0 0 0 0 0 0.032 0 0 0

2 Menstrual secretion 1 0.496 0.451 0 0.009 0 0.566 0.531 0.31 0.319 0.381 0.558 0 0 0

3 Nasal mucosa 0.008 0 0.432 0.008 0.976 0.504 0.616 0.016 0.016 0 0.008 0.024 0.024 0 0

4 Saliva 0.159 0.009 0.028 0.907 0.907 0.019 0.009 0.019 0.009 0 0.009 0 0 0 0

5 Semen fertile 0.011 0.011 0 0 0 0.011 0.011 0 0 0 0 0 0.832 0.789 0.958

6 Semen sterile 0 0 0 0 0 0 0 0 0 0 0 0.031 0.875 0.656 0

7 Skin 0.264 0.014 0.111 0 0.083 0.028 0.194 0.056 0 0 0.0278 0 0 0 0

8 Vaginal mucosa 0.009 0 0.157 0 0 0 0.922 0.722 0.557 0 0.043 0.009 0 0 0

9 Skin penile 0.146 0 0.042 0 0 0 0.333 0.021 0 0.021 0.021 0.042 0 0 0.104

2.2 Data Pre-processing

2.2.1 Data split

The single cell type data is split in three parts that either are used for training, calibrating or testing. It is ensured that

in each part at least one sample of each class label is present and there may not be overlapping samples in the three parts.

If for example the same sample is in the train and test part, it is easier for a classifier to correctly classify this sample

as it has already seen it during training, and consequently return inaccurate results. Therefore, the data is split before

carrying out any of the subsequent pre-processing steps and experiments.
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2.2.2 Synthetic data

The single cell type dataset consists of mRNA measurements for single cell types, which is why a given classifier is most

likely to fail to predict multiple labels, if any, when only having seen this data. Therefore, a synthetic dataset with signal

values for all combinations of cell types, i.e. empirical mixtures, has been created for each part after splitting the data.

Figure 3: Creating one two-component empirical mixture sample.

Figure 3 illustrates how the mRNA measurements from two cell types, here blood and nasal mucosa, are combined

into an empirical two-component mixture sample. Note that for simplicity only the cell type specific markers are used

to illustrate the process. The continuous marker values are the expression levels. From the existing samples in the

single cell type data one random sample from all the blood samples and another random sample from all nasal mucosa

samples is drawn. Then, the replicates within both picked samples are shuffled by taking a random permutation of the

number of replicates in the sample and are shown in the first block in the figure. In this example, both samples consist

of four replicates. Starting from the first replicates from both body fluids, these are combined into the first replicate

of the empirical mixture by selecting the maximum marker value. The maximum has the desirable property that the

signal strength cannot be shrunken down below the threshold of 150 which as a result would decrease the signal strength.

This way of combining the samples is called the or-relation and ensures that all markers that are amplified in both cell

types are taken into account in the empirical mixture. The same has been done for the remaining replicates, resulting

in four combined replicates. The average of these replicates results in one empirical mixture sample for blood and nasal

mucosa. Note that the or-relation assumes independence between the amplification of markers. To be more concise, when

replicates of different cell types are combined using the or-relation, it is assumed that no other markers than those who

already are amplified, will amplify, nor will their signal strength intensify or attenuate. This is a justifiable assumption,

because in reality it is unlikely that markers amplify or dissolve when combined.
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The complete synthetic dataset consists of empirical samples for all the combinations of cell types (i.e. 2K where K is

the number of cell types, here 8) and are created as has been illustrated in figure 3. For each empirical mixture the same

number of synthetic samples is created. Because there is randomness involved in the creation of the synthetic dataset, it

will differ each time it is created even when the same samples from the single cell type dataset are used.

As has been briefly discussed, the samples in the single cell type dataset are considered to be an accurate representation

of forensically realistic samples. Since the synthetic dataset is generated using these samples, the empirical mixtures

therein are also considered to be representative of actual mixture samples and hence have been used to evaluate the

probabilistic models on.

2.2.3 Transforming data

In former research conflicting statements regarding the type of data that results in the highest accuracy are made.

Therefore, within this thesis both presence/absence data and quantitative data have been experimented with. The

mixtures dataset and three synthetic datasets for training, calibrating and testing all are transformed the same way. In

order to create the presence/absence dataset, the signals from each measurement are transformed into one when its value

exceeds the threshold of 150 and zero otherwise. Thereafter the measurements belonging to the same sample are merged

by calculating the average, which is why values between zero and one can also occur. The second way of transforming the

data is by normalizing the signal values. The goal of normalization is to change the values in the dataset to a common

scale, without distorting differences in ranges of values. All values have been divided by 1000, keeping a continuous scale.

In order to determine the preferred data transformation, experiments have been performed using both. Note that

in order to make an honest comparison, the synthetic dataset should be generated first and transformed thereafter.

However, within this thesis two synthetic datasets have been generated separately, but using the same original samples,

one is converted into a presence/absence dataset and the other into a quantitative dataset. As has been explained earlier,

due to randomness the synthetic dataset will differ when it is created again which is why the transformed datasets will

not contain of the exact same randomly selected samples. Nonetheless, the performance on both still has been compared

since they are constructed using the same original samples and thus not very susceptible to sampling variability.

2.3 Method

2.3.1 Multi-label classification

Multi-label methods to predict multiple class labels in a sample have been introduced already in the study performed by

Scholten and have been implemented here rather than multi-class methods. One advantage of the multi-label approach

over multi-class is that it enables a probabilistic classifier to predict more than one label simultaneously and is therefore

better suited to classify mixtures. The multi-label methods that have been implemented are two problem transformation

techniques, namely the label power-set method and the binary relevance method, that both transform the multi-label

learning problem into one or more single-label classification problems [11].

Include prior knowledge

In some cases the forensic scientist is certain that the crime stain does or does not contain a body fluid prior to making

any predictions. For example, when the sample comes from a men’s genitals it is known that penile skin will be in it.

In such cases there is no debate about the value of the prior probability and should be used as this will result in a more

accurate LR value. Note that only in these exceptional cases the prior may be set. By doing this, one can simulate a

world in which a cell type always or never exists, thereby providing a given classifier with information about the cell type.

When the cell type certainly is in the crime stain the prior probability for that cell type is set to one. Consequently, the

label for this cell type will always be in the list of labels that represents the class label of an empirical mixture. A prior

probability of zero is set when the cell type definitely does not exist and is excluded from the list labels. Only the prior

probability for penile skin is set to zero and thus excluded from all the experiments. Penile skin is thus excluded from

the list of labels that the probabilistic classifier can predict with multi-label classification.
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Dependence between class labels

Figure 4 shows the correlation plot for the 15 markers based on the original signal values. Blue denotes a positive

correlation and red denotes a negative correlation. The brighter the color, the stronger the correlation. The markers,

especially those who are cell type specific for the same cell type, are positively correlated. There also is a positive

correlation between both the markers for menstrual secretion (MMP10, MMP7 and MMP11) and the markers for blood

(HBB, ALAS2 and CD93) and the markers for vaginal mucosa (MUC4, MYOZ1 and CYP2B7P1). The correlation plot

implies that cell types depend on one another and this should be accounted for by using a multi-label approach that is

able to model these dependencies.

Figure 4: Correlation between the 15 relevant markers based on the original signal values.

Label powet-set method

The label power-set method transforms the multi-label problem to a multi-class problem by regarding each combination

of cell types as a class. This way it directly takes into account the class label correlations [11]. Since there are K = 8 cell

types, the number of unique combinations, called empirical labels, is 256 (2K). Note that the majority of the empirical

labels map to an empirical mixture consisting of at least two cell types, yet there are 8 labels mapping to a single cell

type and one label mapping to a sample in which no measurements are present. Any given classifier will predict one of

the 256 labels, namely the one for which the predicted probability is highest, when classifying a new unseen sample. This

is called the majority rule. Probabilities are calculated using the softmax function:

Pr(ck∗ |x) =
exk∗∑2K

j=0 exj

for k∗ = 1, 2, 3, ..., 2K (3)

Where ck∗ is the k∗-th empirical class label and xk∗ is any real number. The softmax function calculates the probability

of each empirical class label over all possible empirical class labels and the sum of all probabilities is one. The probabilities

follow a multinomial distribution.

An illustration of the process of predicting multiple labels using the label power-set method with eight samples and

three cell types, here blood, nasal mucosa and saliva, is displayed in figure 5. The empirical class label of a sample is

represented as hot encoded vector of length three. For example, the vector for blood and saliva is {1, 0, 1}. The number

of empirical mixtures here is 23 = 8. Starting off a classifier is trained on X and thereafter predicts the probabilities

Pr(y(i) = ck∗ |x(i)) for i = 1,2,...,8 for k∗ = 1,2,...,8. These probabilities are displayed in the 8x8 table in the figure. The

blue shaded cells are the probabilities with the highest value and the class labels belonging to them become the class

predictions, as is shown in the final table in the figure.
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The main drawback of this method is that the number of empirical labels tends to become very large [11] increasing

the probability of making a type I error.

Calculate Likelihood Ratio

Figure 5: Predicting multiple labels using the label

power-set method.

The LR calculation differs from the way that it is calculated

in equation 4 when using the label power-set method. First

of all, to calculate the probability for one cell type, the 2K

probabilities are combined to become one probability. This

can be done by calculating the marginal probability: the

summation of all 2K probabilities in which the cell type oc-

curs. When interested in the probability of a mixture of cell

types, one can repeat this process, but now by summing all

the 2K probabilities in which either one or both of the cell

types occur. Next up the LR is calculated using the marginal

probability and the following equation:

LR =
P ((mixture of) cell type(s))

1− P ((mixture of) cell type(s))
(4)

Independence between class labels

There also are multi-label approaches in which independence

between class labels is assumed and have been implemented

as well. The main advantage is that these methods are sim-

ple and, contrary to the label power-set method, less time

consuming.

Binary relevance method

The binary relevance method is also known as the one-vs-rest

strategy and converts the multi-label problem into several

binary classification problems [11] and therefore cannot ac-

count for correlations. In each binary classification problem

the class labels of the dataset are assigned in the following

way: all samples from the positive class get label one and

all samples from the negative class get label zero. After a

given binary classifier is fitted to the data it will predict the

probability of it being the positive and the negative class us-

ing equation 3 for K = 1. By combining the predicted class

labels (this is when the predicted probability for the positive

class is above 0.5) from all binary classifiers, the set of class

labels can be constructed.

An illustration of this process using eight samples and

three cell types is shown in figure 6. First the positive and

negative class labels for blood are determined and are in the red shaded column. A binary classifier is fitted on X and

thereafter used to predict probability of blood is for x(i) for i = 1,2,...,8. The blue shaded cells contain the highest

probabilities and when Pr(y(i) = 1|x(i)) is highest, the sample is considered to contain blood. If Pr(y(i) = 0|x(i)) is the

higher of the two, it will not get the label blood. All predicted labels for blood are shown in the first column of the final

table. This same process has been carried out separately for nasal mucosa and saliva and finally the predicted labels for
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the three classes are collected in the last table. For example, the first sample (on the first row) is predicted to be saliva

and the fifth sample is predicted to be a mixture of blood and nasal mucosa.

Figure 6: Predicting multiple labels using the binary

relevance method.

An advantage of this approach is its interpretability.

Since each class is represented by one classifier only, it is

possible to gain knowledge about the class.

Sigmoid activation function

Another way of predicting probabilities of (multiple) class

labels without modelling dependencies is using the sigmoid

activation function. This is especially useful, and in this

thesis only made feasible, for artificial neural networks. The

sigmoid function shown in equation 5 maps the values from

the output layer in the range (0, 1) and hence will return a

probability rather than any real number.

P (ck|x) =
1

1 + exp(−xk)
for k = 1, 2, ...,K (5)

Where ck is the k-th class label and xk is a real number.

The sigmoid function calculates the probability of each class

separately from all the other classes and the sum of all prob-

abilities does not necessarily have to be equal to one. The

probabilities follow a bernoulli distribution.

Calculate Likelihood Ratio

Using the binary relevance method, the predicted probabil-

ity for a cell type resulting from the binary classifier may be

directly used to calculate the LR with using equation 4. To

predict the probability of a mixture of cell types, the correct

class labels have to be assigned to the samples first: all sam-

ples containing either one or both cell types get label one

and the remaining samples get label zero. This way, after

fitting a binary classifier, it will be able to predict the prob-

ability of the mixture class (i.e. the positive class). The LR

again can be calculated using equation 4.

When the probabilistic classifier is an artificial neural

network, the number of cell types equal the number of nodes

in the output layer. When predicting the probability for one

cell type, the number of nodes is one. The sigmoid activa-

tion function ensures that the output is a probability that

can be used to calculate the LR with using equation 4. To

predict a mixture of cell types, the network is trained on the

train dataset from which the class labels are set to one if

either one or both cell types are in the sample and zero oth-

erwise. The value resulting from the one output node in the

final layer is transformed using the sigmoid activation func-

tion and represents the predicted probability for the mixture

class. The LR can be calculated as has discussed before.
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2.3.2 Probabilistic classifiers

There are four different probabilistic classifiers that have been experimented with. These are (Multinomial) Logistic

Regression (MLR), Multilayer Perceptron (MLP), Extreme Gradient Boosting (XGB) and a Fully connected Feed Forward

model (FFF). The first two classifiers are the same as the classifiers implemented and tested by Scholten, and are selected

out of the eight methods that they experimented with because they showed the most promising results. XGB, FFF and

MLP are known to be well performing classifiers in terms of classification accuracy [12]. They however also are known not

to be optimized for obtaining accurate probabilities and produce a set of ill-calibrated LRs [13]. Therefore, the methods

will benefit from a post-hoc calibration step that will transform the set into a well-calibrated one. An advantage of

MLR is that it is a white-box model and the model coefficients are thus interpretable. MLR is not very flexible (when

only the original covariates are inlcuded), meaning that it cannot vary as much with the train data, but therefore is

less susceptible to overfitting [12]. The MLP and FFF classifiers are black-box models meaning that they do not allow

for an interpretation of their model parameters. It is expected that their discriminating power is better than that of

white-box models [12] and they are more susceptible to overfitting because they or more flexible. The classifiers have

been implemented in Python using either the Scikit-learn module, the XGBoost library or the Keras API.

Each probabilistic classifier has been carried out in combination with both a multi-label approach accounting for

dependence between class labels and another multi-label approach that ignores dependencies between class labels.

(Multinomial) Logistic Regression

Logistic regression is a statistical model that models a binary dependent variable. It transforms a linear equation using

the logit function (equation 6) into a set of probabilities that sum to one. The optimal parameter values, or rather the

coefficients and intercept, are obtained using maximum likelihood estimation [1, 12].

logit(Pr) = log

(
Pr

1− Pr

)
= β0 + β1x

(i)
1 + β2x

(i)
2 + ...+ βpx

(i)
p (6)

Under the assumption of dependence between the class labels the label power-set method in combination with a

generalization of logistic regression to multiple classes, namely multinomial logistic regression, have been implemented.

The L2 penalty has been added to prevent the model from overfitting. Once the parameters (βk∗ for k∗ in 1,2,...,2K) are

obtained using maximum likelihood estimation, these can be used to predict 2K probabilities (that add up to one) for an

unseen sample x(i) as in equations 7.

Pr(y(i) = 1) =
eβ1x

(i)

1 +
∑2K−1
k=1 eβkx(i)

Pr(y(i) = 2) =
eβ2x

(i)

1 +
∑2K−1
k=1 eβkx(i)

... (7)

Pr(y(i) = 2K − 1) =
eβ2K−1x

(i)

1 +
∑2K−1
k=1 eβkx(i)

Pr(y(i) = 2K) =
1

1 +
∑2K−1
k=1 eβkx(i)

Under the assumption of independence between the class labels the binary relevance method has been used. After

training a logistic regression model on the dataset, the parameter values (β) are obtained. Again, the L2 penalty has been

added to prevent the model from overfitting. A binary logistic regression model predicts the probability of the positive

class (Pr(y(i) = 1)) for an unseen sample x(i) as in equation 8 and the probability for the negative class can be calculated

by 1− Pr(y(i) = 1).

Pr(y(i) = 1) =
1

1 + e−(βt0+β1x
(i)
1 +β2x

(i)
2 +...+βpx

(i)
p )

(8)
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Multilayer Perceptron

A Multilayer Perceptron (MLP) is an artificial neural network that is built up of three layers: an input layer, a hidden

layer and an output layer. The input layer contains nodes that combine the input values of the 15 input features (i.e.

markers) with a set of weights and biases by taking the product. The sum of the products are then passed through a

node’s activation function and sends this to the next layer. So, each layer’s output is the subsequent layers input. The

hidden layer consists of 100 nodes encoding the values from the former layer. The number of nodes in the output layer

equal the number of class labels and the produced output variables are the predicted probabilities for the class labels.

The model is trained, or in other words the parameters are optimized, by minimizing a loss function [12]. The binary

cross-entropy loss in equation 9 is an appropriate loss function for binary classification problems and will also be used for

multi-class classification in combination with the softmax function [14].

L(y, ŷ) = − 1

N

N∑
i=1

y(i) · log(ŷ(i)) + (1− y(i)) · log(1− ŷ(i)) (9)

The training process can be described as follows: the MLP starts from random weights and biases that map the input

to a set of predictions. Then the loss, or error, is calculated using equation 9. With backpropagation the weights and

biases are updated: it backpropagates information about the error in reverse through the network so that it can alter the

parameters. This is an iterative process and continues until the maximum number of iterations, here 500, is reached or

the error is below the threshold value. The adam optimization function, that helps to minimize the loss function, has

been used.

With the use of the label power-set method dependence between class labels is accounted for. Subsequently, the

number of nodes in the final layer is 2K and the softmax function is used to transform the values into a range from 0

to 1. The sum of the probabilities resulting from all those nodes is equal to one. Once the model is trained, an unseen

sample x(i) can be ‘fed’ to the network that will use the parameters (weights and biases) and the information from the

sample to predict 2K probabilities for all empirical class labels.

Under the independence assumption the sigmoid function has been used as activation function in the final layer. The

number of output nodes is equal to the number of classes (may also be mixtures of classes) of which one wants to predict

a probability for. Note that the MLP without the hidden layer and using the sigmoid activation function in the output

layer is exactly the same as logistic regression [12].

Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is an implementation of the gradient boosted trees algorithm. This is a way of

ensemble learning that combines the estimate of a set of weaker trees (i.e. their predictions have a high bias and the

predictive power is only somewhat better than random guessing) to make predictions. Trees are built sequentially such

that each subsequent tree aims to reduce the error of the previous tree. It is called gradient boosting because it uses

a gradient descent algorithm to minimize the loss when adding new trees. Note that the type of loss function depends

on the problem. Here, the number of weaker trees, that when combined predict the class probability, is 100 and the

maximum number of leafs in each tree is 3.

Under the assumption of dependence between class labels the label power-set method has been implemented. The

loss function that is minimized during training is the softmax objective function. Once the model is trained, for each

empirical class label k∗ a sequence of 100 weaker trees is obtained, resulting in 2K sets of 100 weaker trees. These sets

can be used to predict the probabilities of the 2K empirical class labels with.

Under the dependence assumption the binary relevance method has been implemented. The loss function that is

minimized during training is the logistic objective function and is the same as equation 9. After training a XGBoost

classifier on the dataset, a sequence of 100 weaker trees is obtained and are used to predict the probability of the positive

class Pr(y(i) = 1) for sample x(i) and calculate the probability of the negative class by 1− Pr(y(i) = 1).

19



Fully connected Feed Forward model

The Fully connected Feed Forward model is also an artificial neural network and is equivalent to the Multilayer Perceptron,

but differs in the number of layers in the network. Namely, it is built up of four layers: one input layer, two hidden layers

and an output layer. On the first layer dropout is implemented, in which at a rate of 0.05 nodes are dropped during

the training process. This is a way to prevent the model from overfitting. The input layer consists of 15 nodes, the first

hidden layer consists of 20 nodes and the second hidden layer consists of 80 nodes. The number of nodes in the output

layer equal the number of class labels and the produced output variables are the predicted probabilities for the class

labels. Both the training process and the way that the input values, weights and biases are used to calculate the output

of the network are the same as for the Multilayer Perceptron. Note that MLP only supports the binary cross-entropy

loss function, whereas both the binary cross-entropy loss and the categorical cross-entropy loss function (equation 10)

are supported by FFF. The latter can be used in multi-class classification problems where only one result can be correct,

whereas binary cross-entropy can be used in multi-label problems.

L(y, ŷ) = −
M∑
i=j

N∑
i=1

y(ij) · log(ŷ(ij)) (10)

The FFF has been trained for 30 epochs. An epoch is one forward pass and one backward pass of all training examples.

This is the same as one iteration if the batch size is equal to the size of the training set, which here is the case. The adam

optimization function has been used.

Under the independence assumption the label power-set method has been implemented together with the categorical

cross-entropy loss function and softmax activation function in the output layer. The number of nodes in the output layer

is 2K and the softmax function is used to transform the output of the network with into the range (0, 1) and thereafter

referred to as probabilities. The sum of these probabilities sum up to one. Once the model is trained, the probability of

2K empirical class labels can be predicted.

Under the dependence assumption the sigmoid function has been used as activation function in the final layer and

the loss function during training is binary cross-entropy function. The number of nodes in the final layer is equal to the

number of classes (may also be mixtures of classes) of which one wants to calculate the probability for.

2.3.3 Calibrating the scores

One of the aims of this thesis is to compare the performance of probabilistic classifiers, namely MLP, XGB and FFF, from

which the derived LRs are transformed in a post-hoc calibration step with the performance of a probabilistic classifier,

namely MLR, from which the resulting LRs are not transformed. Post-hoc model calibration is a way of transforming a

set of ill-calibrated LRs into a presumably well-calibrated one [7]. Ill-calibrated LRs are referred to as scores (s) rather

than LRs. After calibrating the scores they may be interpreted as LRs as they then are more realistic LR values. The

synthetic calibration dataset has been used in the building process of the calibration model.

Calibration techniques are designed for two-class problems and when expanding it to multiple classes, the results are

not likely to be accurate [15]. So, to enable calibrating the scores for multiple classes, a calibration model has been built

for each class, thereby making it a set of two-class problems. The scores belonging to a class are transformed using the

calibration model of that same class.

Kernel density estimation

The ideal calibration of the score would be to map it to the ratio of true distributions under H1 and H2 [13] evaluated in

point s:

s→ log
P (s|H1)

P (s|H2)
(11)

where H1 is the hypothesis stating ”the sample contains cell type k” and H2 states ”the sample does not contain

cell type k”. However, the true score distributions P (s|H1) and P (s|H2) are unknown. One fortunately can estimate a

20



density model that fits the distribution for the scores under both hypotheses in case the ground truth labels are known.

Moreover, the distributions of the scores may be predicted from the log10-transformed scores [13, 16] and are referred to

as P̂ (s|H1) and P̂ (s|H2). These estimates have been obtained using kernel density estimation.

Kernel density estimation (KDE) is a non parametric way to estimate a probability density function ρ(y) [17]. The

density estimate at a point y within a group of points x is given by:

ρK(y) =

Q∑
q=1

K

(
(y − x(q))

h

)
(12)

where h is the bandwidth and K is the kernel. Mathematically, a kernel is a positive function K(x;h) which is

controlled by the bandwidth parameter h. The bandwidth acts as smoothing parameter, controlling the trade-off between

the bias and variance. A large bandwidth leads to a very smooth (i.e. high bias) density distribution. A small bandwidth

leads to an unsmooth (i.e. high variance) density distribution [17] that possibly overfits the calibration data. The process

of estimating the probability density function using KDE is described as follows: on every data point x(q) in x it places

the kernel function with bandwidth h. The average of all the placed probability masses K(u;h) (equation 12) results in

the final estimate [17].

In this thesis the gaussian kernel has been used and the bandwidth has been determined with the Silverman bandwidth.

This is a way to estimate the optimal bandwidth parameter using Silverman’s rule of thumb [17]. Figure 7 visualizes a

part of the calibration model building process. In Figure 7a the two actual distributions of the log10(scores) under H1

and H2 and the estimated probability density estimates, p1 and p2, are displayed. The mapping function, being the ratio

of the two density estimates, is shown in figure 7b. The log10(scores) are on the x-axis and the values to which the scores

are mapped are on the y-axis, for example a 10log(score) of 5 is mapped to circa 2.5.

(a) Distributions of the scores derived

from the calibration dataset and the

probability density estimates plotted

thereover.

(b) Mapping function. (c) Distributions of the scores derived

from the test dataset and the

probability density estimates plotted

thereover.

Figure 7: Visualization of part of the calibration model building process using kernel density estimation.

There are some drawbacks of building a calibration model using KDE. Since there are often little to no data points in

the tail areas of both distributions of the scores, the density estimate is based on extrapolation and hence only weakly or

not at all supported by the data [18]. The dotted line in figure 7b is the mapping function based on the extrapolation and

that is for all log10(scores) below -4 and above 7.5. It should also be noted that the line is not monotonically increasing,

so the order of the log10(scores) is not preserved. This could result in mapping a high log10(score), of say 8, to a lower

log10(LR) than that of log10(score) below 8. If this is the case, the strength of the evidence of the transformed score

is falsely shrunken too much. Another drawback is that KDE is susceptible to overfitting, meaning that it will fit the

dataset rather than the underlying distribution. Due to sampling variability, the distributions of the scores from the

calibration and test dataset are likely to differ. If the probability density functions perfectly fit the distributions of the
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scores derived from the calibration set, but do not fit the distributions of the scores derived from the test set, the mapping

function is overfitted. This is clearly shown in figure 7c where the density estimates are plotted over the distribution of

the scores from the test set. As a result, the transformation from scores will not lead to a set of well-calibrated LRs.

For example, a log10(score) of 2.5 remains roughly 2.5 after the transformation. Under H2 this LR lends support to the

wrong proposition and thus is not optimally calibrated.

2.3.4 Test the susceptibility to a change in the relative frequency of the cell types in the data

Another objective in this thesis is to determine if, and if so, to what extent the prior probabilities affect the output of

a probabilistic classifier. These priors are implicitly incorporated as the relative frequency of the cell types in the train

data. Therefore, a convenient way of assessing the affect of the priors is by altering these relative frequencies and conclude

whether the output of that same classifier is changed. Initially a given classifier is trained and tested on a uniform dataset

in which the number of samples for all cell types is equal (i.e. flat prior). In a non-uniform dataset the relative frequency

of the cell types differ, so for example the relative frequency of cell type 1 may be 10 times that of the others. Uniform

and non-uniform datasets thus have been used to assess the susceptibility to a change in the relative frequency of the

cell types and an illustration showing how is displayed in figure 8. Starting with two train datasets, one being uniform

and the other non-uniform, a given classifier is separately fitted on both. Both versions of the classifier are then used to

calculate the LRs with from a uniform test dataset, resulting in two sets of LRs, namely LRsuniform and LRsnon-uniform.

Figure 8: Illustration of the process to retrieve two sets of LRs from a given classifier that has been trained on both a

uniform and non-unform train datasets.

This process has been carried out six times using a different non-uniform train dataset each time. The uniform train

dataset is used as baseline and subsequently all six sets of LRsnon-uniform are compared with LRsuniform. In order to make

an honest comparison it is necessary that the size of all train datasets is the same. Otherwise, the classifier that is trained

on the larger of two datasets will presumably perform better as it could learn from more samples thereby having more

information about the underlying distribution. The non-uniform datasets are constructed as follows: in three of them

the relative frequency for either blood, vaginal mucosa or skin is 10 times that of the others and in the remaining three

datasets the relative frequency for either of those cell types is 10 times less than that of the others.
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2.4 Measure performance

2.4.1 Target classes

As has been mentioned in the introduction, there are two body fluids that forensic examiners have to identify most

often in cases, namely vaginal mucosa and saliva, and are therefore mainly focused on. However, there also exist vaginal

cells in menstrual secretion, so to consider all the information about vaginal mucosa, menstrual secretion should also

be taken into account. Therefore in this thesis a combination class of vaginal mucosa + menstrual secretion is used in

stead of vaginal mucosa. Henceforth, saliva and the combination will be referred to as target class saliva and target class

vaginal/menstrual respectively. Performance of the probabilistic classifiers is measured based on both.

2.4.2 Performance metrics

The metrics with which the performance of the classifiers has been measured are based on likelihood ratios [3]. Desired

properties are to have good discrimination between the classes and good calibration [19]. Disrimination represents the

capability of a classifier to distinguish amongst different class labels [20]. The better the discriminating power, the less

decision errors will be made. Note however that good discriminating power does not necessarily mean that the actual LR

values are correct [4]. It is a desired property, but should not be primarily focused on. Good calibration is when the LR

value is not too high or too low, so the better the calibration the more correct the LR values are. The accuracy measures

both properties [20] and hence has been used as primary performance metric. This section also discusses the way to

inspect the susceptibility of a given classifier to a change relative frequency of cell types in the data and a bootstrap

procedure to assess the reliability of the LRs. Note that the performance metrics are intended to evaluate one class and

have been calculated for both target classes respectively.

Accuracy

The log-likelihood-ratio cost (Cllr) is a measure of accuracy based on both the LRs and the classifier. Moreover, it is a

gradient metric, meaning that it will take account the value of the LR [3]. Generally speaking, it is the cost of decisions

based on the strictly proper scoring rules (spsr) that stems from the Bayesian framework. Strictly proper scoring rules

may be seen as loss functions that assign a penalty to a given value of a predicted posterior probability depending on

the true value of the ground-truth label [19]. Ideally, the spsr assigns a lower penalty to larger posterior probabilities

when H1 is true and to lower posterior probabilities under H2. The logarithmic scoring rules have this property and their

functions are shown in equation 13. These are the same as the optimization objective function for logistic regression [21].

− log2(P ) if H1 is true

− log2(1− P ) if H2 is true (13)

where P represents the posterior probability. Note however that the spsr framework cannot directly be applied to

forensic science, because it is based on measuring the performance of posterior probabilities [4] and the forensic scientist

only calculates the LR. Therefore, spsr has been extended to the forensic field by computing the cost for a wide range

of prior probabilities [6]. A summarizing measure is at prior log-odds of 0, or at uniform priors, and is called the

log-likelihood-ratio cost (Cllr) and can be calculated using equation 14 [3].

Cllr =
1

2

(
1

N1

N1∑
i=1

log2

(
1 +

1

LR1i

)
+

1

N2

N2∑
j=1

log2

(
1 + LR2j

))
(14)

where N1 and N2 are the number of LRs under H1 and H2, and LR1 and LR2 are the likelihood ratios that are known

to belong to either of both classes. Since the Cllr is a function of cost, a lower value is preferred and indicates a higher

accuracy. Moreover, the extent to which the Cllr is less than one is a measure of validity of a classifier [3]. A Cllr of one

or above one indicates that the classifier is badly calibrated and can better not be used. Moreover, this means that the

classifier performs worse than a neutral system for which the LR values always equals 1 [19, 22].
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Discrimination

Discrimination can be assessed by visualizing the LRs, or rather the log10(LRs), in a histogram. Moreover, it is useful

to draw histograms separately for log10(LRs1) and log10(LRs2). The degree of overlap between these two histograms is

a measure of the discriminating power. In case of complete separation between the histograms, meaning that there is no

overlap, the LR values are said to be perfectly discriminated. This is when all log10(LRs1) > 0 and all log10(LRs2) < 0

in case the theshold is set to 0 [4].

Another way of inspecting the discrimination power is by assessing the Receiver Operation Characteristic (ROC)

curve or rather the Area Under the ROC Curve (AUC) [19]. The plot showing the ROC curve has the false positive rate

(fpr), that is the proportion of negative samples that are mistakenly considered as positive with respect to all positive

samples, displayed on the x-axis. One the y-axis the true positive rate (tpr) is displayed. This is the proportion of the

positive samples that are correctly considered positive with respect to all positive samples. The fpr and tpr vary together

as the threshold that determines when a value is mistakenly missclassified or correctly classified varies. The ROC curve

illustrates how they vary for a given classifier. Once the ROC curve is known, the area under this curve (AUC) can be

determined and serves as numerical measure for discrimination. Generally speaking, the higher the AUC the better any

classifier is at correctly classifying the samples and thus higher the discriminating power. When AUC equals 1 there is

perfect discrimination. An AUC of 0 means that all the wrong labels are predicted. In case the AUC is 0.5, this means

the model cannot distinguish between classes.

Calibration

A way of inspecting the calibration is based on the Pool Adjacent Violators (PAV) transformation [16]. This is an

algorithm that transforms a set of LRs into well-calibrated LRs. By plotting the 10log(LRs) against the PAV-transformed

log10(LRs) together with a diagonal line, the deviation from that line can be assessed. One can conclude by looking

at the deviation if the original LRs are well- or ill-calibrated [22]: the smaller the deviation from the line is, the better

calibrated the log10(LRs) are.

Susceptibility to a change in the relative frequency of cell types

To determine the susceptibility of a given probabilistic classifier to a change the relative frequency of cell types in the

data, a visual aid is used. By plotting the log10(LRsuniform) against the log10(LRsnon-uniform) together with a diagonal

line in a scatterplot, the deviation from that line can be assessed. A larger deviation from the line indicates that there

are more differences between the sets of LRs. From a large deviation, one can infer that a given classifier is susceptible

to a change in the relative frequency of cell types in the data, whereas when the scatterpoints (almost) perfectly lie on

the diagonal, the opposite conclusion may be drawn. Note that there has not been made use of a numerical measure that

expresses to deviation from the diagonal. One must infer, by looking at the scatterplots whether the classifiers’ output is

affected by the relative frequency. Conclusions are drawn in a comparative manner, for example one may conclude that

classifier 1 is less susceptible than classifier 2 when there is less deviation from the diagonal line.

Reliability of the LRs

The reliability of the LRs of the selected probabilistic classifier have also been studied. Reliability can also be understood

as precision: the extent to which the output of a given classifier is consistent [3, 20]. A bootstrap procedure is performed,

which is a resampling method that will enable to construct a confidence interval using bootstrap samples for the LRs. To

preserve the same number of samples from both classes in the train data, bootstrap samples for the positive and negative

class have been created separately. First the positive samples from the train dataset were resampled with replacement

and thereafter the negative samples from the train dataset were resampled with replacement. The samples from both

classes are combined into a bootstrap sample. In total 2000 bootstrap samples were generated, each of which the classifier

was trained on separately and used to calculate the LRs from the test set with. The 95% confidence interval for each

LR is constructed using the percentile method by taking the 25th and 975th largest of the 2000 replicates. With the
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lowerbound and upperbound from an bootstrap interval defined as vlowerbound(i) and vupperbound(i) for sample i, one

can state the following: with 95% confidence LR(i) is between vlowerbound(i) and vupperbound(i). The ‘true’ LRs and the

confidence intervals are plotted to assess the overall reliability: the wider the intervals are, the less consistent the output

of a given classifier is and thus the less reliable the LRs are.

2.4.3 Procedure and sensitivity analysis

Experiments have been carried out using two transformations of a given dataset, two multi-label approaches and four

probabilistic classifiers. The main goal is to compare the results from all sixteen combinations, that from now on will be

referred to as methods, simultaneously. The procedure in case a post-hoc calibration step is added is illustrated in figure

9.

Figure 9: Illustration of the procedure.

Starting off, the single cell type dataset is split in three parts: 40% is used to create the synthetic train dataset, another

40% to create the synthetic calibration dataset and the last 20% is used for generating the synthetic test dataset. The

synthetic sets are then converted into presence/absence datasets from which the process, that is about to be described,

will follow. After that process ends, the synthetic datasets are generated again, but now are transformed into quantitative

datasets from which the same process follows. This process is described in the following way: each of the four probabilistic

classifiers in combination with one multi-label approach is fitted on the train data and thereupon used to calculate the

LRsno calibration with from the calibration data. Those LR values are used to build the calibration models. The fitted

probabilistic classifiers are also used to calculate the scores (and not yet LRs) with from the test data and are transformed

into LRs using the calibration models. Note that in case no calibration has been implemented, as for MLR, the train and

the calibration dataset together are used to train the classifier with and the calibration steps are skipped. Moving on

this same process is repeated but using the four classifiers in combination with the other multi-label method. In the end

there are sixteen sets of LRs derived from the test set and can be used to evaluate the performance of all sixteen methods

with. The results of all methods derived from the mixtures cell type dataset are also calculated separately.

A sensitivity analysis has been performed in order to study the uncertainty in the output, and subsequently also in

the calculated performance metrics, from the methods. This is a process of recalculating the output under alternative

assumptions and in this thesis understood as repeating the procedure that has just been described multiple (30) times.

25



The output is expected to vary because of sampling variability. In each reiteration 8448 empirical multiple body fluid

samples are generated for the train dataset, as well as for the calibration dataset. The number of generated samples for

the test set is 5632.
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3 Results

3.1 Synthetic test data

3.1.1 Comparison of the methods

The Cllr’s resulting from the 30 runs for target class vaginal/menstrual are displayed in figure 10. Each label on the y-axis

represents one of the methods and consists of three elements: the name of the classifier, the type of data transformation

and the assumption about the class labels (i.e. multi-label approach). For example, MLP/pa/indep refers to combination

of the Multilayer Perceptron, the presence/absence data and the multi-label approach that ignores dependencies between

class labels. The median is a measure of the center of the Cllr’s and in the figure is marked by the band inside the boxes

of the boxplots. The width of the boxes and the length of the whiskers show the spread of the Cllr’s. Values outside the

whiskers are outliers.

pa = presence/absence data, q = quantitative data,

indep = independence between class labels, dep = dependence between class labels

Figure 10: Cllr’s for target class vaginal/menstrual resulting from the 30 runs on the synthetic test data.

Figure 10 shows that the boxplots overlap, meaning that there is no significant difference between the accuracy of the

methods. Moreover, there is no method that clearly outperforms the rest in terms of calculating accurate LR values. Most

of the Cllr’s in the figure are below 1, meaning that the methods are more useful than a neutral system (always returning

a LR of 1). It also shows that for some of the methods the median is significantly higher in comparison to that of other

methods, meaning that their output is generally less accurate. This for example is the case for the method FFF/q/dep

where the median of all the Cllr’s is roughly 0.6 and for the method XGB/q/indep where the median is roughly 0.5.

Furthermore, the results show that using the presence/absence data generally leads to a higher accuracy in comparison

to using the quantitative data.

There are some methods for which the Cllr in at least one run exceeds 1. To get a better understanding why this is the

case for MLR/pa/indep, the way that the Cllr is calculated for in this particular run is displayed in figure 11. Moreover,

in figure 11a the histograms of the LRs under H1 and H2 are plotted on a log-10 scale. It becomes clear that part of the

log10(LRs) under H2 point in the wrong direction (i.e. are above zero) as well as some log10(LRs) under H1 (i.e. are

below zero), and therefore will be penalized. Figure 11b shows the assigned penalty (or cost) to each value in the set.
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The log10(LRs) under H2 supporting the wrong propositions are most heavily penalized (i.e. penalty goes up to 12). The

total cost under H2 is roughly 6 times that of the total cost under H1, so the reason why the Cllr in this run exceeds one

is because many of the non-target class samples were misclassified. One could further explore why the method failed to

classify them correctly by inspecting the samples, but that is outside the scope of this thesis.

(a) Separate histograms for log10(LRs) under H1 and H2. (b) Costs per log10(LR) from the histograms.

Figure 11: The distributions of the log10(LRs) calculated with the method MLR/pa/indep for one run and the

penalty given to those values.

The Cllr’s resulting from the 30 runs for target class saliva are shown in figure 12. Note that the results from the

four XGB methods are excluded because of some extremely large outliers (Cllr of circa 8) that made the results from

the remaining methods difficult to study. The fact that these outliers are this extreme indicates that XGB is subject to

overfitting and therefore delivers inaccurate LRs that lend strong support to the wrong hypothesis. Furthermore, note

that for the majority of the methods in at least one run the Cllr exceeds 1. This demonstrates that in one of the 30 runs,

the test dataset consisted of samples that were hard to classify and led those methods to give misleading results. Here

the boxes from the boxplots overlap as well, indicating no significant difference between the accuracy of the methods,

however there are two methods from which the median is significantly lower than that of the other methods. This is

for MLR/q/indep and MLR/pa/indep and demonstrates that their accuracy generally is higher than the accuracy of the

other methods.

Furthermore, observe there is a large spread in the Cllr’s. This is caused by sampling variability: each run the train,

calibration en test dataset consist of different empirical mixtures because they are generated with randomly selected

measurements of cell types.
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pa = presence/absence data, q = quantitative data,

indep = independence between class labels, dep = dependence between class labels

Figure 12: Cllr’s for target class saliva resulting from the 30 runs on the synthetic test data.
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The susceptibility to a change in the relative frequency of the cell types in the data is assessed for three methods,

namely MLR/pa/indep, MLP/q/dep and FFF/pa/indep. This selection of methods enables one to make two important

comparisons. The first is to make a comparison between methods of which the derived LRs are transformed in a post-hoc

calibration step to methods from which the derived LRs received no post-hoc treatment. Secondly, one can compare the

susceptibility of MLP/q/dep, also known as the most promising method from the study by Scholten, to the other methods.

The scatterplots plotting the LRsuniform against the sets of LRsnon-uniform for target class vaginal/menstrual are shown

in figure 13 and for target class saliva are shown in figure 14 respectively. The three sets of LRsnon-uniform stem from the

train data wherein the relative frequency of a given cell type is 10 times higher. Because it helps visualizations, the LRs

under H1 and H2 are plotted separately. Note that the sets of LR values are collected from 10 additional runs.

Both figures show that the pairs of uniform and non-uniform LRs calculated with the MLR method are more alike

in comparison to those of the other two methods. Moreover, the scatter points lie closer together on the diagonal under

both H1 and H2. Observe however in figure 13d that the majority of the scatters points appear above the diagonal:

LRnon-uniform is higher than LRuniform. Here the non-uniform dataset consists of relatively more vaginal mucosa samples

and the target class vaginal/menstrual is assessed. So, a MLR model trained on this non-uniform dataset therefore

learned more about vaginal mucosa and hence is more confident (i.e. higher LR) to classify a sample with ground-truth

label vaginal mucosa. Another observation is that the pairs of uniform and non-uniform LRs calculated with the FFF

method are more alike in comparison to those from the MLP method and hence less susceptible to a change in the relative

occurrence of cell types. The fact that there is no clear pattern in the scatterplots for MLP may be a result of overfitting

which will be checked later in this section. The scatterplots plotting the LRsuniform against the sets of LRsnon-uniform that

are retrieved from the methods trained on data for which the relative frequency of the three cell types is 10 times lower

are shown in Appendix A.
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(a) (b) (c)

(d) (e) (f)

(g) MLR/pa/indep (h) MLP/q/dep (i) FFF/pa/indep

Figure 13: All pairs of LRsuniform and LRsnon-uniform from 10 runs for the target class vaginal/menstrual. The results

are from the three non-uniform datasets in which the relative frequency of the cell types blood (first row), nasal mucosa

(second row) and skin (third row) is 10 times that of the others.

(a) (b) (c)

(d) (e) (f)

(g) MLR/pa/indep (h) MLP/q/dep (i) FFF/pa/indep

Figure 14: All pairs of LRsuniform and LRsnon-uniform from 10 runs for the target class saliva. The results are from the

three non-uniform datasets in which the relative frequency of the cell types blood (first row), nasal mucosa (second row)

and skin (third row) is 10 times that of the others.
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One can assess whether the probabilistic methods that have been experimented with are subject to overfitting using

the classification accuracies on the train and test dataset. Note that the classification accuracy is the fraction of correct

class label assignments (here for target class vaginal/menstrual). Overfitting is determined by comparing the train and

test classification accuracy: when the train accuracy is high, but the test accuracy is low, the classifier is fitted to the

train samples too well and will therefore fail to correctly classify the samples in the test set. Figure 15a shows that the

median of the test classification accuracy for all the methods consisting of XGB and MLP are centered around 0.95.

On the other hand, one can inspect from figure 15b that the median for the test classification accuracy for these same

methods is centered around 0.9. So, XGB and MLP indeed are subject to overfitting. All four MLR methods however

are not subject to overfitting: the median for the train classification accuracy and test classification accuracy are similar

and centered around 0.92. The same holds for the methods including FFF.

(a) Train classification accuracy. (b) Test classification accuracy.

pa = presence/absence data, q = quantitative data,

indep = independence between class labels, dep = dependence between class labels.

Figure 15: Classification accuracies of target class vaginal/menstrual from 30 runs on the synthetic test data set.

3.1.2 Discrimination and calibration

Additionally, the discriminating power and calibration on target class vaginal/menstrual were assessed using the LR

values resulting from 30 runs for the method MLR/pa/indep. Figure 16a shows the LRs on a log-10 scale under H1

and H2 respectively. First of all there is some degree of overlap between the two distributions, indicating that a part of

log10(LRs) under H1 support the wrong proposition (i.e. are below 0) and a part of log10(LRs) under H2 support the

wrong proposition (i.e. are above 0). This tells us that there is no complete separation between the LR values belonging

to the target class and the LR values belonging to the non-target class. To gain further knowledge about the degree of

discriminating power, one is referred to the AUC. The ROC curve is displayed in fig 16b and the Area Under the Curve

of the ROC is equal to 0.97. This implies that the probabilistic classifier can distinguish well between the target class and

non-target class, or to be more precise: there is 97% chance that model will be able to distinguish between the classes.

Furthermore, notice that the ROC curve is more in the upper left corner which means that there are more combinations

of tp-rates and fp-rates in which the tpr is high. So, regardless of the value of the threshold, the classifier will be able

to nearly always correctly classify samples from the target class. Also notice that LRs under H1 can become as high as

1E10.

Figure 17 shows the PAV transformation of the LRs. The x-axis represents the pre-PAV calibrated LRs and the y-axis

is the optimal transformation of those LRs following the Pool Adjacent Violators algorithm. The green solid line is the

mapping function, mapping the pre-PAV calibrated LRs to the post-PAV calibrated LRs. The log10(LR) values under H1

and H2 are inserted at the bottom of the plot. First of all note that the line revolves around, but does not perfectly lie

on the diagonal. Moreover, the deviation underneath the diagonal enlarges for decreasing log10(LRs) and the deviation

above the diagonal enlarges for increasing log10(LRs). Van Es et al. in their paper declare that ”... for a well-calibrated

system, the largest deviations from the line y=x are observed when the data is scare.” [16]. This is what may be observed

here as well: the largest deviations are around -2 where there is little data under H1 and around 4 where there is little
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data under H2.

(a) Histogram of the log10(LRs). (b) ROC curve.

Figure 16: Visualizations that help assess the discriminating power of MLR/pa/indep

Figure 17: PAV transform of the log10(LRs) from the 30 runs.
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3.1.3 Reliability of the LRs

The bootstrap intervals together with the ‘true’ LRs from the test data (black solid line) using the method MLR/pa/indep

are displayed in figure 18. Note that the LRs from one out of the 30 runs have been been used to calculate the confidence

interval with. First of all observe that the width of the interval depends on the underlying LR and hence is not fixed.

This may be explained by the fact that for lower log10(LRs), the estimation of the density of the LRs given H1 and H2 is

well supported by the data (see figure 16a). The confidence interval widens from log10(LRs) above 8 and is most narrow

for log10(LRs) below -1. The widest interval roughly can be defined as (log10(LR)-0.6, log10(LR)+0.6).

Figure 18: Plot showing the log10(LRs) and the 95% bootstrap confidence intervals.

3.2 Mixture cell type data

The LRs derived from the mixtures dataset using the method MLR/pa/indep on both target classes are illustrated in

figure 24. The histograms are plotted for each unique mixture class on a log-10 scale. When the mixture includes the cell

type(s) of a target class, the LR should be above one (or zero on the log scale) because they correspond to the actual cell

type in the sample. The LRs should be below one (or zero on the log scale) otherwise. Then the LRs derived from the

samples are correct and lend support to the correct hypothesis.

Figure 19a displays the LRs for target class vaginal/menstrual. The majority of the LR values that are derived from

the mixtures are accurate. Moreover, all the LRs derived from the samples from the mixtures classes menstrual secretion

+ blood, saliva + vaginal mucosa, nasal mucosa + saliva and semen fertile + vaginal mucosa support the true proposition

to a high degree. The highest values (up to 1E10) are obtained for menstrual secretion+blood. This is because blood is

a component of menstrual secretion. In the remaining three classes a small fraction of the LRs derived from the samples

support the wrong proposition. However, this is only to a small degree.

The LRs for saliva are displayed in figure 19b and the histograms clearly show that the values for the samples that

contain saliva are higher than zero and for the samples that do not contain saliva are below zero. There is however a

small fraction of samples from nasal mucosa + saliva for which the log10(LR) is below zero. This may be explained by

the fact that nasal mucosa and saliva have one overlapping marker and one specific marker each. If in the mixture sample

the saliva specific marker does not appear but the overlapping does, the classifier will be uncertain about the existence
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of saliva and return a low LR.

In Appendix B the distribution of the 30 Cllr’s from all methods for both target classes are shown. The most

important observation is that the Cllr’s are much lower than those resulting from the synthetic test dataset, implying

that the accuracy of the classifier appears to be better than it truly is.
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(a) Target class vaginal/menstrual.

(b) Target class saliva.

Figure 19: Histograms of the log10(LRs) derived from the mixture cell type dataset.
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4 Application to data from actual cases

4.1 User friendly tool in Microsoft Excel

In order for the Department of Human Biological Traces to adapt the proposed method to actual cases, an userfriendly

tool has been constructed with the use of Microsoft Excel. The main usage of the tool is to calculate the LR from data

from actual cases and to compare it to the result from the n/2 method. There are two features that the tool is required to

have. First of all, it should be able to use the mRNA measurements to calculate the LR for the correct class. Secondly, it

should clearly show the influence of each marker on the result. This will enable the forensic examiners to both understand

the result from the method and to perform their own experiments (for example to assess the change of the result in case

more/less markers amplify).

In total six logistic regression models have been fitted separately and their resulting coefficients have been processed

into the tool. These are for the combinations of three classes and two prior probabilities for penile skin. The classes being

saliva, the combination class of vaginal mucosa and/or menstrual secretion and vaginal mucosa. In the combination class

the information about vaginal cells in menstrual secretion is taken into account when calculating the LR, whereas for the

class vaginal mucosa all the method does not consider menstrual secretion. Per case it is up to the forensic examiner

to decide about the appropriate model: when he or she is certain that menstrual secretion does not exist in the stain,

the logistic regression model for vaginal mucosa should be picked. When the forensic examiner is certain that the stain

contains penile skin, a model that also considers penile skin should be used (i.e. prior probability is 1).

Figure 20: First part of the tool: 9 example mRNA measurements inserted in the tool constructed in Excel for one

model

Within the tool one solely has to insert the mRNA measurements from an external textfile. Figure 20 shows the part

of the Excel tool for a given model in which nine example mRNA measurements are entered. The columns above which

it says ‘signal marker name ’ must contain the signal value(s), if any, for that marker. The number of replicates that

the tool can process is 15.

Figure 21: Second part of the tool in Excel: replace the signal value in case equal or above 150 and calculate the

log10(LR) using the coefficients from the Logistic Regression model

First the signal values are converted into either a one when it equals or exceeds the threshold of 150 and into zero

otherwise. Figure 21 shows this modification for the nine example measurements in the tool. In the row stating ‘total’
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the amount of replicates in which a marker is observed is displayed. In the row below that it shows contribution of each

marker to the resulting log10(LR) (i.e. the sum of each element is equal to the log10(LR)). The final row saying ‘max

log10(LR)’ shows the influence per marker and can be used to interpret the results. If the model here would be the logistic

regression model for vaginal mucosa, then the maximum log10(LR) for HBB can be interpreted as follows: in case HBB

is observed in all mRNA measurements, the log10(LR) of vaginal mucosa increases with 0.044. The LR is also calculated

by 10log10(LR). In Appendix C the interpretable coefficients for all six logistic regression models are shown.

4.2 Results

The tool has been used to calculate the LRs from data from two actual cases. For both cases, the requested class is vaginal

mucosa and the stain has been measured three times (i.e. three replicates). There is no information about whether the

stains contain penile skin and/or menstrual secretion. In order to evaluate vaginal mucosa using the n/2 method, one

must count the number of times the three specific markers are observed (i.e. signal value above 150) and divide by the

number of possible positions, which is nine. Table 2 shows the results from the n/2 method both numerically and as a

verbal statement and the LRs resulting from all six logistic regression models.

Table 2: Results from the n/2 method and the six Logistic Regression models for the mRNA measurements from two

cases

Case number Cell type of interest n/2 method n/2 method verbal LR (log10(LR)) from Logistic Regression

Vaginal mucosa Vaginal mucosa + Menstrual secretion Saliva

NP P NP P NP P

1 Vaginal mucosa 6/9 observed 500,927 (2,700) 142,372 (2,153) 99,222 (1,997) 27,281 (1,436) 0,002 (-2,647) 0,003 (-2,515)

2 Vaginal mucosa 3/9 sporadically observed 2,020 (0,305) 0,523 (-0,281) 0,511 (-0,291) 0,110 (-0,959) 0,002 (-2,705) 0,003 (-2,550)

Since 6 out of 9 vaginal mucosa markers are counted for case 1, the n/2 method categorizes vaginal mucosa as ‘observed’.

The LRs from the logistic regressions models for both vaginal mucosa and vaginal mucosa + menstrual secretion are above

1 meaning that they lend support to the hypothesis that states that vaginal mucosa is present in the stain. The evidential

strength however varies for the four methods and the largest LR (500.927) results from the logistic regression model that

does not consider penile skin for vaginal mucosa. Here it shows that logistic regression and the n/2 method would both

report that vaginal mucosa is in the stain, but the logistic expresses this with a level of uncertainty which is more useful

than the categorical statement. On the other hand, the LRs from the model for saliva are below 1 meaning that they

lend evidence to the hypothesis that saliva does not exist in the stain.

In the second case, 3 out of 9 vaginal mucosa markers are counted and the n/2 method therefore categorizes vaginal

mucosa as ‘sporadically observed’. Only the LR from the vaginal mucosa logistic regression model that does not consider

penile skin is above 1. The LR from the three models for vaginal mucosa and vaginal mucosa + menstrual secretion

are below 1, thereby lending support for the hypothesis that vaginal mucosa does not exist in the stain. Unfortunately,

because there is no (prior) information about whether the stains contain penile skin and/or menstrual secretion, it is

not known which of the four methods is the appropriate method to evaluate the cell type with. If the prior probability

for penile skin and menstrual secretion is zero, than the appropriate model to use would be the vaginal mucosa logistic

regression model that does not consider penile skin from which the derived LR is 2.020. In that case the probabilistic

method would report evidence supporting the hypothesis that vaginal mucosa is in the stain, whereas the n/2 method

would not. This shows the advantage of a probabilistic classifier over the categorical method. Furthermore, the three

models for vaginal mucosa and vaginal mucosa + menstrual secretion would report that there is weak or limited evidence

that vaginal mucosa is in the stain. However, it is still more useful than the results from the n/2 method.
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5 Discussion

In the introduction the five main objectives of this thesis were introduced, the first three being: determine a probabilistic

classifier from which the output is both accurate and reliable, introduce a calibration technique and compare the per-

formance of classifiers from which output is transformed in a post-hoc calibration step to a classifier from which output

is directly interpreted as likelihood ratio, and examine the susceptibility of the classifiers to a change in the relative

frequency of cell types in the train data. The main objective was to propose a classifier as alternative for the currently

used categorical method.

The results on the synthetic test data show that MLR/pa/indep is preferred over the other methods. In other words, a

separate logistic regression model for each target class together with the presence/absence data shows the most promising

results on the two classes that are of most interest in forensic casework. First of all, MLR is the least susceptible to a

change in the relative frequency of different cell types in the train data in comparison to two other methods. So, the

likelihood ratios were affected the least for a different prior probability of the cell types. The results also show that

the likelihood ratios for both target classes are accurate although, the accuracy varies among different compositions of

samples in the train and test dataset. Additional experiments to assess the discriminating power and calibration regarding

the target class vaginal/menstrual demonstrate that MLR distinguishes well between the target and the non-target class

(AUC=0.97) and returns well-calibrated LR values. Furthermore, the 95% bootstrap intervals showed that the likelihood

ratios of the MLR method are reliable. These results lend support that a logistic regression model using presence/absence

data is sufficient to be applied in practice to analyse mRNA measurements. Note however that the LRs with this method

can become as high as 1E10 and it is up to the forensic examiner to decide whether he or she trusts that this value, or

any value for that matter, is correct.

Another objective was to compare the output from logistic regression with the calibrated output from the three

remaining probabilistic classifiers. The experimental results show that calibrating the output is not necessarily beneficial:

the post-hoc calibration likelihood ratios are not more accurate. Additionally, the MLP method and FFF method are

more susceptible to a change in the relative frequency of the cell types in comparison to the MLR method. Note however

that it was not determined what the exact cause of this result was, therefore being unable to conclude which post-hoc

treatment of the LRs is preferred.

The fourth objective was to demonstrate that the mixtures cell type dataset should not be used as validation set.

The logistic regression results show that the majority of the LRs derived from samples from the target class are high

and the LRs derived from samples from the non-target class are low. Moreover, the accuracy of the LRs derived from

the mixtures dataset is higher in comparison to the accuracy of the LRs from the synthetic test dataset. This holds for

both target classes. Validating the classifiers on the mixtures dataset thus leds to overly optimistic conclusions about the

performance of a classifier.

Finally, a tool was created and can be used by the Department of Human Biological Traces of the NFI. The relevance

of the tool is showed by applying it on real data. Moreover, the results from the logistic regression models resulted in

reporting the same conclusion regarding the existence of vaginal mucosa as the n/2 method in case 6 out of 9 markers

were counted. Furthermore, in case 3 out of 9 markers were measured, the proposed method showed its main advantage,

namely it reported a likelihood ratio whereas the n/2 method was not able to provide the forensic examiner with any

evidence or uncertainty.

5.1 Future work

Two of the probabilistic classifiers that have been experiment with, namely MLP and XGB, have been implemented

using default settings for the model parameters. Moreover, no hyper parameter optimization was performed to obtain a

set of optimal parameters. As a result, both classifiers were not tuned to optimally solve the problem and were subject

to overfitting. There are many ways to prevent a model from overfitting, for example by adding a dropout layer in an

artifical neural network. The results indeed show that the Fully connected Feed Forward method, to which a dropout

layer was added, was less subject to overfitting. Moreover, the FFF method was the only competitive method to the
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MLR method as it showed promising results. In future research one could experiment with probabilistic classifiers such

as FFF and XGB that are optimized to solve the problem, and study whether these are preferred over logistic regression.

A limitation of calibration techniques in general is that they are designed for two-class problems and not for multi-class

problems. Here, a way to use a given calibration technique in a multi-class settings was introduced. However, there is no

theory to justify the correctness of this way of using these techniques. Furthermore, the calibration technique that has been

implemented here also has some limitations. First of all, kernel density estimation is controlled by a bandwidth parameter

and the optimal bandwidth should be determined which unfortunately is not straightforward. When a suboptimal

bandwidth is chosen, kernel density estimation can be subject to overfitting. The resulting calibration model will then

not be capable of transforming the scores into well-calibrated LRs. In this thesis no other calibration techniques were

implemented, nor has the used calibration technique been optimized by determining the optimal bandwidth parameter.

In the future it could be beneficial to considering several techniques and determine which is ‘best’. That way one can

fully utilize the advantages of calibration.

In this thesis it was assumed that the fraction of cell types in a mixture sample is equal. Moreover, equal weights were

given to the cell types in the data in the way that the synthetic datasets were created: by selecting the same number

of replicates for each cell type. However, in reality mixtures often are made up of different fractions of cell types. For

example, a mixture sample could be 90% of cell type 1 and 10% of cell type 2. When the true fractions are known a

practical solution to incorporate this information is in the creation of the synthetic dataset.

Before the proposed method can be applied in practice, one should consider to do a validation step and some ad-

justments. The method is chosen based on its performance on two target classes and no other classes have been taken

into account. However, there are more body fluids that forensic examiners are requested to identify in actual casework,

an example being exhaled blood that contains nasal mucosa, saliva and blood. Hence, the method should also be able

to return accurate and reliable LRs when assessing alternative cell types. Therefore, one should examine whether the

method is capable of doing this. Furthermore, as has been mentioned before, the LRs can become as high as 1E10. Even

though a higher LR value lends greater support to the hypothesis stating that the cell type is in the sample, which seems

desirable, it may not be desirable to report this value, because there are not enough data points to actually calculate

whether this LR is correct (i.e. the exact value of the LR is not known). In case of misleading evidence, the judges could

possibly make a wrong decision, because they are misinformed. An alternative would be to determine a ceiling and report

that in stead of the LR when it is above this ceiling. This will shrink the evidential value, but will prevent a judge from

being misinformed. At last, a user-friendly tool that allows the forensic examiner to calculate the LR for all forensically

relevant body fluids and also gives them the option to incorporate their prior knowledge about the existence of one or

several body fluid(s), should be build.

The method currently can only distinguish between the cell types it considers. This becomes a problem when the

crime stain contains a cell type that the method has not seen before. It will give wrong results and the forensic examiner

should be aware of this.
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Appendices

A Scatterplots of the uniform LRs and three non-uniform sets of LRs

where the frequency of cell types is lower

(a) MLR/pa/indep (b) MLP/q/dep (c) FFF/pa/indep

Figure 22: All pairs of LRsuniform and LRsnon-uniform from 10 runs for the target class vaginal mucosa and/or

menstrual secretion. The results are from the three non-uniform datasets in which the relative frequency of the cell

types blood (first row), nasal mucosa (second row) and skin (third row) is 10 times less than that of the others.
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(a) MLR presence/absence indep (b) MLP quantitative dep (c) FFF presence/absence indep

Figure 23: All pairs of LRsuniform and LRsnon-uniform from 10 runs for the target class saliva. The results are from the

three non-uniform datasets in which the relative frequency of the cell types blood (first row), nasal mucosa (second row)

and skin (third row) is 10 times less that of the others.
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B The accuracy of the LRs derived from the mixtures cell type data

(a) Vaginal mucosa and/or menstrual secretion

(b) Saliva

pa = presence/absence data, q = quantitative data,

indep = independence between class labels, dep = dependence between class labels

Figure 24: Cllr’s resulting from the 30 runs on the mixtures cell type dataset.
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C Coefficient interpretation for the six logistic regression models

(a) Vaginal mucosa (NP) (b) Vaginal mucosa (P)

(c) Vaginal mucosa and/or Menstrual secretion (NP) (d) Vaginal mucosa and/or Menstrual secretion (NP)

(e) Saliva (NP) (f) Saliva (P)

Figure 25: 10log Coefficient values for all six Logistic Regression models
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