
The impact of measurement error on prediction rule ensembles for
classification
Brillaki, E.

Citation
Brillaki, E. (2019). The impact of measurement error on prediction rule ensembles for
classification.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3596202

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3596202

The Impact of Measurement

Error on Prediction Rule

Ensembles for Classification

Evangelia Brillaki (s1726625)

Thesis advisor: Prof. Dr. Mark de Rooij

Second advisor: Dr. M. Fokkema

master thesis

Defended on September 10, 2019

STATISTICAL SCIENCE

FOR THE LIFE AND BEHAVIOURAL

SCIENCES

Abstract

Prediction rule ensembles (PREs) aim to offer a good compromise between predic-

tion accuracy and interpretability by selecting a small set of the most important

prediction rules. The accuracy of tree-based methods, such as single decision trees

are known to be negatively affected by measurement error. The PRE algorithm

is based on single decision trees, which are turned into an ensemble of multiple

rules and may thus inherit the negative effect of measurement error. However, an

extensive investigation of the influence of measurement error on the performance

of PREs has not been conducted before. Therefore, we evaluated the impact of

measurement error on the performance of PREs though two simulation studies:

one for data with continuous predictor variables and the other for data with binary

predictor variables. In both the focus is solely on binary classification.

We found that the predictive accuracy of PREs, as measured by AUC values,

deteriorated in the presence of measurement error. More importantly, it was found

that the performance of the PRE method deteriorated with larger amounts of

measurement error for both the binary and continuous predictor scenarios. In

addition, the performance of PREs in terms of number of correctly selected rules,

type I and type II errors was evaluated. We found that, apart from deteriorating

the predictive performance of the PREs, measurement error can also deteriorate

i

ii

the interpretability of the fitted ensemble by selecting wrong rules, resulting in

unreliable and wrong conclusions.

Keywords : RuleFit, prediction rule ensembles, measurement error, classifica-

tion error, reliability, type I error, type II error.

Acknowledgments

I would like to thank my first supervisor Prof. Dr. Mark de Rooij for his thorough

guidance and extraordinary support during this project. Especially for giving

feedback to my work and steering me in the right direction whenever I needed

it. Also, I would like to express my appreciation to my second supervisor Dr.

Marjolein Fokkema for her extremely helpful additional suggestions for the final

version of my thesis.

iii

Contents

1 Introduction 1

2 Methods 7

2.1 Prediction rule ensemble algorithm 7

2.2 Measurement error model for quantitative variables 12

2.3 Measurement error model for binary variables 14

2.4 Simulation setup . 15

2.4.1 True underlying model for data generation 15

2.4.2 Incorporating measurement error 18

2.4.3 Specification of models and design 21

2.4.4 Software . 26

3 Results of simulation study 27

3.1 Results concerning continuous predictors 27

3.2 Results concerning binary predictors 39

4 Discussion 48

4.1 Discussion of results regarding the ”oracle” 49

4.2 Discussion of results regarding measurement error 49

iv

CONTENTS v

4.3 Limitations and suggestions for future research and development . . 51

4.4 Contribution and novelty . 53

A Main R code 55

Bibliography 87

Chapter 1

Introduction

Ensemble learning methods, which are frequently used in data mining, machine

learning and pattern recognition, are supervised learning algorithms that combine

the predictions of multiple weak learning methods to produce a final strong ensem-

ble learner (Rokach, 2010). Although, ensemble learning models can achieve high

prediction accuracy, they are often difficult to interpret because of their ”black

box” nature, which stems from an ensemble learning model being compiled by a

committee of base learners, e.g., tree-based models (Shimokawa et al., 2014; Strobl

et al., 2009). While a single decision tree can provide an intuitive and interpretable

model, an ensemble of decision trees can no longer be grasped.

In certain applications interpretability can be the main focus. In scientific dis-

ciplines such as psychometrics, binary responses are usually analyzed by logistic

regression to construct a high-precision prediction model (Shimokawa et al., 2014).

However, as Fokkema et al. (2015) mentioned in their paper, a simple linear re-

lationship may not adequately resemble the reasoning process of human decision

makers in clinical practice. Moreover, many authors (e.g., Dhami, 2003; Green &

1

CHAPTER 1. INTRODUCTION 2

Mehr, 1997; Gigerenzer & Goldstein, 1996) have found the weighing of explanatory

variables (cues) in human judgment, to be non-linearly related to the outcome in

logistic regression, i.e, the logarithmic odds ratio. They also support that psy-

chologists in particular are likely to make decisions by weighting the values of a

smaller number of variables than the number of variables included in a logistic

regression model. Also, the weights human decision makers assign to cues may be

dependent on other cue values. Zeileis et al. (2008) mentioned in their paper that

fitted decision trees are interpretable models, enhanced by the ability to visualize

them. Furthermore, decision trees can flexibly accommodate non-linear relation-

ships and interactions. At the same time ensemble methods, which construct more

than one decision tree, are often found to outperform trees in purely predictive

settings (Meyer et al., 2003). However, a method that provides both predictive

accuracy of ensemble methods, but at the same time provides easy-to-interpret

results would be desirable.

Decision trees belong to a class of non-parametric predictive models in super-

vised learning used for regression and classification. One of the most popular

algorithms for decision trees is CART (Breiman et al., 1984). CART performs an

exhaustive search over all possible variables and all of their possible split points,

maximizing an information measure of node impurity and selecting the variable

showing the best split. The splitting continues recursively in each node until some

stop condition is reached. The result is a decision tree, consisting of branches and

nodes, starting at a single root node and ending in the terminal nodes of the tree.

Decision trees are easy to interpret, but they have two fundamental problems;

biased variable selection and instability (e.g., Hastie et al., 2009; Strobl, 2008).

Although, the variable selection bias problem has been addressed by the condi-

CHAPTER 1. INTRODUCTION 3

tional inference trees suggested by Hothorn et al. (2006), the problem of instability

is common for all decision tree algorithms. The source of instability is that a small

change in the data can result in a very different series of splits, and hence con-

struct a quite different tree (Hastie et al., 2009; Fokkema, 2017). This problem is

mitigated through tree ensemble methods, by ensembling the predictions of many

(slightly) different trees. Tree ensembles deliver superior prediction powery (e.g.,

Breiman, 1996; Strobl et al., 2009), but are much more difficult to interpret.

Prediction rule ensembles (PREs) aim to strike a balance between the accu-

racy of ensembles and the interpretability of single trees. The ensemble members

in PREs have a much simpler structure than those of other ensemble methods

(e.g., random forests) by deriving a small set of prediction rules from the branches

of decision trees. The resulting model is highly interpretable, because the deci-

sion rules have a format that is easy to understand, but is still a flexible enough

approach to capture interactions and obtain a good fit (Fokkema et al., 2015).

Several algorithms for deriving PREs have been developed, such as the RuleFit

algorithm of Friedman & Popescu (2008). RuleFit derives an ensemble of simple

prediction rules in two stages; it generates a large initial ensemble of decision rules

from a boosted tree ensemble and second, it selects a sparse final rule ensemble

using lasso regression (Tibshirani, 1996). However, the PREs of Fokkema (2017)

was opted as an alternative package for fitting rule-based ensembles, and it is an

improved version of the RuleFit method. There are several differences between the

original RuleFit implementation and pre, the most important one being that pre

employs unbiased recursive partitioning methods for rule induction while RuleFit

grows CART trees. Fokkema (2017) also showed that PREs derives rule ensembles

with predictive accuracy similar to that of random forests while using a smaller

CHAPTER 1. INTRODUCTION 4

number of variables for prediction. PREs can be used for regression and classifi-

cation tasks. In this thesis, we focus on classification of binary responses.

It has been acknowledged in some papers that tree-based methods are sensitive

to measurement error, and tree-based algorithms for data with measurement error

have been developed (e.g., Tsang et al., 2009; Qin et al., 2009; Sexton & Laake,

2007). Tsang et al. (2009) extended traditional decision tree classifiers to handle

predictor variables with uncertain information, such as measurement/quantization

errors. Qin et al. (2009) developed a new rule-based classification and prediction

algorithm called uRule for classifying and predicting based on both certain and

uncertain data. Sexton & Laake (2007) extended boosted regression trees when

predictor variables are measured with error.

According to Buonaccorsi (2010) measurement error occurs whenever we can-

not exactly observe the value of one or more of the variables that enter into a model

of interest and we can only observe an error-contaminated version instead. There

are many factors contributing to such errors during the data collection process, the

most common ones being errors in the instrument of measurement, in the measur-

ing process, and in the skill of the investigator. The presence of measurement error

can deteriorate the accuracy of the fitted model and its predictions. The measure-

ment error problem typically involves specifying a model for the true values and

the measurement errors, and how they are associated with the observed values.

For notation purposes, we will denote the true value by X and denote the variable

observed in place of X by W , which is also called the observed or measured value.

A fundamental issue in specifying measurement error in a continuous or mea-

sured variable is whether we make an assumption about the distribution of the

observed values given the true values, which is specified by the classical measure-

CHAPTER 1. INTRODUCTION 5

ment error model (Carroll, 2005). In our study, the X is determined directly, and

hence the classical measurement error model is used for the measurement error

process, in which the true value is measured with additive error and with constant

variance.

Measurement error can also arise in binary data, where it often referred to as

classification error (Aigner, 1973; Savoca, 2000). For example, tumors are typically

classified as benign or malignant, but can sometimes be misclassified, which leads

to false positives or false negatives. The aforementioned measurement error models

were developed to account regression estimates when binary or continuous variables

are measured with error.

The purpose of this thesis is to evaluate the impact of measurement error on

the performance of the PRE method of Fokkema (2017) in classification problems.

The main aim is to examine whether the predictive performance of the method

deteriorates when introducing measurement error in one of the predictor variables

in a dataset. Moreover, whether this method applied on a dataset derives the

same set of rules used for the data generation. We formulate the following research

questions:

- How close is the accuracy of a derived PRE model to the accuracy of an

unpenalized logistic regression model fitted with the true rules as predictors (the

”oracle”)?

- How does the performance of the PRE method change with different amounts

of measurement error in a dataset? How do data characteristics, such as sample

size, underlying distribution of continuous and discrete features, and proportion of

class outcome labels affect the predictive performance of the method for different

amounts of measurement error?

CHAPTER 1. INTRODUCTION 6

The outline of the thesis is as follows: In the Methods (Chapter 2), we present

the PRE method, as well as the measurement error models for both continuous

and binary variables. Those are incorporated in a simulation study in order to try

to answer the research questions within the limits of a research study. The design

of this simulation study is also described in this chapter. In Chapter 3, we present

the results of the simulation separately for the continuous and binary predictor

variable case. In the Discussion (Chapter 4), the results will be summarized and

interpreted, strengths and limitations of the current study will be discussed and

suggestions for future research will be provided.

Chapter 2

Methods

To gain an understanding of how the PRE algorithm performs with and without

measurement error, a simulation study is employed. First, the methods used in this

simulation study are described in detail, that is the PRE algorithm (Section 2.1)

as first developed by Friedman & Popescu (2008), and later by Fokkema (2017).

Secondly, the measurement error models for continuous predictors (Section 2.2) or

binary predictors (Section 2.3). Then, the simulation set-up is presented (Section

2.4), and the measures of model performance are defined in Section 2.4.3.

2.1 Prediction rule ensemble algorithm

The R package pre (Fokkema, 2017) is used to derive prediction rule ensembles. In

general, it derives a sparse ensemble of rules and/or linear functions for prediction

of binary, multinomial, continuous and count outcome variables. The predictor

variables may be numeric, ordinal and nominal. The package provides R-based im-

plementation of the RuleFit algorithm of Friedman & Popescu (2008). Therefore,

7

CHAPTER 2. METHODS 8

a deep dive into the technicalities of the RuleFit algorithm is given to transition

later to the pre implementation.

The RuleFit algorithm derives an ensemble of simple prediction rules (base

learners) in two stages: first, it generates a large initial ensemble of decision rules,

and second, it estimates the weight coefficients for the prediction rules in the final

ensemble using lasso regression.

In the first stage, RuleFit draws a large number of subsamples of predetermined

size from the training dataset, and grows a CART decision tree on each of the

subsamples. Subsamples can be drawn with replacement (bootstrap sampling) or

without replacement (subsampling).

To apply boosting, the learning rate of the ensemble can be controlled by

setting a shrinkage parameter. This parameter determines the weight given to

previously induced ensemble members (i.e., decision trees), when learning new

ensemble members. Friedman & Popescu (2003) found a shrinkage parameter

value of ν = .01 to provide the best results (ν = 0 indicates no dependency

between previously induced ensemble members, and ν = 1 maximizes dependency

on previous ensemble members).

Each resulting CART tree is turned into multiple rules by turning each path to

a node in a tree into a decision rule. Rule ensembles use the resulting rules and/or

linear models as base learners to construct an ensemble. This study focuses on

tree-based ensembles with only rules as base learners, and hence no description of

including linear terms to complement a rule ensemble is provided.

CHAPTER 2. METHODS 9

The final rule ensemble has the general ensemble model form:

F (x) = α0 +
M∑
m=1

αmrm(x), (2.1)

where M is the size of the ensemble, i.e., the number of rules, rm(x) is a rule, and

F (x) is the ensemble predictor consisting of a linear combination of the predictions

of the rule ensemble members, with {αm}Mm=0 being the corresponding parameters

specifying the particular linear combination1.

Decision rules that the algorithm generates are binary features that have a

simple form: a value of 1 when all the conditions of the rule are met, otherwise

the value is 0 when any of the conditions of the rule is not met. Each rule term

rm takes the form:

rm(x) =
P∏
p=1

I(xp ∈ spm), (2.2)

where P is the number of input features used in the m-th rule and I(·) is the

indicator function, which is 1 when the input feature xp is within its specified

subset of values spm, otherwise is 0.

For continuous or ordered features, spm is an interval in the value range of the

feature, i.e, the interval spm = (x−pm, x
+
pm], where x−pm and x+pm are the lower and

upper limits of the rule, respectively. If xp is a categorical variable, spm is a subset

of the categories of the feature.

To illustrate this rule generation, Figure 2.1 depicts an example tree defined

by three variables with four terminal nodes, and the following set of rules can be

1The notation {αm}Mm=0 is similar to αm with m = 0, . . . ,M .

CHAPTER 2. METHODS 10

derived:

r1(x) = I(x4 ≤ 34.5)

r2(x) = I(x4 ≤ 34.5) · I(x2 ∈ {B,D,E})

r3(x) = I(x4 ≤ 34.5) · I(x2 ∈ {A,C})

r4(x) = I(x4 > 34.5)

r5(x) = I(x4 > 34.5) · I(x5 ≤ Rarely)

r6(x) = I(x4 > 34.5) · I(x5 > Rarely)

All nodes without the root node in the example tree produce a rule of the

form (2.2). This also results in redundant rules, such as, the r1 and r4 rule which

are perfectly collinear: r4(x) = 1 − r1(x). Therefore r4 will be omitted from

the initial ensemble. Similarly, rules that are identical to earlier generated rules

are also removed from the initial ensemble. Furthermore, input variables may be

continuous (like x4), unordered categorical (like x2) or ordered categorical (like x5)

using a Likert scale example; {Never, Rarely, Sometimes, Very Often, Always}.

Figure 2.1: An example tree to illustrate the rule generation. A rule is generated for
every node in the tree, except the root, and only the tree structure is used for generating
rules.

CHAPTER 2. METHODS 11

In total,

M =
K∑
k=1

2(tk − 1), (2.3)

rules are derived from all trees {Tk}Kk=1, with tk terminal nodes in the k-th tree.

In the second stage, RuleFit creates a final ensemble of prediction functions

by applying lasso regression with all the decision rules, and every rule receives a

weight estimate. The lasso penalty is selective, hence many of the less influential

input rules may have zero regression coefficient, and be excluded from the final

predictive model. This step resembles pruning in classification and regression trees

(Breiman et al., 1984).

Friedman and Popescu (2008) estimated the parameters {αm}Mm=0 by the lasso

method as follows:

{α̂m}Mm=0 = argmin
{αm}Mm=0

N∑
n=1

L

(
yn, α0 +

M∑
m=1

αmrm(xn)

)
+ λ

(
M∑
m=1

|αm|

)
,

where λ ≥ 0 is the lasso penalty, L(·) is a loss function, yn is the outcome variable

with n = 1, . . . , N and xn is a vector of the predictor variables for the n-th obser-

vation. The optimal lasso penalty λ̂ is estimated by (multi-fold) cross-validation.

For the choice of a loss function L(y, F), Friedman & Popescu (2003) present a

variety of different loss criteria that are appropriate in different settings.

In this thesis, we employ the pre package that implements the algorithm of

Friedman & Popescu (2008), with some improvements and adjustments. The ones

most relevant for our study are as follows. First, conditional inference trees of

Hothorn et al. (2006) is used for deriving prediction rules, instead of CART trees.

CHAPTER 2. METHODS 12

This non-parametric model selects a variable in each node by permutation-based

significance tests, which avoids the variable selection bias towards variables with

many possible splits or with many missing values. Second, rules from perfectly

correlated pairs of rules are removed from the initial ensemble, as this does not

affect predictive accuracy, but does improve the sparsity of the final ensemble.

Third, the pre package is completely R based, allowing better access to the results

and more control over the parameters used for generating the PREs, but it is

computationally inferior to the RuleFit program.

Related to the two stages of the RuleFit algorithm that were described, the

function pre from the pre package by default employs the function ctree from

the partykit package (Hothorn & Zeileis, 2015), and the cv.glmnet function

from the glmnet package (Friedman et al., 2010). For our classification purposes

a classification conditional inference tree is fitted by ctree. For the second stage

of weight estimation, the function cv.glmnet fits a generalized linear model via

penalized maximum likelihood. A sequence of models is fitted given a grid of values

for the regularization parameter λ through coordinate descent. For classification

tasks, the loss function is constructed from the deviance residuals by default within

the framework of the logistic regression model.

2.2 Measurement error model for quantitative

variables

For a quantitative variable, the classical measurement error model has the form

W = X+U , where the observed W is an unbiased measure of the true X, and the

CHAPTER 2. METHODS 13

measurement error U is assumed independent of the explanatory variable X. The

error structure of U could be homescedastic (constant variance) or heteroscedastic,

and for the former it is assumed approximately normal with constant variance, i.e.,

U ∼ N(0, σ2
u) (Carroll et al., 2006).

In the field of Psychometrics, Classical test theory (CTT) which predicts out-

comes of psychological testing, uses the classical measurement error model for the

true and observed scores. That is because test users never observe a person’s true

score, only an observed score. Classical test theory is concerned with the relations

between the three variables W , X, and U in the population. These relations are

closely associated with the quality of test scores, and that quality can be assessed

through the concept of reliability, i.e., the degree of consistency of the measure.

The reliability of the observed variable W , which is denoted as ρ, is defined as the

proportion of true variance σ2
X over the observed variance σ2

W :

ρ =
σ2
X

σ2
W

=
σ2
X

σ2
X + σ2

U

. (2.4)

The last equality holds because U and X are independent, and hence the

obtained variance is equal to the sum of the true variance and the error variance.

From this signal-to-noise ratio equation, it is intuitive to see that the reliability

coefficient of test scores becomes higher as the proportion of error variance in the

test scores becomes lower and vice versa. The reliability is equal to the proportion

of the variance in the test scores that we could explain if we knew the true scores.

More about the reliability coefficient can be found in the book of McDonald (1999).

CHAPTER 2. METHODS 14

2.3 Measurement error model for binary vari-

ables

As illustrated first in the paper of Aigner (1973) and later in Savoca (2000), starting

from the single variable case, the binary variable W is observed which is the true

predictor X measured with error U according to the relationship W = X + U .

Let’s suppose that X indicates the presence or absence of a disease, and W is

the diagnosis according to the survey instrument. Let the following quantities be

defined:

- P represent the proportion of people in a population of N who truly have the

disease.

- P̃ is the proportion of people diagnosed with the disease according to the

survey, then Q̃ = 1− P̃ is the proportion of those diagnosed as healthy.

- η is the proportion of people who truly have the disease but are classified as

not having the disease, out of the NQ̃ number of persons diagnosed negative (false

negative rate).

- ν is the proportion of people who are truly healthy but who are classified as

having the disease (false positive rate) of which there are NP̃ . Then in the total

population, NP̃ − νNP̃ + ηQ̃N actually have the disease.

The errors-in-variables framework is then P = (1− ν)P̃ + ηQ̃ in order to allow

misclassification into both directions. From the set-up the marginal distributions

of X and W are Bernoulli with parameter P and P̃ , respectively.

Unlike the classical measurement error model, the measurement error U does

not have zero mean, unless E(W) = E(X) = P which would mean that there

is no misclassification in the diagnosis. Moreover, the measurement error U is

CHAPTER 2. METHODS 15

negatively correlated with the true diagnosis X.

2.4 Simulation setup

In the following paragraphs, the simulation setup is presented. In Section 2.4.1, the

data generation was described, and in Section 2.4.2, how we included measurement

error to one of the predictors of the generated datasets for the continuous and

binary case. Then, the models that were fitted and analysed on those datasets are

mentioned in Section 2.4.3.

During the data generation phase, four design factors were opted: training set

size, underlying distribution of continuous only features (data type), proportion

of class outcome labels, and amount of measurement error in one of the features.

Moreover, two different simulation studies were considered because of the different

framework in applying measurement error in a continuous and binary predictor

variable, hence making the effect of measurement error not comparable for those

two settings.

2.4.1 True underlying model for data generation

The data was composed of ten predictor variables {Xp}10p=1 simulated by a normal

distribution in the continuous case, or a binomial distribution in the binary case.

Sample sizes of N = 200, 500 and 1000 were chosen for data with continuous

predictors and N = 200, 500, 1000, 1500 and 2000 for data with binary predictors.

Larger sample sizes were explored in the binary case as the algorithm has to

consider only a single binary split point for every possible predictor variable, which

makes the procedure faster.

CHAPTER 2. METHODS 16

Generating continuous predictor variables

Each continuous predictor follows a normal distribution {Xp}101 ∼ N(µp, σ
2
p), with

mean µp randomly chosen from 10 to 200, i.e., µ = (19, 89.6, 62.2, 173, 166.4, 107.7,

152.6, 48.6, 1.7, 33.6)T, and for the standard deviation σ2
p the following data setting

options were explored:

I. common standard deviation σp = 9.2 for all the predictors which was ran-

domly chosen from 5 to 20, hence the predictors are independent and identically

distributed.

II. each predictor has different standard deviation σp randomly chosen from .2

to 10, i.e., σ = (2.9, 8.7, 1.9, 5.3, 3.6, 9.8, 7.2, 10, 2.4, 8)T was always specified.

III. the vector of the predictors follows a multivariate normal distribution, with

σ2 be a 10 by 10 covariance matrix. The covariance for each pair of variables was

set at 0.5 and the diagonal values of the covariance matrix (i.e., the variances) was

set at 1.

Then, the four rules were defined (as in 2.2), with a different set of split points

for each choice of σ2 and sample size N :

r1 = I(X6 > sl1) · I(X8 > sl2)

r2 = I(X5 ≤ sl3) · I(X7 ≤ sl4)

r3 = I(X3 > sl5) · I(X10 > sl6)

r4 = I(X6 ≤ sl7) · I(X9 ≤ sl8)

with l = 1, . . . , 9 (3 sample sizes, 3 settings for each sample size). The split point

of a predictor variable was randomly selected from any value between the 25% and

CHAPTER 2. METHODS 17

75% quantile of that predictor. Three different sets of split points were selected

for each combination of sample size and data setting. We assume in each data

setting that roughly the same split points will be generated for all the sample sizes

as those data follow the same distribution.

Generating binary predictor variables

In the binary case, a fourth data setting (IV) is specified. Each predictor fol-

lows a binomial distribution {Xj}101 ∼ Bin(N, pj), always with probability p =

(.22, .45, .36, .69, .67, .48, .61, .31, .79, .26)T which was randomly chosen from .2 to

.8. The four rules were defined (as in 2.2) as follows:

r1 = I(X6 = 0) · I(X8 = 0)

r2 = I(X5 = 1) · I(X7 = 1)

r3 = I(X3 = 0) · I(X10 = 1)

r4 = I(X6 = 1) · I(X9 = 0)

Generating class variable

In each of the four data settings, four different rules {rm}41 were defined, all formed

by two features (nodes), and consequently five alpha parameters were selected to

form the linear predictor (2.1) as F (x) = α0 +
∑4

m=1 αmrm(x).

The values α = (α0, 9.28, 6.85,−4.62, 15.27)T were opted to be used for each

simulation setting, which were randomly drawn from a uniform distribution, i.e.

αm ∼ U(a = −25, b = 25) with m = 1, . . . , 4. The intercept α0 received a different

CHAPTER 2. METHODS 18

value for a given data type in order to construct data with class proportion labels

that can be either balanced or unbalanced. To yield the balanced class proportion

P (Y = 1) = .5, the thresholds displayed in the left part of Table 2.1 were used as an

intercept, whereas the right part lists the thresholds used to form the unbalanced

class proportion P (Y = 1) = .8 for each combination of sample size and data type.

Table 2.1: The intercept of the linear predictor as it was defined for each combination
of sample size, data type (1-4) and proportion of class outcome labels.

N
P (Y = 1) = .51 P (Y = 1) = .81

1 2 3 4 1 2 3 4
200 -1.60 -3.80 -14.50 -6.80 1.40 0.78 -4.70 0.00
500 -5.50 -10.00 -9.00 -6.80 0.80 -1.50 1.00 0.00

1000 -1.50 -5.50 -9.20 -6.80 1.72 0.62 -2.50 0.00
1500 -6.80 0.00
2000 -6.80 0.00

For generating the outcome variable a logit function is used with F (xi) =

log pi
1+pi

and pi = P (Yi = 1). The dependent class variable, {Yi}N1 taking the

values 0 or 1, is defined using a binomial distribution, i.e

Yi ∼ Bin(1, pi) ≡ Bin

(
1,

eF (xi)

1 + eF (xi)

)

with i = 1, . . . , N . The pi is obtained by the inverse-logit function that converts

the linear predictor (the log-odds) to probabilities.

2.4.2 Incorporating measurement error

In the previous Section 2.4.1, we described how we generated a dataset without

adding measurement error. Here, we describe how we included measurement error

to one of the predictors for the continuous and binary case. The predictor variable

CHAPTER 2. METHODS 19

X6 was chosen for this purpose, which is contained in two out of the four true

rules. The dependent variable Y was generated as described before, using the

true predictor variable. Hence, the same dataset was generated as the one with

no measurement error, except the column that corresponds to the predictor X6 is

changed. The following subsections describe how measurement error was added in

the X6 predictor for each study.

Incorporating measurement error on continuous predictors

The predictor X6 follows a normal distibution, i.e, X6 ∼ N(0, σ2
X6

), where σ2
X6

is

the true standard deviation of X6. However, instead of the true values X6, the

variable W6 is measured. The classical measurement error model is used from

Section 2.2 to model the error as follows:

W6 = X6 + U6

with error structure U6 ∼ N(0, σu6).

The reliability coefficient ρ (2.4) was employed as a measure to insert measu-

ment error into the predictor X6 and control the amount of the applied measument

error though that coefficient.

The reliability coefficient ρ of the predictor W6 is given by ρ =
σ2
X6

σ2
W6

=
σ2
X6

σ2
X6

+σ2
U6

.

Thus, σU6 can be obtained by σU6 = σX6

√
(1−ρ)
ρ

with ρ taking three values, i.e.,

ρ = .9, .7, .5, indicating high, moderate and low reliability.

CHAPTER 2. METHODS 20

Incorporating measurement error on binary predictors

For the binary setting, we allow misclassification in the binary predictor X6 using

the errors-in-variables framework described in Section 2.3.

Here, the true predictorX6 follows a binomial distribution, i.e., X6 ∼ Bin(N, p6),

where p6 is the true probability of X6. Then, we generate some error to be used

in constructing the observed variable W6, i.e.,

error =


1, if e < −z or e > z

0, otherwise,

where e ∼ N(0, 1). The parameter z indicates the value of a standard normal

distribution in order to find the probability (area) of the specified range, i.e.,

outside −z and z, of the distribution. Two values of z were considered, namely

z = {1.5, 1.15}, corresponding to a (theoretical) probability of 13% and 25% re-

spectively. These percentages give the expected misclassification rate (the per-

centage of classifications that were incorrect) in the mismeasured binary predictor.

The observed W6, which is the true predictor measured with error, is generated as

follows:

W6 =


1, if X6 = 0 and error = 1

0, if X6 = 1 and error = 1

X6, otherwise.

CHAPTER 2. METHODS 21

2.4.3 Specification of models and design

In the continuous case, 3 sample sizes were specified along with 3 different data

types, 2 proportions of class outcome labels and 4 measurement error sizes (in-

cluding no measurement error). For the data with binary predictors, 5 sample

sizes were explored, with the same 2 proportions of class outcome labels, and 3

measurement error sizes (including no measurement error).

Hence, a full factorial design resulted in 3 × 3 × 2 × 4 = 72 cells for the

continuous case and 5 × 2 × 3 = 30 cells for the binary case in total. In each

cell, 100 datasets were generated to train the ”oracle”2 and the PRE method. In

addition, a test dataset of size 200 was generated for every training dataset with

similar structures, i.e, with same data type, proportions of class outcome labels

and measurement error size.

”Oracle” analysis

In each design cell, a dataset is generated as described in Section 2.4.1. Using the

four rules {rm}41 of that dataset as regressors to predict the binary class variable

{Yn}N1 , we aim to obtain the true underlying accuracy and AUC. Hence, logistic

regression was fitted through a 10-fold cross-validation method using the functions

train control and train from the caret package (Kuhn et al., 2018). The ’glm’

method was specified with the binomial family.

These logistic regression models act as a benchmark (the ”oracle”) of how

best their predictive performance can be, and they will be compared to the PRE

models in the case where no measurement error was applied. In particular, the

2A logistic regression model given as input the four rules on which the data generation was
based, instead of the predictor variables.

CHAPTER 2. METHODS 22

”oracle’s” accuracy and AUC were calculated using the predictions on the test set

to be compared with the same metrics of the PRE models. A binary outcome

was predicted to be 1, if the resulted predicted probabilities were higher than .5,

otherwise class 0 was predicted.

PRE analysis

The pre function was used to derive a sparse ensemble of rules to predict the bi-

nary outcome. Linear functions were not considered, as they were not part of the

data generation scheme. The algorithm uses fractions of randomly selected train-

ing observations to produce each tree, and these subsamples were drawn without

replacement (i.e., subsampling). The maximal depth of trees to be grown by de-

fault is 3, which is the maximum number of conditions in the rules. The default

learning rate of ν = .01 was specified for the sequentially induced trees. Basically

using the suggestion of Friedman & Popescu (2003) that found that this shrink-

age parameter value could potentially increase the performance of the method.

In the ensemble, rules which have the exact same support in the training data

were removed. Rules were not standardized before estimating the lasso model,

and 10-fold cross-validation using the deviance as loss function was performed for

determining the lasso penalty parameter. The final model was selected by using

the penalty parameter criterion that gives cross-validation error that is within 1

standard error of minimum cross-validation error.

In each design cell, data was generated (described in Section 2.4.1 and 2.4.2)

to be used as input in the pre function. After a PRE model was fitted, its derived

rules were compared to the four true rules (details will follow), used to generate

that data. The performance of the fitted model, i.e, accuracy and AUC, was

CHAPTER 2. METHODS 23

assessed through predictions on a test set of size 200.

Measures of model performance

For each PRE model that was fitted, its accuracy and AUC was recorded on the test

set, whether the correct rules were selected, and how many rules are constructed.

Apart from tracking if the derived rules are similar to the true rules, we define

the type I and II errors in the following paragraphs to check overall if at least the

same variables that formed the true rules are the ones that the method derived.

Hence, each derived rule is expected to contain any of the seven variables that the

true rules contain.

One of the performance measures is the correct classification rate (CCR). This

is computed as the number of correctly classified instances divided by the total

sample size.

The AUC statistic is an indication of the discriminative ability of a classification

method. For binary classification this value equals the area under the receiver

operating characteristic (ROC) curve, which plots sensitivity (true positive rate)

versus 1-specificity (false positive rate). The AUC value of a classifier is equal to the

probability that the classifier will rank a randomly chosen positive example (with

outcome Y = 1) higher than a randomly chosen negative example (with outcome

Y = 0). The AUC is an appropriate evaluation metric when class imbalance

is present; it does not depend on a threshold, and is therefore a better overall

evaluation metric compared to accuracy (Burez & Van den Poel, 2009).

After a PRE model was fitted, its derived rules will be compared to the true

rules which are considered the same, if both contain the same predictors with the

same corresponding inequality symbols, and the split points in the derived and

CHAPTER 2. METHODS 24

true rule are ”quite close”. That is, the split points of the predictors in the true

and derived rule were regarded as the same, if the derived split point is within 1

standard deviation from the true split point, with the standard deviation being

obtained from the corresponding predictor.

The type I error was defined by counting, for each repetition, if the variables

Xp1 with p1 ∈ {1, 2, 4} were included in the derived rules, whereas they are not part

of the true rules. Similar to how the term is used in statistical hypothesis testing,

we will have a ”false positive” finding. For instance, by fitting a PRE model we

would expect that the predictor variables that were included in the derived rules

would be identical to the ones used to form the four true rules in Section 2.4.1.

If that is the case and the model returns rules without any of the variables X1,

X2, and X4, the type I error of each Xp1 gets a 0 value for a given repetition, or

if a Xp1 is appeared, it will receive a value of 1. In each cell formed by the design

factors and after 100 repetitions, a score between 0 and 1 will be calculated by

counting for each variable Xp1 how many times it appeared in the derived rules

out of the 100 repetitions. If any of the three variables appears more than once in

a derived model, it still receives a value of 1.

The type II error was calculated by counting for each repetition, if the rest

of the seven variables Xp2 with p2 ∈ {3, 5, 6, 7, 8, 9, 10} were not included in the

derived rules, whereas they are part of the true rules. Here we follow the logic of

a ”false negative” finding. All the variables from the derived rules should be one

of those seven variables that were part of the true rules. If at any of those seven

variables are not included in the derived rules of a model, it is recorded with the

value 1, and after 100 repetition the type II error of each of the seven variable is

calculated, i.e., the percentage that the variable Xp2 was not part of the derived

CHAPTER 2. METHODS 25

model. If any of those seven variables appears more than once in a derived model,

it still receives a value of 1.

All the results from the simulation studies were collected in a final dataset with

all the performance measures per replicate for further analysis. In this dataset, the

rows were considered as the subjects, with one subject representing a single simu-

lation dataset, and the columns were the design factors (predictor variables) and

the response (performance measures). The design groups contain measurements

from different set ups as a different dataset was formed per combination of factors,

except for the measurement error factor that was applied on the same dataset

multiple times. A repeated measures ANOVA was applied for each performance

measure in order to determine whether the main effect of measurement error, and

the interaction between the level of measurement error and the other design fac-

tors, were statistically significant. The within-subjects factor in the analyses was

the amount of measurement error in one of the features, and the between-subjects

factors were the other design factors.

Results were not reported based on p values, because they do not reveal the

size of the effect and they depend upon both sample size and effect size (Sullivan

& Feinn, 2012). For our ANOVA tests, partial η2 is opted to determine the effect

size of the design factors in influencing the changes in outcomes. This effect size

index was opted over the classical η2 as it stays unaffected by the inclusion of

variables that introduce additional variation and it can be applied to all research

designs (Richardson, 2011). Only factors with η2 ≥ .06 were considered, which

indicates medium effect size according to Cohen’s guidelines (Cohen, 1988). The

effect size is considered large when η2 ≥ .14.

Therefore, for each performance measure we look into the partial η2 of each

CHAPTER 2. METHODS 26

factor and two-way interactions between the factors, and in the next sections we

report the effect size of the measurement error factor and its two-way interactions

with η2 ≥ .06. In the repeated measures ANOVA concerning the number of correct

rules, the specific rule that each number corresponds to was included as an extra

between-subjects factor, while for type I and II error, the predictor variable that

each error corresponds was included as an extra predictor.

Similarly, an additional repeated measures ANOVA was applied to assess whether

differences between the AUC of the PRE models and the ”oracle”, with the rest

of the design factors were statistically significant.

2.4.4 Software

Simulations were performed in R studio version 3.5.1. The main used R package

was the pre package version 0.6.0 (Fokkema & Christoffersen, 2018). The R script

of the main functions used for generating data and performing simulations is given

in the Appendix A. Throughout the simulations random seeds were specified for

reproducibility of the experiments. The ANOVA analyses were performed using

the aov function and the partial η2 was obtained from the DescTools package

(Signorell, 2019) and the EtaSq function.

Chapter 3

Results of simulation study

In this section, the results of the simulation studies with the continuous and binary

predictors are presented, each in its own subsection. In both cases, the most

important effects contributing to differences in performances between amounts of

measurement error are reported for every performance measure.

3.1 Results concerning continuous predictors

In Table 3.1, the predictive accuracies for the PRE method and the ”oracle” are

presented, for each cell of the data-generating design. As expected the CCR and

AUC in the balanced scenario are almost the same in each cell of the design,

therefore we focus on the AUC for comparisons cross the design factors from now

on.

Comparing the AUC of the PRE models with that of the ”oracle” when no

measurement error is present, we observe that both metrics appear quite close in

some instances, especially when the sample sizes are larger. The within-subject

27

CHAPTER 3. RESULTS OF SIMULATION STUDY 28

effects that explained most of the variance of average AUC were the main effect of

fitting method, the interaction between fitting method and sample size, and the

interaction between fitting method and proportion of class outcome labels. The

interaction between fitting method and sample size has a large effect size (partial

η2 = .73). This indicates that the relationship between PRE’s and ”oracle’s” AUC

depends on the sample size, which is graphically depicted in Figure 3.1(A). The

contrast between PRE’s and ”oracle’s” AUC is the highest when N = 200, and

then the differences become smaller as the sample size increases.

It is surprising to see that AUC increases from N = 200 to 500, and then goes

down for N = 1000, both for the ”oracle” and PRE models. This could be a

robust finding, or it could be just sampling fluctuation (perhaps due to small test

sample size). In the plot, error bars are also produced for each mean estimate

(based on standard error of each mean). We see that the error bars of the PRE’s

AUC estimates overlap for sample size of 500 and 1000. Hence, the downward

trend that we observe from N = 500 to 1000 could be a result of the variability of

the estimates. Similarly, this could be the case also for the ”oracle’s” AUC.

In Figure 3.1(B), the interaction between fitting method and proportion of

class outcome labels has a medium effect size (partial η2 = .07), where the PRE’s

and ”oracle’s” AUC is slightly closer in the case of the balanced class outcomes.

Overall, the large main effect of fitting method (partial η2 = .65) shows that

the means of PRE’s and ”oracle’s” AUC are not equal, with the overall ”oracle’s”

AUC being higher than the AUC from the PRE models (mean”true” AUC = .87 >

meanderived AUC = .81).

Moving to our second research question, we focus on how measurement error

affects the AUC metric of the method. In each cell, we notice that as the value

CHAPTER 3. RESULTS OF SIMULATION STUDY 29

Figure 3.1: Two-way interaction plots, which plot the mean of the AUC for two-way
combinations of fitting method and sample sizes (A), or proportion of class outcome
labels (B), thereby illustrating possible interactions. In plot A, the difference of PRE’s
and ”oracle’s” AUC become smaller with larger sample sizes. In plot B, the AUCs differ
slightly less for balanced class outcomes.

of the reliability coefficient ρ decreases, i.e., the amount of measurement error

increases, the AUC decreases, or stays more or less constant in the case of sample

size 200 and unbalanced data (where the AUC is already very low).

Only the main effect of measurement error ρ has a large effect size (partial

η2 = .51), confirming that there are differences in the AUC values for the different

levels of ρ, regardless of the other design factors (meanρ=1 = .81 > meanρ=.9 =

.77 > meanρ=.7 = .74 > meanρ=.5 = .73). Thus, 51% of the within subjects

variance is accounted for by measurement error.

CHAPTER 3. RESULTS OF SIMULATION STUDY 30

Table 3.1: Predictive accuracy as measured by CCR and AUC for different amounts
of measurement error ρ, proportion of class outcome labels (P (Y = 1) = .5 or .8),
data types and sample sizes for the continuous data. The values in the parentheses are
the accuracies for the oracle. Data type is denoted by 1: predictors follow a normal
distribution with common standard deviation, 2: each has a normal distribution with
different standard deviations, and 3: all follow a multicollinear normal distribution.

Sample
size

Data
type

ρ
P (Y = 1) = .5 P (Y = 1) = .8

CCR AUC CCR AUC
200 1 1 .81 (.92) .81 (.92) .82 (.91) .54 (.76)

.9 .75 .76 .81 .53

.7 .71 .71 .81 .53

.5 .69 .69 .81 .53
2 1 .84 (.97) .84 (.98) .81 (.87) .51 (.67)

.9 .77 .77 .81 .51

.7 .73 .73 .81 .51

.5 .71 .71 .81 .51
3 1 .91 (.97) .91 (.98) .81 (.87) .56 (.82)

.9 .86 .86 .81 .53

.7 .84 .84 .81 .53

.5 .83 .83 .81 .53
500 1 1 .94 (.97) .94 (.97) .84 (.86) .64 (.71)

.9 .89 .89 .84 .61

.7 .86 .86 .84 .60

.5 .83 .83 .84 .59
2 1 .91 (.93) .91 (.90) .94 (.92) .90 (.93)

.9 .86 .86 .91 .82

.7 .83 .83 .89 .77

.5 .80 .80 .87 .72
3 1 .96 (.97) .96 (.96) .95 (.99) .91 (.93)

.9 .91 .91 .93 .85

.7 .88 .88 .92 .83

.5 .86 .86 .91 .81
1000 1 1 .90 (.91) .90 (.92) .92 (.93) .80 (.80)

.9 .86 .87 .90 .78

.7 .84 .84 .89 .77

.5 .82 .82 .88 .76
2 1 .94 (.96) .94 (.97) .87 (.86) .70 (.66)

.9 .88 .88 .85 .67

.7 .85 .85 .85 .65

.5 .82 .82 .85 .64
3 1 .92 (.96) .92 (.96) .95 (.96) .89 (.81)

.9 .90 .90 .91 .82

.7 .88 .88 .88 .76

.5 .87 .87 .86 .73

CHAPTER 3. RESULTS OF SIMULATION STUDY 31

In Table 3.2, we report the number of times the derived rules match the four

true rules, out of 100 fitted models per cell. The average final ensemble size of the

fitted models is also reported. We see that the ensemble size of the PRE models is

way higher than the four rules that were used to generate the data. It seems that

for a larger sample size, the ensemble size is larger.

Focusing on the average percent across the four rules that are correctly selected,

or for each rules separately, we notice that the number of correctly selected rules is

overall declining when the amount of measurement error rises. The within-subject

interaction effect of the reliability coefficient ρ and data type1 (partial η2 = .09)

has a medium effect size, which is illustrated with an interaction plot in Figure

3.2. The different amounts of measurement error and the mean number of correctly

derived rules have an inverse relationship, which is consistent across all three data

types. The largest contrasts were between data type 1 (all predictors follow a

normal distribution with common standard deviation) and 3 (multicollinear normal

distribution), with data type 1 yielding the highest accuracy.

The main effect of measurement error ρ has a large effect size (partial η2 = .71),

and indicates that when measurement error rises, then the number of correctly

derived rules falls (meanρ=1 = .54 > meanρ=.9 = .51 > meanρ=.7 = .47 >

meanρ=.5 = .44).

1Data type 1: all predictors follow a normal distribution with common standard deviation,
2: each has a normal distribution with different standard deviations, and 3: all follow a multi-
collinear normal distribution.

CHAPTER 3. RESULTS OF SIMULATION STUDY 32

Figure 3.2: Two-way interaction plot, which plots the average number of correctly de-
rived rules for two-way combinations of reliability coefficient ρ and data type. As the
values of ρ decrease, i.e., the measurement error increases, the mean number of correctly
derived rules drops for each of the three data types. Even the main effect of data type
follows the same order as in the plot: data type 1 > data type 2 > data type 3, i.e., data
with predictors following a normal distribution with common standard deviation, then
following a normal distribution with different standard deviations, and then following a
multicollinear normal distribution.

CHAPTER 3. RESULTS OF SIMULATION STUDY 33

Table 3.2: The number of correctly derived rules from the model for different amounts
of measurement error ρ, proportion of class outcome labels, data types and sample sizes
for the continuous data. The numbers are also shown per matching true rule. We denote
with ”avg r” the average percent of the four correctly derived rules, and with ”size r”
the average ensemble size of prediction rules from the pre output.

Sample
size

Data
type

ρ
P (Y = 1) = .5 P (Y = 1) = .8

r1 r2 r3 r4 avg r size r r1 r2 r3 r4 avg r size r
200 1 1 74 50 3 71 50 16 2 0 70 1 18 6

.9 61 45 1 65 43 16 0 1 73 1 19 6

.7 43 44 2 50 35 15 0 1 73 0 18 6

.5 35 41 2 41 30 14 0 1 73 1 19 6
2 1 53 79 1 37 42 17 0 6 21 1 7 5

.9 47 76 3 36 40 16 2 3 25 0 8 5

.7 31 74 2 24 33 15 2 3 25 0 8 5

.5 14 74 2 19 27 14 2 3 26 0 8 5
3 1 0 62 32 98 48 14 0 37 1 92 32 9

.9 0 49 38 98 46 15 0 38 4 84 32 9

.7 0 45 41 89 44 16 0 38 5 74 29 9

.5 0 42 37 77 39 16 0 41 6 54 25 9
500 1 1 96 98 22 100 79 36 92 31 65 98 72 24

.9 82 90 17 100 72 41 70 17 59 90 59 22

.7 75 86 11 99 68 40 58 18 56 81 53 21

.5 83 88 14 96 70 39 43 15 55 67 45 20
2 1 15 32 19 98 41 32 99 96 2 92 72 29

.9 7 29 14 98 37 34 96 98 0 88 70 31

.7 3 22 10 99 34 32 93 96 0 75 66 30

.5 3 30 8 97 34 30 80 95 2 59 59 28
3 1 0 1 74 100 44 13 19 1 4 100 31 25

.9 0 0 71 99 42 19 24 3 0 97 31 25

.7 0 0 64 98 40 23 17 1 0 89 27 23

.5 0 2 63 93 40 24 3 0 0 80 21 21
1000 1 1 91 99 55 100 86 42 91 98 69 95 88 38

.9 98 100 47 100 86 53 77 100 73 91 85 41

.7 98 98 38 98 83 52 67 100 67 81 79 37

.5 99 99 35 97 82 50 47 100 61 67 69 34
2 1 98 98 94 99 97 45 99 96 83 61 85 38

.9 88 96 84 100 92 62 98 99 88 56 85 41

.7 86 96 85 100 92 60 97 97 85 34 78 40

.5 75 91 88 98 88 59 94 97 81 24 74 36
3 1 0 51 39 100 48 26 1 36 1 98 34 28

.9 0 46 20 98 41 33 0 40 1 89 32 32

.7 0 36 19 98 38 34 0 35 0 81 29 32

.5 0 28 18 89 34 34 0 39 0 59 24 32

CHAPTER 3. RESULTS OF SIMULATION STUDY 34

Table 3.3 and 3.4 contain the type I and type II error as calculated for each

predictor variable in a cell. The within-subject effects that explained most of the

variance of type I error were the interactions between ρ and proportion of class

outcome labels (partial η2 = .34), between ρ and sample size (partial η2 = .19),

and between ρ and data type (partial η2 = .61). Their interaction plots are shown

in Figure 3.3, and for all of them, the higher the amounts of measurement error,

the larger the type I error for every level of the other three factors.

Figure 3.3: Two-way interaction plots, which plot the type I error for two-way combina-
tions of reliability coefficient ρ and proportion of class outcome labels, (plot A), ρ and
sample size (plot B), and ρ and data type (plot C). For all the plot, as the amount of
measurement error increases, the type I error increases for any of the levels of the other
factors.

More specifically, the type I error increases rapidly for data type 3 (correlated

predictor variables) and slightly for the independent predictor variable datasets

(Fig. 3.3, C). It seems the larger the sample size, the higher the error across the ρ

CHAPTER 3. RESULTS OF SIMULATION STUDY 35

values (Fig. 3.3, B), whereas for balanced data it starts having smaller error and

ends up having larger than the imbalanced after ρ = .7 (Fig. 3.3, A). Also, the

within-subject main effect of measurement error ρ has a large effect size (partial

η2 = .68), showing overall the same upward trend (meanρ=1 = .22 < meanρ=.9 =

.25 < meanρ=.7 = .29 < meanρ=.5 = .32).

The only discrepancy in the reported results concerning type I error is observed

for data type 3 and imbalanced data where the error values for N = 500 are much

lower than N = 200 and N = 1000.

Moving on to the last performance measure, type II error, only the interaction

between ρ and proportion of class outcome labels (partial η2 = .06) has a medium

effect size. As demonstrated in Figure 3.4, for both data scenarios, when the

amount of measurement error increases from ρ = 1 to .9, the type II error also

rises. After that the type II error still grows for the balanced scenario, while it

goes down for the imbalanced class outcomes.

Figure 3.4: The average type II error per value of the reliability coefficient ρ was plotted
for each proportion of class outcome labels. A different trend is presented for the im-
balanced and balanced class outcomes, with the former having overall an upward trend
while the later having a downward trend after the inclusion of measurement error.

CHAPTER 3. RESULTS OF SIMULATION STUDY 36

Furthermore, from Table 3.3 and 3.4, it seems that there is a beneficial effect

of sample size on Type II error only when the predictor variables are independent

(i.e., data type 1 and 2).

CHAPTER 3. RESULTS OF SIMULATION STUDY 37

Table 3.3: The type I and type II error for each of the corresponding predictor variables
for different amounts of measurement error, data types and sample sizes for the contin-
uous data. The results from specifying balanced class proportion labels are listed. We
denote with ”avg” the average values of the variables for the type I and II error per row.

Sample
size

Data
type

ρ
P (Y = 1) = .5

Type I error Type II error
X1 X2 X4 avg X3 X5 X6 X7 X8 X9 X10 avg

200 1 1 .29 .32 .33 .31 .67 .16 .01 .09 .01 .01 .48 .20
.9 .26 .28 .37 .30 .63 .23 .00 .06 .00 .01 .55 .21
.7 .28 .29 .34 .30 .62 .26 .05 .07 .00 .02 .52 .22
.5 .24 .27 .38 .30 .60 .26 .09 .08 .00 .01 .53 .22

2 1 .32 .31 .30 .31 .72 .09 .03 .00 .01 .07 .54 .21
.9 .30 .27 .34 .30 .63 .14 .02 .00 .02 .08 .49 .20
.7 .29 .26 .34 .30 .65 .16 .03 .00 .01 .09 .49 .20
.5 .27 .28 .34 .30 .67 .17 .18 .00 .01 .11 .48 .23

3 1 .25 .23 .26 .25 .31 .17 .01 .13 .91 .00 .24 .25
.9 .34 .32 .34 .33 .28 .17 .02 .16 .90 .00 .23 .25
.7 .43 .48 .46 .46 .19 .14 .05 .15 .91 .00 .21 .24
.5 .48 .47 .53 .49 .17 .13 .16 .11 .85 .00 .20 .23

500 1 1 .14 .15 .15 .15 .48 .01 .00 .01 .00 .00 .29 .11
.9 .21 .19 .16 .19 .47 .03 .00 .03 .00 .00 .26 .11
.7 .25 .24 .16 .22 .49 .04 .00 .04 .00 .00 .21 .11
.5 .30 .31 .20 .27 .43 .03 .00 .05 .01 .00 .22 .11

2 1 .21 .19 .30 .23 .21 .23 .00 .33 .03 .00 .40 .17
.9 .20 .19 .18 .19 .29 .28 .00 .25 .06 .00 .38 .18
.7 .25 .21 .23 .23 .30 .29 .00 .25 .01 .00 .44 .18
.5 .28 .27 .27 .27 .37 .28 .00 .16 .02 .00 .40 .18

3 1 .11 .07 .10 .09 .12 .79 .00 .74 .66 .00 .15 .35
.9 .20 .22 .19 .20 .19 .67 .00 .72 .89 .00 .17 .38
.7 .49 .37 .36 .41 .15 .54 .02 .50 .85 .00 .12 .31
.5 .51 .51 .43 .48 .09 .37 .03 .37 .76 .00 .07 .24

1000 1 1 .28 .17 .19 .21 .33 .01 .00 .00 .01 .00 .04 .06
.9 .19 .23 .15 .19 .28 .00 .00 .00 .00 .00 .10 .05
.7 .24 .28 .22 .25 .35 .00 .00 .00 .00 .00 .13 .07
.5 .34 .32 .32 .33 .30 .00 .00 .01 .00 .00 .09 .06

2 1 .10 .15 .17 .14 .04 .00 .00 .01 .00 .00 .03 .01
.9 .17 .19 .14 .17 .10 .01 .00 .01 .00 .00 .04 .02
.7 .21 .24 .17 .21 .10 .01 .00 .02 .00 .00 .05 .03
.5 .23 .30 .31 .28 .06 .03 .00 .02 .00 .00 .02 .02

3 1 .20 .20 .11 .17 .19 .14 .00 .29 .87 .00 .35 .26
.9 .22 .20 .18 .20 .41 .15 .01 .29 .91 .00 .34 .30
.7 .37 .27 .37 .34 .40 .18 .02 .34 .83 .00 .37 .31
.5 .50 .39 .45 .45 .40 .17 .05 .25 .76 .00 .39 .29

CHAPTER 3. RESULTS OF SIMULATION STUDY 38

Table 3.4: The type I and type II error for each of the corresponding variables for
different amounts of measurement error, data types and sample sizes for the continuous
data. The results from specifying unbalanced class proportion labels are listed.

Sample
size

Data
type

ρ
P (Y = 1) = .8

Type I error Type II error
X1 X2 X4 avg X3 X5 X6 X7 X8 X9 X10 avg

200 1 1 .13 .11 .12 .12 .22 .80 .78 .72 .52 .45 .07 .51
.9 .08 .17 .15 .13 .20 .69 .78 .73 .49 .47 .08 .49
.7 .10 .17 .15 .14 .19 .69 .79 .74 .50 .44 .07 .49
.5 .10 .17 .13 .13 .17 .69 .81 .73 .5 .45 .06 .49

2 1 .12 .16 .17 .15 .61 .65 .82 .41 .49 .62 .37 .57
.9 .13 .13 .14 .13 .58 .77 .84 .49 .45 .71 .34 .60
.7 .13 .13 .15 .14 .56 .75 .81 .47 .45 .72 .35 .59
.50 .12 .12 .15 .13 .55 .77 .84 .48 .46 .72 .37 .60

3 1 .29 .34 .32 .32 .53 .22 .03 .23 .69 .00 .37 .30
.9 .29 .34 .41 .35 .60 .35 .10 .22 .71 .01 .44 .35
.7 .29 .39 .48 .39 .56 .30 .20 .23 .72 .00 .37 .34
.50 .34 .42 .52 .43 .52 .30 .35 .20 .71 .01 .40 .36

500 1 1 .29 .34 .31 .31 .25 .22 .00 .20 .00 .00 .03 .10
.9 .36 .34 .29 .33 .18 .10 .01 .30 .00 .00 .02 .09
.7 .35 .34 .25 .31 .19 .12 .03 .28 .00 .00 .04 .09
.50 .41 .34 .27 .34 .19 .14 .08 .29 .00 .00 .04 .11

2 1 .20 .19 .10 .16 .54 .01 .00 .03 .00 .00 .70 .18
.9 .20 .21 .19 .20 .54 .00 .00 .00 .00 .00 .72 .18
.7 .18 .28 .18 .21 .55 .01 .00 .01 .00 .00 .66 .18
.5 .24 .30 .20 .25 .52 .00 .00 .00 .00 .00 .64 .17

3 1 .20 .13 .16 .16 .32 .57 .00 .61 .12 .00 .43 .29
.9 .17 .15 .20 .17 .53 .67 .00 .67 .09 .01 .55 .36
.7 .13 .16 .21 .17 .65 .71 .06 .75 .15 .06 .65 .43
.5 .15 .19 .22 .19 .72 .71 .12 .76 .26 .09 .79 .49

1000 1 1 .32 .27 .32 .30 .07 .01 .00 .01 .04 .00 .03 .02
.9 .29 .33 .33 .32 .06 .00 .01 .00 .07 .02 .04 .03
.7 .25 .32 .32 .30 .06 .00 .04 .00 .06 .01 .05 .03
.5 .22 .34 .32 .29 .10 .00 .12 .00 .07 .02 .03 .05

2 1 .25 .35 .32 .31 .07 .01 .00 .00 .00 .01 .00 .01
.9 .32 .45 .33 .37 .07 .00 .00 .00 .00 .04 .00 .02
.7 .26 .44 .33 .34 .08 .00 .00 .00 .00 .03 .00 .02
.5 .25 .42 .29 .32 .08 .00 .01 .00 .00 .01 .00 .01

3 1 .32 .31 .35 .33 .41 .10 .01 .40 .21 .00 .46 .23
.9 .34 .36 .40 .37 .53 .11 .03 .36 .09 .00 .47 .23
.7 .5 .45 .53 .49 .49 .08 .04 .35 .06 .00 .40 .20
.5 .56 .52 .67 .58 .39 .01 .04 .30 .05 .00 .31 .16

CHAPTER 3. RESULTS OF SIMULATION STUDY 39

3.2 Results concerning binary predictors

Similar to the previous section, we assess using only binary predictor variables

how the PRE method performs for the different amounts of measurement error

regarding the other two design factors; proportion of class outcome labels and

sample size. Here, we address measurement error with the misclassification rate

(MR) from Section 2.3, instead of the reliability coefficient ρ. In the following

paragraphs, the most important effects coming from the ANOVAs are reported for

every performance measure.

Starting with the results for the prediction performance of the method, the

average CCR and AUC within a cell is reported in Table 3.5. Alongside the PRE’s

AUC is also the AUC from the ”oracle” (Section 2.4.3). We assess whether those

values are different or not, by a repeated measures ANOVA, from which the main

effect of fitting method has a medium effect size (partial η2 = .07). This supports

that overall the ”oracle’s” AUC is higher than the one from the PRE models

(mean”true” AUC = .84 > meanderived AUC = .81).

Moreover, the interaction between the fitting method and sample size has a

medium effect size (partial η2 = .6), indicating that the relationships between

PRE’s and ”oracle’s” AUC strongly depends on sample size. Figure 3.5 shows that

the difference between PRE’s and ”oracle’s” AUC becomes smaller with increasing

sample size, especially when N = 1500. Also, for N = 1500 the AUC values of

PRE and ”oracle” slightly dropped, with the error bars (based on standard error

of each mean) showing an overlap especially for PRE with the ones for N = 1000

and N = 2000. This could be a result of the variability of the estimates.

Furthermore, we notice that in each cell as the misclassification rate (MR) is in-

CHAPTER 3. RESULTS OF SIMULATION STUDY 40

creasing, i.e., the amount of measurement error is increasing, the AUC is declining.

This is confirmed by the within-subject main effect of misclassification rate, which

has a large effect size (partial η2 = .61), and by calculating the mean AUC per mis-

classification rate (meanMR=0 = .81 > meanMR=13 = .74 > meanMR=25 = .71).

Figure 3.5: The average AUC per fitting method was plotted for each sample size. Over-
all, the differences between PRE’s and ”oracle’s” AUC become smaller with increasing
sample size.

CHAPTER 3. RESULTS OF SIMULATION STUDY 41

Table 3.5: Predictive accuracy as measured by CCR and AUC for different amounts of
measurement error (misclassification rate), proportion of class outcome labels (P (Y =
1) = .5 or .8) and sample sizes for the binary data. The values in the parentheses are
the accuracies for the oracle.

Sample
size

Misclassification
rate

P (Y = 1) = .5 P (Y = 1) = .8
Accuracy AUC Accuracy AUC

200 0 .87 (.89) .87 (.90) .84 (.87) .66 (.80)
13 .81 .81 .82 .58
25 .77 .77 .82 .55

500 0 .89 (.89) .89 (.90) .86 (.87) .73 (.79)
13 .83 .83 .84 .66
25 .79 .79 .84 .62

1000 0 .89 (.89) .89 (.89) .86 (.87) .76 (.79)
13 .84 .84 .85 .66
25 .80 .79 .84 .64

1500 0 .88 (.89) .88 (.89) .86 (.87) .76 (.76)
13 .84 .84 .85 .68
25 .80 .80 .85 .66

2000 0 .89 (.89) .89 (.89) .86 (.86) .76 (.78)
13 .84 .84 .85 .68
25 .80 .80 .85 .65

In Table 3.6, we report the percentage of datasets in which each of the true

rules were selected per cell. It is noteworthy that most numbers are very high,

especially for larger sample sizes and balanced class outcomes.

The within-subject effects that explained most of the variance of the number of

correct rules, were the interactions of MR and proportion of class outcome labels

(partial η2 = .41), MR and sample size (partial η2 = .67), and MR and rule

(partial η2 = .09). Their interaction plots are shown in Figure 3.6, and for all

of them, the higher the amount of measurement error, the smaller the number

of correct rules for every level of the other three factors. More specifically, the

balanced class outcomes had higher number of correct rules (Fig. 3.6, A). Rule

r2 has the higher number of correct rules which is not affected by MR as the rest

CHAPTER 3. RESULTS OF SIMULATION STUDY 42

rules, then follows r1, r4, and last r3 having the lowest numbers (Fig. 3.6, B).

Moreover, the higher the sample size the larger the number of correct rules (Fig.

3.6, C). The main effect of MR has a large effect size (partial η2 = .87) with a

decreasing mean number of correctly selected rules per MR (meanMR=0 = .92 >

meanMR=13 = .85 > meanMR=25 = .78).

Figure 3.6: The average number of correctly recovered rules is plotted for two-way
combinations of misclassification rate (MR) and proportion of class outcome labels (plot
A), MR and prediction rule (plot B), and MR and sample size (plot C). For all the
plots, as the amount of MR increases, the number of correct rules drops for the levels
of the other factors. The numbers in the prediction rules correspond to: r1 = I(X6 =
0) · I(X8 = 0), r2 = I(X5 = 1) · I(X7 = 1) , r3 = I(X3 = 0) · I(X10 = 1) , r4 = I(X6 =
1) · I(X9 = 0).

CHAPTER 3. RESULTS OF SIMULATION STUDY 43

Table 3.6: The number of correctly derived rules from the model for different misclassi-
fication rates (MR), proportion of class outcome labels and sample sizes for the binary
data. The numbers are also shown per matching true rule. We denote with ”avg r”
the average percent of the four correctly derived rules, and with ”size r” the average
ensemble size of prediction rules from the pre output.

Sample
size

MR
P (Y = 1) = .5 P (Y = 1) = .8

r1 r2 r3 r4 avg r size r r1 r2 r3 r4 avg r size r
200 0 97 96 43 99 84 16 100 100 18 31 62 11

13 76 85 29 79 67 15 83 100 13 5 50 9
25 65 85 25 39 54 13 56 100 12 2 42 8

500 0 100 100 94 100 98 20 100 100 49 96 86 17
13 100 100 77 100 94 20 100 100 36 44 70 15
25 92 100 70 81 86 20 95 100 33 13 60 14

1000 0 100 100 100 100 100 20 100 100 72 99 93 19
13 100 100 94 100 98 23 100 100 51 94 86 19
25 98 100 94 99 98 24 100 100 45 50 74 18

1500 0 100 100 100 100 100 19 100 100 86 100 96 19
13 100 100 99 100 100 23 100 100 69 100 92 20
25 100 100 99 100 100 26 100 100 64 70 84 21

2000 0 100 100 100 100 100 18 100 100 97 100 99 20
13 100 100 100 100 100 25 100 100 64 100 91 20
25 99 100 99 99 99 27 100 100 59 89 87 21

Table 3.7 and 3.8 contains the type I and type II error per predictor and design

factor combination. Focusing on type I error, the repeated measures ANOVA

revealed that the interactions between MR and proportion of class outcome labels

(partial η2 = .84), and between MR and sample size (partial η2 = .77) have a

large effect size, while the interaction between MR and predictor (partial η2 = .11)

has a medium effect size. Type I error increases rapidly for the balanced class

outcomes, whereas for the imbalanced class outcomes drops when MR = 13 and

then increases for MR = 25 (Fig. 3.7, A). For most predictor variables, type I error

rises, with X4 having the sharpest increase (Fig. 3.7, B). The predictor variables

X1 is more similar to X2, which could be because the distribution of X1 is closer

to the the distribution of X2. Moreover, the type I error increases for almost all

sample size with larger misclassification rates, except for N = 200, which ends up

CHAPTER 3. RESULTS OF SIMULATION STUDY 44

with values closer to those from large sample sizes of 1000 and 1500. Sample size

of 2000 had the lowest Type I error rates (Fig. 3.7, C).

The main effect of MR has a large effect size (partial η2 = .66) with the

mean of type I error dropping as misclassification rate rises (meanMR=0 = .18 <

meanMR=13 = .19 < meanMR=25 = .22).

Figure 3.7: Two-way interaction plots, which plot the type I error for two-way combina-
tions of misclassification rate (MR) and proportion of class outcome labels, (plot A), MR
and predictior variable (plot B), and MR and sample size (plot C). In most contrasts,
as the amount of MR increases, the type I error increases.

Lastly, we can observe the type II errors, where the majority of the values are

zero, indicating that all of the true rules were selected in the fitted PREs. The

CHAPTER 3. RESULTS OF SIMULATION STUDY 45

interactions between MR and proportion of class outcome label (partial η2 = .71)

and between MR and sample size (partial η2 = .69) have a large effect size. Their

interaction plots are shown in Figure 3.8, and for every level of the factors, it

seems that the type II errors stay the same for both non-zero MR. The main effect

of MR has a large effect size (partial η2 = .85) with the mean number of cor-

rectly selected rules per MR to be decreasing (meanMR=0 = .03 < meanMR=13 =

.05,meanMR=25 = .05).

Figure 3.8: Two-way interaction plots, which plot the means of type II errors for two-
way combinations of MR and proportion of class outcome labels, (plot A), and MR and
sample size (plot B). In both, as the amount of measurement error increases, the type
II error increases, or remains the same when measurement error is present.

CHAPTER 3. RESULTS OF SIMULATION STUDY 46

Table 3.7: The type I and type II error for each of the corresponding variables for
different misclassification rates (MR) and sample sizes for the binary data. The results
from specifying balanced class proportion labels are listed.

Sample
size

MR
P (Y = 1) = .5

Type I error Type II error
X1 X2 X4 avg X3 X5 X6 X7 X8 X9 X10 avg

200 0 .30 .25 .21 .25 .30 .00 .00 .00 .00 .00 .17 .07
13 .22 .25 .22 .23 .39 .02 .01 .05 .00 .00 .15 .09
25 .23 .24 .23 .23 .39 .04 .04 .03 .00 .00 .10 .09

500 0 .20 .24 .15 .20 .03 .00 .00 .00 .00 .00 .03 .01
13 .26 .21 .27 .25 .11 .00 .00 .00 .00 .00 .02 .02
25 .36 .28 .34 .33 .13 .00 .00 .00 .00 .00 .02 .02

1000 0 .11 .07 .05 .08 .00 .00 .00 .00 .00 .00 .00 .00
13 .27 .19 .21 .22 .02 .00 .00 .00 .00 .00 .02 .01
25 .28 .26 .18 .24 .00 .00 .00 .00 .00 .00 .02 .00

1500 0 .05 .12 .10 .09 .00 .00 .00 .00 .00 .00 .00 .00
13 .19 .14 .17 .17 .01 .00 .00 .00 .00 .00 .01 .00
25 .24 .25 .31 .27 .01 .00 .00 .00 .00 .00 .00 .00

2000 0 .05 .01 .01 .02 .00 .00 .00 .00 .00 .00 .00 .00
13 .09 .11 .07 .09 .00 .00 .00 .00 .00 .00 .00 .00
25 .13 .16 .17 .15 .00 .00 .00 .00 .00 .00 .00 .00

CHAPTER 3. RESULTS OF SIMULATION STUDY 47

Table 3.8: The type I error and type II error for each of the corresponding variables for
different misclassification rates (MR) and sample sizes for the binary data. The results
from specifying unbalanced class proportion labels are listed.

Sample
size

MR
P (Y = 1) = .8

Type I error Type II error
X1 X2 X4 avg X3 X5 X6 X7 X8 X9 X10 avg

200 0 .24 .32 .33 .30 .56 .00 .00 .00 .00 .18 .19 .13
13 .18 .19 .18 .18 .58 .00 .06 .00 .05 .24 .34 .18
25 .17 .23 .18 .19 .56 .00 .26 .00 .07 .24 .38 .22

500 0 .33 .33 .24 .30 .26 .00 .00 .00 .00 .00 .07 .05
13 .20 .25 .24 .23 .42 .00 .00 .00 .00 .01 .10 .08
25 .19 .26 .26 .24 .43 .00 .00 .00 .00 .00 .11 .08

1000 0 .24 .23 .20 .22 .17 .00 .00 .00 .00 .00 .06 .03
13 .16 .17 .18 .17 .31 .00 .00 .00 .00 .00 .09 .06
25 .20 .20 .20 .20 .34 .00 .00 .00 .00 .00 .07 .06

1500 0 .22 .15 .15 .17 .10 .00 .00 .00 .00 .00 .05 .02
13 .19 .24 .19 .21 .20 .00 .00 .00 .00 .00 .06 .04
25 .17 .19 .26 .21 .17 .00 .00 .00 .00 .00 .08 .04

2000 0 .11 .16 .13 .13 .02 .00 .00 .00 .00 .00 .01 .00
13 .14 .12 .12 .13 .16 .00 .00 .00 .00 .00 .10 .04
25 .12 .17 .16 .15 .18 .00 .00 .00 .00 .00 .09 .04

Chapter 4

Discussion

In this thesis, we studied the impact of measurement error on prediction rule

ensembles through simulation studies. We examined whether the performance

measures of the fitted PREs deteriorates when introducing measurement error in

one of the predictor variables of a dataset. Those measures were the predictive

performance measure, AUC, and others that measure the correctness of prediction

rules, such as the number of correctly selected rules, type I and II error.

We found that with larger sample sizes, the predictive accuracy of PREs became

more similar or even the same as that of the ”oracle”. Altogether, measurement

error not only deteriorates the predictive performance of PREs, it can also ag-

gravate the interpretability of the method, by selecting wrong rules, resulting in

unreliable and wrong conclusions. We discuss further the findings in the following

paragraphs.

48

CHAPTER 4. DISCUSSION 49

4.1 Discussion of results regarding the ”oracle”

We saw that the predictive accuracy of PREs was lower than that of the ”oracle”.

This was expected, since the ”oracle” was used as a benchmark, indicating the

theoretically best possible predictive accuracy. However, this method was not

the perfect predictor, although the true underlying rules were used. A possible

explanation could be that the estimated coefficient values from the GLM deviated

somewhat from the true underlying models used for the data generation.

The most important finding was that with larger sample sizes, the predictive

accuracy of PREs became more similar or even the same as that of the ”oracle”,

for both continuous and binary predictor settings.

4.2 Discussion of results regarding measurement

error

In pursuit of answering whether measurement error affects the AUC metric of the

method, we concluded that with larger amount of measurement error, the AUC

decreased. The AUC metric did not seem to be influenced by the other design

factors for the continuous and binary predictor variable case.

In the study with only continuous predictors, different factors had an influence

on the other metrics that were deteriorated with larger amounts of measurement

error. For multicollinear predictor variables, the numbers of correctly selected rules

and type I error are more negatively affected with larger amounts of measurement

error compared to the cases with independent predictor variables. This could

be because more correlated predictors with the mismeasured predictor are picked

CHAPTER 4. DISCUSSION 50

instead. Type I error was also higher for large sample size across the ρ values,

and for balanced class outcomes when ρ value is also high. Type II error grew for

balanced data, whereas declined for imbalanced data with higher ρ values.

In the study with only binary predictors, sample size and proportion of class

outcome labels had an effect on the relationship between measurement error and

each of the three correctness-related measures. Mostly, higher sample sizes or

balanced class outcomes would result in better performances across the misclassi-

fication rates. In addition to those factors, for some prediction rules the number

of correctly selected rules would not be affected much from the misclassification

rates. The one that seems to not be affected does not include the mismeasured

predictor. The type I error also increases differently for each of its predictors with

larger misclassification rates.

It is worth mentioning that the number of correctly selected rules and type

II error reached the ideal values of 100 and 0 correspondingly for higher sample

sizes and balanced data in the binary setting. However, type I errors remained

substantial, meaning although almost always the correct rules were selected, also

additional rules were selected having predictors that were not used to construct

the true rules. Hence, adding some noise in the derived ensemble of prediction

rules.

Furthermore, we noticed that the ensemble size of the PRE models was way

higher than the four rules that were used to generate the data. The ensemble size

was particularly large for larger sample sizes. This makes difficult to interpret the

output of the fitted models when the number of prediction rules is large, whereas

only four rules would be enough to adequately explain the model.

To conclude with the results from both studies, the predictive performance of

CHAPTER 4. DISCUSSION 51

PRE models (via AUC) was deteriorated after introducing measurement error in

one of its predictor variables. In general, although the number of correctly selected

rules was from the start not great, after the inclusion of measurement error the

numbers got even worse. The same applies for type I and II error, where those

measures were not focused on whether the correct rules were selected, but whether

the right or wrong predictors were included in the derived rules of the model.

Hence, measurement error can cause serious implications in the interpretability of

the model, and result to unreliable and wrong conclusions.

4.3 Limitations and suggestions for future re-

search and development

Certain suggestions can be given to expand the simulation set-up further. Start-

ing with the data generation, more covariance matrix settings could be tried for

generating the predictor variables based on a normal distribution. For instance,

the covariance of pairs of interacting variables could be set to different values. Us-

ing only the three data settings that were opted for this study, the findings could

only be generalized to data samples of the same underlying population of similar

characteristics. This means studies with data of different sample sizes that come

from a normal distribution with similar descriptive characteristics (e.g., means,

standard deviations or covariances) and amounts of measurement error will not

differ in their effect size estimates. Hence, the results can be considered indicative,

but not definitive. Replication with other populations or conditions could help

to generalize further the findings. For example, either a non-symmetrical distri-

CHAPTER 4. DISCUSSION 52

butions could be opted, where the data points are skewed either to the left or to

the right (e.g., chi-squared distribution), or a multimodal distribution, such as a

mixture of multiple normal distributions.

The design of the experiment could also be adjusted with the “oracle” getting

the true rule memberships, but based on variables with measurement error. In

this way, we could assess whether also the “oracle” is affected by measurement

error. A penalized logistic regression could also be used to be more comparable

with the PRE model that uses lasso regression. The current results indicate that

more noise variables are selected with increasing sample size and with increasing

multicollinearity, which is likely due to the use of lasso penalized regression in

PREs.

During the model fitting, instead of having different simulation studies con-

cerning continuous and binary predictors separately, datasets with both kind of

predictors could be simulated to assess the performance of the method, includ-

ing measurement error either in a continuous or binary predictor, or in both at

the same time. More extreme amounts of measurement error could be included.

Smaller or larger sample sizes than the current ones can be explored as either sce-

nario is relevant for certain fields where subjects are limited or widely available.

Different number of predictor variables could also be explored, such as a combina-

tion of a small dataset with a large number of predictor variables would result in a

high-dimensional setting. A higher test sample size could also be opted in order to

decrease the variability and sample error in the reported mean estimates. Another

suggestion would be to repeat this study implementing regression or multiclass

classification instead of binary classification.

In the analyses, because rules from perfectly correlated pairs of rules are re-

CHAPTER 4. DISCUSSION 53

moved from the initial ensemble, recovery measures of the fitted PREs are nega-

tively affected. Hence, if one of the true rules is omitted by the method but its

negatively perfectly correlated pair is included in the final ensemble, this will not

be picked up by the number of correctly selected rules. However, this does not

affect type I and II error.

4.4 Contribution and novelty

This thesis aimed primarily to contribute in assessing the impact of measurement

error on the performance of prediction rule ensembles. In some papers (e.g., Quin-

lan, 1986; Quinlan,1993), decision tree classification on uncertain data has been

addressed for decades in the form of missing values, and solutions approximating

missing values have been developed. In other papers (e.g., Tsang et al.; 2009;

Qin et al., 2009; Sexton & Laake, 2007), tree-based algorithms for data with

measurement error have also been developed. However, through the pre package

conditional inference trees were used for deriving prediction rules which use a pre-

dictor variable selection scheme that is based on statistical theory that address

the variable selection bias problem, but not measurement error. Studies focusing

on the effect of measurement error on the conditional inference trees, or on the

prediction rule ensembles have not been conducted before. Therefore, in this thesis

extensive experiments have been conducted to investigate whether the performance

of the method deteriorates after introducing measurement error in various design

settings. The predictive performance of the method was recorded, together with

measures related to the correctness of prediction rules which are used to make in-

ference. Moreover, a measurement error methodology was presented and applied

CHAPTER 4. DISCUSSION 54

both on a continuous and binary predictor.

Appendix A

Main R code

if (!"pre" %in% installed.packages ()) {

if (!"devtools" %in% installed.packages ()) {

install.packages("devtools")}

require(devtools)

install_github("marjoleinF/pre")}

require(pre)

if (!"mvtnorm" %in% installed.packages ()) {

install.packages("mvtnorm")}

require(mvtnorm)

if (!"plotrix" %in% installed.packages ()) {

install.packages("plotrix")}

require(plotrix)

55

APPENDIX A. MAIN R CODE 56

if (!"caret" %in% installed.packages ()) {

install.packages("caret")}

require(caret)

if (!"pROC" %in% installed.packages ()) {

install.packages("pROC")}

require(pROC)

SP <- function(i, X.mat) {

selects a value between the 1st and 3th quantile of the i given

variable to be used as the split point of the variable in a

decision rule

#

Args:

i: an index that indicates which predictor (column) will be

selected from X.mat

X.mat: a matrix containing all the predictors in its columns

#

Returns:

a value indicating the relevant split point of a variable in

a decision rule

x <- X.mat[, i]

return(round(sample(quantile(x, 0.25): quantile(x, 0.75), 1), 1))

}

APPENDIX A. MAIN R CODE 57

InitPar <- function(N, set.sd , p = 10, balanced = TRUE) {

Initializes parameters to be used for simulating data

#

Args:

N: sample size of data set

set.sd: type of predictor variables in the data ,

1 - normally distributed with common sd;

2 - normally distributed with different sd each;

3 - normally distributed given a covariance matrix;

4 - binomially distributed with different probabilities

p: number of predictor variables (default is 10)

balanced: whether the classes of the simulated binary target

variable are balanced or not

#

Returns:

a list with two distribution parameters; the mean and par2

(i.e., probabilities for set.sd=4, or the sd otherwise), and

a vector of parameters alpha to be used in the linear

predictor F(x)

A different intercept of the ensemble member is given for each

combination of sample size and data type depending if the

#classes of the binary target variable are balanced or not

if (balanced) {

a0 <- matrix(c(-1.6, -3.8, -14.5, -6.8,

APPENDIX A. MAIN R CODE 58

-5.5, -10, -9, -6.8,

-1.5, -5.5, -9.2, -6.8,

0, 0, 0, -6.8,

0, 0, 0, -6.8), nrow =5, byrow = TRUE)

} else {

a0 <- matrix(c(1.4, 0.78, -4.7, 0,

0.8, -1.5, 1, 0,

1.72, 0.62, -2.5, 0,

0, 0, 0, 0,

0, 0, 0, 0), nrow =5, byrow = TRUE)

}

colnames(a0) <- c(1, 2, 3, 4)

rownames(a0) <- c(200, 500, 1000, 1500, 2000)

parameters of each ensemble member

intercept <- a0[as.character(N), set.sd]

alpha <- c(intercept , runif(4, -25, 25))

if(set.sd == 4) {

par2 <- sample(seq(0.2, 0.8, 0.01), p)

mean <- NULL

} else {

mean <- sample(seq(10, 200, 0.1), p)

APPENDIX A. MAIN R CODE 59

if(set.sd == 1) par2 <- sample(seq(5, 20, 0.1), 1)

if(set.sd == 2) par2 <- sample(seq(0.2, 10, 0.1), p)

if(set.sd == 3) par2 <- matrix(rep(0.5, p^2), ncol = p)

+ diag(0.5, p)

}

return(list(mean = mean , par2 = par2, alpha = alpha))

}

SimData <- function(N, mean , par2, set.sd , alpha ,

sp = NULL , rho = NULL , p = 10) {

Simulates data containing a binary target outcome and

10 predictors for given alpha , mean and sd or probabilities.

The target variable is based on a binomial distribution

with probability computed from a standard logistic function

with parameter the linear predictor formed by 4 ensemble rules.

Also , measurement error can be added in one predictor.

#

Args:

N: sample size of data set

mean: vector of means to generate N values from

a normal distribution

par2: a vector of probabilities for set.sd=4,

or one sd for set.sd=1, or a vector of

sd’s for set.sd=2, or a covariance matrix for set.sd=3

APPENDIX A. MAIN R CODE 60

set.sd: type of predictor variables in the data ,

1 - normally distributed with common sd;

2 - normally distributed with different sd’s;

3 - normally distributed given a covariance matrix;

4 - binomially distributed with different probabilities

alpha: a vector of parameters of each of the 4 ensemble

members (intercept is set to 0)

sp: vector of split points for each predictor;

if NULL , then SP() is called to compute the split points

rho: the reliability coefficient , determines the sizes

of measurement error; for set.sd = 4, if rho=1, then

misclassification is around 13%, if rho=2, then is around

25%; for set.sd != 4, rho can be numeric with 0 < rho < 1

p: number of predictors (default is 10)

#

Returns:

a list with data: data with a target outcome variable and 10

predictors to be used for

training a prediction rule ensemble method;

data.LR: data with a target outcome variable and

the 4 rules as predictors;

sp: a vector with the i-th element indicating the

sampled split point for the i-th predictor

(the 11-th element indicates a second split

point for X6 as it is used twice in the rules);

misclas: number of misclassifications ,

APPENDIX A. MAIN R CODE 61

if set.sd = 4 and measurement error

is added , otherwise NULL

if(set.sd == 1) X.mat <- round(as.data.frame(sapply(1:p,

function(i) rnorm(N, mean[i], par2))), 1)

if(set.sd == 2) X.mat <- round(as.data.frame(sapply(1:p,

function(i) rnorm(N, mean[i], par2[i]))), 1)

if(set.sd == 3) X.mat <- round(as.data.frame(

rmvnorm(N, mean , par2)), 1)

if(set.sd == 4) X.mat <- as.data.frame(sapply(1:p,

function(i) rbinom(N, 1, par2[i])))

colnames(X.mat) <- paste0("X", 1:p)

specify 4 ensemble rules

if(set.sd != 4) {

if(is.null(sp) & !is.null(mean)) {

sp <- c(sapply(1:p, SP , X.mat), SP(6, X.mat))

names(sp) <- c(colnames(X.mat), "X6.2")}

F1 <- X.mat$X6 > sp[6] & X.mat$X8 > sp[8]

F2 <- X.mat$X5 <= sp[5] & X.mat$X7 <= sp[7]

F3 <- X.mat$X3 > sp[3] & X.mat$X10 > sp[10]

F4 <- X.mat$X6 <= sp[11] & X.mat$X9 <= sp[9]

APPENDIX A. MAIN R CODE 62

} else {

F1 <- X.mat$X6 == 0 & X.mat$X8 == 0

F2 <- X.mat$X5 == 1 & X.mat$X7 == 1

F3 <- X.mat$X3 == 0 & X.mat$X10 == 1

F4 <- X.mat$X6 == 1 & X.mat$X9 == 0}

forming linear predictor F(x)

Fx <- cbind(1, F1, F2, F3, F4) %*% alpha

probability of each sample to get the class label 1

pr <- exp(Fx) / (1 + exp(Fx))

adding measurement error if it is specified by rho

data <- X.mat

for the continuous cases

if(!is.null(rho) & set.sd != 4) data[, 6] <-

MeasurementError(X.mat = X.mat , N = N,

rho = rho , par2 = par2,

set.sd = set.sd)

for the binary predictors

misclas <- NULL

if(!is.null(rho) & set.sd == 4) {

me <- MeasurementError(X.mat = X.mat , N = N,

rho = rho , par2 = par2,

set.sd = set.sd)

data[, 6] <- me[[1]]

misclas <- me[[2]]

APPENDIX A. MAIN R CODE 63

}

create the binary target variable based on a

binomial distribution with probability pr

data$label <- factor(sapply(1:N,

function(i) rbinom(1, 1, pr[i])))

data with predictors the 4 rules

if (is.null(rho)) {

dat <- data.frame(F1 = factor(ifelse(F1 == T, 1, 0)),

F2 = factor(ifelse(F2 == T, 1, 0)),

F3 = factor(ifelse(F3 == T, 1, 0)),

F4 = factor(ifelse(F4 == T, 1, 0)),

label = data$label)

} else {

dat <- NULL

}

return(list(data = data , data.LR = dat , sp=sp , misclas = misclas))

}

MeasurementError <- function(X.mat , N, rho , par2, set.sd , x.me = 6) {

Adding measurement error in predictor X6

#

Args:

APPENDIX A. MAIN R CODE 64

X.mat: a matrix with all the predictors

N: sample size of data set

rho: the reliability coefficient , determines the sizes of

measurement error; for set.sd == 4, if rho=1, then

misclassification is around 13%, if rho=2, then is

around 25%; for set.sd != 4, rho can be numeric

with 0 < rho < 1

par2: a vector of probabilities for set.sd=4, or one sd

for set.sd=1, or a vector of sd’s for set.sd=2,

or a covariance matrix for set.sd = 3

set.sd: type of predictor variables in the data ,

1 - normally distributed with common sd;

2 - normally distributed with different sd’s;

3 - normally distributed given a covariance matrix;

4 - binomially distributed with different probabilities

x.me: the 6-th predictor is chosen to add measurement error

#

Returns:

a list with a vector of the values of 6-th predictor with

measurement error , and if set.sd = 4, also the number of

misclassifications occured in X6

X <- X.mat[, x.me]

if(set.sd == 4) {

q <- c(1.5, 1.15)[rho]

APPENDIX A. MAIN R CODE 65

e <- rnorm(N)

U <- as.numeric ((e > q) | (e < -q))

W <- X

W[U==1 & X==1] <- 0

W[U==1 & X==0] <- 1

return(list(W, sum(U)))

} else {

if(set.sd == 1) sd.X <- par2

if(set.sd == 2) sd.X <- par2[6]

if(set.sd == 3) sd.X <- sqrt(par2[6, 6])

sigma.u <- sd.X * sqrt((1 - rho) / rho)

U <- round(rnorm(N, 0, sigma.u), 2)

W <- X + U

return(W)

}

}

LogisticRegressionCV <- function(dt , k = 10) {

Given a dataset , the accuracy and the AUC score were obtained

through a 10-fold cross -validated Logistic Regression model ,

i.e., the binary class variable and the four rules that were

obtained by a given dataset are used to build a logistic

regression model.

APPENDIX A. MAIN R CODE 66

#

Args:

dt: data with a target outcome variable and the 4 rules

as predictors

k: number of fold of cross -validation

#

Returns:

the accuracy and AUC score of the model

define training control

train_control <- trainControl(method = "cv",

number = 10, savePredictions = T)

train the model

model <- train(label ~ ., data = dt ,

method = "glm", family = binomial ,

trControl = train_control)

y <- dt$label # true labels

fitpred <- ifelse(model$finalModel$fitted.values > 0.5, 1, 0)

roc_obj <- roc(y, fitpred)

return(list(Accuracy = model$results$Accuracy ,

AUC = as.numeric(auc(roc_obj))))

}

APPENDIX A. MAIN R CODE 67

Oracle <- function(N, balanced) {

"Oracle" simulations are performed for all the data combinations

of sample sizes and data types; The true underlying accuracy/AUC

score was obtained from the same model on which the data generation

was based. Hence , logistic regression was fitted , and the

accuracy/AUC score was obtained by 10-fold cross -validation.

#

Args:

N: sample size of data set

balanced: whether the classes of the simulated binary target

variable are balanced or not

#

Returns:

the accuracy , AUC score and the corresponding SDs across the

100 fitted models for each design factor combination

results are saved in a dataframe for each data type and sample size

res_acc <- res_acc_sd <- res_auc <- res_auc_sd <- data.frame()

a loop for data type

for(set.sd.n in 1:4) {

sp1 <- NULL

if (set.sd.n == 4) {

Z <- 5 # for binary predictors 5 sample sizes were explored

} else {

APPENDIX A. MAIN R CODE 68

Z <- 3 # for continuous only 3

}

a loop for sample size

for(j in 1:Z) {

N.n <- N[j]

ch <- acc <- auc <- numeric(100)

set.seed(1278)

par <- InitPar(N = N.n,

set.sd = set.sd.n,

balanced = balanced)

for (i in 1:100) {

data <- SimData(N = N.n, mean = par$mean ,

par2 = par$par2, alpha = par$alpha ,

set.sd = set.sd.n, sp = sp1)

for each data type and sample size , the same split point

vector is selected for all 100 replications

if(i == 1 & j == 1 & set.sd.n != 4) sp1 <- data$sp

test set is not used here , just to get the same dataset

as in PreFit () function

test.set <- SimData(N = 200, mean = par$mean ,

par2 = par$par2, alpha = par$alpha ,

set.sd = set.sd.n, sp = sp1)$data

APPENDIX A. MAIN R CODE 69

try(oracle_acc <- LogisticRegressionCV(dt = data$data.LR))

acc[i] <- oracle_acc$Accuracy

auc[i] <- oracle_acc$AUC

}

res_acc <- rbind(res_acc ,

data.frame(N = N.n,

type = set.sd.n,

true_accuracy = mean(acc)))

res_acc_sd <- rbind(res_acc_sd ,

data.frame(N = N.n,

type = set.sd.n,

sd_accuracy = sd(acc)))

res_auc <- rbind(res_auc ,

data.frame(N = N.n,

type = set.sd.n,

true_AUC = mean(auc)))

res_auc_sd <- rbind(res_auc_sd ,

data.frame(N = N.n,

type = set.sd.n,

sd_AUC = sd(auc)))

}

}

APPENDIX A. MAIN R CODE 70

return(list(acc = res_acc ,

acc_sd = res_acc_sd ,

auc = res_auc ,

auc_sd = res_auc_sd))

}

N <- c(200, 500, 1000, 1500, 2000)

res.balanced <- Oracle(N, balanced = TRUE)

res.unbalanced <- Oracle(N, balanced = FALSE)

true_accuracy <- rbind(cbind(bal = 1, res.balanced$acc),

cbind(bal = 2, res.unbalanced$acc))

true_auc <- rbind(cbind(bal = 1, res.balanced$auc),

cbind(bal = 2, res.unbalanced$auc))

APPENDIX A. MAIN R CODE 71

EvaluatePreModel <- function(str , j, match , corX , nrule , set.sd ,

sdsp = NULL , sp = NULL , print){

Compares the rules of a pre model with the theoretical ones ,

both for binary and continuous predictors.

#

Args:

str: a character vector with all the rules that the pre model

output from the iteration step j-1

j: indicates the iteration step

match: a matrix (k x 5) that contains for up until replication

j-1 how many times each of the 4 specified rules is

selected by the model; the 5-th column contains the

total number of derived from the model

corX: a matrix (k x 10) that contains for up until replication

j-1 how many times each predictor is selected by the model

nrule: number of derived rules from the pre model

set.sd: type of predictor variables in the data ,

1 - normally distributed with common sd;

2 - normally distributed with different sd’s;

3 - normally distributed given a covariance matrix;

4 - binomially distributed with different probabilities

sdsp: a vector with the sd of each predictor ,

if applicable is specified

APPENDIX A. MAIN R CODE 72

sp: a vector with the sampled split points that correspond to

the predictors (the 11-th element indicates a second

split point for X6 as it is used twice in the rules);

#

Returns:

a list with corX: a matrix (k x 10) that contains for up until

replication j how many times each predictor

is selected by the model

match: a matrix (k x 5) that contains for up until

replication j how many times each of the 4

specified rules is selected by the model; the

5-th column contains the total number of

derivedfrom the model

Extracting decimal numbers from a string , one output rule

The concern about negative numbers can be address with

optional perl style

str1 <- regmatches(str ,

gregexpr("(? >-)*[[: digit :]]+\\.*[[: digit :]]*",

str , perl=TRUE))

extract < or > from output rules

spp1 <- regmatches(str , gregexpr("[<|>]", str , perl = TRUE))

to count one time each rule (duplicate or multiplicate are not)

APPENDIX A. MAIN R CODE 73

j1 <- j2 <- j3 <- j4 <- 0

for each output (obtained from each j), i goes through each rule

to identify which predictor , split and inequality symbol is used

for (i in seq(nrule)) {

i-th rule with predictor (1-10) and split value

vec <- as.numeric(str1[[i]])

indx <- c(1,3,5,7)[seq(spp1[[i]])]

using odd index values to extract predictors of the i-th rule

var <- vec[indx]

if(length(var) > 2) next

indentify and count predictors in i-th rule

corX[j, var] <- corX[j, var] + 1

’<’ becomes l(ess) and ’>’ g(reater)

spp2 <- ifelse(unlist(spp1[[i]]) == "<", "l", "g")

if (set.sd != 4) {

split <- vec[-indx] # extract split values

if i-th rule matches the theoretical one

if(all(c(6, 8) %in% var)) {

if(all(spp2 %in% c("g", "g")) &

(sp[6]-sdsp[6] <= split[var==6]) &

APPENDIX A. MAIN R CODE 74

(split[var==6] <= sp[6]+sdsp[6]) &

(sp[8]-sdsp[8] <= split[var==8]) &

(split[var==8] <= sp[8]+sdsp[8]) & j1 == 0) {

match[j, 1] <- match[j, 1] + 1

j1 <- 1 # to not be counted twice

if(print) print(c(j,var))

}

}

if(all(c(5, 7) %in% var)){

if(all(spp2 %in% c("l", "l")) &

(sp[5]-sdsp[5] <= split[var==5]) &

(split[var==5] <= sp[5]+sdsp[5]) &

(sp[7]-sdsp[7] <= split[var==7]) &

(split[var==7] <= sp[7]+sdsp[7]) & j2 == 0) {

match[j, 2] <- match[j, 2] + 1

j2 <- 1

if(print) print(c(j,var))

}

}

if(all(c(3, 10) %in% var)) {

if(all(spp2 %in% c("g", "g")) &

(sp[3]-sdsp[3]<= split[var==3]) &

(split[var==3] <= sp[3]+sdsp[3]) &

(sp[10]-sdsp[10] <= split[var==10]) &

APPENDIX A. MAIN R CODE 75

(split[var==10] <= sp[10]+sdsp[10]) & j3 == 0) {

match[j, 3] <- match[j, 3] + 1

j3 <- 1

if(print) print(c(j,var))

}

}

if(all(c(9, 6) %in% var)) {

if(all(spp2 %in% c("l", "l")) &

(sp[9] - sdsp[9] <= split[var==9]) &

(split[var==9] <= sp[9] + sdsp[9]) &

(sp[11] - sdsp[6] <= split[var==6]) &

(split[var==6] <= sp[11] + sdsp[6]) & j4 == 0) {

match[j, 4] <- match[j, 4] + 1

j4 <- 1

if(print) print(c(j,var))

}

}

} else {

if(all(c(6, 8) %in% var)) {

if(all(spp2 %in% c("l", "l")) & j1 == 0) {

match[j, 1] <- match[j, 1] + 1

j1 <- 1

if(print) print(c(j,var))

APPENDIX A. MAIN R CODE 76

}

}

if(all(c(5, 7) %in% var)){

if(all(spp2 %in% c("g", "g")) & j2 == 0) {

match[j, 2] <- match[j, 2] + 1

j2 <- 1

if(print) print(c(j,var))

}

}

if(all(c(3, 10) %in% var)) {

if(spp2[var==3] == "l" & spp2[var==10] =="g" & j3 == 0) {

match[j, 3] <- match[j, 3] + 1

j3 <- 1

if(print) print(c(j,var))

}

}

if(all(c(9, 6) %in% var)) {

if(spp2[var==6] == "g" & spp2[var==9] =="l" & j4 == 0) {

match[j, 4] <- match[j, 4] + 1

j4 <- 1

if(print) print(c(j,var))

}

}

APPENDIX A. MAIN R CODE 77

}

}

return(list(corX = corX , match = match))

}

PreFit <- function(N, set.sd , rho = NULL , k = 100, p = 10,

balanced = TRUE , print = TRUE) {

Fitting the prediction rule ensemble method for a given

data set , evaluated over 100 replications

#

Args:

N: sample size of data

set.sd: type of predictor variables in the data ,

1 - normally distributed with common sd;

2 - normally distributed with different sd’s;

3 - normally distributed given a covariance matrix;

4 - binomially distributed with different probabilities

rho: the reliability coefficient , determines the sizes of

measurement error; for set.sd == 4, if rho=1, then

misclassification is around 13%, if rho=2, then is around

25%; for set.sd != 4, rho can be numeric with 0 < rho < 1

k: number of replications

p: number of predictors (default is 10)

balanced: whether the classes of the simulated binary target

APPENDIX A. MAIN R CODE 78

variable are balanced or not

print: which rules are selected; a vector with the iteration

number and the indices of the selected variables

#

Returns:

a list with predictors: a matrix (k x 10) that contains for

each replication k how many times

each predictor is selected by the

model

rules: a matrix (k x 5) that contains for each

replication k how many times each of the

4 specified rules is selected by the

model; the 5-th column contains the

total number of derived from the model

mean_error: mean cv error per k, sd_error: the

sd of the mean cv error per k,

alpha: the specified parameter vector for each

of the 4 ensemble members

check: returns 1, if each split point belongs to

the domain of the corresponding predictor ,

otherwise 0; If measurement error was added

to the binary predictor , then the number

of misclassification was returned as

"misclas.error" instead of "check ".

par <- InitPar(N = N, set.sd = set.sd , balanced = balanced)

APPENDIX A. MAIN R CODE 79

if correct rules are selected & total number of rules

match <- matrix(0, k, 5)

if correct predictor is selected

corX <- matrix(0, k, p)

mean & sd cv error

misclas.all <- check <- sderror <- merror <- numeric(k)

accuracy <- AUC <- numeric(k)

sp <- sdsp <- NULL

rm <- NULL

for (j in 1:k){

data.all <- SimData(N = N, mean = par$mean ,

par2 = par$par2, alpha = par$alpha ,

set.sd = set.sd , sp = sp , rho = rho)

if (!is.null(rho) & set.sd == 4) misclas.all[j] <- data.all$misclas

data <- data.all$data

split points based on the 1st data ,

for the rest the same values were used

if (set.sd != 4){

if (j == 1) sp <- data.all$sp

X.mat <- data[, -11]

APPENDIX A. MAIN R CODE 80

check[j] <- all((apply(X.mat , 2, min) <= sp[-11]) &

(apply(X.mat , 2, max) >= sp[-11]) &

min(X.mat[, 6])<= sp[11] &

sp[11] <= max(X.mat[, 6]))

sdsp <- apply(X.mat , 2, sd) # sd of each predictor

}

test set

test.set <- SimData(N = 200, mean = par$mean ,

par2 = par$par2, alpha = par$alpha ,

set.sd = set.sd , sp = sp , rho = rho)$data

Fit a prediction rule ensemble

fitpre <- NULL

try(fitpre <- pre(label ~ ., data = data ,

type = "rules", type.measure = "deviance"))

pred_prob <- predict(fitpre , newdata = test.set ,

type = ’response ’,

penalty.par.val = "lambda.1se")

predictions <- ifelse(pred_prob > 0.5, 1, 0)

y <- test.set$label # true labels

accuracy[j] <- mean(y == predictions)

APPENDIX A. MAIN R CODE 81

roc_obj <- roc(y, predictions)

AUC[j] <- as.numeric(auc(roc_obj))

In which iteration the prediction rule ensemble method failed

if (is.null(fitpre)) {

rm <- c(rm , j)

next

}

find mean cv error

ind <- which(fitpre$glmnet.fit$lambda ==

fitpre$glmnet.fit$lambda.1se)

merror[j] <- fitpre$glmnet.fit$cvm[ind]

sderror[j] <- fitpre$glmnet.fit$cvsd[ind]

z <- coef(fitpre , penalty.par.val = "lambda.1se") # output

z <- na.omit(z[z$coefficient != 0,]) # exclude intercept

match[j, 5] <- nrule <- nrow(z) # number or rules

if(nrule == 0) next # if output contains no rule , then next j

str <- z[,3] # all the output rules

out <- EvaluatePreModel(str = str , j = j, match = match ,

corX = corX , nrule = nrule ,

set.sd = set.sd , sdsp = sdsp ,

sp = sp , print = print)

corX <- out$corX

APPENDIX A. MAIN R CODE 82

match <- out$match

}

colnames(corX) <- paste0("X", 1:p)

colnames(match) <- c(paste0("rule", 1:4), ’N_rule’)

if(!is.null(rho) & set.sd == 4) {

if (!is.null(rm)) {

list <- list(predictors = corX[-rm ,], rules = match[-rm ,],

mean_error = merror[-rm], sd_error = sderror[-rm],

accuracy = accuracy[-rm], AUC = AUC[-rm],

alpha = par$alpha , misclas.error = misclas.all[-rm])

} else {

list <- list(predictors = corX , rules = match ,

mean_error = merror , sd_error = sderror ,

accuracy = accuracy , AUC = AUC ,

alpha = par$alpha , misclas.error = misclas.all)

}

} else {

if(!is.null(rm)){

list <- list(predictors = corX[-rm ,], rules = match[-rm ,],

mean_error = merror[-rm], sd_error = sderror[-rm],

accuracy = accuracy[-rm], AUC = AUC[-rm],

alpha = par$alpha , check = check[-rm])

} else {

APPENDIX A. MAIN R CODE 83

list <- list(predictors = corX , rules = match ,

mean_error = merror , sd_error = sderror ,

accuracy = accuracy , AUC = AUC ,

alpha = par$alpha , check = check)

}

}

return(list)

}

TypeOfError <- function(x, type) {

Calculates Type I or II error from the output of the PreFit

function using the matrix with the predictors that are

selected in each replication. Type I error was calculated

by counting , for each repetition k, if the variables X_1, X_2,

and X_4 were included in the derived rules , while they are

not part of the true rules. The type II error was calculated

by counting , if the rest of the variables were not included

in the derived rules , whereas they are part of

the true rules.

#

Args:

APPENDIX A. MAIN R CODE 84

x: the output of the PreFit function

type: 1 for type I error , or 2 for type II error

#

Returns:

a vector of Type I errors for the variables X_1, X_2, X_4,

or a vector of Type II errors for the rest of the variables

if (type == 1) {

y <- x$predictors[, c(1,2,4)]

return(apply(y, 2, function(x){sum(x != 0)}) / nrow(y))

} else {

y <- x$predictors[, c(3, 5:10)]

return(apply(y, 2, function(x){sum(x == 0)}) / nrow(y))

}

}

run simulations for the continuous predictors

for(N in c(200, 500, 1000)) {

for(set.sd in 1:3){

for(i in 1:4) {

rho <- list(NULL , 0.9, 0.7, 0.5)[[i]]

APPENDIX A. MAIN R CODE 85

set.seed(1278)

x <- PreFit(N = N, set.sd = set.sd,

rho = rho , print = FALSE)

assign(paste0("bal.", N, ".", set.sd ,

c("", ".9", ".7", ".5")[i]), x)

set.seed(1278)

x <- PreFit(N = N, set.sd = set.sd,

rho = rho , balanced = FALSE , print = FALSE)

assign(paste0("unbal.", N, ".", set.sd ,

c("", ".9", ".7", ".5")[i]), x)

}

}

}

run simulations for the binary predictors

for(N in c(200, 500, 1000, 1500, 2000)) {

for(i in 1:3) {

rho <- list(NULL , 1, 2)[[i]]

set.seed(1278)

x <- PreFit(N = N, set.sd = 4,

rho = rho , print = FALSE)

APPENDIX A. MAIN R CODE 86

assign(paste0("bal.", N, ".", 4,

c("", ".1", ".2")[i]), x)

set.seed(1278)

x <- PreFit(N = N, set.sd = 4,

rho = rho , balanced = FALSE , print = FALSE)

assign(paste0("unbal.", N, ".", 4,

c("", ".1", ".2")[i]), x)

}

}

Bibliography

Aigner, D. J. (1973). Regression with a binary independent variable

subject to errors of observation. Journal of Econometrics , 1 (1), 49–59.

Retrieved from https://econpapers.repec.org/article/eeeeconom/v 3a1

3ay 3a1973 3ai 3a1 3ap 3a49-59.htm

Breiman, L. (1996). Bagging Predictors. Machine Learning , 24 (2), 123–140.

Retrieved from http://link.springer.com/10.1023/A:1018054314350 doi:

10.1023/A:1018054314350

Breiman, L., Friedman, J., Olshen, R. A., & Stone, C. J. (1984). Classification

and Regression Trees.

Buonaccorsi, J. P. (2010). Measurement error: models, methods, and applications.

CRC Press.

Burez, J., & Van den Poel, D. (2009). Handling class imbalance in cus-

tomer churn prediction. Expert Systems with Applications , 36 (3), 4626–

4636. Retrieved from https://www.sciencedirect.com/science/article/

pii/S0957417408002121 doi: 10.1016/J.ESWA.2008.05.027

87

https://econpapers.repec.org/article/eeeeconom/v_3a1_3ay_3a1973_3ai_3a1_3ap_3a49-59.htm
https://econpapers.repec.org/article/eeeeconom/v_3a1_3ay_3a1973_3ai_3a1_3ap_3a49-59.htm
http://link.springer.com/10.1023/A:1018054314350
https://www.sciencedirect.com/science/article/pii/S0957417408002121
https://www.sciencedirect.com/science/article/pii/S0957417408002121

BIBLIOGRAPHY 88

Carroll, R. J. (2005). Measurement Error in Epidemiologic Studies. In En-

cyclopedia of biostatistics. Chichester, UK: John Wiley & Sons, Ltd. Re-

trieved from http://doi.wiley.com/10.1002/0470011815.b2a03082 doi:

10.1002/0470011815.b2a03082

Carroll, R. J., Ruppert, D., Stefanski, L. A., & Crainiceanu, C. M. (2006). Mea-

surement error in nonlinear models: a modern perspective. (Vol. 105). Chap-

man and Hall/CRC. Retrieved from https://www.taylorfrancis.com/books/

9781420010138 doi: 10.1201/9781420010138

Cohen, J. (1988). Statistical power analysis for the behavioral sci-

ences (2nd ed.). Hillsdale N.J.: L. Erlbaum Associates. Retrieved

from http://www.worldcat.org/title/statistical-power-analysis-for

-the-behavioral-sciences/oclc/17877467

Dhami, M. K. (2003). Psychological models of professional decision making. Psy-

chological Science, 14 (2), 175–180. Retrieved from http://journals.sagepub

.com/doi/10.1111/1467-9280.01438 doi: 10.1111/1467-9280.01438

Fokkema, M. (2017). pre: An R Package for Fitting Prediction Rule Ensembles.

(Tech. Rep.). Retrieved from https://arxiv.org/pdf/1707.07149.pdf

Fokkema, M., & Christoffersen, B. (2018). pre: Prediction rule ensembles

[Computer software manual]. Retrieved from https://CRAN.R-project.org/

package=pre (R package version 0.6.0)

Fokkema, M., Smits, N., Kelderman, H., & Penninx, B. W. J. H.

(2015). Connecting clinical and actuarial prediction with rule-based

http://doi.wiley.com/10.1002/0470011815.b2a03082
https://www.taylorfrancis.com/books/9781420010138
https://www.taylorfrancis.com/books/9781420010138
http://www.worldcat.org/title/statistical-power-analysis-for-the-behavioral-sciences/oclc/17877467
http://www.worldcat.org/title/statistical-power-analysis-for-the-behavioral-sciences/oclc/17877467
http://journals.sagepub.com/doi/10.1111/1467-9280.01438
http://journals.sagepub.com/doi/10.1111/1467-9280.01438
https://arxiv.org/pdf/1707.07149.pdf
https://CRAN.R-project.org/package=pre
https://CRAN.R-project.org/package=pre

BIBLIOGRAPHY 89

methods. Psychological Assessment , 27 (2), 636–644. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/25642935http://doi.apa.org/

getdoi.cfm?doi=10.1037/pas0000072 doi: 10.1037/pas0000072

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for

Generalized Linear Models via Coordinate Descent. Journal of statistical

software, 33 (1), 1–22. Retrieved from http://www.ncbi.nlm.nih.gov/

pubmed/20808728http://www.pubmedcentral.nih.gov/articlerender

.fcgi?artid=PMC2929880

Friedman, J., & Popescu, B. E. (2003). Importance Sampled Learning Ensem-

bles (Tech. Rep.). Retrieved from https://pdfs.semanticscholar.org/966f/

fe536f84efd15c1379dad9adffe90b20676f.pdf

Friedman, J., & Popescu, B. E. (2008). Predictive learning via rule ensem-

bles. Annals of Applied Statistics , 2 (3), 916–954. Retrieved from http://

projecteuclid.org/euclid.aoas/1223908046 doi: 10.1214/07-AOAS148

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way:

Models of bounded rationality. Psychological Review , 103 (4), 650–669. Re-

trieved from http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.103

.4.650 doi: 10.1037/0033-295X.103.4.650

Green, L., & Mehr, D. (1997). What alters physicians’ decisions to admit to the

coronary care unit? , 45 (3), 219–226. Retrieved from http://web.missouri

.edu/~segerti/capstone/CCUdecisions.pdf

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical

learning: data mining, inference, and prediction (2nd ed.). New York: Springer.

http://www.ncbi.nlm.nih.gov/pubmed/25642935http://doi.apa.org/getdoi.cfm?doi=10.1037/pas0000072
http://www.ncbi.nlm.nih.gov/pubmed/25642935http://doi.apa.org/getdoi.cfm?doi=10.1037/pas0000072
http://www.ncbi.nlm.nih.gov/pubmed/20808728http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2929880
http://www.ncbi.nlm.nih.gov/pubmed/20808728http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2929880
http://www.ncbi.nlm.nih.gov/pubmed/20808728http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2929880
https://pdfs.semanticscholar.org/966f/fe536f84efd15c1379dad9adffe90b20676f.pdf
https://pdfs.semanticscholar.org/966f/fe536f84efd15c1379dad9adffe90b20676f.pdf
http://projecteuclid.org/euclid.aoas/1223908046
http://projecteuclid.org/euclid.aoas/1223908046
http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.103.4.650
http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.103.4.650
http://web.missouri.edu/~segerti/capstone/CCUdecisions.pdf
http://web.missouri.edu/~segerti/capstone/CCUdecisions.pdf

BIBLIOGRAPHY 90

Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partition-

ing: A conditional inference framework. Journal of Computational and Graph-

ical Statistics , 15 (3), 651–674. Retrieved from http://statmath.wu-wien.ac

.at/~zeileis/papers/Hothorn+Hornik+Zeileis-2006.pdf doi: 10.1198/

106186006X133933

Hothorn, T., & Zeileis, A. (2015). partykit: A Modular Toolkit for Recursive Par-

tytioning in R (Vol. 16; Tech. Rep.). Retrieved from http://cran.r-project

.org/package=

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., . . .

Hunt, T. (2018). Package ’caret’ Title Classification and Regression Training

Description Misc functions for training and plotting classification and regres-

sion models (Tech. Rep.). Retrieved from https://cran.r-project.org/web/

packages/caret/caret.pdf

McDonald, R. P. (1999). Test Theory : a Unified Treatment. Taylor & Fran-

cis. Retrieved from https://books.google.nl/books/about/Test Theory

.html?id=acww1KB6BdEC&redir esc=y

Meyer, D., Leisch, F., & Hornik, K. (2003). The support vector machine

under test. Neurocomputing , 55 (1-2), 169–186. Retrieved from https://

www.sciencedirect.com/science/article/pii/S0925231203004314 doi:

10.1016/S0925-2312(03)00431-4

Qin, B., Xia, Y., Prabhakar, S., & Tu, Y. (2009). A Rule-Based Classification

Algorithm for Uncertain Data. In 2009 ieee 25th international conference on

http://statmath.wu-wien.ac.at/~zeileis/papers/Hothorn+Hornik+Zeileis-2006.pdf
http://statmath.wu-wien.ac.at/~zeileis/papers/Hothorn+Hornik+Zeileis-2006.pdf
http://cran.r-project.org/package=
http://cran.r-project.org/package=
https://cran.r-project.org/web/packages/caret/caret.pdf
https://cran.r-project.org/web/packages/caret/caret.pdf
https://books.google.nl/books/about/Test_Theory.html?id=acww1KB6BdEC&redir_esc=y
https://books.google.nl/books/about/Test_Theory.html?id=acww1KB6BdEC&redir_esc=y
https://www.sciencedirect.com/science/article/pii/S0925231203004314
https://www.sciencedirect.com/science/article/pii/S0925231203004314

BIBLIOGRAPHY 91

data engineering (pp. 1633–1640). IEEE. Retrieved from http://ieeexplore

.ieee.org/document/4812586/ doi: 10.1109/ICDE.2009.164

Quinlan, J. R. (1986). Induction of decision trees. Machine learning , 1 (1), 81–106.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.

Richardson, J. T. (2011). Eta squared and partial eta squared as measures of

effect size in educational research. Educational Research Review , 6 (2), 135–

147. Retrieved from https://www.sciencedirect.com/science/article/

pii/S1747938X11000029#bib0050 doi: 10.1016/J.EDUREV.2010.12.001

Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review ,

33 (1-2), 1–39. Retrieved from http://link.springer.com/10.1007/s10462

-009-9124-7 doi: 10.1007/s10462-009-9124-7

Savoca, E. (2000). Measurement errors in binary regressors: An appli-

cation to measuring the effects of specific psychiatric diseases on earn-

ings. Health Services and Outcomes Research Methodology , 1 (2), 149–

164. Retrieved from https://www4.stat.ncsu.edu/~stefanski/MEM Reports

2011/MeasurementErrorsinBinaryRegressors Art.pdf doi: 10.1023/A:

1012541005920

Sexton, J., & Laake, P. (2007). Boosted Regression Trees with Errors in Variables.

Biometrics , 63 , 586–592. Retrieved from https://pdfs.semanticscholar

.org/317c/e4ea063eea1b4f3b39015a71c662d1d9c668.pdf doi: 10.1111/

j.1541-0420.2006.00718.x

http://ieeexplore.ieee.org/document/4812586/
http://ieeexplore.ieee.org/document/4812586/
https://www.sciencedirect.com/science/article/pii/S1747938X11000029#bib0050
https://www.sciencedirect.com/science/article/pii/S1747938X11000029#bib0050
http://link.springer.com/10.1007/s10462-009-9124-7
http://link.springer.com/10.1007/s10462-009-9124-7
https://www4.stat.ncsu.edu/~stefanski/MEM_Reports_2011/MeasurementErrorsinBinaryRegressors_Art.pdf
https://www4.stat.ncsu.edu/~stefanski/MEM_Reports_2011/MeasurementErrorsinBinaryRegressors_Art.pdf
https://pdfs.semanticscholar.org/317c/e4ea063eea1b4f3b39015a71c662d1d9c668.pdf
https://pdfs.semanticscholar.org/317c/e4ea063eea1b4f3b39015a71c662d1d9c668.pdf

BIBLIOGRAPHY 92

Shimokawa, T., Li, L., Yan, K., Kitamura, S., & Goto, M. (2014). MODIFIED

RULE ENSEMBLE METHOD FOR BINARY DATA AND ITS APPLICA-

TIONS (Vol. 41; Tech. Rep. No. 2). Retrieved from https://www.jstage.jst

.go.jp/article/bhmk/41/2/41 225/ pdf/-char/en

Signorell, A. (2019). DescTools: Tools for Descriptive Statistics (Tech. Rep.).

R package version 0.99.27. Retrieved from https://cran.r-project.org/

package=DescTools

Strobl, C. (2008). Statistical issues in machine learning: towards

reliable split selection and variable importance measures. Cuvillier.

Retrieved from https://books.google.co.uk/books/about/Statistical

Issues in Machine Learning.html?id=-ZLfY4m5IPkC&redir esc=y

Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive parti-

tioning: rationale, application, and characteristics of classification and regres-

sion trees, bagging, and random forests. Psychological methods , 14 (4), 323–

48. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19968396http://

www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2927982 doi:

10.1037/a0016973

Sullivan, G. M., & Feinn, R. (2012). Using Effect Size—or Why the P Value

Is Not Enough. Journal of Graduate Medical Education, 4 (3), 279–282.

Retrieved from http://dx.doi.org/10.4300/JGME-D-12-00156.1http://www

.jgme.org/doi/abs/10.4300/JGME-D-12-00156.1 doi: 10.4300/JGME-D-12

-00156.1

https://www.jstage.jst.go.jp/article/bhmk/41/2/41_225/_pdf/-char/en
https://www.jstage.jst.go.jp/article/bhmk/41/2/41_225/_pdf/-char/en
https://cran.r-project.org/package=DescTools
https://cran.r-project.org/package=DescTools
https://books.google.co.uk/books/about/Statistical_Issues_in_Machine_Learning.html?id=-ZLfY4m5IPkC&redir_esc=y
https://books.google.co.uk/books/about/Statistical_Issues_in_Machine_Learning.html?id=-ZLfY4m5IPkC&redir_esc=y
http://www.ncbi.nlm.nih.gov/pubmed/19968396http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2927982
http://www.ncbi.nlm.nih.gov/pubmed/19968396http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2927982
http://dx.doi.org/10.4300/JGME-D-12-00156.1http://www.jgme.org/doi/abs/10.4300/JGME-D-12-00156.1
http://dx.doi.org/10.4300/JGME-D-12-00156.1http://www.jgme.org/doi/abs/10.4300/JGME-D-12-00156.1

BIBLIOGRAPHY 93

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Jour-

nal of the Royal Statistical Society. Series B (Methodological), 58 (1), 267–

288. Retrieved from https://www.jstor.org/stable/2346178 doi: 10.2307/

2346178

Tsang, A., Tsang, S., Kao, B., Yip, K. Y., Ho, W.-S., & Dan Lee, S. (2009). Title

Decision trees for uncertain data Decision Trees for Uncertain Data. , 441–

444. Retrieved from http://hdl.handle.net/10722/136223 doi: 10.1109/

TKDE.2009.175

Zeileis, A., Hornik, K., & Wien, W. (2008). Model-based Recursive

Partitioning Torsten Hothorn. Retrieved from https://eeecon.uibk.ac

.at/~zeileis/papers/Zeileis+Hothorn+Hornik-2008.pdf doi: 10.1198/

10618600SX319331

https://www.jstor.org/stable/2346178
http://hdl.handle.net/10722/136223
https://eeecon.uibk.ac.at/~zeileis/papers/Zeileis+Hothorn+Hornik-2008.pdf
https://eeecon.uibk.ac.at/~zeileis/papers/Zeileis+Hothorn+Hornik-2008.pdf

	Introduction
	Methods
	Prediction rule ensemble algorithm
	Measurement error model for quantitative variables
	Measurement error model for binary variables
	Simulation setup
	True underlying model for data generation
	Incorporating measurement error
	Specification of models and design
	Software

	Results of simulation study
	Results concerning continuous predictors
	Results concerning binary predictors

	Discussion
	Discussion of results regarding the ”oracle”
	Discussion of results regarding measurement error
	Limitations and suggestions for future research and development
	Contribution and novelty

	Main R code
	Bibliography

