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Abstract

Online Linear Regression is a sequential variant of regression in which
the data points arrive one by one. It is normally studied in the game-
theoretic framework of Online Convex Optimization, which models the
data as being generated by an adversary. In this framework, the stan-
dard statistical procedure of Online Ridge Regression is known to be
essentially optimal.

In Statistics, there is an improvement for Ridge Regression when the
noise is not constant. This improvement is Weighted Ridge Regression,
which relies on weighting the data by their variances. In this thesis, we
will employ weighting in Online Ridge Regression to show that an im-
provement over Online Ridge Regression can be made.

We furthermore explored the situation where weighting is disadvanta-
geous, mathematically and experimentally using simulations. Finally
we applied Online Weighted Ridge Regression to different real-world
datasets and found that we also can improve Online Ridge Regression in
practical situations.
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Chapter 1

General introduction

Prediction, in the Online Convex Optimization (OCO) context, deals with the
progression of events observed in nature. The learner must predict the next
element in a potentially infinite sequence of elements, given past information.
After the learner’s prediction, the true answer (the signal) is revealed and the
learner pays the loss between the chosen answer and the signal. OCO is a
game-theoretic framework, where statistical assumptions are almost always
absent.

The OCO framework is useful in different scenarios. Two examples of sce-
narios are the situation where a dataset is too large to fit in memory and the
situation where data is constantly being generated. Illustrations that fit the
second scenario include e-mail spam filtering, credit card fraud detection and
equity market portfolio selection. In the context of e-mail spam filtering, the
system ought to classify mails as spam or valid. The system has to cope with
a constant in-flow of adversarially generated data, as the spam generator is
deliberately trying to fool the system. Adversarial and varying data requires
a dynamic system, which is a hallmark of OCO (Hazan, 2015).

In Online Linear Regression (OLR), a special case of OCO, the learner is
asked for a reaction on feature xt ⊆ Rd. The learner then predicts vector
wt, the signal yt is subsequently revealed and the learner pays (yt − x>t wt)

2:
the squared loss, (Shalev-Shwartz, 2012). Online Ridge Regression (ORR),
an algorithm for OLR, is known to be essentially optimal (Cesa-Bianchi and
Lugosi, 2006).

We change the framework from OCO to Statistics, where we define the fol-
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6 CHAPTER 1. GENERAL INTRODUCTION

lowing regression model:

yt = x>t u∗ + εt ∀t (1.1)

with error term εt and true parameters u∗ . When the variance of this error
term is not constant, we speak of heteroskedasticity. This arises, for example,
in the situation where the size of the observed units differs drastically. When
our data contains firms with one employee, as well as firms with a thousand
employees, we can expect the large firms to have higher values on the signal,
on the feature(s) and on the unobserved variables that are collected in the
error term. The variance of large firms tends to be larger than the variance
of small firms (Verbeek, 2012)

If the variance of the error term is homoskedastic (constant), the standard
method for obtaining an estimator of u∗ is, much like in OLR, Ridge Regres-
sion. When the noise is heteroskedastic, however, an improvement over Ridge
Regression can be made: Weighted Ridge Regression (Askin and Montgomery,
1980). In essence, this method comes down to weighting all the data by their
individual variances. In this thesis, we will apply weighting to ORR to take
advantage of heteroskedasticity and potentially make better predictions rela-
tive to the unweighted estimator. From the preceding paragraphs we deduce
the following central research question:

“Can we, under heteroskedasticity, improve Online Ridge Regression predic-
tions by weighting the data by their variances?”

As far as we know, heteroskedasticity in OLR has been named in the lit-
erature once (Anava and Mannor, 2016). In their research paper, the authors
introduce a framework that is a hybrid between OLR and Statistics. They as-
sume a conditional variance for yt given xt , which they subsequently want to
learn online. They claim that ”traditional modeling assumptions on the signal
generation can be substantially relaxed while still maintaining the ability to
solve the problem”. Unlike our research, Anava and Mannor (2016) do not
try to exploit heteroskedasticity for better predictions. The similarity of this
thesis to Anava and Mannor (2016) lies in the framework, which is a hybrid:
incorporating elements from OCO as well as from Statistics. Like Anava and
Mannor (2016) we assume a conditional variance of the signal given the fea-
ture(s). A part of the significance of our work is bridging the chasm between
Statistics, with restrictive assumptions on the error term, and OCO, where
the error term along with the statistical assumptions are absent.
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Outline. The remainder of this thesis is organised as follows. The intro-
duction consists of Chapter 2 and Chapter 3. Chapter 2 introduces the OCO
framework with an elaboration on OLR, as a special case of OCO. Two algo-
rithms for OLR: Online Least Squares (OnLS) and Online Ridge Regression
are introduced in this chapter. All tools needed from Statistics are then in-
troduced in Chapter 3, where we explain how weighting is used in Statistics
to deal with heteroskedasticty. We then bridge to OCO and describe how
we incorporate weights in the OnLS and ORR algorithms. In Chapter 4 we
analyze the expected loss of the Online Weighted Ridge Regression (OWRR)
and the ORR algorithms to further examine whether OWRR is always better
than ORR. We find that this is true for the one-dimensional case, but not for
higher dimensions. We then generalize this theoretical insight in simulation
studies. For different experimental set-ups, we search for situations where
OWRR is worse than ORR. In Chapter 5 we compare all four algorithms
(OnLS, OWLS, ORR, OWRR) on three real-world, heteroskedastic datasets.
The first dataset is about the number of cellphones in countries; the second
dataset involves economic output data from Belgian firms; the third dataset
is about housing prices in Boston. We show that, even when having to learn
the variance function on the fly, the weighted algorithms can outperform the
unweighted ones. The discussion and recommendations for future research are
found in Chapter 6.





Chapter 2

Online Convex Optimization

This chaper contains the first half of the introduction. In this chapter we
introduce the Online Convex Optimization (OCO) framework. We commence
broadly by introducing the general outline of OCO and its performance mea-
sure, Regret, in Section 2.1. We subsequently introduce Online Linear Re-
gression (OLR) as a special case of OCO in Section 2.2. We also introduce
Online Least Squares (OnLS) as an algorithm for OLR and we elaborate on
the Regret bound of this algorithm. In Section 2.3 we introduce Online Ridge
Regression (ORR) which has a better Regret bound than OnLS.

2.1 The OCO framework

OCO is the process of answering a sequence of questions, given knowledge of
the correct answers to previous questions and additional information if acces-
sible. The learning is not executed instantly, but takes place in consecutive
rounds t = 1, 2, ..., T . The learner predicts vector wt ⊆ Rd in round t. Con-
sequently, the environment reveals a convex loss function `t : Rd → R.The
learner then suffers `t(wt) = `(w,xt), a convex loss function (Shalev-Shwartz,
2012). A summary of the OCO framework is shown in Protocol 2.1.

By the very nature of the framework, OCO is a repeated game played by a
player versus an opponent, hereafter referred to as the environment. The be-
haviour of this environment can be deterministic (e.g. adversarial) or stochas-
tic. A direct consequence is that the learner has to prepare for a worst-case sce-
nario, namely that the environment is adversarially adaptive to the learner’s
own behaviour (Shalev-Shwartz, 2012).

9



10 CHAPTER 2. ONLINE CONVEX OPTIMIZATION

Protocol 2.1 Online Convex Optimization

1: for t = 1, 2..., T do
2: predict wt ⊆ Rd
3: receive convex loss function `t : Rd → R
4: pay loss `t(wt)
5: end for

The learner is required to compete with an hypothesis u. The learner’s per-
formance is measured in Regret, which is defined as the difference between
the cumulative loss of the learner and the cumulative loss of the optimal hy-
pothesis:

RegretT (u) =
T∑
t=1

`t(wt)−
T∑
t=1

`t(u) (2.1)

which is most commonly evaluated with respect to u = u∗, where comparator
u∗ is the minimizer of cumulative loss: u∗ = argminw

∑T
t=1 `t(wt).

The objective of the learner is to have Regret that grows at most sublinearly
with T for any u and in particular for u∗, without making any statistical as-
sumption on the losses. Intuitively, Regret measures how sorry the learner is
for not having used the optimal hypothesis u∗ in retrospect (Salev-Shwartz,
2007).

An example of an algorithm that is capable of achieving Regret that grows
sublinear with T is Online Gradient Descent. With initialization of w1 = ~0
we update wt+1 = wt − η∇`t(wt) with step size η and ∇`t(wt) the gradient
of `t specifically at wt. The Regret is shown to be bounded by BL

√
2T when

||u∗||2 ≤ B, ||∇`t(wt)||2 ≤ L and η = B
L
√
2T

with ‖·‖2 being the Euclidean-

norm (Shalev-Shwartz, 2012).

2.2 Online Linear Regression and Online Least
Squares

Online Linear Regression (OLR) is a special case of OCO. In each round, the
learner is asked for a reaction on xt ⊆ Rd, where d is the number of features.
The learner then predicts vector wt which should be competitive with refer-
ence vector u∗. The loss function in the OLR framework is the squared loss
`t(wt) = (x>t w− yt)2, which is convex.
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A basic algorithm for OLR is Online Least Squares (OnLS). By minimizing
the sum of the loss functions, we can find an expression for wt that mirrors
the Maximum Likelihood Estimator derived in Statistics:

wL
t = argmin

w

t−1∑
s=1

`t(wt)

= (At)
−1bt

(2.2)

where At =
∑t−1

s=1 xsx
>
s and bt =

∑t−1
s=1 xsys. Note that we take the outer

product in the definition of At. This way, At−1 (as well as vector bt) can be
updated incrementally with the information of round t.

No satisfying Regret bound for the algorithm is achieved. Firstly, as At is not
invertible for the first t < d rounds, the Regret would not even be defined for
these rounds. Secondly, an adversary could just wait until the learner predicts
wt and could then choose an yt that would maximize `t(wt). The predicted
vector wt is not stable and would change a lot from round to round. A better
Regret bound is derived for Online Ridge Regression, with a regularization
term to stablize the predictions.

2.3 Online Ridge Regression

The preceding algorithm is easily altered to give rise to an algorithm that does
have a Regret bound that grows sublinear with T : Online Ridge Regression
(ORR). We now want to minimize the ridge loss function, which is the squared
loss with an additional penalty term: λ‖w‖22 with penalty parameter λ > 0.
We find an expression for wR

t in a similar way as for OnLS:

wR
t = argmin

w

t−1∑
s=1

`t(wt) + λ‖w‖22

= (AR
t )−1bt

(2.3)

where AR
t = λI +

∑t−1
s=1 xsx

>
s and bt =

∑t−1
s=1 xsys (Cesa-Bianchi and Lugosi,

2006).

With application of the penalty term (regularization) on the weights w, we
can do better than the OLR algorithm described in Section 2.2 (Cesa-Bianchi
and Lugosi, 2006). The reason is that regularization stabilizes wR

t from round
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t− 1 to t (Shalev-Shwartz, 2012). Consequently it is shown that for λ = 1 the
Regret is bounded:

RegretT (u) ≤ ||u||22 +

( d∑
i=1

ln(1 + ρi)

)
max

t=1,...,T
`t(wt) (2.4)

where ρ1, ..., ρd are the eigenvalues of matrix
∑T

t=1 xtx
>
t . With ‖u‖, ‖xt‖ and

|yt| bounded by constants the Regret bound is O(lnT ). The Regret grows at
most logarithmic with T . No such bound is available for OnLS (Cesa-Bianchi
and Lugosi, 2006).



Chapter 3

Heteroskedasticity and
Weighted Regression

This chapter contains the second half of our introduction. In this chapter
we build a bridge to Statistics and elaborate on the Statistical concepts that
we need in order to apply weighting in OLR. In Section 3.1 we introduce
the homoskedastic model. We explain how heteroskedasticity impairs the
efficiency of the Least Squares estimator. In Section 3.2 we proceed with
the heteroskedastic model and a way to solve heteroskedasticity: Weighted
Least Squares. In Section 3.3 we introduce Weighted Ridge Regression; a
combination of weighting and penalization. Finally, in Section 3.4 we move
to a more practical perspective and we introduce Iterative Reweighted Ridge
Regression (IRRR), used to find weights for Online Weighted Least Squares
(OWLS) and Online Weighted Ridge Regression (OWRR).

3.1 The homoskedastic model and
heteroskedasticity

For each round t the model is yt = x>t u∗ + εt with indepdent εt, E [εt] = 0
and conditional variance Var [yt|xt] = σ2t . When the expression σ2t = σ2 is
true, we speak of homoskedasticity. To find wL, the Least Squares estimator,
we want to minimize the squared loss; this minimization problem is found in
Equation 2.2.

The Gauss-Markov theorem states that wL is the Best Linear Unbiased Esti-
mator (BLUE) under homoskedasticity (Clapham and Nicholson, 2009). The
theorem states that, out of all unbiased, linear estimators, the Least Squares
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estimator has the lowest variance.

Under heteroskedasticity, the conditional variance becomes: Var [yt|xt] = σ2t =
σ2(xt) with variance function σ2(x). For now we assume that σ2(xt) is known;
later on we will estimate it from the data. The residuals are still assumed to
be independent of each other, but they are no longer identically distributed.
The Least Squares estimator remains unbiased, but its efficiency is impaired
and the usual formulae for standard errors are inaccurate. The severity of
this problem depends on the degree to which the conditional variances differ
and the sample size of the data. Under heteroskedasticity, the Least Squares
estimator is no longer BLUE; there exists an unbiased linear estimator with
lower variance (Fox, 2008).

3.2 Weighted Linear Regression

Weighted Linear Regression solves the problem of heteroskedasticity. As was
described towards the end of Section 3.1 we model yt = x>t u∗ + εt with
Var [yt|xt] = σ2t = σ2(xt) where σ2(xt) is a known variance function, yielding
the variance for round t.

We can transform our model back to a homoskedastic model by weighting
the model by the square root of the variance function. We define the weight
for round t as the inverse of the variance function: ωt = σ2(xt)

−1. We now
weight the heteroskedastic model and we obtain:

yt
√
ωt = x>t

√
ωtu

∗ + εt
√
ωt

y?t = (x?t )
>u∗ + ε?t

(3.1)

where y?t = yt
√
ωt, x?t = xt

√
ωt and ε?t = εt

√
ωt. If y?t is regressed on x?t using

Least Squares, we speak of Weighted Least Squares.

The conditional variance in round t Var [yt|xt] = σ2t = σ2(xt) is made con-
stant by weighting the conditional variance by the square root of the variance
function:

Var

[
yt

σ(xt)

∣∣∣∣xt] =
1

σ2(xt)
Var [yt|xt]

=
1

σ2(xt)
σ2(xt).

= 1

(3.2)
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The conditional variance in round t no longer depends on σ2(xt). We define
the corresponding minimization problem:

wWL
t = argmin

w

t−1∑
s=1

ωt`t(wt).

= (AWL
t )−1bWt

(3.3)

where AWL
t =

∑t−1
s=1 ωsxsx

T
s and bWt =

∑t−1
s=1 ωsxsys.

The OWLS algorithm is found in Algorithm 3.1.

Algorithm 3.1 Online Weighted Least Squares (OWLS)

1: for t = 1, 2, ..., T do

2: AWL
t =

∑t−1
s=1 ωsxsx

T
s

3: bWt =
∑t−1

s=1 ωsxsys

4: wWL
t = (AWL

t )−1bWt

5: `t(wt) = (yt − x>t wWL
t )2

6: end for

3.3 Weighted Ridge Regression

In Section 2.3, we introduced ORR as an algorithm that has a better Regret
bound than the OnLS algorithm. In Statistics, the use of Ridge Regression
is often motivated in terms of its Mean Squared Error (MSE). For MSE
improvement, bias is introduced in the model in exchange for variance; the
quality of an estimator is determined by its bias and its variance. It is shown
there exists a λ for which the Ridge estimator has a lower MSE than the
Least Squares estimator (van Wieringen, 2015). The minimization problem
for Ridge regression is found in Equation 2.3.

Weighting and regularization are combined in Weighted Ridge Regression.
Just as there is a λ for which the Ridge estimator has a lower MSE than
the Least Squares estimator, there is also a λ for which the Weighted Ridge
estimator has lower MSE than the Weighted Least Squares estimator (Askin
and Montgomery, 1980). We can find an expression for the Weighted Ridge
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estimator as follows:

wWR
t = argmin

w

t−1∑
s=1

ωt`t(wt) + λ‖w‖22

= (AWR
t )−1bWt

(3.4)

where AWR
t = λI +

∑t−1
s=1 ωsxsx

T
s and bWt =

∑t−1
s=1 ωsxsys.

The OWRR algorithm is found in Algorithm 3.2.

Algorithm 3.2 Online Weighted Ridge Regression (OWRR)

1: for t = 1, 2, ..., T do

2: AWR
t = λI +

∑t−1
s=1 ωsxsx

T
s

3: bWt =
∑t−1

s=1 ωsxsys

4: wWR
t = (AWR

t )−1bWt

5: `t(wt) = (yt − x>t wWR
t )2

6: end for

3.4 Iterative Reweighted Ridge Regression

In Section 3.2 we assumed that variance function σ2(x) was known. As this
variance function is often not known a priori, we would have to approximate
it from the data. A way to do so is by application of Iterative Reweighted
Ridge Regression (IRRR), which is Iterative Reweighted Least Squares (Car-
roll and Ruppert, 1988) with the Ridge loss function instead of the squared
loss. This will further be explained in the next paragraph. As implied by the
name, this algorithm is iterative with the iteration denoted by j. We define
the estimator of the variance function σ̂2(x) and we define ω̂t = σ̂2(xt)

−1. We
assume a linear variance function so that σ̂2(xt) = |x>t ν̂| where σ̂2 : x → R
and where the absolute value is taken to ensure that the variance is positive.

IRRR proceeds as follows. All weights are initialized to one. The Weighted
Ridge estimator is used to estimate ε̂t = (yt−x>t wWR). We find ν̂ by applica-
tion of Ridge Regression of f(ε̂t) on xt. We then use σ̂2(xt) = |x>t ν̂| to update
the weights and the process is repeated until the algorithm converges, meaning
that the difference between the sum of the weights of iteration j + 1 and that
of iteration j changes with δ or less. A common option for f is f(ε̂t) = ε̂2t ,
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as the expectation of the squared residuals approximately corresponds to the
variance. If regressing the squared residuals on xt does not seem to reduce
the heteroskedasticity, we find an alternative in f(ε̂t) =

√
|ε̂t|. Although the

square root of the absolute values of the residuals does not model the variance
directly, it models something that correlates with the variance. The square
root of the absolute values of the residuals is less susceptible to outliers, as
are the squared residuals (Carroll and Ruppert, 1988).

There are two reasons for using IRRR instead of Iterative Reweighted Least
Squares. The first reason is that, in contrast with wWL, wWR is always de-
fined; even when t < d. We can thus learn the variance function from the first
round onward. Secondly, there is a λ for which the MSE of estimator wWR

is lower than the MSE of wWL (Askin and Montgomery, 1980). Exchanging
variance for bias might work especially well for low t, as the variance of the
estimator tends to be large when little data are available.





Chapter 4

Is weighting always better?

Until now we have laid out the framework for weighting in the OCO con-
text. We hypothesize that we can improve the predictions of Online Least
Squares (OnLS) and Online Ridge Regression (ORR) by weighting, if het-
eroskedasticity is present. This chapter is only dedicated to the comparison
of ORR and OWRR. We already know that wWL is BLUE in the presence
of heteroskedasticity (Clapham and Nicholson, 2009). In this chapter we are
making statistical assumptions that are unusual in OLR, as OLR is usually
desired to be as free from assumptions as possible. The first assumption is that
we model yt = x>t u∗+εt. The second assumption is Var [yt|xt] = σ2t = σ2(xt).
All expectations in this chapter are taken over yt. It is important to note that
the derivations in this chapter hold for vector u∗ and not for any u ⊆ Rd.

We do not know how to optimally determine the value of penalization fac-
tor λ. A simple solution would be setting λ = 1, which gives the Regret
bound found in Equation 2.4 (Cesa-Bianchi and Lugosi, 2006). In Ridge Re-
gression, we put a constraint on the squared Euclidean norm of w. In Ridge
Regression, penalization is not applied equally over the elements of w; larger
regression coefficients are penalized more than smaller ones. This implies that,
unlike the Least Squares estimator, the Ridge estimator is not invariant to the
scaling of xt. The choice for λ thus depends on the scaling of xt. In Statistics,
we normally solve this issue by scaling the predictors to have a mean of 0 and
unit variance. In ORR and OWRR we instead scale λ with optimal parame-
ters u∗. We hereto define λ = 1/‖u∗‖22.

The first element we need is the expected Regret for OWRR and ORR, which
are derived in Section 4.1. In Section 4.2 we then show that, when employing

19
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a single feature, OWRR is always at least as good as ORR. Then, in Section
4.3 we show that this is no longer true when two features are employed. In
the two-feature setting, situations exist where ORR is better than OWRR. In
Section 4.4 we back the theoretical finding of Section 4.3 up with data simula-
tions. We will demonstrate that there are many situations where ORR results
in lower expected Regret than OWRR with two features.

4.1 The expectation of the Regret

In this section we derive the expectations for OWRR and ORR. It is not com-
mon to calculate the expectation of the Regret in OLR. We can only do so by
putting assumptions on the generation of yt (see introduction of this chapter),
that are not common in OCO.

We define x = (x1,x2, ...,xt−1)
>, Ω = diag(ω1, ..., ωt−1) and y = (y1,y2, ...,yt−1)

>.

We remind the reader that RegretT (u∗) =
∑T

t=1 `t(wt) −
∑T

t=1 `t(u
∗), that

`t(wt) = (x>t wt − yt)2 and λ = 1/‖u∗‖22. We calculate the expected Regret,
which is formulated as E [RegretT (u∗)] = E [

∑T
t=1 `t(wt)−

∑T
t=1 `t(u

∗)]. We
drop the summation in the definition of E [RegretT (u∗)] and we continue:

E [`t(w
WR
t )− `t(u∗)] = E [(x>t wWR

t − yt)2 − (x>t u∗ − yt)2]
= E [(x>t wWR

t )2 − 2x>t wWR
t yt + y2t ]

− E [(x>t u∗)2 − 2x>t u∗yt + y2t ]

= x>t E [wWR
t (wWR

t )>]xt − 2x>t E [ytw
WR
t ] + E [y2t ]

− x>t u∗(u∗)>xt − 2E [yt]x
>
t u∗ − E [y2t ]

= x>t (Var [wWR
t ] + E [wWR

t ]E [wWR
t ]

>
)xt − 2x>t u∗ E [wWR

t ]
>

xt

− (x>t u∗(u∗)>xt − 2x>t u∗(u∗)>xt)

= x>t (Var [wWR
t ] + E [wWR

t ]E [wWR
t ]

>

− 2u∗ E [wWR
t ]

>
+ u∗(u∗)>)xt.

(4.1)

We furthermore know that Var [wWR
t ] = (AWR

t )−1x>Ω Var [y]Ωx(AWR
t )−1

and E [(wWR
t )] = (AWR

t )−1(x>Ω x u∗) with AWR = x>Ω x +λI (van Wierin-
gen, 2015). Filling in the mean and the variance of wWR

t and using that
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Var [y] = Ω−1 we obtain:

E [`t(w
WR
t )− `t(u∗)] = x>t

(
Var [wWR

t ] + E [wWR
t ]E [wWR

t ]
>

− 2u∗ E [wWR
t ]

>
+ u∗(u∗)>

)
xt

= x>t

(
(AWR

t )−1x>Ω Var [y]Ωx(AWR
t )−1)

+
(
(AWR

t )−1(x>Ω x u∗)
)(

(AWR
t )−1(x>Ω x u∗)

)>
− 2u∗

(
(AWR

t )−1(x>Ω x u∗)
)>

+ u∗(u∗)>
)
xt

= x>t

(
(AWR

t )−1x>Ωx(AWR
t )−1

+
(
(AWR

t )−1(x>Ω x u∗)
)(

(AWR
t )−1(x>Ω x u∗)

)>
− 2u∗

(
(AWR

t )−1(x>Ω x u∗)
)>

+ u∗(u∗)>
)
xt

(4.2)

We now introduce the Woodbury Matrix Identity (Golub and Van Loan, 1996)
of (AWR)−1, given as (AWR)−1 = 1

λI −
1
λI x (Ω−1 + 1

λ x x>) x 1
λI . We can

now write the expectation as:

E [`t(w
WR
t )− `t(u∗)] = x>t (AWR

t )−1(x>Ω x + λ2u∗(u∗)>)(AWR
t )−1xt

(4.3)

The expected Regret for ORR is derived in a similar way. The difference
is that E [wR

t ] does not include Ω, so that Var [y] does not cancel as happens
in Equation 4.2. We write the expectation for ORR as :

E [`t(w
R
t )− `t(u∗)] = x>t (AR

t )−1(x>Var [y] x + λ2u∗(u∗)>)(AR
t )−1xt

= x>t (AR
t )−1(x>Ω−1 x + λ2(u∗)>u∗)(AR

t )−1xt
(4.4)

4.2 One feature

We show that OWRR has a lower expected loss than ORR when employing
one feature. In order to do so, we need to show that this is true for all
x1, x2, ..., xt.

Theorem 1. Suppose Var [yt|xt] = σ2(xt), then for λ = u−2 and d = 1 we
have E [`t(w

WR
t ] ≤ E [`t(w

R
t )] ∀t .
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Proof. We start with simplification of E [`t(w
WR
t )]:

E [`t(w
WR
t )] = xt

(
(AWR

t )−1(x>Ω x + λ2u2)(AWR
t )−1

)
xt + E [y2t ]

= x2t (A
WR
t )−2(x>Ω x + λ2u2) + E [y2t ]

= (AWR
t )−1x2t + E [y2t ].

(4.5)

Then we simplify E [`t(w
R)]:

E [`t(w
R
t )] = xt

(
(ARt )−1(x>Ω−1x + λ2u2)(ARt )−1

)
xt + E [y2t ]

= x2t (A
R
t )−2(x>Ω−1x + λ) + E [y2t ]

(4.6)

We compare both expectations and we obtain:

E [`t(w
WR
t )]− E [`t(w

R
t )] = x2t (A

WR
t )−1 + E [y2t ]

−
(
x2t (A

R
t )−2(x>Ω−1x + λ) + E [y2t ]

)
= x2t (A

WR
t )−1 − x2t (ARt )−2(x>Ω−1x + λ)

(4.7)

For completion we have to verify if the expression in Equation 4.7 is always
negative:

x2t (A
WR
t )−1 − x2t (ARt )−2(xΩ−1x> + λ) ≤ 0

(AWR
t )−1 ≤ (ARt )−2(xΩ−1x> + λ)

(ARt )2 ≤ AWR
t (x>Ω−1x + λ)

(x>x)2 + 2λx>x + λ2 ≤ x>Ωxx>Ω−1x + λx>Ωx + λx>Ω−1x + λ2

(x>x)2 + 2λx>x ≤ x>Ωxx>Ω−1x + λx>Ωx + λx>Ω−1x
(4.8)

We split the last inequality in Equation 4.8 in two parts. First:

(x>x)2 ≤ x>Ωxx>Ω−1x. (4.9)

We define the norm ‖x ‖ =
√

x>Ωx, its dual norm is ‖x ‖∗ =
√

x>Ω−1x



4.3. TWO FEATURES 23

and it then follows from Hölder’s inequality (Kuptsov, 2001) that |x> x | ≤
‖x ‖‖x ‖∗, which implies Inequality 4.9.

We write the second part of the last inequality of Equation 4.8:

2λx>x ≤ λx>Ωx + λx>Ω−1x

⇐⇒ 2x>x ≤ x>Ωx + x>Ω−1x

⇐⇒ x>Qx ≤ 0

(4.10)

with Q = (2I −Ω−Ω−1).

In order for the inequality in Equation 4.10 to hold, matrix Q needs to be
negative semi-definitive. As Q is a diagonal matrix, it suffices to show that
all elements Qi,i ≤ 0. Reformulate this inequality as 2− ωi − 1

ωi
≤ 0. This is

a concave function with maximum of 0 attained at 1. It is thus shown that
the last inequality in Equation 4.8 holds and this concludes the proof.

4.3 Two features

In this section we will search for a simple situation where OWRR has a higher
expected Regret than ORR. We will refer to this situation as a counter-
example. We will calculate the losses for two rounds and we assume that
x1 = x2 = x are the same. As we calculate the losses for two rounds, the
only weight we have to incorporate is the weight of the first round, which
is defined as ω1 = 1

σ2
1
. Using identical x1 and x2 makes the setting in fact

homoskedastic. We will generalize the counter-example to heteroskedasticity
in Section 4.4 using data simulations.

Theorem 2. Let E [`2(w
WR)] and E [`2(w

R)] be the expectations of the loss in
the second round of the loss for the Online Weighted Ridge and Online Ridge
algorithms respectively. Then for λ = 1/‖u∗‖22, x>u∗ = 0 and d = 2 we have
E [`2(w

WR] ≤ E [`2(w
R)] if and only if:(

1

σ21
− σ21

)
1

λ2
+ 2

(
γRσ21 −

γWR

σ21

)
1

λ
(x>x) +

(
1

σ21
γ2,WR − σ21γ2R

)
(x>x)2 ≤ 0

(4.11)

with γWR = 1
σ2
1λ

2(1+ 1

σ21λ
x>x)

and γR = 1
λ2(1+ 1

λ
x>x)

.

We fill in x = (1, 2)>,u∗ = (1,−1/2)> and σ21 = 0.5. We obtain a positive
outcome of 0.006.
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Proof. We again start by deriving E [`2(w
WR
t )]:

E [`2(w
WR
t )] = E [(x>wWR

2 − y2)2]
= E [(x>wWR

2 )2 − 2y2x
>wWR

2 + y22)]

= x> E [wWR
2 w>2 ]x− 2y2x

> E [wWR
2 ] + E [y2]

= x>(Var [wWR
2 ] + E [wWR

2 ]E [wWR
2 ]

>
)x− 2y2x

> E [wWR
2 ]

= x>(
1

σ21
xx> + λI )−1(

1

σ21
xx> + λ2u∗(u∗)>)(

1

σ21
xx> + λI )−1x.

(4.12)

The above definition includes two identical matrix inverses. As both matrices
are two-dimensional (square), we can calculate their inverses efficiently. We
do so by application of the Woodbury Matrix Identity (Golub and Van Loan,
1996):

(
1

σ21
xx> + λI )−1 =

1

λ
I − xx>

σ21λ
2(1 + 1

σ2
1λ

xx>)

=
1

λ
I − γWRxx>.

(4.13)

We reformulate the expression for E [`2(w
WR
t ]:

E [`2(w
WR
t ] =x>

((
1

λ
I − γWRxx>

)(
1

σ21
xx> + λ2u∗(u∗)>

)
(

1

λ
I − γWRxx>

))
x.

(4.14)

We expand the expression within the inner brackets. Hereto we define the
following variables:

A =
1

λ

B =
xx>

σ21λ
2(1 + 1

σ2
1λ

x>x)

= γWRxx>

C = (
1

σ21
xx> + λ2u∗(u∗)>).

(4.15)
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Replacing the different parts in Equation 4.14, we obtain the following:

E [`2(w
WR
t )] = x>(A−B)C(A−B)x

= x>(ACA−ACB −BCA+BCB)x

= x>(ACA− 2ACB +BCB)x.

(4.16)

We derive ACA, ACB and BCB seperately.

x>ACAx = x>2

(
1

λ

(
1

σ21
xx>2 + λ2u∗(u∗)>

)
1

λ

)
x

=
1

λ2
x>
(

1

σ21
xx> + λ2u∗(u∗)>

)
x

=
1

λ2σ21
(x>x)2 + (x>u∗)2

(4.17)

x>2 ACBx = x>
(

1

λ
γWRxx>(

1

σ21
xx> + λ2u∗(u∗)>)

)
x

= x>
(

1

λσ21
γWR(xx>xx>) +

1

λ
γWRλ

2xx>u∗(u∗)>
)

x

=
1

λσ21
γWR(x>x)3 +

1

λ
γWRλ

2(x>u∗)2x>x

(4.18)

x>BCBx = x>
(
γWRxx>(

1

σ21
xx> + λ2u∗(u∗)>)γWRxx>

)
x

= x>
(

1

σ21
γ2,WR(xx>)3 + γ2,WRλ2(xx>)2u∗(u∗)>

)
x

=
1

σ21
γ2,WR(x>x2)

4 + γ2,WRλ2(x>u∗)2(x>x)2

(4.19)
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We substitute the derivations for ACA, ACB and BCB in Equation 4.16:

E [`2(w
WR
t )] =

1

λ2σ21
(x>x)2 + (x>u∗)2

− 2

(
1

λσ21
γWR(x>x)3 +

1

λ
γWRλ2(x>u∗)2x>x

)
+

1

σ21
γ2,WR(x>x)4 + γ2,WRλ2(x>u∗)2(x>x)2.

(4.20)

Next, we compare the expectation above to the expectation of the loss of
unweighted Online Ridge Regression: E [`2(w

R
t )]. This expectation is found

by replacing 1/σ2 by σ2. In addition, we replace γWR by γR (see Theorem 2).
We now formulate the expectation of the loss for ORR:

E [`2(w
R
t )] =

σ21
λ2

(x>x)2 − 2

(
σ21
λ
γR(x>x2)

3 +
1

λ
γRλ2(x>u∗)2x>x

)
+ σ21γ

2,R(x>x)4 + γ2,Rλ2(x>u∗)2(x>x)2.

(4.21)

Like with a single feature, we can compare both expectations:

E [`2(w
WR
t )]− E [`2(w

R
t )] =

1

λ2σ21
(x>x)2

− 2

(
1

λσ21
γWR(x>x)3 +

1

λ
γWRλ2(x>u∗)2x>x

)
+

1

σ21
γ2,WR(x>x)4 + γ2,WRλ2(x>u∗)2(x>x)2

−
(
σ21
λ2

(x>x)2 − 2

(
σ21
λ
γR(x>x)3 +

1

λ
γRλ2(x>u∗)2x>x

)
+ σ21γ

2,R(x>x)4 + γ2,Rλ2(x>u∗)2(x>2 x)2
)

=

(
1

σ21
− σ21

)
1

λ2
(x>x)2

+ 2

((
γRσ

2
1 −

γWR

σ21

)
1

λ
(x>x)3 + (γR − γWR)λ(x>u∗)2(x>x)

)
+

(
1

σ21
γ2,WR − σ21γ2,R

)
(x>x)4 + (γ2,WR − γ2,R)λ2(x>u∗)2(x>x)2.

(4.22)
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Assuming orthogonality between x and u∗ we can reduce Equation 4.22 to:

E [`2(w
WR)]− E [`2(w

R
t )] =

(
1

σ21
− σ21

)
1

λ2
(x>x)2

+ 2

(
γRσ

2
1 −

γWR

σ21

)
1

λ
(x>x)3

+

(
1

σ21
γ2,WR − σ21γ2R

)
(x>x)4

(4.23)

from which the result follows.

4.4 Data simulations

With one counter-example known, as was shown in Section 4.3, we enhanced
our conceptual knowledge of counter-examples by performing data simula-
tions. We simulated data for varying σ2, u∗ and xt, we executed ORR and
OWRR and we searched for commonalities in the areas where OWRR per-
formed worse than ORR.

For all experiments we sampled three xt,2 ∼ N (x̃, s), where N is a Gaus-
sian distribution with mean x̃ and variance s = 1 or s = 0.01, so that
xt = (xt,1, xt,2)

> where xt,1 = 1. Furthermore we defined σ2(xt) = xct,2,
where c is the exponent of the variance function. An identical grid, with x̃ on
the x-axis and c on the y-axis was used for all simulations. Values for c are
in [−1.5, 1.5] and for x̃ in [−20, 20], with equal distances between the points.
In total, all grids contained 2080 points. For every grid, a different vector u∗

was chosen.

We started with u∗ = (1,−1
2)> to confirm whether the counter-example found

in Section 4.3 also holds for x1 6= x2 6= x3. We then increased ‖u∗‖22 by
multiplying the elements of u∗ by 100, forming u∗ = (100,−50)>, to verify
whether the length of u∗ made a difference on the location of the counter-
examples. For examination of the effect of the direction of u∗, we rotated
vector u∗ = (1,−1

2)> to the y-axis without changing its length, forming

u∗ = (0,
√

5
4)>. We also rotated vector u∗ = (100,−50)>, in the same di-

rection as before, forming u∗ = (0,
√

12500)>.

All results are shown in heatmaps (Figure 4.1 - Figure 4.4). Losses for OWRR
relative to ORR are found in the red areas. This relativity means that there
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is an upper boundary of 100, as OWRR can only peform 100% better than
ORR before obtaining a Regret of 0. On the other hand, OWRR could per-
form infinitely worse than ORR; there’s no lower boundary on the perfor-
mance of OWRR relative to ORR. All heatmaps have their specific continuous
scale which means that the scales are not comparable between the heatmaps.
We can however, compare the locations of the counter-examples between the
heatmaps.

Conform with our findings at the end of section 4.3, we found that ORR
performs better than OWRR at x = (1, 2)> and c = −1 (thus σ2 = 1

2), which
is read from Figure 4.1. The black cross in Figure 4.1 indicates the location
of the theoretical counter-example. We confirm that the counter-example was
also found for s 6= 0, i.e. when all xt are not identical.

The area where c > 0 is mostly the area where σ2 > 1 and where few counter-
examples are found. The exception in the area c > 0 is where |x̃| < 0 and
thus σ2 < 1. The relative gain for OWRR grows with larger values for σ2 and
thus an increase in heteroskedasticity.

When the variance is close to being constant, around c = 0, the difference
between OWRR and ORR was found to be small. The variance does either
not or slightly depend on xt in this area, which could indicate that one should
be careful with application of OWRR when the variance is approximately ho-
moskedastic. The reason is that both the counter-example of Section 4.3 and
the heatmaps provide no evidence for OWRR doing well in the homoskedastic
setting.

All counter-examples on every heatmap are found in the region where σ2 < 1.
Furthermore the location of the counter-examples depends on s = Var [xt,2],
‖u∗‖22 and the direction of u∗. We will discuss them individually.

1. s. Heteroskedasticity increases with larger s, thus fewer counter-examples
should be found for s = 1 than for s = 0.01. This is supported by almost
all heatmaps, but is a bit ambiguous for the heatmaps in Figure 4.1.

2. ‖u∗‖22. The norm of u∗ affects the performance of OWRR through λ =
1/‖u∗‖22 and through yt. Larger ‖u∗‖22 seems to increase the areas where
counter-examples are found. With the current experimental set-up, it is
not possible to clarify whether this effect arises through λ or through yt.
If the performance of OWRR is affected through λ then it is potentially
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beneficial to define λWR = σ2/‖u∗‖22 for weaker penalization where σ2 is
small. No problem arises from defining such a specific λ for OWRR, as
σ2 is already defined for this algorithm. It is a different story for ORR,
where σ2 remains defined.

3. The direction of u∗. The direction of vector u∗ affects the performance of
OWRR through yt. In our experimental set-up, more counter-examples
are found when u∗ moves vertical. This is specifically illustrated by
Figure 4.4, where vector u∗ has an x-coordinate of 0, lying on the y-
axis. Even though the surface of found counter-examples is large, they
are still only found in the area where σ2 < 1.
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Figure 4.1: Heatmaps for random search experiments for varying c and x̃.
Vector u∗ = (1,−1

2)> and ‖u∗‖22 = 5
4 . From top to bottom: s = 1, = 0.01.

The black cross shows the location of the example found in Section 4.3.
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Figure 4.2: Heatmaps for random search experiments for varying c and x̃.
Vector u∗ = (100,−50)> and ‖u∗‖22 = 12500. From top to bottom: s = 1,
s = 0.01.
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Figure 4.3: Heatmaps for random search experiments for varying c and x̃.

Vector u∗ = (0,
√

5
4)> and ‖u∗‖22 = 5

4 . From top to bottom: s = 1, s = 0.01.
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Figure 4.4: Heatmaps for random search experiments for varying c and x̃.
Vector u∗ = (0,

√
12500)> and ‖u∗‖22 = 12500. From top to bottom: s = 1,

s = 0.01.
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4.5 Summary and conclusion

By Gaus-Markov theorem (Clapham and Nicholson, 2009), OWLR is always
better than OLR. For the penalized versions of the algorithm, it was shown in
Section 4.2 that OWRR is always better than ORR when employing a single
feature. When employing two features, OWRR was not always better than
ORR. A theoretical counter-example was derived in Section 4.3, and more
counter-examples were found in Section 4.4 using data simulations.

With two features, OWRR was not always better than ORR as a consequence
of σ2, s and u∗, with u∗ affecting the performance of OWRR/ORR through
λ and through yt. To deal with counter-examples that arise from the ef-
fect of u∗ on λ, a specific lambda for OWRR could prove to be beneficial:
λWR = σ2/‖u∗‖22.



Chapter 5

Application on real-world
data

Even though many counter examples of weighting in OLR were shown in Sec-
tion 4.3 and Section 4.4, OWLS and OWRR do work in many situations. We
can indeed exploit heteroskedastic noise and improve OnLS and ORR by in-
cluding weights. In this chapter we will demonstrate these improvements on
three different real-world datasets. We hereby use Iterative Reweighted Ridge
Regression (IRRR) to estimate the variance function.

Before we introduce the datasets, we first discuss detection of heteroskedas-
ticity in Section 5.1. Subsequently, in Section 5.2 we apply the weighted algo-
rithms to real world datasets. For the first experiment,we model the number of
cellphones within countries as a function of GDP. For the second experiment,
we model the economic output of Belgian firms. In the third experiment,
we model the housing prices in Boston . If we, for a specific dataset, make
adjustments to the IRRR algorithm explained in Section 3.4, we elaborate
on these adjustments in the specific section of that dataset. All findings are
summarized and interpreted in Section 5.3.

5.1 Detecting heteroskedasticity

We detected heteroskedasticity with two tools: a residual plot and a hypoth-
esis test. We found the residuals by running offline linear regression over all
the data. We did not plot the residuals against any feature directly, as we
were likely investigating more than one feature at a time. We also did not
plot the residuals against the response, as yt = x>t u∗+εt and εt are correlated.

35
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Instead, we plotted ε̂t against the prediction of yt: x>t u∗. To correct for lever-
age all residuals were studentized (Fox, 2008) and squared for a better visual
interpretation. These Squared Studentized Residuals (SSR) were be plotted
against the predicted values for two different scales in ε̂t and x>t u∗.

A hypothesis test for heteroskedasticity detection is formulated by Breusch
and Pagan. The Breusch-Pagan test was executed by running linear regres-
sion on all the data and subsequently obtaining the studentized residuals. The
studentized residuals were then regressed on the features, after which we ob-
tained the sum of squares that is explained by the model: the (ESS) (Verbeek,
2012). The test statistic was then defined as 1

2 ESS, which is chi-square dis-
tributed with d degrees of freedom (Fox, 2008). We applied this test to all
three datasets.

5.2 Experiments

All four algorithms (i.e. OnLS, ORR, OWLS, OWRR) were run on three
datasets. For each dataset, three different experiments were conducted. In
the first experiment, all algorithms were run with a variance function learned
offline. In the second experiment, the variance function was learned online
and weighting was applied from t = 1 onward. In the third experiment the
variance function was also learned from t = 1 onward, but weighting was
only applied from t = 16, giving the algorithms time to learn the variance
function before using it. The results were averaged over 1200 repetitions. The
threshold for convergence (Section 3.4) δ = 0.01.

Countries

The data were collected from the US government (CIA). The data comprises
226 observations of 2 variables. The response variable is the total number of
cellphones in a given country, with the feature being GDP (total, in USD). An
intercept is added as well. The residual plots are shown in Figure 5.1, before
and after weighting with the variance function learned offline. From this figure
we read that the heteroskedasticity is caused by some outliers (observations
with large SSR). Visually, the heteroskedasticity does not seem to persist after
zooming in, as is seen in Figure 5.1. The Breusch-Pagan test was significant
with p-value < 2.42e-16. After learning the variance function and weighing
the observations we obtained p = 1e-11. The IRRR algorithm was not able
to capture the heteroskedasticity completely, but it still gave us an advantage
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Figure 5.1: Countries. Squared Studentized Residuals against predicted values
(Least Squares) for two different scales (left and right). Top: before weigthing.
Bottom: after weighting.

over unweighted OLR. The Regret curves are found in Figure 5.4 with the
relative Regret differences in the caption.

Belgian firms

The data were collected from an introductory guidebook to Econometrics
(Verbeek, 2012). The data comprises 569 observations of 4 variables. The
response is economic output (in euro’s), with the features being capital (in
euro’s), average wage (in euro’s) and labour (in number of people). An in-
tercept is added. All variables are continuous. The residual plots are shown
in Figure 5.2. From this Figure we read that the data are heteroskedastic on
multiple scales: the heteroskedasticity persists even after we zoom in on the
residuals. The Breusch-Pagan test was significant with p-value < 2.2e-16. Af-
ter learning the variance function and weighing the observations we obtained
p = 3.7e-06. The IRRR algorithm was not able to capture the heteroskedas-
ticity completely, but weighting still gave us an advantage over unweighted
OLR. The Regret curves are found in Figure 5.5.
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Figure 5.2: Belgian Firms. Squared Studentized Ressiduals against predicted
values (Least Squares) for two different scales (left and right). Top: before
weighting. Bottom: after weighting.

Boston housing data

The data were collected online from Kaggle.com. The data comprises 506 ob-
servations of 14 variables. The response is the median value of owner-occupied
homes in USD, with the dataset further consisting of 13 features related to
the neighborhood and to the property itself. Dummy variable (CHAS) was
removed, as well as some other variable (RAD), which seemingly is categor-
ical. The residual plots are shown in Figure 5.3, but the heteroscedasticity
is difficult to read graphically. The Breusch-Pagan test was significant with
p-value < 2.56e-08. Application of IRRR as described in Section 3.4 resulted
in a p-value of 2.13e-16. Instead of regressing the squared residuals on xt,
we regressed the square root of the absolute residuals on xt , as described
in Section 3.4. We obtained p = 0.33 on the Breusch-Pagan test. From the
apparent benefit of this transformation of the residuals and from Figure 5.3,
we suspected that the heteroskedasticity was caused by some severe outliers.
Our suspicion was confirmed as we could remove heteroskedasticity by remov-
ing the 100 observations with the largest residuals, yielding p = 0.09 on the
Breusch-Pagan test. The Regret curves are found in Figure 5.6.
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Figure 5.3: Boston housing. SSR against predicted values (Least Squares) for
two different scales (left and right). Top: before weighting. Bottom: after
weighting.

5.3 Summary and interpretation

The relative Regret differences of OWLS and OWRR against OnLS and ORR
are summarized in Figure 5.1 and in Figure 5.2.

Dataset Variance func-
tion offline

Variance func-
tion online

Variance func-
tion online
(with skipped
rounds)

Countries (d = 2) 25.26% 7.93% 8.01%
Belgian firms (d = 4) 13.86% 13.01% 5.51%
Boston housing (d = 13) 0.19% 0.15% 0.2%

Table 5.1: Relative performance of OWLS aginst OnLS

From Table 5.1 and Table 5.2 we read that, in order to learn a variance func-
tion online without skipping any rounds, the gain for weighting with an offline
learned variance function must be relatively high. When this gain is small, as
is the case for the Boston housing data, it becomes risky to learn the variance
function online and we can suffer a relative loss.
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Dataset Variance func-
tion offline

Variance func-
tion online

Variance func-
tion online
(with skipped
rounds)

Countries (d = 2) 25.86% 8.12% 8.29%
Belgian firms (d = 4) 22.54% 15.81% 7.24%
Boston housing (d = 13) 6.15% −21.51% 0.53%

Table 5.2: Relative performance of OWRR aginst ORR

The relative gain for weighting on the Boston housing data was small, even
when the variance function was learned offline. As was explained in Section
5.2, the heteroskedasticity seemed to arise from around 100 outliers, which
potentially means that weighting is not beneficial for a large portion of the
dataset. When learning the variance function online, having outliers in the
first few rounds could construct a variance function that does not work well for
more moderate observations. A solution is skipping a few rounds to stabilize
the variance function, as the variance function then would not be based on
too little data. We indeed saw an improvement for the Boston housing data
when we started applying the variance function after 15 rounds.

On the Boston housing data a large difference was found between the unpenal-
ized and the penalized algorithms. This is due to the high dimensionality of xt
(d = 14). The larger the dimensionality of xt, the larger the benefit of ORR or
OWRR, as the corresponding regression weights of these algorithms are always
defined. The regression weights for OnLS and OWLS are not defined for t < d.

On the other hand, the Belgian firm data were found to be heteroskedastic on
multiple scales. The heteroskedasticity did not seem to be (only) caused by
outliers. The loss of an online learned variance function, relative to an offline
learned variance function, was small. Skipping 15 rounds made the perfor-
mance of an online learned variance function worse; the unweighted estimators
were used for too long, leading to a deteriorating performance compared to
a variance function applied from the first round. A linear variance function
seemed to do quite well here and did not need to be stabilized. This was indi-
cated by Figure 5.2, where we saw that the SSR increased with the predicted
values in a fairly linear way.
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The SSR for the countries dataset did not seem to increase linearly with the
predicted values (Figure 5.1). Nevertheless, the linear variance function did
still perform reasonably well and the weighted algorithms had a relative gain
over the unweighted algorithms.
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Figure 5.4: Regret curves for the country population data. From top to bot-
tom with OWLS/OnLS and OWRR/ORR improvements between brackets.
Variance function learned offline (25.26%, 25.86%), variance function learned
online (7.93%, 8.12%) and variance learned online with first 15 rounds skipped
(8.01%, 8.29%).
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Figure 5.5: Regret curves for the country population data.From top to bot-
tom with OWLS/OnLS and OWRR/ORR improvements between brackets.
Variance function learned offline (13.86%, 22.54%), variance function learned
online (13.01%, 15.81%) and variance learned online with first 15 rounds
skipped (5.51%, 7.24%).
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Figure 5.6: Regret curves for the Boston housing data. From top to bottom
with OWLS/OnLS and OWRR/ORR improvements between brackets. Vari-
ance function learned offline (0.19%, 6.15%), variance function learned online
(0.15%, −21.51%) and variance learned online with first 15 rounds skipped
(0.2%, 0.53%).



Chapter 6

Concluding thoughts

As a consequence of the Gauss-Markov theorem (Clapham and Nicholson,
2009), we know that OWLS is BLUE under heteroskedasticity. Secondly, we
know that when employing a single feature OWRR has a lower loss in ex-
pectation than OWR. Thirdly, we know that this is no longer true when the
number of features exceeds one.

All counter-examples of Chapter 4 were found in the area where σ2 < 1.
Thus for low σ2 , one should be careful with weighting in ORR. On real-world
datasets, with an offline learned variance function, we were able to outper-
form ORR on all three datasets. With an online learned variance function,
we performed better than unweighted ORR on two out of three datasets. The
exception was the Boston housing data. On this dataset the offline learned
linear variance function did not perform well in the first place. When the rel-
ative gain for weighting with an offline learned variance function is not large
enough, it is possible that learning the variance function online results in a rel-
ative loss to unweighted OLR. The results can then be improved by skipping
rounds and giving the algorithm some time to stabilize the variance function.

6.1 Open questions and future work

We do not know how to optimally choose λ, but instead we chose to set
λ = 1/‖u‖22. The simulations showed that OWRR is not always better than
ORR; an eventual loss for OWRR was found when σ2t < 1. A partial solution
could be defining λWR = σ2/‖u∗‖22 to penalize smaller variances softer than
larger variances. As we already defined σ2 for OWRR, letting the variance
enter the definition of λWR would not cause any problems. It is an open ques-
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tion whether the general λ should be redefined to contain the variance. The
variance is not defined for Online Ridge Regression, so defining such a λ for
ORR would mean a further entanglement between OLR and Statistics.

A relative gain was found for OWRR on two out of three datasets. A rel-
ative loss for OWRR was found on the Boston Housing data. A potential
cause is the heteroskedasticity being caused by outliers. A solution for het-
eroskedasticity by outliers is a different loss function, that is less susceptible to
outliers. An example of such a loss function is the absolute loss. Application
of a different variance function could prove beneficial too. Throughout this
thesis, we have assumed a linear variance function, but non-linear alternatives
could be considered. Especially in the case of heteroskedasticity by outliers,
such a variance function could be constructive. When the heteroskedasticity
is caused by outliers, it is not likely that the variance function is just some
linear function of xt.

The largest drawback of learning the variance function online, as described
in this thesis, is that it learns the variance function for every round t on all
the previous t− 1 rounds. This is not efficient and needless to say, very slow.
For further application of weighting in the OCO framework, an algorithm is
needed that completely learns the variance function online, without having to
review all the information of the previous t− 1 rounds.
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