
Decision boundery approximation: A new method for locally explaining
predictions of complex classification models
Vlassopoulos, G.

Citation
Vlassopoulos, G. (2019). Decision boundery approximation: A new method for locally
explaining predictions of complex classification models.
 
Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3596210
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3596210


Decision Boundary
Approximation:

A new method for locally explaining predictions of complex
classification models.

Author: Georgios Vlassopoulos (s1950193)

Thesis advisor: Dr. Tim van Erven

master thesis

Defended on 11 July 2019

Specialization: Data Science

STATISTICAL SCIENCE
FOR THE LIFE AND BEHAVIOURAL

SCIENCES



Abstract

Machine Learning classifiers are naturally black boxes when it comes to interpreta-
tion. In this thesis, Decision Boundary Approximation (DBA), a new algorithm for
locally explaining complex binary classifiers is developed, tested experimentally and
discussed. The algorithm explains predictions of individual instances, by approxi-
mating their most relevant region of the decision boundary with a linear model. We
overview and discuss limitations of existing methods when applied to classification,
with specific focus on LIME due to the similarity with DBA concepts. Experiments
with DBA, cover both low dimensions and sparse high dimensional data. In Ex-
periment 1 we show that DBA can provide stable explanations for various decision
boundary structures in a 2D simulated case. Experiment 2 demonstrates that DBA
outperforms LIME for low dimensionalities, while in Experiment 3 (MNIST data) we
show that when data are sparse, DBA explanations can include features that are ab-
sent from the explained example, making the explanation more complete compared
to LIME. In Experiment 4 we explain a Naive Bayes trained on SMS ham/spam
messages and show that the DBA solution is in agreement with the Naive Bayes
posterior. Finally, the benefits and drawbacks of DBA are discussed elaborately
and future recommendations for modifications are given.

2



Dedication

To those who inspired me.

3



Acknowledgements

I would like to express my gratitude to Leiden University for giving me the oppor-
tunity to learn. I want to thank all of my teachers and fellow students for sharing
their knowledge with me during my studies.

A special thanks goes to my supervisor Dr. Tim van Erven, for choosing me for
this project and more importantly, for caring for my future. His support, feedback
and trust were above expectations. I also thank Prof. Dr. Eric Postma (Tilburg
University), Prof. Dr. Mykola Pechenizkiy (Eindhoven Univerisity), Dr. Henry
Brighton (Tilburg), Dr. Vlado Menkovski (Eindhoven), Geoffrey Stoel and his col-
legues (KPN telecommunications) for offering me a PhD vacancy to continue my
research in Explainability. I would also like to thank my friend Dr. Harald van Mil
(Leiden University), for his personal interest during my studies, his valuable help
when I needed it and the projects he shared with me.

Of course another special thanks goes to my friends in Greece and the Nether-
lands (you know who you are) who believed in me and unconditionally supported
me. You all have a beautiful mind and I’m proud of you.

More importantly, I would like to thank the person behind everything, my breath,
partner and love Maria Banagou. If it weren’t for you, these words would have never
been written. However, I do not love you for that, but for what you really are.

Last but not least, I would like to thank my mother for her fairytales and my
father for teaching me that life is not a fairytale.

4



Contents

1 Introduction 7

2 Existing Methods 10
2.1 Taxonomy of methods . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Model agnostic methods . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Visual Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Global surrogate . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 LIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 The latent space . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 The general framework . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Sampling procedure . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Explanation procedure . . . . . . . . . . . . . . . . . . . . . . 16
2.3.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Motivation of DBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 DBA: Theory and Methods 21
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Detection step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Simulation step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Vertex Creation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Weighting procedure . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Labeling the simulated data . . . . . . . . . . . . . . . . . . . 30

3.4 Explanation Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 L2 penalized Logistic Regression (Ridge) . . . . . . . . . . . . 31
3.4.2 Partial Least Squares Logistic Regression . . . . . . . . . . . 32

3.5 Evaluation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.1 Simulation class balance . . . . . . . . . . . . . . . . . . . . . 34
3.6.2 Explainer faithfulness . . . . . . . . . . . . . . . . . . . . . . 35
3.6.3 Distance from the boundary . . . . . . . . . . . . . . . . . . . 35
3.6.4 Local gradient . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.5 Dimensionally reduced explainer . . . . . . . . . . . . . . . . 35
3.6.6 Proportion of Variance Explained . . . . . . . . . . . . . . . . 36

3.7 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5



CONTENTS CONTENTS

4 Experiments 38
4.1 Experiment 1 - A 2D simulated case . . . . . . . . . . . . . . . . . . 38

4.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.5 Pathological cases . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.6 Experiment overview . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Experiment 2 - A low dimensional comparison with LIME . . . . . . 47
4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.5 Experiment overview . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Experiment 3 - MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Experimental Process . . . . . . . . . . . . . . . . . . . . . . 54
4.3.4 Results - Explaining a single prediction . . . . . . . . . . . . . 55
4.3.5 Results - Explaining misclassifications . . . . . . . . . . . . . 61
4.3.6 Experiment overview . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Experiment 4 - Explaining Naive Bayes . . . . . . . . . . . . . . . . . 63
4.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.2 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.3 DBA set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.5 Experiment overview . . . . . . . . . . . . . . . . . . . . . . . 68

5 Discussion 70
5.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 Explainability nature . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.2 Regarding metrics . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.3 Discussion of simulation . . . . . . . . . . . . . . . . . . . . . 72
5.1.4 Discussion of vertex creation . . . . . . . . . . . . . . . . . . . 72
5.1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Modifications and future work . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Final Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6



Chapter 1

Introduction

Explainability is a new emerging area which attempts to provide approximate inter-
pretations for the predictions made by Machine Learning models. We need trans-
parency in complex machine learning to be able to shed light on the black box process
of the machine’s decisions. However sometimes complete transparency is impossible,
either due to the high complexity of the classifier which may use relationships that
do not match human intuition at all, or because the size of the information is vast
compared to what the decision maker can handle. Thus when deriving an explana-
tion, one should consider options for simplifying the feature space or the relations
used by the classifier. This is a trade-off between fidelity and interpretability.

Methods towards this direction are divided into two main categories: model
agnostic and model specific methods. In model agnostic methods the explainability
algorithm ignores the structure and the training process of the classifier and only
has access to the prediction function and (possibly) the training set. This category
contrasts model specific methods that are based on the properties and structure of
the trained model, such as propagating effects through a network’s layers (Kuo et al.
2018). In general, model specific methods have more resources to exploit in order
to bring transparency, although in some cases they simplify the training process to
derive an interpretable result (O. Bastani, Kim, and H. Bastani 2017). Hence, a
clear advantage of model agnosticism is that no accuracy is sacrificed to increase
interpretability, due to the independence from the trained structure. Most of model
agnostic methods involve fitting an explainer (surrogate approaches), i.e. an additive
(sparse) linear model to learn the predictions of the complex model (Ribeiro, Singh,
and Guestrin 2016) or study cases to understand patterns (Laugel et al. 2017).

Another important distinction that should be considered, is between local and
global explanations. Global explanations attempt to provide transparency on the
overall decision rule by fitting the explainer to a labeled sample of the whole pop-
ulation (e.g. the training set). On the contrary, local explanations aim to explain
the behaviour of the decision rule in the neighborhood of an instance x0. When the
model is highly non-linear, a local explanation may highly deviate from the global
(pooled) picture: each case is subject to a rule of different nature. Thus, global
explanations can be over-simplistic (or even worse impossible) when the model is
complex, because locally important features will not necessarily be globally impor-

7



CHAPTER 1. INTRODUCTION

tant.
One of the most popular, due to its simplicity, methods for providing locally

faithful model agnostic explanations is LIME (Local Interpretable Model agnostic
Explanations) developed by Ribeiro, Singh, and Guestrin 2016. The algorithm
attempts to learn the important features in the neighborhood of an example case
x0, by maximizing the agreement of the explainer with the complex model in the
locality of x0. However we will argue that when it comes to classification such an
approach does not always result to a linearization of the actual decision rule, which
is the decision boundary. It will be shown that surrogate explanations might be
misleading, unless a direct decision boundary linearization is employed.

In this thesis, we propose a novel model agnostic approach in Explainability:
Decision Boundary Approximation (DBA), which aims to extract faithful case-wise
explanations by linearizing relevant decision boundary regions (i.e. parts of the
classifier’s decision rule that are locally relevant to x0). The method consists of
three main steps:

• Detect the closest decision boundary point for the case x0 to be explained.

• Simulate data around this point such that both classes are sampled equally.
Obtain the simulation predictions from the complex model.

• Explain this part of the decision boundary by fitting a penalized logistic
regression in the labeled simulation set.

If the simulation design is sufficient, the explainer will fit a linear hyperplane to
approximate a specific region of the decision boundary - the region which is closest
to the explained instance, according to a similarity measure. The method results in
approximating the behaviour of discrimination between two subsets of cases: similar
cases to the instance to be explained and a certain subset of opposing points that
lie from the other side of the boundary region that we approximate. By taking
in account only these two subsets, the non-linear behaviour will be much easier
approximated with a linear model, since the subsets will tend to be separable. An
explanation of this kind could provide insight to questions such as: “Why does the
classifier, classify this image as cat, while that as dog?” or “Why is this sales plan
predicted as failure when others alike it as success?”. Another important benefit
which arises by explaining the closest decision boundary region is a trustworthy
direction to change the classifier’s prediction. Having a case x0 classified as “A”
one could wonder which feature values of x0 should change (and to which extent) in
order for the classifier to activate “B”: “Which is the minimal variation we should
apply in the example sales’ plan for the classifier to classify as success?”. We will
show that detecting and approximating the closest decision boundary region can in
some cases provide an answer that might face practical application.

8



CHAPTER 1. INTRODUCTION

Outline The thesis will begin with an overview of existing methods (Chapter 2)
with special attention to LIME due to its similar concepts with DBA. In Chapter 3,
we will introduce DBA and elaborate on its theoretical assumptions. We will provide
illustration of the algorithm’s functions through toy examples that motivate its
components. In Chapter 4, the algorithm will be tested in a series of 4 experiments
of increasing dimensionality. Experiment 1 will test the stability of the algorithm
and the effect of complexity of the decision boundary on the final explanation in a
2-dimensional simulated case, for various non-linear classifiers. In Experiment 2, we
will perform a low dimensionality comparison with LIME in 3 datasets and 4 different
boundary structures. Experiment 3 is an application to MNIST data in which the
explainer employs dimensionality reduction to assess the impact of dimensionality
on the simulation process. Two modifications of the default simulation process will
be compared. Furthermore, DBA will be employed to produce explanations for the
missclassified cases to reveal the classifier’s biases. In Experiment 4 we explain a
Naive Bayes classifier which is trained on SMS spam/ham messages to compare the
DBA explanations with the Naive Bayes posterior probabilities. We conclude this
work with a discussion of the topics presented, along with proposals for modification
and future work (Chapter 5).

9



Chapter 2

Existing Methods

In this chapter we overview, discuss and show the limitations of some of the most
similar concepts with the method developed in this research, to motivate our selec-
tions. In section 2.1, we provide a categorization of Explainability methods along
with references on the literature of the most representative examples of each ap-
proach. Section 2.2 lists several approaches that belong on model agnostic category
(in which DBA belongs), i.e. general methods that can explain any classifier. In
section 2.3, the technical background of the most similar algorithm to DBA (LIME)
are described. Moreover, the limitations of LIME are discussed in 6 main points.
Finally in section 2.4, the motivation for developing DBA is summarized.

2.1 Taxonomy of methods
One can categorize the different approaches in Explainability in various categories.
In this section we provide an overview of these categories and mention some of the
most important explainability methods.

Distinction 1 - Model-specific vs Model-agnostic

Model agnostic methods treat the classifier as a black box, ignoring its internal mech-
anisms. LIME (Ribeiro, Singh, and Guestrin 2016) is an example of a model agnostic
method since it only requires access to the predicted probabilities. A model specific
method takes into account the model parameters and exploits the model’s structure
to extract the explanation. This means that a model-specific method is designed
specifically for a certain type of models (e.g Neural Networks). For networks, there
has been a lot of work to design model specific frameworks for transparency. A
few examples are Deeplift (Shrikumar, Greenside, and Kundaje 2017), Layer-Wise
Relevance Propagation (Bach et al. 2015), CAM (Zhou et al. 2015), Integrated Gra-
dients (Sundararajan, Taly, and Yan 2017) and tree-based DeepRed (J.R., E., and
F. 2016).

10



2.1. TAXONOMY OF METHODS CHAPTER 2. EXISTING METHODS

Distinction 2 - Intrinsic vs post hoc

Intrinsic explanations aim to incorporate the explanation process into the training
procedure of the model (Du, Liu, and Hu 2018). For instance Zhang, Wu, and S.
Zhu 2017 have proposed a method for training interpretable Convolutional Neural
Networks (CNN), by introducing a generic loss to regularize the representation of
filters and improve the network’s interpretability. In some cases intrinsic methods
sacrifice accuracy for interpretability in order to derive the explanations. On the
other hand, post hoc explanations are derived after the classifier has been trained. A
model-agnostic explanation is by necessity post hoc, however post hoc explanations
can also be model specific.

Distinction 3 - Global vs local

Explanations can either refer to the overall behaviour of the classifier (global) or
the locality of a single instance (local). The term local means that explanations
are subject specific: for each data instance to be explained, we obtain a different
explanation which is only faithful to the model for a certain subset of the feature
space. Explanations of this kind are valuable for decision makers, that are looking
for answers regarding single data points. In this thesis when a local method is
employed we will refer to the explained data instance as x0.

The global explanation corresponds to the overall behaviour of the classifier
(marginal effect of features) and provides a picture for the average importance.
If the classifier is highly non-linear, local explanations will differ from the global ex-
planation. Global explanations are useful for putting trust on the model as a whole,
however they cannot be representative for all data instances, when the classifier is
not linear.

Distinction 4 - Example based vs surrogate methods

Example based methods focus on example cases that are used as representatives
to qualitatively interpret the model. They aim to make the interpretation human
intuitive. This is more useful in general for image or text data, where we can vi-
sualize different predicted instances for an intuitive explanation. For example, for
image data one can visualize the pictures of similar data cases (prototypes) to the
explained instance x0 for both classes. An important sub-class of this category are
counterfactual explanations (Wachter, Mittelstadt, and Russell 2017). Counterfac-
tual explanations simulate opposite cases of x0 that represent variations that force
the class to change. They aim to provide an answer to the question: “Which varia-
tion should we apply to x0 in order to force the classifier to change its prediction?”.
Counterfactual explanations can be simulated cases rather than training data but
still represent an instance that can be compared to x0 by obtaining feature differ-
ences. To derive a counterfactual explanation in binary classification, we would like
to locate the closest data point classified in the opposite class of x0. Multiple ap-
proaches have been proposed such as a greedy growing spheres algorithm (Laugel

11



2.2. MODEL AGNOSTIC METHODS CHAPTER 2. EXISTING METHODS

et al. 2017) to optimize a loss and locate with simulation the closest point from
the opposite class. We will illustrate how DBA shares rather similar concepts with
this type of explanations, since in its first step it locates the most similar decision
boundary point to x0, thus it derives a counterfactual explanation.

In contrast to example based explanations, surrogate methods aim to employ
an explainer, i.e. a linear interpretable model, to learn the predictions of the com-
plex model, either locally or globally (Ribeiro, Singh, and Guestrin 2016 , Bucila,
Caruana, and Niculescu-Mizil 2006). The explanation is a coefficient vector β which
reflects the effects of the features on the prediction(s) of the classifier. As it will be
illustrated in Chapter 3, DBA practically shares both counterfactual and surrogate
nature.

In the next section we provide an overview of some of the most commonly used
model agnostic methods, since Decision Boundary Approximation belongs in this
category.

2.2 Model agnostic methods
Although within the last two years, model specific methods have flourished, model-
agnostic methods are still of limited number. This research aims to contribute
towards the direction of model-agnosticism. Due to the focus on this type of meth-
ods, in this section we overview the most frequently used model agnostic methods
(apart from LIME which is discussed separately in section 2.3).

2.2.1 Visual Methods
Visual methods attempt to shed light on predictions of complex models by plot-
ting the effects of a small number of features (≤ 2) on the predicted response (in
classification the predicted probability). This is mainly achieved through decompo-
sition of the partial dependence function. The partial dependence function in binary
classification can be expressed via the log-odds analogue (Hastie et al. 2009),

fk(X1, ..., Xp) = log [P1(X1, ..., Xp)]− log [P0(X1, ..., Xp)] , (2.1)

where Xi is a feature employed by the model, p the dimensionality, P1(X1, ..., Xp) is
the predicted probability (given the values of the p features) for class 1, while P0 for
class 0. This expresses the log-odds as a function of p features. If we marginalize fk
by assuming that only k of these features vary, we can visualize the partial depen-
dence of the average log-odds on the k features. Due to visualization restrictions,
in practice k ≤ 2. This yields a global visual interpretation method: PDP (partial
dependence plot), (Friedman 2001, section 8.2). The method assumes independency
of features, which is a clear disadvantage when it comes to correlated data struc-
tures. Another inherent drawback is the restriction that we can only examine the
effect of at most 2 features, due to visualization limitations. However, this approach
is frequently preferred due to its simplicity and intuitiveness.

12



2.3. LIME CHAPTER 2. EXISTING METHODS

A local variant of PDP methods for individual instances is mentioned as Indi-
vidual conditional expectation plot (Goldstein et al. 2015). To plot an individual
instance prediction path, only one feature is varied in a grid and the rest are kept con-
stant. Then, the predicted probabilities of the variants of the instance are obtained
from the complex model and eventually plotted in a simple line plot. All instances
can be plotted on the same plot to study the global behaviour for this feature. An
even more careful local method, ALE (Apley 2016), attempts to approximate the
gradient of the partial dependence function to extract the feature importance. This
may take into account the correlations between features, but still bears the limit of
dimensions explained due to visualization dimensionality restrictions.

Overall, visualization methods are attractive due to human intuitiveness; yet
the complete picture for the global or local behaviour cannot be properly captured,
unless the effect of all features on the predictions is explored simultaneously. In
a model agnostic framework this can only be managed through surrogate models.
In the next section we will discuss the most simple surrogate approach, a method
which attempts to explain by fitting an additive linear model as an explainer.

2.2.2 Global surrogate
The global surrogate is a naive post-hoc model agnostic surrogate approach which
aims to globally learn the predictions of the complex model. Predictions on the
training set T (or any sample of the population) are acquired through the model’s
prediction function. A linear interpretable model g fits in (T, f(T )) to globally
maximize its agreement with the classifier f . The only measure available to evaluate
the explanations is the coefficient of determination,

R2 = 1−
∑

i (f(xi)− g(xi))
2∑

i(f(xi)− 1
n

∑
i f(xi))2

(2.2)

which reflects the percentage of variability of the predictions f(x) that the linear
model g can capture. Misleading results can arise when the decision boundary is
highly non-linear. The explainer might face instability and effects that are locally
important might be cancelling out. That is the motivation that led Ribeiro, Singh
and Guestrin to introduce LIME, a local surrogate approach which is discussed in
the following section.

2.3 LIME
Local Interpretable Model-agnostic Explanations,(Ribeiro, Singh, and Guestrin 2016)
is a surrogate model agnostic method which attempts to provide local explanations
for single instances. The approach aims to bring a balance between fidelity (how ac-
curately is the complex model approximated) and interpretability (how user-friendly
are the explanations). The most fundamental assumption of the framework is that
any non-linear model is locally linear, thus the authors propose to maximize ex-
plainer faithfulness for single instances. The current section will illustrate some

13



2.3. LIME CHAPTER 2. EXISTING METHODS

fundamental aspects of LIME algorithm, along with its limitations (section 2.3.5).
The main concepts of the algorithm are distributed in four main paragraphs (2.3.1-
2.3.4).

2.3.1 The latent space
LIME authors begin by introducing interpretable data representations. They argue
that although the classifier might use complex data structures such as sequences
of words, the explanation method should assume representations compatible with
human intuition (e.g a bag of words). For that reason, they map each instance
x ∈ Rp to a representation x

′ in a latent feature space {0, 1}p′ where p
′ ≤ p. Thus,

in LIME framework each instance is represented by a binary vector x
′ ∈ {0, 1}p′

(presence or absence of features). For image data an image segmentation process is
included to create superpixels i.e. meaningful batches of pixels (for example the ear
of a cat) and use them as interpretable data representations. In this case, each entry
of the binary vector will correspond to presence or absence of a certain superpixel,
efficiently decreasing p. For simpler problems with numerical features it is also
possible to ignore binary vector representations and work in the full feature space.

2.3.2 The general framework
The main idea of LIME lies on the maximization of the local faithfulness of an
explainer g : {0, 1}p′ → [0, 1] to the complex classifier f : Rp → [0, 1] 1 under the
constraint of a threshold for complexity (set by the user). This constraint can be
defined by a measure of complexity Ω(g) (e.g the number of non-zero weights of the
explainer). The model g may be any model in a set of interpretable models G.

To maximize faithfulness in the locality, the authors propose a loss which is
weighted by proximity with the explained example x0. If we denote this proximity
measure by πx0(x) to express the similarity between x0 and an instance x, the
explanation can be expressed as:

ξ(x0) = argmin
g
{L (f, g, πx0) + Ω(g)}, (2.3)

where L (f, g, πx0) is a loss reflecting the agreement in predictions of f and g in the
locality of x0. The authors propose a quadratic weighted loss for this purpose:

L (f, g, πx0) =
∑
x

πx0(x)(f(x)− g(x
′
))2 (2.4)

where summation here is over all simulated instances and πx0(x) a proximity measure
representing the similarity of x0 with x. Since the loss is weighted by proximity, the
explainer will tend to favor the similar points with x0 leading to a natural bias
towards the example x0.

1In LIME default framework the set of values of g and f is [0, 1] rather than {0, 1} because they
learn the predicted probabilities and not the labels.

14



2.3. LIME CHAPTER 2. EXISTING METHODS

As a complexity measure, the authors propose Ω(g) = ∞1[||β||0 > K], i.e.
setting a limit in the number of features used. Here, K denotes the user threshold
for the number of features used by the explainer in the sparse model, ||β||0 the
L0 norm 2 of the estimated coefficient vector and ∞1 the characteristic function
(participation or not in the feature set).

LIME attempts to approximate the behaviour of f in the neighborhood of x0, by
solving the minimization problem 2.3. The above general expression can be written
specifically for any choices of g, πx0 and Ω. In LIME’s default setting this loss is
minimized by fitting an interpretable regression model (e.g L2 - linear model or
decision tree) to learn the class probabilities predicted by f , on a set of simulated
data points. The authors note that with this Ω(g) choice, (2.3) cannot be solved
directly, so first they perform feature selection with L1 regularization (LASSO) to
select the K-most important features and then learn a sparse explanation through
least squares. In the next paragraph LIME’s simulation procedure is described.

2.3.3 Sampling procedure
Depending on the nature of the data, LIME’s simulation procedure varies. We
summarize the main alternatives that LIME employs for simulation.

Numerical features When features are numerical, LIME’s implementation in-
volves computing statistics for each feature (mean and standard deviation), thus the
process depends on the training set. They then sample each feature from N(0, 1),
multiply by its standard deviation and add its mean to obtain a sample. This is
equivalent with sampling from the center of mass of the training set. In this case
the explained instance x0 is not involved in the process of simulation and the idea
of the latent space, described in section 2.3.1, is dropped. Finally, we note that here
the user has the option of discretizing the features into quantiles.

Image and text For text and image, the authors of LIME propose a sampling
procedure which only depends on x0. They simulate permutations of the instance x0,
by binarizing it and drawing from its non-zero elements (elements that correspond
to 1 in the binary vector). If the total number of features is p′, they uniformly draw
a random number k from the set {1, ..., p′− 1} and then uniformly draw k non-zero
elements from the binary vector, to create a permuted binary vector. The permuted
binary vectors can be used as filters on x0 to produce a sample in the full feature
space (for example the original image with some random parts completely missing).

After a sample is available, its predictions are acquired by the complex model.
The authors claim that these predictions can be either the labels or the predicted
probabilities, however we will show that properly learning the labels under this
framework is not possible (section 2.3.5).

2Not actually a norm, this symbolism denotes the number of non-zero elements of the vector.

15



2.3. LIME CHAPTER 2. EXISTING METHODS

In section 2.3.5 it will be illustrated that both procedures have problems when
it comes to classification, especially for numerical features and sparse text/image
data, by means of stability and nature of the estimates.

2.3.4 Explanation procedure
The explanation in the neighborhood strongly depends on the definition of the prox-
imity measure. The authors propose for such a measure

πx0(x) = exp{−d(x, x0)
2/σ2} (2.5)

i.e. an exponential kernel with d a metric and σ the width of the kernel. A large
kernel width means that by keeping d(x, x0) constant, instances receive a larger
weight compared to small kernel widths. Thus the contribution in the loss of points
with large d(x, x0) will be significantly larger than cases where σ is small. The choice
of the metric d is left open, although Euclidean metric is proposed for numerical
features.

Putting the above together, LIME simulates instances and then weights them by
computing πx0(x) for each simulated instance x. It then performs feature selection to
select the K-most important features according to Ω. It then solves a weighted (by
πx0) least squares problem to learn the predictions of the complex model. Eventually
the explanation produced, is a vector of coefficients β which represent the effect for
each feature (or interpretable representation) on the predictions of the complex
model (here probabilities). That is a local explanation and is faithful to f only
in the neighborhood of x0, i.e. it attempts to capture the important features for
classification in the locality of the explained instance. Ribeiro et al claim that the
value of the loss (2.3) can be reported as an evaluation measure for the explainer’s
local fit.

Although LIME’s concepts maintain a user-friendly balance between simplicity
and formality, there are inherent problems for explaining classifiers with numerical
features and explanations in many cases can be misleading. We argue that in the
general case, it is impossible to linearize the neighborhood in a meaningful way if we
do not consider only a certain part of the decision rule, i.e. we should become specific
of which decision boundary region we attempt to explain. In the next section we will
discuss the inherent problems of LIME in detail and provide illustrative examples
to support our argumentation.

2.3.5 Limitations
It is argued that in classification tasks and some specific data types, the way that
LIME approximates is not sufficient and its explanations might be misleading. We
summarize its drawbacks in 6 points which are discussed below.

16



2.3. LIME CHAPTER 2. EXISTING METHODS

Point 1: When data are sparse, sampling from x0 is not sufficient.

Consider a text message x0 with only 10 words while the classifier might have been
trained in a vast vocabulary. Thus, the representation of the message in the feature
space would be a sparse vector with 10 non-zero elements. Under LIME framework,
permuted instances would be created by sampling a number k ∈ {1, ..., 9} and then
sample k from the 10 words of x0. The algorithm will then fit a linear model to learn
which is the effect of each one of these words to the classification result. However,
the fact that some words are missing from the message might also contribute to the
classification result. For instance, explaining the prediction of a “spam” message
should also include missing words that are important for the “ham” class. LIME
framework completely ignores the effects of features that have zero value in the
explained example, which results to overestimating the non-zero elements. In
Experiment 4, we will show that there are sparse cases that missing features are
more important than non-zero elements of x0 (see section 4.4.4, Table 4.3). In such
cases, LIME explanation will be incomplete and possibly misleading. Hence we
urge the need of also exploring features that have zero value in the explained data
example.

Point 2 - There is no formal rule to define the optimal value for the kernel
width σ.

The kernel width is a vital parameter in LIME framework. The explanation strongly
depends on this parameter since it adjusts the weights in the loss (2.4). It seems
clear that the value of σ should depend on dimensionality, the classifier and the
sparsity of the data. We argue though that in classification it should also depend on
the distance from the decision boundary. Specifically, the width should be smaller
when the point lies very close to the decision boundary, because then the effect of
this specific decision boundary region would overcome any other region. If the x0

lies far away from the decision boundary, we would like to weight instances with
a larger kernel width to also consider instances from the opposite class in the loss.
However, the authors provide no rule for formally assessing the width for the kernel
and in this manner, the concept of neighborhood becomes more abstract: if we are
truly to learn the effects in the neighborhood, the kernel width should always be
small. Assuming large kernel widths may lead to other problems for some boundary
structures, such as low class balance and poor explainer fit. It is also reasonable to
assume that by varying σ the explanation will change substantially.

Point 3 - Learning probabilities in insensitive gradient neighborhoods can
be problematic.

Let S = {xj}nj=1 with xj ∈ Rp be a set of p-dimensional data points that repre-
sents a grid with vanishing step which covers a finite region of Rp. For each point
xj, we can obtain the predicted probability P (C = 1|xj) through the black box
model. If we picture these probabilities as a field we can estimate the gradient of

17



2.3. LIME CHAPTER 2. EXISTING METHODS

(a) Toy case 1 (b) Toy case 2

Figure 2.1: Toy illustration of Points 3 and 4 (two features). Size of the dots represents the
weight assigned on the simulated points by the LIME kernel. Blue points represent class 1
while red points class 2 (all of them small). When learning the probabilities if the gradient
in the neighborhood of x0 (black point) was insensitive of probabilities, predictions of the
similar points will not vary much. When learning the labels with LIME and one of the
classes dominates the other in the simulation (Fig a), the exponential weighting will not
guarantee convergence to a meaningful approximation. When multiple regions lie around
x0 the situation will turn even worse (Fig b).

the true probability field for a certain point of the feature space. It is reasonable to
assume, that there exist regions in the feature space that the probability field will
be insensitive to changes, i.e. the gradient will be vanishing. This will most com-
monly happen for data points that lie far away from the decision boundary or when
the complex model is highly non-linear. In such cases, when the kernel width σ of
equation (2.4) is small, the explainer will assign exponentially larger focus on the
insensitive neighborhood (Figure 2.1a). This can be potentially problematic, due to
the fact that predicted probabilities of the samples will not have enough variation in
the neighborhood to accurately estimate a meaningful direction of importance. The
kernel width in such cases should be larger, although as discussed in the previous
point, there is no formal rule to evaluate how large it should be for each case.

Point 4 - Learning labels in LIME setting is in general not feasible.

When the explained point lies far away from the decision boundary (according to a
metric), cases of the same class as x0 will receive much larger weight in the loss than
opposite cases. If one of the classes of the simulation dominates in number (Figure
2.1a - most points are blue), the solution will be unstable due to the vanishing
contribution of the opposite class points in the loss. Since the loss is weighted
exponentially in the neighborhood, the linear model will have no reason to learn
how to actually discriminate the two classes in an accurate manner. As a result, the
solution will be highly unstable when learning the labels. In addition, if multiple
decision boundary regions lie in different directions around x0 (Figure 2.1b) the

18



2.3. LIME CHAPTER 2. EXISTING METHODS

(a) 2 mirror regions (b) 4 mirror regions

Figure 2.2: Toy illustration of Points 5 and 6. The decision tree has fitted two (Fig a)
and four (Fig b) symmetrical regions to separate the two classes (red and blue). Size of
the points indicates the weight assigned by LIME’s exponential kernel. The explanation
for x0 (green point) is influenced by the surrounding regions and does not reflect the
approximation of a single region.

situation will turn even worse: the linear fit in this case is less meaningful and the
solution will be more sensitive to randomness of the simulation step. Learning the
probabilities alleviates this issue since points with large contribution to the loss on
average have a significant variation on their predicted probabilities. However, in
this framework the problem of insensitivity arises for some cases (Point 3).

Point 5 - When a point is surrounded by multiple boundary regions the
explanation is a pooled result of all regions

Consider the toy example in Figure 2.2a. A Decision Tree has been employed to
fit two parallel to y-axis regions (green lines) to discriminate the blue from the red
points. Decision boundary regions of this kind will be called mirror regions and
their interpretation is that both increasing and decreasing feature V1 will increase
the probability of the red class.

Which is the estimate that LIME will give for the effect of V1, in the explanation
of x0 (green point)? The solution is represented by the dotted line. LIME’s ex-
ponential kernel assigns weights that decrease symmetrically towards all directions.
Observe that for both increasing or decreasing V1, the predicted probability of the
blue class will decrease in the same manner. The explanation of LIME (dotted line)
though, suggests that V2 also plays a small part in the classification although this is
not correct. The reason of this outcome should be attributed to the mirror region:
simulated points from the opposite side affect the solution of the explainer.

To motivate even more the impact of this observation, consider the more extreme
situation of Figure 2.2b, where the blue class is distributed in the area of a square
and x0 lies in its center. The decision boundary fitted by the tree consists of four
different regions (sides of the square). In this set-up, LIME is unable to approximate

19



2.4. MOTIVATION OF DBA CHAPTER 2. EXISTING METHODS

a meaningful solution (black dotted line). Instead of approximating one of the
regions, the algorithm averages the effects of all sides (diagonal dotted line). Thus,
LIME explanations are a pooled result of all decision boundary regions, a fact which
can lead into misleading explanations. In cases like this, the neighborhood of x0

cannot be properly linearized. For a more suitable explanation one should attempt
to approximate each decision boundary region separately.

Point 6 - Coefficients produced cannot be interpreted as a decision bound-
ary linearization in the general case

LIME is designed to produce sparse explanations. When it comes to the full ex-
planation the estimated coefficients cannot be interpreted as an approximation of
the decision boundary. LIME learns the effects on predicted probabilities in the
neighborhood of x0. When x0 is not close to the decision boundary or when the
predicted probabilities do not vary much in the locality of x0, these estimates do
not necessarily agree with the local classification behaviour: in a highly nonlinear
framework, the local classification behaviour can be a pooled result from multiple
regions that might cancel each other in the neighborhood of x0 (Figure 2.2b). As
a result, the fitted linear model will not try to approximate one of the regions or
all regions separately but it will rather fit a linear solution that reflects a pooled
result from all regions. Thus, LIME does not linearize the decision boundary in the
general case but tries to identify important features in the neighborhood. This is
not necessarily unwanted, yet the resulting explanation may strongly rely on the
randomness of the simulation and on the width of the kernel.

2.4 Motivation of DBA
In this research we would like to urge the need of a direct approximation of the
actual decision boundary of the classifier in order to obtain a faithful surrogate
explanation. We argue that in complex classification tasks and continuous feature
spaces, learning predicted probabilities in the neighborhood can be misleading for
some structures (e.g Neural Networks). Moreover not all classifiers are probabilistic,
thus we attempt to create a framework where learning the labels is feasible (resolving
Point 4).

In the next chapter we will show that in DBA, instances of the opposite class of
the explained example also participate in the explanation, providing a solution for
Point 1. We will also show that explaining the decision boundary rather than the
neighborhood of the explained instance, resolves the kernel width selection problem
(Point 2). That is because we sample on the decision boundary, aiming to simulate
a set in which both classes are equal in size. We also provide a solution to Point 5,
by explaining one single decision boundary region, which in general will be easier to
linearize.

20



Chapter 3

DBA: Theory and Methods

In the previous chapter we highlighted the importance of pursuing a decision bound-
ary approximation rather than sampling in the neighborhood of x0 to derive an ex-
planation for a classification task. In this research, a new explainability algorithm
is developed specifically for binary classification with numerical (standardized) fea-
tures. The current chapter will explain our approach. In section 3.1 preliminary
definitions and concepts are discussed. Sections 3.2 - 3.4 correspond to detailed de-
scriptions of the three main steps of the algorithm, while in section 3.5 an evaluation
framework will be presented. Finally, in section 3.6 several diagnostics for DBA are
proposed.

3.1 Preliminaries
Consider a binary classification task and a classifier f : Rp → {0, 1} that fits in the
training set, (

y1
x1

)
, . . . ,

(
yN
xN

)
,

where xi ∈ Rp and yi ∈ {0, 1}. The discrimination solution is encoded in a decision
boundary, i.e. a p− 1- dimensional surface, which partitions Rp in two classes. The
surface can algebraically be expressed through an equation G(x) = 0 for any point
x ∈ Rp. Then the decision boundary can be expressed as,

D = {x ∈ Rp : G(x) = 0}. (3.1)

If G is a linear function, then the decision boundary defines a linear hyper-plane.
For example, the decision boundary of logistic regression is the hyperplane {x ∈ Rp :

xTβ − 0.5 = 0}. Here, the estimated vector of the regression weights β represents
the feature importance in classification. That is a universal coefficient vector for all
cases, which represents an explanation for their predictions. Whether this coefficient
vector is interpretable for a decision maker, depends on dimensionality, the nature
of the data and visualization options.

On the other hand, non-linear classifiers produce non-linear black box decision
boundaries. Consequently, there is no analogue of the coefficient vector β, since

21



3.2. DETECTION STEP CHAPTER 3. DBA: THEORY AND METHODS

Figure 3.1: Illustration of the most relevant region concept. The explained point x0 maps
to a ball (dotted circle) centered on the closest decision boundary point z. The selected
region (green line) is the intersection of the ball with the decision boundary (black curve).

different parts of the decision boundary suggest different effect on the calculated
odds. In fact, each region would be approximated by a different linear boundary,
suggesting a different vector β.

This work relies on the assumption that for each data instance x0 to be explained,
there exists one region of the decision boundary that applies the most (most rel-
evant). We attempt to explain single predictions of complex binary classification
models, by applying the following for an instance of interest x0:

• Detection step, which locates the closest decision boundary point of the
example to be explained.

• Simulation step, which samples instances in a region around this point and
labels them according to the complex model.

• Explanation step, which fits a linear decision boundary to the simulated
data.

The algorithm relies on the choice of a metric to define the concept of closest.
For this thesis, only Euclidean metric will be considered as a measure of dissimilar-
ity. Assuming Euclidean distances leads in approximating the feature space with a
continuous linear metric space, which will not be a sufficient approximation when
the true space is highly non-linear. However, in Experiment 4, we will show that
approximating a discrete feature space by assuming continuity, will produce valid
results. In sections 3.2 - 3.4, the technical details of the three steps are elaborated.

3.2 Detection step
The term locality as used by Ribeiro, Singh, and Guestrin 2016, is translated into
relevance under DBA framework. To formalize this, consider a data instance x0,

22



3.2. DETECTION STEP CHAPTER 3. DBA: THEORY AND METHODS

Figure 3.2: Illustration of detection step through a toy example. To detect relevant region
of the black point x0 (2), we select the 10-closest rivals (3). These rivals are bisected with
x0 (4) to produce pairs of points close to the boundary (5). The bisected rival which is
closest to x0 is eventually selected (6)

a decision boundary D and a metric d. If z = argminx∈D{d(x0, x)} is the closest
point to x0 on the decision boundary, then DBA aims to explain the region D ∩
B(x, d(z, x0)), where B denotes a hyperball defined by d (Figure 3.1). This will be
called the most relevant decision boundary region to x0.

The Detection step of the algorithm selects the most relevant decision boundary
region by minimizing the distance d(x, x0) with respect to x, subject to the constraint
f(x) ̸= f(x0). For simplicity we name all points for which this constraint holds,
rivals of x0. In other words, we pursue to simulate the closest rival of x0, a point z

which will be assigned as the center of the ball B (red point in Figure 3.1). That is
achieved by the following process, developed for this project.

1. Select the K-closest rivals of x0 from the training set.

2. Collapse all rivals on the decision boundary towards x0.

3. Select the closest collapsed rival according to Euclidean metric.

The full process is illustrated through a toy example in Figure 3.2. For collapsing
the rivals on the boundary (second part of Detection step), we employ a variant of
bisection rule, an old-fashioned method of Numerical Analysis used to approximate
solutions of non-linear algebraic equations of the general form f(x) = 0. Bisection
method is a simple iterative algorithm which initializes with a given interval [a, b] in

23



3.2. DETECTION STEP CHAPTER 3. DBA: THEORY AND METHODS

Initialization;
a : a rival of x0;
b = x0;
ϵ << 1;
δ >> 1
while δ > ϵ do

m← 0.5 ∗ (a+ b);
if f(m) ̸= f(x0) then

a = m ;
end
else

b = m ;
end
δ = d(a, b)

end
Result: a

Algorithm 1: Predictive Bisection

which the solution lies. On each step the average value m, of a and b is computed.
Then, Bolzano Theorem is applied on both [a,m] and [m, b] to determine on which
interval the solution belongs and set m as either b or a respectively. The process is
repeated until a− b is smaller than a specified tolerance ϵ.

For the case of approximating the boundary point z, the Bolzano test is replaced
with a simple prediction of the complex classifier to acquire the label of the midpoint
m. Initialization involves predicting a and b = x0 with the classifier. Then the
condition f(m) = f(x0) is tested (Algorithm 1). If the condition holds, this means
that the midpoint is on the same side of the decision boundary as x0 so we set
b = m to approach the boundary even more. Otherwise, if f(m) ̸= f(x0), a is set
equal to m. Repeating the process creates two sequences of points {ak} , {bk} which
naturally belong on the opposite class and the segment connecting them intersects
the boundary. Thus (at least) one true decision boundary point always exists on
this segment and the algorithm approximates it. We will refer to this procedure as
Predictive Bisection method. An illustration with 3 iterations of Predictive Bisection
is shown in Figure 3.3.

The whole process is repeated for all K-rivals simultaneously 1. As K increases,
the approximation of z becomes more accurate, due to the fact that the resulting
pairs of points will tend to cluster on the boundary and thus build a sufficient
coverage of the decision boundary region (Figure 3.2, picture 5). We will call the
rival of which the projection is z, the most relevant training rival of x0.

Motivation for employing this procedure lies on the fact that the resulting deci-
sion boundary points will carry the information of x0 and its K-closest rivals on the
boundary, thus we ensure that when data lie on a low dimensional manifold, the
midpoints will lie on the same manifold: we do not explore all dimensions uniformly
but we rather manipulate relevant data instances to become as similar as possible

1The actual implementation of the process involves vectorization for speeding up.

24



3.3. SIMULATION STEP CHAPTER 3. DBA: THEORY AND METHODS

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 3.3: Three iterations of predictive bisection. On each step the midpoint m (square)
of a (blue) and b (red) is computed. If the midpoint is predicted to be in the opposite
class of x0 (red point in Fig.a) then we set it as a (Fig.b), otherwise as b (Fig.c). The
algorithm converges on a decision boundary point.

with x0, under the constraint f(x) ̸= f(x0). Consequently, we will explore only
features that appear in x0 and its most relevant training rival. In sparse cases this
will decrease the number of features substantially, thus increase the interpretability
of the explanation. Moreover, the most relevant training rival can be perceived as
a counterfactual explanation, i.e. a data point that if we average x0 with, it will
produce a faster change in the class than moving towards any other training rival.
Last we note that the process has a significantly lower time complexity than uniform
search in the full feature space.

The output of detection step z will be processed by the next step of the algo-
rithm to sample instances around it. The next section will illustrate the theoretical
concepts of the sampling procedure (Simulation step).

3.3 Simulation step
Once the region of interest is detected, we would like to generate example cases
around it. These cases will be then introduced in the Explanation step to produce
the final explanation.

Let us denote with B the ball B(z, d(z, x0)), where z the output of detection
step. A first idea would be to exploit all training samples within B, however if data
are sparse or x0 is very close to the decision boundary then B might include only
a few (possibly zero) training examples other than x0. Thus, an alternative option
would be simulation. Some important characteristics of the simulation set S that
we need to consider are the following:

1. Class balance, i.e. the proportion of the two classes in the simulation set.

2. Separability, i.e. the extent to which the simulated data can be linearly sepa-
rable. We will call a simulation set separable when a linear boundary discrim-
inates the two classes perfectly.

25



3.3. SIMULATION STEP CHAPTER 3. DBA: THEORY AND METHODS

(a) Simulation away from the boundary. (b) Simulation close to the boundary

Figure 3.4: Illustration of the impact of violation of property 2. When there are not
enough points close to the boundary (left), all dotted lines are potentially an explainer fit.
When a sufficent amount of points are sampled close to the boundary, the linearization
stabilizes (right).

3. Variability, i.e. the extent to which the simulated examples vary across differ-
ent dimensions.

Undesirable implications might arise if the simulation does not respect some
fundamental properties regarding class balance, separability and variability among
others. We discuss four such properties that need to be satisfied to ensure the
trustworthiness of the final explanation.

Property 1. Simulated points are within the ball B.

This property highlights that d(x, z) ≤ d(z, x0) should hold for any simulated
point x, in order to ensure relevance of the explanation. We would like to simulate
all points within the ball, to guarantee that we explain only one specific region. If
multiple points lie outside the ball then the solution can be strongly influenced.

Property 2. There is a sufficient amount of points near the decision boundary.

If this property is not satisfied then the stability of the solution is not guaranteed.
For illustration, consider the simulation set of Figure 3.4a. The dotted lines represent
possible linearizations of the relevant decision boundary region. We argue that in
order to learn the decision boundary curvature as reasonably as possible, we should
sample close to the boundary (Figure 3.4b).

Property 3. Simulated points, labeled by the predictions of the complex model are
reasonably separable and have class balance approximately 50%.

We argue that the explainer must fit on a (reasonably) separable simulation
set in order to provide a meaningful approximation. By reasonably we mean that
the linear model will be able to produce a proper fit as the one shown in Figure
3.4b. If it is not possible for the linear model to fit properly (Figure 3.5a), then
the explanation will not represent a decision boundary approximation but merely a

26



3.3. SIMULATION STEP CHAPTER 3. DBA: THEORY AND METHODS

(a) Non-separable simulation. (b) Separable simulation

Figure 3.5: Non-separable vs separable simulation. This toy example shows a triangular
boundary with x0 in the middle (red). Simulating centered on x0 would result in a non-
separable set and it is not clear how the linear model would fit. By sampling centered on
the closest decision boundary region the linear fit will be more meaningful, but relevant
only for points separated only from that side of the triangle.

pooled result of an abstract number of regions (see also section 2.3.2). It is argued
that only by approximating a single region of the boundary will the additive model
capture a meaningful solution (Figure 3.5b). As the degree of separability decreases,
so does the trustworthiness of the explanation.

Regarding class balance, (i.e. P (C = 1|S)) a linear boundary would correspond
to 0.5. As non-linearity increases the class balance of the simulation is expected to
change. An unbalanced simulation design might influence the estimates for some
features of one of the classes. In general, when balance strongly deviates from
0.5 then the explanation should not be trusted. A trustworthy explanation is an
explanation for which the approximated behaviour is nearly linear.

Property 4. The simulation has equal variability across all explored dimensions.

It is important that we simulate across all dimensions of interest with equal
variability, since the estimates of the explainer depend on the sample. If there are
dimensions that are not explored sufficiently, the explainer will underestimate their
importance and the explanation will not be accurate. It is also of great interest to
examine whether the simulation should cover the whole volume of B or if it suffices to
sample close to z, i.e. the decision boundary point approximated by detection step.
In Experiment 3 we will explore the impact of this matter on the final explanation.
We will show that sampling with a higher concentration in the center of the ball,
will result in the same solution by means of directions of importance, but different
intensity of estimates.

In the remainder of this section we will introduce the simulation procedure of
DBA and motivate its selection. In general there are multiple options that one
may want to consider and research for simulation. Uniform sampling within the
ball B(z, d(z, x0)) would be a primary option, however filling a p-dimensional ball

27



3.3. SIMULATION STEP CHAPTER 3. DBA: THEORY AND METHODS

with points when p is large, can be computationally intensive (e.g with rejection
sampling). For low dimensional cases an option is to sample from multivariariate
gaussian distribution. However, simulating from a Gaussian in a higher dimensional
space will result on most points having a large distance from the center (rare events
are not that rare as dimensionality increases) (Dasgupta 2013). That is not desirable
since we would like to sample close to the decision boundary point, to avoid violation
of Property 2. A solution could be to decrease the variance components of the
covariance matrix Σ, nevertheless there is initially no formal rule to evaluate the
values for these components.

Although future research should investigate different simulation alternatives, in
this thesis we propose an approach which attempts to respect properties 1-4 as much
as possible. We start with the following definiton.

Definition 1 (Convex Hull). Let V = {Vi}ni=1 ⊂ Rp be a set of n points in p-
dimensional space. The convex hull of points V1, .., Vn, is the set Hw = {

∑n
i=1 wiVi :∑n

i=1wi = 1, wi ≥ 0} i.e. all convex combinations of points in V .

A convex hull is by definition a convex set. This means that if we assume a
(random) convex combination of any points of the hull, it will lie within the set.
The idea behind the algorithm implemented by Simulation step is the following:

1. Select symmetrical points on the surface of B to define a hyperpolygon cen-
tered on the decision boundary (Vertex creation).

2. Sample from the convex hull of the vertices with random weights to generate
data in the polygon (Weighting procedure).

In the following, the technical details of the two parts are elaborated.

3.3.1 Vertex Creation
In the default version of the algorithm (on which most experiments run) the vertices
are created by the following procedure: For each feature i set V1i = z + r and
V2i = z − r, where rj = 0 if j ̸= i and rj = d(z, x0) if j = i (i.e. increase and
decrease only one coordinate by the distance from the decision boundary). Thus
2p points are created symmetrically on the surface of B (Figure 3.6). One could
argue that if we vary only one feature out of thousands, there will not be much
change in the classifier’s odds. The experiments of this thesis will illustrate, that
this argument is not correct when we vary features of a decision boundary point:
in this state of uncertainty if an important feature varies there will be a significant
change in the odds.

However, as it will be shown in Experiment 3 (section 4.3), due to the curse
of dimensionality, simulating from the convex hull of a large number of vertices
will result in high concentration in the neighborhood of z. To correct for that, we
propose two different high dimensional vertex simulation alternatives that will be
compared in Experiment 3.

28



3.3. SIMULATION STEP CHAPTER 3. DBA: THEORY AND METHODS

Figure 3.6: Illustration of vertex creation (default method). To simulate across a relevant
region of x0 (blue), we locate the closest decision boundary point z (red). The vertices
(black triangles) are created by adding and subtracting the euclidean distance d(z, x0)
from each coordinate of z.

In the first alternative, the number of vertices/dimensions explored is reduced
by assuming interpretable data representations. For instance, image data can be re-
duced through superpixel segmentation. In this version, two vertices per superpixel
(batch) are created. In contrast to LIME, DBA does not drop the assumption of
continuity and increases/decreases simultaneously the values of each batch such that
resulting vertices lie on the ball. For segmenting image data, the SLICO method is
used (Bakkari 2015).

The second alternative involves assuming more distant vertices, to result in a
larger convex hull (such that it results in sampling in the ball). Same as the default
method we create 2p vertices. The correction tested in the experiments will be to set
V1i = z+

√
pr and V2i = z−√pr, where p is the dimensionality. This was motivated

by the fact that the distance between two vertices of a hypercube increase as √p.
In experiment 3 we will explore how these two modifications affect the explanation
and whether they are desirable in the DBA framework.

To encounter interpretability issues when the number of features is very large we
propose another extension of this step which applies to sparse data. We decrease the
dimensionality by considering only the non-zero elements of the decision boundary
point z and create vertices only for these points. Since the bisection method transfers
the information of the most relevant rival to the decision boundary, the explanation
will refer to x0 and the corresponding rival (and points alike them). Features not
present in these two points are not considered.

The vertex creation framework is a fast alternative for uniformly simulating
points that by definition belong in B due to convexity. More importantly the
vertices can represent batches of features rather than single features. For instance
we could assume that the vertices are all possible masks (filters) of an image and
then simulate random convex combinations of these masks (see Chapter 5, section
5.1.4, Figure 5.2). These facts motivated our selection of this approach over other
uniform simulation approaches.

29



3.3. SIMULATION STEP CHAPTER 3. DBA: THEORY AND METHODS

Figure 3.7: Illustration of the resulting simulation by sampling with the described proce-
dure. More points are sampled close to the center, than the boundary of the polygon.

3.3.2 Weighting procedure
Once the vertices have been created, the next step is to sample from their convex
hull by assigning a vector of weights w such as

∑
i wi = 1 and wi ≥ 0.

For a uniform sampling from the convex hull of p vertices, we employ the follow-
ing procedure (Devroye 1986):

• Sample from U(0, 1), p− 1 numbers u1, u2, ..., up−1.

• Order them in place.

• Set u0 = 0 and up = 1.

• Let wi = ui − ui−1 be the weights for sampling a convex combination of the
vertices.

If each ui is drawn from U(0, 1), wi have the property
∑p

i=1 wi = 1. The weights wi

are then used to draw a sample x =
∑

wiVi ∈ Hw. The method will result in uniform
sampling in the convex hull of the vertices, under the assumption that the vertices
are affinely independent. Apparently under the set-up described in section 3.3.1
this assumption is violated and in general the sampling will not be exactly uniform.
Specifically the sampled points will show the tendency to cluster towards the center
of mass of the polygon (in this case the decision boundary point z). However this
is not necessarily unwanted since we guarantee that there is a sufficient amount of
points in the decision boundary. Figure 3.7 shows a 2-D simulated example of the
process. As it can be seen, more points are sampled in the center than the boundary
of the polygon. The complete procedure is also shown in Algorithm 2.

3.3.3 Labeling the simulated data
After a simulation set S is obtained, we label it with the predictions of the complex
model. Augmenting the simulation set with the prediction vector f(S), results in the
input of the explanation step. The predictions in the default set-up are the labels,
however for probabilistic classifiers it is also possible to augment the simulation with

30



3.4. EXPLANATION STEP CHAPTER 3. DBA: THEORY AND METHODS

Initialize: S = {x, x0}
for k in 1:B do

1. Sample u1, u2, ..., up−1 ∼ U(0, 1) and sort in increasing order.
2. Set u0 = 0 and up = 1
3. Set wi = ui − ui−1

4. Set x =
∑

wiVi

5. S = S ∪ {x}
end
Result: S, f(S)

Algorithm 2: Convex Hull Sampling

the predicted probabilities and employ a regressor as an explainer. Experiment 2
will study the impact of such a modification. Theoretically, since the simulation will
tend to be reasonably separable, the probability field would be easier approximated
by a linear model than in LIME framework.

In section 3.3 we have described the Simulation step of DBA. The whole process
is summarized in Algorithm 2. In the next section of this chapter the Explanation
step is discussed.

3.4 Explanation Step
The Detection and Simulation step yield a labeled simulated dataset with feature
values within the constraint domain B. The problem now drops into fitting an
explainer g , i.e. a linear boundary in the simulated sample to learn the predictions
of the complex model. Thus, g will be trained on the output of the Simulation step,
(S, f(S)).

In the experiments of this thesis two different linear classifiers 2 will be introduced
as explainers, L2 Logistic Regression and Partial Least Squares Logistic Regression.
We briefly discuss these models in the sections below.

3.4.1 L2 penalized Logistic Regression (Ridge)
The log-likelihood of Logistic Regression can be augmented with a L2 (quadratic)
penalty term, 1

2
λβTβ to encounter supercollinearity which arises when n << p. The

penalty term will restrict the estimates in a constrained (spherical) domain. Mini-
mization of the negative log-likelihood is performed via Newton-Raphson algorithm.
For this thesis we will employ the results of (Rosset, J. Zhu, and T. Hastie 2003)
that for separable data, Logistic Regression with vanishing amount of ridge regular-
ization will give the hard margin SVM solution. Thereby, a fixed penalty of 0.001
is introduced in all experiments.

2When learning the probabilities the corresponding linear regression models are employed.

31



3.5. EVALUATION PROCESSCHAPTER 3. DBA: THEORY AND METHODS

3.4.2 Partial Least Squares Logistic Regression
In 1985, Herman Wald introduced Partial Least Squares (PLS) (Herman 1985),
an alternative version of Principal Component Regression. The algorithm employs
dimensionality reduction to compute the k orthogonal latent variables (principal
components) that maximize correlations with the response. In addition correlations
of the original variables with all components are computed. As a result the variable
weights of the original features are estimated. The choice of k, successfully results
in natural regularization of the model. For classification purposes, two main options
are available: Partial Least Squares Discriminant Analysis and Generalized Partial
Least Squares Regression, concept similar to Generalized Linear Models. For this
thesis the latter is employed.

Under the role of the explainer, PLS is in general able to provide more stable
and accurate estimates of the coefficient vector β, for high dimensional cases where
(super-)collinearity occurs (Herman 1985). The method is very popular in chemo-
metrics where sample size is in general small compared to the dimensionality. This
advantage can be a benefit for an explainer which fits in a small sized simulation
set. This way estimating in high dimensions would be more feasible if we consider
computation limitations. Another advantage of employing PLS as an explainer for
large p is the option of visualization of the dimensionally reduced simulation in the
first 2 computed components (see section 3.6).

3.5 Evaluation process
In this section we will propose a framework for evaluating explanations. The process
applies to probabilistic classifiers, where predicted probabilities are available.

Let β be the local explanation of x0 and assume that f(x0) is the class of ref-
erence. The explanation corresponds to a decision boundary region and β is the
orthogonal vector on the linear hyperplane which approximates it.

It is crucial to explore whether the explanation implies a change of class. Assum-
ing a grid of values we can compute a field of predicted probabilities of the complex
model on the grid. In an optimal case scenario the direction v = − β

||β|| should maxi-
mize the gradient of the field and point-out the fastest way to the decision boundary.
Hence, starting from x0, a step h towards v should decrease P (C = f(x0)|x0).

However it is not clear how large should be the step taken. A very small step
might not produce change in the model’s odds if the local gradient is not very steep,
still the explanation could be a meaningful approximation. Moreover a local change
in the odds does not always imply a meaningful classification approximation, since
the explainer could have learned random fluctuations of the probability field. On
the other hand, a large step might cross the decision boundary, yet lead the point to
the same class: in the direction of the explanation vector, multiple parallel regions
might be encountered, where class labels change periodically (Figure 3.8). As a
result, moving x0 will not produce a change in the odds, however this does not
mean that the region has not been approximated correctly (the green line in Figure

32



3.5. EVALUATION PROCESSCHAPTER 3. DBA: THEORY AND METHODS

Figure 3.8: Illustration of the inefficiency of evaluating explanations with a single step h.
The explained instance x0 is moved towards the explanation direction (black arrow). If
the step is large then x

′
0 could result in the same class when parallel regions are present.

Figure 3.9: Illutration of evaluation procedure through a toy example. The decision bound-
ary (black curve) has been approximated by an explainer (green line) that is associated
with an orthogonal direction v (black arrow). Moving x0 (blue point) towards v with step
h creates the sequence of points xk0, of which the class posteriors can be obtain through
the complex model.

33



3.6. DIAGNOSTICS CHAPTER 3. DBA: THEORY AND METHODS

Initialize: path = {P (C = f(x0)|x0)}
0 < h << 1
x0
0 = x0

for k in 1:N do
1.. xk

0 ←− xk−1
0 − hβ/||β||

2. path←− path ∪ {P (C = f(xk
0)|xk

0)}
end
Result: path

Algorithm 3: Evaluation process

3.8 approximates the decision boundary region sufficiently).
Thus, we pick a small step h and apply the transformation xk

0 ←− xk−1
0 + hv

repeatedly (Figure 3.9). We validate explanations in an iterative process where on
each iteration k, we predict the probability P (C = f(xk

0)|xk
0) (Algorithm 3 ). As

a result, the probability path of x0 is monitored. We argue that this is a safer
approach to evaluate explanations than moving x0 with a single step h or masking 3

like Ribeiro, Singh, and Guestrin 2016 suggest, to avoid pathological cases such as
Figure 3.8. Moreover in the framework we propose, we can draw conclusions about
the linearity of the probability field by plotting the path.

This evaluation process will be employed in Experiment 2 to compare DBA with
LIME. In Experiment 3 (MNIST) the method will be introduced again to evaluate
performance of the three different vertex creation alternatives of DBA.

3.6 Diagnostics
In this final section of the chapter we propose several diagnostic measures that
can provide insight for the performance of the various steps of DBA. There are
many things that we have to consider for the explanation to be trustworthy, such
as simulation class balance, the explainer’s fit and the distance from the decision
boundary. We summarize these measures in the following paragraphs.

3.6.1 Simulation class balance
We define class balance as b = 1

n

∑n
i=1 I(xi), where xi is a convex hull sample, n

the simulation size and I(x) = 1 if f(x) = f(x0) and I(x) = 0 otherwise. That is,
the proportion of simulated points that belong on the same class as the example.
Assuming that we simulate uniformly, a class balance close to 0.5 corresponds to a
(locally) linear decision boundary. A low balance means that most points simulated
are predicted on the opposite class of the example, while a balance close to 1 on the
same class. In general a balance between 0.3 and 0.7 should be considered accept-
able. However an extreme balance can be attributed either to insufficiency of the
simulation process or high non-linearity of the decision boundary (e.g. small over-

3For example, an image can be masked with a filter associated with the explanation to reduce
the intensity of its pixels by a certain percentage.

34



3.6. DIAGNOSTICS CHAPTER 3. DBA: THEORY AND METHODS

fitted regions or multiple parallel regions). Either way an extreme balance implies
that an insufficient fit will follow and explanations should be treated with caution.

3.6.2 Explainer faithfulness
Under the framework in which the explainer learns the labels, the faithfulness is
defined as 1

n

∑n
i=1 L(f(xi), g(xi)) where L(x, y) = 1 if x = y and 0 otherwise, g the

prediction function of the explainer and xi ∈ S. That is the proportion of simulated
cases on which the explainer agrees with the complex model. A high faithfulness
does not always imply a correct result: if the balance of the simulation is close to
0, then a faithfulness of 1 means nothing more than the explainer classifying all
instances in one class because of the unbalanced simulation design. When balance
is close to 0.5 and faithfulness is high it can be claimed that the decision boundary
is locally linear and the explainer approximates successfully.

3.6.3 Distance from the boundary
The distance of x0 from the decision boundary, estimated by d(z, x0) is a crucial
parameter that should be also considered. When the point is close to the decision
boundary it means that we can apply a small variation to force it to change class.
Moreover, the corresponding region will be approximately linear. When the point
lies far away from the decision boundary and the boundary is not globally linear, this
means that multiple regions should be explored in order to capture the complete
picture. To employ the distance from the boundary as a diagnostic measure we
should scale with the average distance between two points in the training set.

3.6.4 Local gradient
The Gateaux derivative of the probability field,

dF (x0; v) = lim
h→0

P (C = 1|x0 + hv)− P (C = 1|x0)

h
(3.2)

can be approximated by (P (C = 1|x1
0)−P (C = 1|x0))/h for a small h. This measures

the effect of moving in the neighborhood of x0 in the direction of the explanation.
Although the local gradient does not always coincide with the average gradient of
the whole path it is useful to know if it does. It is argued that h should depend on
dimensionality, since distances become larger as p increases. In the experiments we
apply the rule h = 0.001p.

3.6.5 Dimensionally reduced explainer
As discussed in section 3.4.2, in high dimensional cases Partial Least Squares will
dimensionally reduce the simulation, such that the correlation with the log-odds of
the predicted classes is maximized. As a result, a visualization of the first two com-
ponents is possible. We may color the projected points with the predictions of the

35



3.7. OVERVIEW CHAPTER 3. DBA: THEORY AND METHODS

complex models and inspect if the process simulated a separable uniform simulation
indeed. This will be a visual assessment of the algorithm in high dimensions. The
dimensionally reduced linearization (projected line) can also be plotted, since the
effect of each component in the odds is computed by PLS.

3.6.6 Proportion of Variance Explained
A measure of fit calculated by PLS is R2

Y , i.e. the proportion of variability of the
response Y that a number of components can explain. For instance, when two
components result in R2

Y = 1 it will imply that these components explain 100%
of the variance of Y . An explainer which produces high values for this measure
has identified the directions of separation succesfully. Whether these directions are
correct or not should be evaluated with processes such as Algorithm 3.

3.7 Overview
In this chapter we illustrated the fundamental principles of Decision Boundary Ap-
proximation framework. In Detection step the algorithm bisects the K-closest rivals
with x0 to obtain z, an estimate for the closest decision boundary point of x0 (Algo-
rithm 1). Simulation step creates 2p vertices by adding/subtracting d(z, x0) on each
coordinate of z. It then employs convex hull sampling to simulate data in the hyper-
polygon defined by the vertices (Algorithm 2). This will create a sample centered
on the most relevant region of x0. After obtaining the predictions of the complex
model on the simulation, an explainer fits a linear hyperplane to approximate the
decision boundary. The whole process is summarized in Algorithm 4.

In the next chapter, experiments will test the assumptions made in this chapter
as well as the feasibility of the algorithm in practice.

36



3.7. OVERVIEW CHAPTER 3. DBA: THEORY AND METHODS

(I) Initialization (Detection step);
Rk(x0): the K-closest rivals of x0

for i in 1 : K do
ai ← Predictive Bisection of Ri(x0) with x0

end
z = argmin

i
{d(ai, x0)}

(II) Initialization (Vertex creation);
V = ∅
for i in 1 : p do

v1 = v2 = z ;
v1[i] = z[i] + d(z, x0);
v2[i] = z[i]− d(z, x0);
V = V ∪ {v1, v2};

end
(III) Initialization (Simulation step);
S = {z, x0}
for k in 1 : B do

1. Sample u1, u2, ..., up−1 ∼ U(0, 1) and sort in increasing order.
2. Set u0 = 0 and up = 1
3. Set wi = ui − ui−1

4. Set x =
∑

wiVi

5. S = S ∪ {x}
end
(IV) Predict S →f(S)
(V) Fit explainer
Result: β = argmin

β

{L(βTS, f(S))}

Algorithm 4: Decision Boundary Approximation

37



Chapter 4

Experiments

In this chapter the algorithm will be tested through a series of experiments of in-
creasing dimensionality. We begin with a simple 2-dimensional case (Experiment
1) followed by a comparison with LIME for low dimensionalities (Experiment 2).
The algorithm will be also tested for sparse high dimensional data in Experiment 3
(MNIST) and Experiment 4 (Naive Bayes SMS classification).

4.1 Experiment 1 - A 2D simulated case
In this experiment the algorithm will be tested in a toy 2-D simulated case where
the quality of the explanation can be assessed visually. Experimental purposes are
summarized as follows:

• Illustrate the basic operations of the algorithm for boundaries of various com-
plexities.

• Show a visual representation of the solutions to conclude whether explanations
are meaningful.

• Investigate the effect of boundary complexity on stability of the estimates,
class balance of the simulation and faithfulness of the explainer.

• Illustrate pathological cases where the algorithm fails to output a meaningful
solution.

4.1.1 Data
The algorithm is tested on the moons data simulated with the use of scikit-learn
package in Python 3.7. This results in a toy 2-dimensional dataset with 200 obser-
vations of two classes (Figure 4.1). The population of each class is distributed as
a moon, thus a non-linear boundary is in general expected to outperform a linear
choice.

38



4.1. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

Figure 4.1: Simulated data of the experiment. The “moon” shape of the classes will result
in general into curved boundaries.

4.1.2 Classifiers
An SVM with a radial kernel and three different k-nearest neighbor classifiers (k =
15, k = 10, k = 1) fit in the moons simulated set.

The smooth SVM boundary contrasts to the non-differentiable K-NN solutions
of which the complexity increases with decreasing K. In any case all resulting bound-
aries are non-linear and thus the explanation will vary among instances.

4.1.3 Experimental set-up
In order to fit the experimental purposes, 10 representative instances will be ex-
plained for all models. For each instance, an estimate for the expected coefficient
values and their standard error will be obtained with 100 Monte Carlo repeti-
tions. The class balance and faithfulness on each replicate are also recorded. For
studying stability with varying simulation size Nsim, the whole process runs for
Nsim ∈ {50, 100, 500, 1000, 2000, 4000, 6000}.

Vectorized Predictive bisection runs on the 50-closest rivals with a tolerance of
ϵ = 10−6. For this experiment a Ridge classifier will be employed as an explainer
with a fixed penalty λ = 0.001 (see section 3.4.1).

39



4.1. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

Figure 4.2: Illustration of DBA explanation procedure through a toy 2-D example. The
example to be explained (green) is bisected with its 50 closest rivals to yield the closest de-
cision boundary point (”darkblue”). Sampling from the convex hull of the vertices(square
points) results on the simulation set which is labeled by the complex model (”red” and
”blue”). The green segment represents the decision boundary linearization learned by the
explainer.

4.1.4 Results
Basic function - Illustration

Figure 4.2 depicts the resulting process of explaining one of the 10 instances (green
point) for the SVM case. To enhance visualization, the training set is not shown.
Detection step returns an approximation for the closest decision boundary point z =

(z1, z2) to this instance (darkblue). The square points represent the four simulated
vertices i.e. V1 = (z1 ± r, z2) and V2 = (z1, z2 ± r), where r the euclidean distance
d(z, x0). Sampling from their convex hull results on the simulation shown with light
red and light blue, where color represents the predictions of the complex model.
Eventually, the explainer learns a linearization (green line) that minimizes a loss
which involves the complex model’s predicted labels.

The plot makes clear how the algorithm operates: it attempts to linearize a part
of the decision boundary which is returned as relevant from the Detection step. That
is not (always) in agreement with LIME approach which maximizes the faithfulness
in the neighborhood, rather than a ball of relevance. Thus, DBA explanation is in a
sense biased towards the direction which minimizes d(z, x0), rather than the average
discrimination rule.

40



4.1. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

Figure 4.3: Monte Carlo estimates for the two coefficients of the SVM decision boundary
linearization for the illustrated example. With a small simulation size the ordering of the
estimates is not guaranteed. Increasing the size stabilizes the solution.

Estimates

The slope of the linearization shown in the previous visualization, implied that
for this instance, feature X2 is more important than X1 although both features
significantly contribute to the classification result. In this paragraph we will show
how stable are the estimates for this specific case as Nsim increases.

The boxplot in Figure 4.3 shows the coefficient estimates for both features.
The plot implies that although the estimate range is reasonable for all sizes, for
Nsim < 100 the actual ordering of the features is not guaranteed (whiskers of the
boxes overlap). For Nsim > 100 estimates stabilize on the true values with a rea-
sonably small standard deviation. Sampling more than 4000 points does not seem
to significantly increase performance for this case. It is concluded that for this in-
stance, classifier and dimensionality, increasing simulation size results in increasing
stability of the estimates. Simulation sizes 100 < Nsim < 1000 seem to be sufficient
for providing a representative explanation.

Effect of complexity

Illustration of the previous paragraph has provided evidence to support that DBA
is capable of successfully locally linearizing the smooth Supported Vector Machine
decision boundary. It is of interest to explore whether this holds for less smooth de-
cision boundaries where the class balance of the simulation is not always guaranteed.
Figure 4.4 shows explanations for 3 explained cases for all models (Nsim = 1000).
It is clear that for these cases the explanation linearizes a relevant region of the

41



4.1. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

(a) Radial SVM. (b) 15-Nearest Neighbors.

(c) 5-Nearest Neighbors. (d) 1-Nearest Neighbors (overfitting).

Figure 4.4: Decision boundary linearization of the SVM and the 3 versions of KNN for
the 3 representantive points (Nsim = 1000). DBA seems to capture meaningful solutions.

42



4.1. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

Figure 4.5: Average (over 10 explained instances) standard deviation of the estimates
produced by DBA for the 4 models. 15-NN and 5-NN produces slightly more unstable
results than SVM and 1-NN. Stability increases with increasing simulation size for all
cases.

decision boundary and attempts to approximate the complex boundaries. However
the approximation of spiky regions that appear in the Nearest Neighbors models is
potentially unstable especially for the cases shown as green and orange. For the
magenta case the boundary of all classifiers is locally linear and easier approximated
by DBA. More interestingly for the green point of 1-NN, DBA has explained a small
region caused by overfitting. However an overfitted classifier is not desirable. If
features had a natural meaning, then comparing the explanations of this point for
all models might contribute to an empirical model selection.

For a more formal stability evaluation, the average (over all 10 instances) stan-
dard deviation of the estimates is calculated for all models and sample sizes. Results
are summarized in Figure 4.5. All lines decrease exponentially fast with increasing
simulation size to converge towards zero, indicating that large Nsim, yields on av-
erage stable estimates. Surprisingly, the lines for SVM (brown) and 1-NN (green)
coincide and are steeper compared to the 15NN (blue) and 5NN (pink). This could
be attributed to the fact that the two latter appear more spiky local regions than
the two former (Figure 4.4). 1NN might yield in general a more complicated deci-
sion rule, however in many cases locally linear. For a more concrete conclusion the
experiment should be repeated for a larger number of explained instances.

Balance and Faithfulness

The local non-linearity indicated in the above paragraph can be also highligted
if one studies the relation between simulation size and balance/faithfulness of the

43



4.1. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

0.85

0.90

0.95

0 2000 4000 6000

Simulation size

F
a

it
h

fu
ln

e
s
s

Classifier

SVM

15−NN

5−NN

1−NN

(a) Average Faithfulness

0.54

0.55

0.56

0.57

0.58

0 2000 4000 6000

Simulation size

B
a

la
n

c
e

Classifier

SVM

15−NN

5−NN

1−NN

(b) Average Class balance.

Figure 4.6: Average (over 10 instances) class balance of the simulation and faithfulness
of the explainer for all models. Grey areas represent confidence intervals estimated with
100-MC replicates. Both measures score on average better values for SVM compared to
the K-NN models.

algorithm. In Figure 4.6a the average faithfulness over the 10 explained instances is
plotted along with its Monte Carlo (MC) estimated standard deviation. Linearizing
the smooth SVM results on average in more faithful solution than Nearest Neighbors,
followed by 15-NN. On the other hand for 1-NN case results are more faithful than
5-NN for these 10 instances. Similar conclusion is drawn from Figure 4.6b where
the class balance of the simulation is shown in the same manner. Simulation for the
SVM is more balanced (closer to 0.5) than NN models.

4.1.5 Pathological cases
The previous paragraphs suggest that DBA can provide meaningful explanations for
some cases. We have shown that the algorithm can also provide stable results for
1-NN despite its overfitted boundary. However this is not always the case: overall
such boundaries is possible to be explained but outlying cases might arise. In this
section a pathological case will be illustrated and discussed.

Figure 4.7 shows a case where a point lies far away from the 1-NN decision bound-
ary while multiple small regions lie in between. This results in a highly unbalanced
simulation set (class balance 0.11) with a high faithfulness (0.89). Specifically, the
explainer has classified all points as blue in order to maximize the agreement with
the complex model. That is not a meaningful explanation, however the low balance
can indicate the plausibility of such an effect to be encountered. This illustrates
that explanations of low balance should not be trusted, not even if they have high
faithfulness.

44



4.1. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

Figure 4.7: Illustration of a case where DBA fails to capture a meaningful solution. The
explanation refers to an instance which lies far away from the decision boundary, while
multiple small regions exist in the space between. The unbalanced simulation design leads
the explainer to classify all points in one class.

45



4.1. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

4.1.6 Experiment overview
This experiment has revealed the basic operation of DBA through a toy 2-dimensional
case. It can be concluded that increasing complexity of the boundary affects the
stability of the explanation on a small degree, however the algorithm can provide
faithful local explanations for cases where the decision boundary is locally linear.
When multiple regions lie around the point the explanation is not complete, yet it
refers to a specific direction i.e. it compares the classification result of x0 with a
specific subset of rivals. The illustrated pathological case shows that points that lie
far away from the boundary when multiple small regions lie in between, explanations
can be problematic. This can be indicated by an unbalanced simulation design in
combination with a high resulting faithfulness. Overall, the algorithm behaves on
average rather stable for this toy case.

46



4.1. EXPERIMENT 2 CHAPTER 4. EXPERIMENTS

4.2 Experiment 2 - A low dimensional comparison
with LIME

In this experiment two different versions of DBA will be compared with LIME
algorithm for various low dimensionality binary classification problems. In sections
4.2.1, 4.2.2 the data and models used in the experiment are presented respectively.
The evaluation procedure is discussed in section 4.2.3, while results will be illustrated
in section 4.2.4.

4.2.1 Data
For the purposes of the experiment the following datasets were considered:

• Titanic, a well known Kaggle dataset 1 containing the features of 891 pas-
sengers of the Titanic disaster, labeled by survival status (0 not survived / 1
survived). Since DBA operates with numerical features, categorical features
were omitted. This resulted in a toy dataset of 4 features: “Age”, “Passenger
Class”, “Number of Siblings/Spouses” and “Fare”, where the ordinal factor
“Passenger Class” was treated as continuous.

• Magic, a UCI Machine Learning repository dataset 2 produced by Cherenkov
gamma telescope which captures gamma radiation signals which leak the atmo-
sphere. The telescope collects image data repeatedly pre-processed through
Principal Component Analysis to produce an elongated ellipse. Eventually
each measurement is represented by 10 features of this ellipse such as “Prin-
cipal Axis”, “Elongation” etc. The characteristic parameters of the ellipse are
used for discriminating “gamma” signals from “background” radiation.

• Breast cancer, another dataset 3 from UCI ML repository, of a binary clas-
sification task which involves classifying malignant over benign state of a cell
nuclei, based on image data (569 samples). Feature extraction yields a set of
30 numerical predictors representing characteristics of the nuclei.

All features of the aforementioned datasets where standardized, by subtracting
the average and dividing by the standard deviation of the feature. In the next
paragraph the trained classifiers are mentioned along with their parameters.

4.2.2 Classifiers
For the purposes of this experiment, the following classifiers will be trained and
explained.

1https://www.kaggle.com/c/titanic
2https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope
3https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

47



4.2. EXPERIMENT 2 CHAPTER 4. EXPERIMENTS

Figure 4.8: A toy example of a complex Random Forest decision boundary. In such cases
multiple parallel regions (sandwitch regions) or small radial regions (holes) might appear.

• Logistic Regression, one of the simplest and most interpretable classifiers,
to investigate whether the algorithms can recall with precision the (available)
solution of a linear boundary.

• Random Forest, a classifier with a rather complex boundary structure. For
cases where classes highly overlap holes and sandwich regions might be en-
countered (Figure 4.8). In this structure, a prediction of an instance might be
a pooled result of multiple surrounding boundary regions, rather than a single
region. The variables sampled by each tree were tuned with 5-CV in all cases.
The number of trees was set to 100 for all datasets.

• Neural Network, a more complex structure which can fit boundaries of
various types. All networks were employed with a single hidden layer. Number
of units, learning rate and decay parameter were fine-tuned with 3 fold cross
validation.

One parameter that should be introduced, is the average degree of certainty of
the classifier, that is the average predicted probability for each class. A classifier
which is highly uncertain about most of the points might be associated with multiple
decision regions: for boundaries such as Figure 4.8, it is more likely for a point to
be closer to a decision boundary region, eventually making the classifier less certain
for most of the instances. It is of interest to study how the behavior of different
explainers varies under different levels of certainty.

4.2.3 Experimental set-up
The experiment runs the following processes for all three datasets:

48



4.2. EXPERIMENT 2 CHAPTER 4. EXPERIMENTS

Explanation process After training, predicted probabilities of all instances from
the positive class, are obtained for all models. For each classifier, we uniformly
sample 100 of these positive outcomes and produce their explanations with LIME
and two different versions of DBA, one in which the explainer learns the classifiers’
labels and one that learns the predicted probabilities. The reason for employing
these two versions, is to investigate whether learning probabilities on the decision
boundary differs substantially than learning labels and compare with LIME which
learns probabilities.

For LIME we use the full feature set (no feature selection) and skip data dis-
cretization to increase accuracy of the estimates. The kernel width σ was set to the
default value that LIME authors suggest in their software implementation 4, that is
0.75
√
p. Simulation is performed through sampling from the center of mass of the

training set (see section 2.3.3, paragraph “Numerical features”). DBA runs bisec-
tion with 100 rivals, uniform convex hull sampling and a ridge explainer with small
penalty (λ = 0.001). In probability version, the models’ class posteriors are directly
regressed while when learning the labels a logit link is applied. All explainability
algorithms run with 1000 simulated samples per explanation (re-sampling on each
explanation).

Evaluation process For evaluating the explanations produced by all methods, we
employ the evaluation procedure described in section 3.5. We move each explained
instance iteratively with a small step towards the explanation direction and on each
iteration we let the classifier to predict its class probability. In this way, we monitor
the probabilities on the path of the instance towards the decision boundary where
they are expected to decrease. Eventually a visual assessment will be made after
averaging the paths of all explained instances for each algorithm. Moreover an
approximation of the local gradient in the direction of the explanation is reported
(section 3.6), to measure the effect of moving in the neighborhood of x0.

Regarding the step h of the evaluation process, it is argued that it should depend
on dimensionality, since Euclidean distances become larger as p increases. We fix
the number of iterations to N = 100 and set h = 0.01 for titanic and magic, while
h = 0.1 for breast cancer, resulting in one unit step for the two former and 10 unit
steps for the latter.

The primary aim of this procedure is to investigate if the explanations produced
by the algorithms result on average in a significant (but also meaningful) change of
the class posterior and compare the behaviour of DBA with LIME’s by means of
explainability nature and accuracy of the estimates. More accurate estimates will
lead to a faster change of class (steeper path). Solutions that do not result in class
change but merely model random local probability fluctuations should be treated
with caution. In addition, the experiment aims to show how the behaviour of such
algorithms varies with respect to different levels of the classifier’s certainty (bound-
ary instances, mediocre certainty, high certainty), as well as different boundary and
data structures.

4https://github.com/marcotcr/lime/blob/master/lime/lime_tabular.py

49



4.2. EXPERIMENT 2 CHAPTER 4. EXPERIMENTS

To introduce a benchmark, we include in the process a move towards a randomly
sampled direction to infer whether the explanations are on average (significantly)
better than a random guess.

4.2.4 Results
Figure 4.9 shows the average probability path over all instances for each model and
data. The dotted black lines in the plots indicate the class cut-off point (0.5). An
overall impression is that both versions of DBA (“red”: labels, “green”: probabil-
ities) reach the dotted line faster than LIME (“blue”) and significantly differ by
random guess (“black”).

Moving towards the decision boundary of Logistic Regression, produces an ap-
proximately linear decrease of the class probabilities up to the boundary for all cases.
The gradient of the path shows no differences for DBA and LIME which successfully
recover the coefficients of the model. A random explanation does not produce on
average a decrease in the odds, a fact which increases trust on the explanations.
This result is in an agreement with the linearity of Logistic Regression’s decision
boundary which leads to a smooth decrease of the probability field, while moving
towards the boundary.

Results for Random Forest vary by data case. The paths on the titanic RF prob-
ability field appear to be rather unstable in comparison with the rest of the cases.
That is possibly due to the relative high complexity of the model which (over)fits the
4 dimensional dataset. In order to maximize its accuracy, the forest seems to have
fitted multiple regions resulting in a complicated decision boundary. Thus, moving
towards a direction in the feature space will result in an unstable change of the class
posterior due to the effect of the multiple surrounding regions. The corresponding
plot implies that explanations provided by all algorithms do not differ significantly
by the random explanation: if the decision boundary lies in multiple directions,
sampling one at random would on average decrease the odds (for instance consider
Figure 4.8). However, DBA still manages to produce on average a faster change of
class than LIME, although after crossing the boundary the probabilities stabilize.
It is thus plausible that DBA explains closer but smaller regions than LIME which
averages the effect of all regions. In magic dataset the forest seems to behave more
stable in variations towards the explanations’ suggestion. A random guess does not
produce a change of class for this case, although on average it still manages to de-
crease the odds. DBA produces reasonably steeper paths than LIME implying that
estimates are more accurate. Finally for breast cancer data, DBA and LIME share
similar behaviour which is significantly better than random.

Neural Networks results favor DBA for all cases, since it suggests paths that on
average, lead the points faster to the decision boundary. More interestingly, results
suggest that explanations produced by LIME for breast cancer’s data are on average
worse than assigning random explanations. That is due to the fact that, predictions
of this network appear quite insensitive to changes: the opinion of the network is
not going to change much unless a meaningful variation is applied (see section 2.3.5

50



4.2. EXPERIMENT 2 CHAPTER 4. EXPERIMENTS

Figure 4.9: Average predicted probability path of 100 instances, produced by following
the direction of the explanation vector for each instance. Overall both versions of DBA
(“red” and “green”) produce a faster change of class than LIME (“blue”) and a random
guess (“black”). For Logistic Regression all lines apart from random coincide. The dotted
line represents the threshold where class changes (0.5).

51



4.2. EXPERIMENT 2 CHAPTER 4. EXPERIMENTS

● ● ● ●

● ● ●

●

●●

●

●

●

●

●

●
●

●
●
●

●●

●
●
●

●●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●
●●
● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●
●●

●●
●●
●

●

●

●
●

●●

●

●

Logistic Regression Random Forest Neural Network

Low Mid High Low Mid High Low Mid High
−0.050

−0.025

0.000

0.025

0.050

0.075

−20

0

20

40

60

−0.1

0.0

0.1

0.2

Classifier certainty

Lo
ca

l G
ra

di
en

t
Titanic 

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●

●●●●●

●

●

●

●● ●●●

●

●●●●

●

●

●

● ●

● ● ●●

Logistic Regression Random Forest Neural Network

Low Mid High Low Mid High Low Mid High

−0.1

0.0

0.1

0.2

0

5

10

15

−0.2

0.0

0.2

0.4

Classifier certainty

Lo
ca

l G
ra

di
en

t

Magic 

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●
●

●

●●

●
●●●

●
●
●

●

●

●

●

●●
●
●●●

●

●● ●●
●

●

●● ●●●
●
● ●●●●●●●●●

●

●●

●

●
●

●

●

●

● ●

●
●

●

●

●

●●

●

●●●●●●
●
●
●
● ●

●
●
●
●
●●●●●

●

Logistic Regression Random Forest Neural Network

Low Mid High Low Mid High Low Mid High

0

1

2

0

20

40

60

−4

−2

0

2

4

Classifier certainty

Lo
ca

l G
ra

di
en

t

variable DBA_pr DBA_l LIME Random

Breast Cancer 

Figure 4.10: Estimates of the gateaux derivative for three different levels of classifier
certainty (Low, Medium and High). On average, for low and medium classifier certainties,
both versions of DBA suggest directions which lead to a more efficient class change than
LIME’s.

52



4.3. EXPERIMENT 3 - MNIST CHAPTER 4. EXPERIMENTS

Point3). On the other hand, the labels version of DBA clearly outperforms all other
methods, resulting in the steepest decrease. LIME weights instances in the neigh-
borhood of the example exponentially and if the neighborhood’s gradient is small,
then the solution cannot be properly captured. However, if we sample on a relevant
deision boundary region, the probabilities can be learned more efficiently and as
a result the explanation of the discrimination rule would be more representative.
Nevertheless the results on this network suggest that approximating the decision
boundary by learning the labels is the most efficient approach among the others.

Finally, Figure 4.10, shows the distribution of the approximated local gradients
over the classifier’s certainty. This reflects how steep is the change in the predictions
in the neighborhood of x0. Although for some cases the medians of the gradients do
not statistically differ, DBA suggests - on average - directions with a steeper gradi-
ent in the neighborhood. For points closer to the boundary (Low certainty), DBA
provides explanations which correspond to a more extreme local gradient (more
outliers and larger whiskers in the plot). Moreover, the aforementioned insensitiv-
ity of the network becomes now more transparent, since the gradient range in the
neighborhood is much smaller compared to the corresponding forests’. It should be
noted that DBA outperforms LIME for cases where the gradient is not that steep,
since it approximates the decision boundary rather than minimizing the loss in an
insensitive neighborhood.

4.2.5 Experiment overview
This experiment has revealed that for the low dimensional cases illustrated here,
both DBA versions on average either outperform significantly LIME, or behave
statistically equal depending on how steep the probability field can be. LIME can
be adapted by varying parameters such as kernel width, however as mentioned in
Chapter 2 (section 2.3.5, Point 2), it is not clear what should be the optimal width for
the kernel since this may vary for different classifiers, data, but also single instances.

4.3 Experiment 3 - MNIST
Although low dimensional cases are useful for examining the basic functions of the
algorithm, it is not a given that the behaviour shown in the previous experiments
will appear for high dimensional cases and more complicated data structures. The
concept of “closest” becomes more and more abstract when dimensionality increases
and it is of great interest to examine how this algorithm reacts in higher dimensional
spaces.

This experiment aims to provide insight on the following topics.

• Test the algorithm in a high dimensional case with grey-scaled images, where
the coefficient estimates can be visualized on the image.

• Compare the default vertex creation method with the two different alternatives

53



4.3. EXPERIMENT 3 CHAPTER 4. EXPERIMENTS

discussed in section 3.3.1. Study the impact of introducing superpixels in the
simulation process.

• Employ Partial Least Squares as an explainer to estimate in a high dimensional
space through dimensionality reduction. Visualize the dimensionally reduced
simulation and explainer to evaluate the explanation process.

• Extract visual intuitive interpetation to examine the nature of the explana-
tions.

In order to research these topics, the following data (4.3.1), classifier (4.3.2) and
experimental set-up (4.3.3) are considered.

4.3.1 Data
In this section the case of MNIST data 5 is considered, in an attempt to explain
the predictions of a neural network, trained for a simple binary classification task:
discriminate between ”1” and ”4” handwritten digits, based on their pixel intensity.
This is a rather simple task of well separable sparse data. In fact, each digit lies on
a separate lower dimensional manifold, since most of the pixels in an image are zero
and the position of the zero elements differ from case to case.

Data consist of 14,701 grey-scaled 28 × 28 images, resulting in a 1-dimensional
array of 784 entries. Thus, each image is represented by 784 features of which the
majority is zero (sparse data). Features are normalized with the maximum pixel
intensity (255) so that their values fall in the interval [0, 1]. A randomly drawn class
balanced portion of 20% of the data is assigned as test set, while the rest is used to
train the following network.

4.3.2 Classifier
An artificial neural network with one hidden layer is trained on the aforementioned
MNIST subset. The learning rate and the optimal number of neurons in the hidden
layer (5 neurons) was estimated through 3-fold cross validation. The decay param-
eter was set to 0. Hidden units employ the sigmoid function to transform the input
and model non-linear relationships.

The classifier performs with great accuracy measures for this relatively easy task
misclassifying only 4 test examples (99.8% test accuracy). The reason of this high
performance is the well separability of the data.

4.3.3 Experimental Process
The experiment is divided into two main parts; first part aims to test and illustrate
the technical details of the algorithm and compare three different vertex creation
methods. The second part of the experiment has the purpose of interpreting the
network with DBA and shed light on its prediction rule for misclassified instances.

5http://yann.lecun.com/exdb/mnist/

54



4.3. EXPERIMENT 3 CHAPTER 4. EXPERIMENTS

For the first part of the experiment a single instance is considered and the three
steps of the algorithm are illustrated in a close up analysis of this instance. DBA
runs three times, each one with a different vertex creation set-up. The three methods
are summarized as follows:

Method 1 - Default Each feature will map into two vertices, z ± d(z, x0) which
lie on the surface of the ball B(z, d(z, x0)). As dimensionality increases it is expected
that sampling under this set-up will result in a simulation set close to the center z

(decision boundary point).

Method 2 - Distant vertices Same as Method 1 each feature will map into two
vertices. However in this case each pair will be set as z ± d(z, x0)

√
p, to scale for

dimensionality, as discussed in section 3.3.1. This set-up aims to investigate the
extent on which the explanation is affected by sampling more uniformly within the
ball of relevance, compared to the default method.

Method 3 - Superpixel vertex creation In this version the detected decision
boundary point is segmented through SLICO method (Bakkari 2015). The number
of superpixels chosen depends on the user preference and different choices can result
in different explanations. In this experiment

√
784 = 28 superpixels are employed.

The value of each batch is set such as the vertices lie on the ball of relevance (see
section 3.3.1). Thus all features within a certain batch are varied simulatenously to
create the vertices. As a result, the samples will be convex combinations of vertices
resulted by varying batches of pixels rather than single pixels. Hence PLS will then
estimate each batch as a whole due to the inherent correlations within each batch.
The extent of which the explanation differs from the two other methods will be
studied in the first part of the experiment.

For the second part of the experiment we explain misclassifications. The network
misclassifies in total only 4 instances from the test set which are explained all via
DBA under the default set up (Method 1).

In both parts the detection step of the algortihm runs with 1000 closest rivals
and a tolerance equal to 10−9. In simulation step 5000 samples are drawn from the
convex hull of the vertices created by each method. Partial least squares runs with
a (fixed) number of two components in all experiments to regularize the solution.

4.3.4 Results - Explaining a single prediction
Figure 4.11 (top left corner) shows a 1 that is accurately predicted by the network.
Next to it, its 7 closest rivals are shown. Similarity in this case, is based on Euclidean
distance, i.e. according to pixel intensity squared differences of two images. On
the top left corner of each image the predicted probability P (C = 1|X) is given.
The network predicts with very high certainty the corrects labels and successfully
discriminates these points. A qualitative interpretation can be drawn by visually

55



4.3. EXPERIMENT 3 CHAPTER 4. EXPERIMENTS

Figure 4.11: The example to be explained (top left image), next to its 7 closest rivals. The
number on the top left of each image represents the predicted probability of being ”1”.
Images do not look very similar and the network discriminates them with high certainty.

(a) Example (b) DB point. (c) Rival.

Figure 4.12: The example (left) opposed to the rival (right) that results in the closest
decision boundary point (middle).

comparing these cases, however it is not clear which features contribute to each class
exactly. In this section, DBA will be applied to extract the coefficient vector which
will imply the explanation of this single instance.

Detection step

Detection step returns the decision boundary point depicted in Figure 4.12b. That
point represents an (initial) estimate for the fastest way to force the instance change
class. In Figure 4.12c the corresponding rival is shown. Comparing this rival with
the rivals of Figure 4.11, it can be said that the similarity with the example is
somewhat smaller, yet the bisection procedure results in a closer decision boundary
point.

56



4.3. EXPERIMENT 3 CHAPTER 4. EXPERIMENTS

Simulation step

Figure 4.13a shows the three different types of vertices, one for each of the three
methods. It should be noted that in order to lie on the surface of the ball, the
resulting vertices may have pixels with values out of the the data range (< 0 or
> 1). For instance the depicted vertex for method 1 has values equal to the decision
boundary point’s in all entries apart for one on the top right which is equal to 2.8.
From this figure one can understand how the three methods differ: Method 1 and 2
increase/decrease single pixels of the image while Method 3 superpixels. Method 2
results in vertices further away from the decision boundary point (the value of the
black pixel equals 78.4). The impact of each method can be seen in Figure 4.13b
where a simulation example is shown. Method 2 results in samples that are less
similar to the decision boundary point than Methods 1 and 2. It seems that Method 1
results is samples that sligthly vary, however since the classifier is in state of complete
uncertainty a tiny variation is enough to produce a change in the odds. Histograms
of Figure 4.13c further support this argument since the predicted probabilities of
the samples of Method 1 actually (almost) uniformly distributed across the interval
(0,1). Method 3 produces samples with more extreme probabilities and Method 2
even more. It can be argued that the default method simulates closer to the decision
boundary than the rest of the methods. In the next paragraph, the impact of this
result on the final explanation will be explored.

Explanation step

For all cases the two components of PLS explain more than 90% of information of
the whole feature space. Partial Least Squares estimates are plotted on Figure 4.14.
Blue regions of the image represent features that increase the odds towards 4 while
red towards 1. We can observe that the estimates between methods differ, however
the directions of importance are more or less maintained.

More specifically estimates of Method 1 and 2 differ only by intensity, since
all estimates have the same sign. Hence, normalizing the explanations results in
(approximately) the same coefficient vector. Introducing superpixels (Method 3)
seems to drop the accuracy of the approximation since each batch averages the
effect of all single pixels. Thus, if the effects within a batch cancel, the estimate of
the batch will be close to zero.

Figure 4.15 depicts the projections of the simulation colored by predicted label.
The black point represents the projection of the example, while the green line the
dimensionally reduced explainer. It can be said that indeed Method 2 samples more
uniformly within the ball of relevance, while the default method very close to the
decision boundary. The behaviour of Method 3 lies somewhere in between. We also
notice that the simulation is in all cases separated by the network’s boundary with
a class balance close to 0.5 and high faithfulness (about 0.9 for all cases).

We may conclude that the three methods differ on simulation nature however
the explanation agrees by means of interpretability: the network classifies this digit
as 1 because of high intensities on its bottom tail and head and low intensities on

57



4.3. EXPERIMENT 3 CHAPTER 4. EXPERIMENTS

(a) Vertex example

(b) Simulation example.

(c) Histogram of predicted probabilities of simulation.

Figure 4.13: Comparison of simulation results for the three different vertex creation meth-
ods. Method 2 sets distant vertices to sample more uniformly in the ball of relevance.
Methods 1 and 3 simulate instances very similar to the decision boundary point. The
histograms show the distribution of the predicted probabilities of the simulation. Method
1 samples points closer to the boundary than the two other methods, however the sample
is class balanced and separable.

58



4.3. EXPERIMENT 3 CHAPTER 4. EXPERIMENTS

Figure 4.14: Explanations estimated by DBA for the three different vertex creation meth-
ods. Increased blue regions are associated with increased odds towards predicting 4 while
red 1.

Figure 4.15: Projections of the explained example (black), simulation set (red and blue)
on the first two components computed by PLS. Green line represents the projection of the
explainer.

the left blue region which increases the odds towards 4. If the top edge of this 1 was
considerably closer to the bottom (e.g Figure 4.11, fifth rival) the classifier would
have classified as 4. In the next paragraph we will produce a more detailed picture
of how class changes if we apply a move towards the explanation direction.

Evaluation

To evaluate whether the explanations reflect reality we may move the example to-
wards the direction of the coefficient vector and inspect the class posterior. In a
process similar to Experiment 2, for each vertex creation method we assume the
probability path of the instance with a step of 0.1 (Figure 4.16)). The plot sug-
gests that methods 1 and 2 result in approximately the same path with Method 2
performing slightly better. Both methods change the class after 3.5 unit steps. On
the other hand, superpixel vertex creation results in a slower change of class (6 unit
steps), due to the loss of information.

In a second attempt for evaluation Figure 4.17a shows the masked example (only
non-zero entries varied) according to the explanation. This can be compared with
Figure 4.17b where only zero entries are increased and Figure 4.17c where both zero
and non-zero entries are altered. The probability shown (blue number on the top
left of the image) implies that the posterior changes more with adding zero entries
than masking non-zero elements at the same extent. This is further evidence to

59



4.3. EXPERIMENT 3 CHAPTER 4. EXPERIMENTS

Figure 4.16: Probability paths for the three methods employed. x axis corresponds to the
step taken towards the direction of the explanation. Method 2 (green) slightly outperforms
Method 1 (red). Method 3 (blue) results in a slower change of class.

(a) Masking non-zero entries. (b) Adding zero entries. (c) Both.

Figure 4.17: Resulting images after increasing or decreasing pixels of the original image,
according to the feature weights estimated by DBA. On the top left corner of each image
P (C = 1|X) is given. Left image shows masking of only the non-zero entries, in contrast
to the middle image where only zero entries of the image are increased. On the right,
values are increased and decreased according to the full explanation. In all cases the
image changes class.

60



4.3. EXPERIMENT 3 CHAPTER 4. EXPERIMENTS

support that sampling by dropping only non-zero entries (LIME) is not sufficient
to provide a complete local explanation when data are sparse. Considering both
increasing and decreasing all entries results in a more complete picture.

4.3.5 Results - Explaining misclassifications
To further understand the behaviour of the network the four misclassified examples
of the test set are explained. These cases are shown in Figure 4.18, along with their
closest decision boundary point, the corresponding rival and their explanation. It is
interesting to notice that all cases lie close to the decision boundary since the closest
DB point looks very similar to them.

Case 1 is a 4 with an extreme angle classified as 1 by the network. The expla-
nation implies that the reason is mainly its extreme left part which ends up in a
red region (important for 1). If the digit looked more alike its corresponding rival
or had less intensity in this region it would have passed as 4.

Case 2 is a 1 with a random scribble appearing to the right of the image. It turns
out that this scribble increases the odds of the opposite class. More importantly the
right skewness of this digit results in more pixels in the middle, a region important
for predicting 4. Moreover there is also lack of the bottom tail which would increase
the probability of being 1.

Case 3 represents a misclassified 4 due to its extreme slope. In the training set
there are multiple 1 digits that share this extreme slope (e.g the rival of case 4) and
the network seems to have associated this slope with class 1. The example should
look more like its corresponding rival in orde to be classified correctly, or have less
intensity on some of the red regions.

Finally case 4 is a misclassified thin 1, which it would pass as 1 if it only were
fatter. It turns out that its non-zero entries favor 4.

Overall it can be said that this network classifies 4 based on middle parts of the
image while 1 based on top and bottom. The exact way depends on the decision
boundary region and differs for each instance.

4.3.6 Experiment overview
This experiment has shown that through PLS the full explanation can be derived
for a higher dimensional case and the dimensionally reduced solution can produce
a visual diagnostic for the explanation fit. Comparing the three vertex creation
methods has shown difference in simulation nature yet interpretation (directions of
effects) are in agreement. Introducing superpixels in vertex creation considerably
drops the explanation accuracy and strongly depends on the segmentation proce-
dure. However we have shown that if batches are meaningful, we may recall a result
similar to the full explanation. Last it has been shown that it is possible to employ
DBA to understand the local behaviour of the network by explaining misclassified
examples. More importantly we conclude that when data are sparse, sampling from
the example by dropping non-zero entries will not estimate effects of important

61



4.3. EXPERIMENT 3 CHAPTER 4. EXPERIMENTS

Figure 4.18: The explained misclassified examples (column 1), along with the rivals (col-
umn 2) that if bisected with, it will result in the closest decision boundary point (column
3). In the fourth column the DBA explanation is shown. Blue regions favor the 4 class
while red regions the 1 class. Studying these regions can provide interpretation on how
were these examples misclassified.

62



4.3. EXPERIMENT 4 CHAPTER 4. EXPERIMENTS

features that correspond to zero entries.

4.4 Experiment 4 - Explaining Naive Bayes
In this experiment we will approximate the decision boundary of a Naive Bayes
classifier, where class posteriors for each feature are available. For this purpose,
the SMS Spam Collection dataset 6 from Kaggle will be employed, a sparse high
dimensional discrete dataset of short-length text messages.

Experiment’s purposes are the following:

• Test the feasibility of DBA on a discrete data case while DBA performs a
continuous approximation.

• Validate the yielded explanations by comparing with the global interpretation
available by Naive Bayes classifier.

• Investigate possible biases of Naive Bayes by explaining misclassified cases.

For these purposes, a close up analysis of a single explanation will be illustrated
followed by a pooled explanation of all misclassified cases.

4.4.1 Dataset
The SMS spam dataset contains 5574 short messages of two categories namely “ham”
(86.6 % of total messages) and “spam” (13.4 % of total messages). All messages
are processed in a corpus and the document feature matrix is created - a sparse
matrix of numerical counts each one corresponding to a specific feature (word, digit
or symbol). There are 9171 different features in total. However, for this experiment
the classifier will be trained only with terms which appear at least three times,
resulting in 1923 predictors. To simplify the case, we will assume that we know
a-priori that the feature space consists only of these features.

4.4.2 Naive Bayes
Data are randomly shuffled and partitioned (80% train - 20% test) and a Naive
Bayes classifier with smoothness parameter equal to 1 fits on the training set. The
classifier performs with a 97.9% sensitivity and a 95.9% specificity on the test set.
To investigate whether this accuracy is managed through a meaningful feature set,
the Naive Bayes posteriors for individual features can be studied. In the following,
explanations will be derived through the DBA algorithm and compared with the
Naive Bayes posteriors to formally evaluate the explainability performance. The
set-up of DBA is provided in the next section.

6https://www.kaggle.com/uciml/sms-spam-collection-dataset

63



4.4. EXPERIMENT 4 CHAPTER 4. EXPERIMENTS

4.4.3 DBA set-up
The results of the experiment will be presented in two phases, one in which a single
instance is explained in a close up analysis and one in which a pooled explanation is
derived for all misclassifications. In both cases DBA runs with the following settings.

Detection step runs with a fixed number of 400 closest rivals to approximate
the closest decision boundary region of each instance, with a bisection tolerance
ϵ = 10−9. Due to the small number of words of each message, the number of vertices
will be in general small, therefore we employ the default vertex creation method (see
section 3.3.1). Hence Simulation step yields 2p vertices, where p is the number of
non-zero entries of the decision boundary point. Sampling from the convex hull of
the vertices with uniform correction creates 1000 additional samples within the ball
of relevance of each example. After obtaining the predictions of Naive Bayes on the
simulation, a l2-Logistic Regression explainer approximates the decision boundary
region associated with the instance.

For deriving a global explanation for the misclassified cases, DBA runs over all
M misclassifications under the same set-up as above, to extract M explanations
β1, β2, ..., βM . To make all explanations have the same length, we set all lengths
equal to the number of the total estimated features l and we pad with zeroes the
non-estimated entries of each explanation. The pooled explanation is computed
through averaging over all explained examples,

βpooled =
1

M

M∑
i=1

βi

||βi||∞
(4.1)

where ||βi||∞ = max{|βi
1|, . . . , |βi

l |}. Each explanation is normalized with the abso-
lute value of the corresponding maximum weight such that all coefficients lie between
-1 and 1. Explanations are eventually pooled by averaging the normalized weights
of each word present in the sample. Thus, if a term appears in multiple examples as
the most important feature, its absolute value will be close to 1, while if the term
does not appear as important its weight will vanish.

4.4.4 Results
Explaining a single prediction

Let us focus on the prediction of the following instance:

“You have 1 new voicemail. Please call 08719181513.” (spam)

The above SMS is predicted accurately as spam by the classifier with a probability of
95.5%. The tokenized version of this example (Table 4.1) omits the word “voicemail”
and the phone number since they appear in the whole training set less than three
times. Applying the predictive bisection rule to the 400 closest rivals of the target
spam SMS, yields the most relevant training rival - i.e. the rival that if we average
with the example it will produce the fastest change of class. The algorithm returns
the following rival:

64



4.4. EXPERIMENT 4 CHAPTER 4. EXPERIMENTS

Table 4.1: Tokenization of the example explained by DBA. Terms that appear less than
three times in the whole collection are omitted (e.g phone numbers).

you have 1 new . please call
1 1.00 1.00 1.00 1.00 2.00 1.00 1.00

Table 4.2: Generated Decision boundary point by Detection step applied on the given
example. The set of features is the union of non-zero elements of the example and its
most relevant training rival.

you have 1 new . please call it do ok right later
1 1.00 0.82 0.82 0.82 2.00 0.82 0.82 0.18 0.18 0.18 0.18 0.18

“Ok. You do it right later.” (ham)

A first impression is that this rival is not that similar with the example. The
word “you” and the character “.” are the only common features in the two messages.
However, in DBA framework locality is not of great interest: detection step returns
the rival that if we “move” x0 towards, the class will change in the most rapid way.
For example, adding the word “Ok” might lead to a much larger change in the odds
of the classifier than words existing in more similar opposite messages. This will lead
to an explanation which approximates the most relevant decision boundary region
of the given example.

The corresponding decision boundary point (Table 4.2), being produced by av-
eraging has no natural meaning (words cannot appear 0.82 times). However, that
is a theoretical point that confuses the classifier and lies on the decision boundary
(P (spam|z) = 0.5001). In this state of uncertainty, the classifier will be very sen-
sitive if an important feature varies. Thus, varying each feature individually will
produce a change in the odds of the classifier according to its importance. That is
not necessarily true when we sample from x0 (explained example) (LIME) and the
predicted probabilities are insensitive in a neighborhood of x0 (section 2.3.5, Point
3).

The vertex creation process creates 24 vertices on the surface of the ball B with
a class balance of 0.48. Convex Hull sampling yields a simulation set with 40% spam
messages and 60% ham (class balance 0.6). Eventually the simulation is fed to the
Naive Bayes classifier to acquire the class labels. The faithfulness of the explainer
for this case is 100%, implying that the boundary region is locally linear and thus
well approximated (given the reasonable class balance).

The explanation is shown in Table 4.3 in comparison with the Naive Bayes
posterior “ham” class probabilities. It can be observed that the explanation is in
general agreement with the Naive Bayes class posteriors, except for the terms “new”
and “1”. However, these words seem to play an approximately equal role in the
classification result and the ordering disagreement should be due to randomness.

Interpretation of the estimates, reveals that the most important feature for the
message to be classified as “spam” is the absence of the word “later”, which if
added on the original message, forces the classifier to classify the message as “ham”

65



4.4. EXPERIMENT 4 CHAPTER 4. EXPERIMENTS

Estimate NB Posterior Order Agreement
later -50.67 0.97 3

ok -49.23 0.95 3

right -36.46 0.91 3

do -27.34 0.85 3

it -24.03 0.84 3

. -13.56 0.68 3

you -6.68 0.63 3

have 2.11 0.46 3

please 13.65 0.30 3

new 19.31 0.21 7

1 19.90 0.24 7

call 24.46 0.15 3

Table 4.3: Comparison of explainer’s estimates with NB posterior probabilities (“ham”
class). The ordering of the estimates more or less respects the ordering of feature impor-
tance suggested by Naive Bayes.

with a probability 57.4 %.
From the non-zero elements of the example, there is no word that can instantly

change the prediction for the label if it is removed. Among these features, word “call”
seems to increase the “spam” odds the most, followed by the terms “1”, “new” and
“please”.

It is concluded that this message was classified as spam due to the presence of
the terms “call”, “1”, “new” and “please” with that order, but more importantly
due to absence of terms such as “later”, “ok”, “right”, “do” and “it”. On the other
hand, features such as “.” and “you” play a secondary role in classification, while the
word “have” doesn’t seem to influence the opinion of the classifier.

Text P(“ham”)
“You have 1 new voicemail. Please call 08719181513.” 0.044
“You have 1 new voicemail. Please call 08719181513 later.” 0.574
“You have new voicemail. Please call 08719181513” 0.120
“You have new voicemail. Please call 08719181513 later.” 0.812
“You have 1 voicemail. Please call 0871918513.” 0.145
“1 new voicemail. Please call 0871918513.” 0.026
“Ok... Right. You have voicemail. Please do call
0871918513 later. Do it.” 0.9999998

Table 4.4: Various meaningful modified versions of the original spam example next to
their predictions, after removing or adding terms according to the explanation.

66



4.4. EXPERIMENT 4 CHAPTER 4. EXPERIMENTS

(a) Spam classified as “ham”. (b) Ham classified as “spam”.

Figure 4.19: Barplots depicting the most frequent words in misclassified messages weighted
by feature importance calculated by DBA. Misclassified spam messages include words such
as “I”, “my” while ham misclassification terms such as “your”, “customer”, “calls”.

Finally, Table 4.4 shows a few modified versions of the example, generated by
dropping or adding terms suggested by the explainer. The fastest (meaningful)
way for the example to change class is simply by adding the word “later” in the text
(second text). That is a modified version of the example which belongs in its locality.
The last text of the table represents a modification which is more “human-like” and
NB classifies it as “ham” with high probability.

Explaining misclassifications

Overall the Naive Bayes misclassifies 114 messages of which 83 were originally “ham”
and 31 “spam”. In this paragraph the pooled results of DBA on these cases are
presented. It will be examined if the explanation process can reveal biases which
lead Naive Bayes to misclassify examples.

Results are summarized in the barplots of Figure 4.19. Barplot 4.19a refers
to the “spam” examples misclassified as “ham” while barplot 4.19b to the “ham”
examples misclassified as “spam”. All terms depicted, refer to the non-zero elements
of the messages, which are sized by absolute frequency, weighted by the average
importance of the feature. Thus, long bars tend to represent frequent words that
also play an important role in classification, while short bars represent words that
are either not frequent or not important (or both). Blue terms lead the classifier
to favor the “ham” class while red terms are important for predicting “spam”. For
simplification we show only the 7 most important terms for each class.

The figures imply that on average, “spam” misclassifications carry a lot of impor-
tant terms for the “ham” category such as “I”, “me”, “?”, “my”, “i’m”, terms that in
general imply a more “personal” style of messaging than the average spam message.

67



4.4. EXPERIMENT 4 CHAPTER 4. EXPERIMENTS

Figure 4.20: Words that do not appear in the misclassified example, but their absence
strongly influences the decision of the classifier (Blue - “ham”, Red - “spam”).

On the other hand “ham” misclassifications include highly important terms for the
“spam” class (“your”, “/”, “per”, “customer”, “win”, “calls”, “service”) which in
general would be more likely to appear in an advertisement-like message.

However, in DBA framework explanations are two-sided: these messages were
also misclassified because of the absence of important terms that would increase
the probability of correct classification if they were present. Figure 4.20 shows the
(pooled) collection of the most important absences evaluated by the DBA. If spam
messages had more words such as “tone”, “claim”, “vouchers”, “prize” and ham
messages more words like “sleep”, “i’ll”, “home” the misclassification rate would be
much smaller.

Overall, it is concluded that this classifier has learned a meaningful yet biased
pattern to discriminate “ham” from “spam” messages. If a “spam” message includes
more personal expressions (questions, first person pronouns or general words that
a human would use more often) and less advertising words (“prize”, “vouchers”) it
will pass as “ham”. If a “ham” message is short (less “.”, “?”) and impersonal, with
more symbols and words relevant to offers and mobile services it will be classified
as spam. Thus “tricky” messages such as:

“Are you free now ? Can I call now? !” (true: ham, predicted: spam)

“Oh my god ! I’ve found your number again! I’m so glad, text me back
xafter this msgs cst std ntwk chg ? 1.50” (true: spam, predicted: ham)

can confuse the classifier which has a biased general rule.

4.4.5 Experiment overview
This experiment has shown that Decision Boundary Approximation is capable of
producing explanations for sparse discrete data, even if the algorithm’s setting re-
quires a continuous framework. Assuming a continuous feature space does not seem

68



4.4. EXPERIMENT 4 CHAPTER 4. EXPERIMENTS

to affect the explanation trustworthiness and interpretability, since results are faith-
ful to Naive Bayes’ global picture.

69



Chapter 5

Discussion

In this final chapter of the thesis, we discuss some fundamental aspects of the al-
gorithm, taking in account the theoretical concepts of Chapter 3 and the results of
the experiments of Chapter 4. In section 5.1 we begin with some general remarks
on DBA. In section 5.2 suggestions for future modifications are proposed. Finally,
in section 5.3 the final conclusion of this research is summarized.

5.1 General Remarks

5.1.1 Explainability nature
Experiment 1 clarified that DBA attempts to approximate the closest decision
boundary region of an instance of interest x0. However in some cases, this is not
the complete classification picture and provides partial transparency to the com-
plex model’s predictions. If multiple regions lie around x0 (Figure 5.1), explaining
a single region is not sufficient because more regions participate in the prediction
result. We may accept though that what we explain is not the overall classification
behaviour in the neighborhood, but the discrimination rule that the classifier em-
ploys to separate x0 from a specific set of opposite points. An important fact is that
in DBA, we specify which region we linearize through the most relevant rival. In
section 5.2 we propose a multiple region Detection step.

5.1.2 Regarding metrics
This thesis focused on Euclidean metric spaces to approximate the solution. This
is sufficient when p is not that large and features are numerical and standardized.
When features are not bounded in the same range, various issues might arise. For
instance, simulating in a convex hull where all vertices are distributed on the ball
of relevance can be problematic due to the fact that some features might have
a relatively larger range: they should vary more in order to produce a significant
change in the odds, compared to features with smaller range. As a result, the concept
of the ball becomes more abstract when features have not been standardized prior to
training. In this case we should take this fact into account, by scaling the distance

70



5.1. GENERAL REMARKS CHAPTER 5. DISCUSSION

Figure 5.1: Illustration of an inherent drawback of DBA. Both red and green regions lie
close to x0 (red point), yet DBA would explain only the red region.

of the vertices in the vertex creation step with a factor associated with the range of
each variable, to simulate with a larger variance in the corresponding dimensions.

When p becomes larger, many other issues might also arise due to the curse of
dimensionality. The concept of similarity under the Euclidean framework fades as p
increases. This results in equalization of the distances, leading the concept of closest
to become more abstract. In fact, as p increases, all cases will tend to be equally
similar to x0. Thus the K-closest rivals concept becomes less meaningful. However
an important question is: Do also distances from the decision boundary tend to
equalize? From experience, we have found that in many cases although x0 might
have all other training points lying on almost equal distances, there exists a certain
point that if bisected will yield a decision boundary point very close to x0. In other
words, it is possible that distances between x0 and its rivals equalize, but this is
not necessarily true for the corresponding decision boundary points. In the future
formal experiments should take place to validate this assumption. If many decision
boundary points lie on equal distances, it means that all regions should be explained.
This can be problematic when the user demands a single interpretable explanation.
A solution could be to decrease k in Lk metric thus turn into Manhattan metric
(k = 1) to make distances distribute more uniformly (Aggarwal, Hinneburg, and
Keim 2001). However the problem will persist for extremely large p.

Finally, for categorical features the whole concept collapses and a more appro-
priate metric such as Jaccard (Jaccard 1912) should be considered, while for mixed
data types, a metric such as Gower (Gower 1971) should be employed. Nevertheless,
it is not clear from this research how instances will average in the detection step to
produce the closest decision boundary point. This necessitates more research in or-

71



5.1. GENERAL REMARKS CHAPTER 5. DISCUSSION

der to adapt the algorithm for such cases (see section 5.2). However, we have shown
that DBA can sometimes perform equally well for discrete data cases by assuming
a continuous Euclidean metric space (Experiment 4).

5.1.3 Discussion of simulation
Regarding the simulation process, we have proposed Convex Hull sampling to sim-
ulate points within B. However, we have shown that under this procedure, most of
simulated data points will lie close to the decision boundary (Experiment 2). This
will naturally lead to learn a small decision boundary region which is actually a
subset of B. We argue that this is not undesirable in a framework where we accept
that the explanation refers only to x0 and the counterfactual rival instance that
corresponds to z. It will moreover guarantee that no pathological cases such as the
ones described in sections 3.5 (Figure 3.8) and 4.1.5 (Figure 4.7) will be encountered,
since sampling close to the boundary will (almost always) result in a reasonably sep-
arable simulation set. In section 5.2 we will propose a modification of the algorithm
that further exploits this fact to pool explanations that refer to different regions. In
addition, we argue that in a high dimensional space within a certain ball of relevance
with radius smaller than the distance of x0 from its closest rival most likely there
will be no training points. Therefore, it is reasonable to expect that within such a
ball, the decision boundary will be locally linear, since it only discriminates a small
set of points.

5.1.4 Discussion of vertex creation
We have proposed a vertex creation approach to initiate the convex hull sampling.
An additional reason that motivates this choice is that the vertices can in principle
incorporate any meaningful representation. For instance, the vertices can be taken
to be all possible masks of an image in RGB (Figure 5.2). A mask can be defined
as the result of applying a binary filter on the image (e.g clusters of colors). The
clusters can be identified with a clustering algorithm. As a result, all possible convex
combinations for these masks will be sampled and the effects of each masking will
be estimated.

Another motivation of the vertex creation procedure is that it is computationally
efficient compared to uniform sampling in the ball of relevance.

5.1.5 Applications
In practice, DBA can be valuable for decision making when research questions in-
volve the component: “Which is the fastest way to change class”? Under the DBA
framework, instead of explaining the neighborhood, we approximate the fastest di-
rection to the decision boundary, i.e. the minimal variation needed in order to make
the classifier activate the opposite prediction. Thus, Machine Learning models can
be employed to produce predictions and then extract with DBA the directions that

72



5.1. GENERAL REMARKS CHAPTER 5. DISCUSSION

Figure 5.2: Masks of a cat image, computed by the Affinity propagation algorithm (J Frey
and Dueck 2007). If the original image was a decision boundary point, these masks could
be considered as vertices to sample from their convex hull.

73



5.2. MODIFICATIONS AND FUTURE WORK CHAPTER 5. DISCUSSION

minimize the effort to turn a “failure” into “success”. There should be more experi-
ments in a research/business environment to investigate whether these suggestions
of directions lead indeed to “successes” after the corresponding variations are ap-
plied. We should always consider though that the explanation refers to the model
and not reality, and such an approach would only work when it is decided that the
model can be trusted completely.

5.2 Modifications and future work
Each one of the three main steps of the algorithm can potentially be extended. Each
step can be modified independently from the others, giving degrees of freedom in
future research. The Detection step employs predictive bisection that was designed
for the purposes of this research. Future studies should consider more advanced
optimization approaches to yield the closest decision boundary point. The algorithm
can also be modified by introducing different simulation alternatives that respect
Properties 1-4 of section 3.3. As for the explanation step, the impact of different
explainers should also be explored. Finally, attention should be paid to the feature
selection process in order to provide stable sparse explanations. The framework
of the algorithm allows any feature selection option to fit in the Explanation step.
LASSO or backwards elimination are such approaches. Another (post-hoc) option
is to keep the K-features (or batches of features) that correlate the most, with the
first two PLS components, or the K-most important features estimated by Ridge
Regression. A tree-based feature selection would also be possible. Last, feature
selection can be performed directly on the decision boundary by keeping only the
vertex pairs that correspond to a posterior change above a certain threshold and
simulate on a lower dimensional manifold.

A multiple region detection algorithm would be possible, if we sample multiple
rivals of x0 and for each one run DBA to obtain an explanation. Then, if we cluster
the explanation vectors (e.g with K-means), we will receive K different regions that
are relevant to x0. That could provide another topic for future research.

Extensions of Decision Boundary Approximation for different data structures
(e.g. categorical features) can be considered under a careful choice of metric. How-
ever, this would require redefining some concepts of the algorithm (for example
bisection in the detection step).

Last, DBA could be extended to explain multiclass problems (or regression) by
turning the task into multiple binary classification components. Thus, in the future
more work should be done towards this direction, in order to make the algorithm
functioning for all ML tasks.

74



5.3. FINAL CONCLUSION CHAPTER 5. DISCUSSION

5.3 Final Conclusion
In this research we demonstrated a novel approach in Explainability, Decision Bound-
ary Approximation for explaining the predictions of any binary classifier trained with
numerical features. Furthermore, we introduced diagnostics to help decide whether
the explanations are trustworthy. The process unifies the concepts of example based
(counterfactual) explanations with surrogate approximation to learn features that
express local classification behaviour. Experiments have shown that in the default
setting, such an approximation is realistic and more accurate than LIME when it
comes to log-odds change. Thus, we may conclude that DBA can point out a faster
way to change the opinion of the classifier towards the opposite class, thereby pro-
ducing a more meaningful explanation. We propose this approach as a basis for
further experimenting and modification, to eventually build a solid unified post-hoc
explainability framework for classification.

75



Bibliography

[1] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the Sur-
prising Behavior of Distance Metrics in High Dimensional Space. Springer,
2001, pp. 420–434.

[2] Daniel W. Apley. “Visualizing the effects of predictor variables in black box
supervised learning models”. In: (2016). doi: arXivpreprintarXiv : 1612 .
08468.

[3] S. Bach et al. “On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation”. In: PloS ONE 10 (2015).

[4] Abdelkhalek Bakkari. “Segmentation of Cerebrospinal Fluid from 3D CT
Brain Scans Using Modified Fuzzy C-Means Based on Super-Voxels”. In: Fed-
CSIS (Dec. 2015).

[5] Osbert Bastani, Carolyn Kim, and Hamsa Bastani. “Interpretability via Model
Extraction”. In: CoRR abs/1706.09773 (2017). arXiv: 1706.09773. url: http:
//arxiv.org/abs/1706.09773.

[6] Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. “Model com-
pression”. In: KDD 2006 (Aug. 2006), pp. 535–541.

[7] Sanjoy Dasgupta. “Experiments with Random Projection”. In: CoRR (2013).
[8] Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New

York, 1986.
[9] Mengnan Du, Ninghao Liu, and Xia Hu. “Techniques for Interpretable Ma-

chine Learning”. In: CoRR abs/1808.00033 (2018). arXiv: 1808.00033. url:
http://arxiv.org/abs/1808.00033.

[10] Jerome H. Friedman. “Greedy function approximation: A gradient boosting
machine.” In: Ann. Statist. 29.5 (Oct. 2001), pp. 1189–1232. doi: 10.1214/
aos/1013203451. url: https://doi.org/10.1214/aos/1013203451.

[11] Alex Goldstein et al. “Peeking inside the black box Visualizing statistical learn-
ing with plots of individual conditional expectation.” In: Journal of Computa-
tional and Graphical Statistics 24.1 (2015).

[12] J. C. Gower. “A General Coefficient of Similarity and Some of Its Properties”.
In: Biometrics 27.4 (1971), pp. 857–871.

[13] Hastie et al. The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, Second Edition. Springer-Verlag, 2009.

76



BIBLIOGRAPHY BIBLIOGRAPHY

[14] Wold Herman. “Partial Least Squares”. In: Samuel; Johnson, Norman L. En-
cyclopedia of statistical sciences (1985), pp. 581–591.

[15] Brendan J Frey and Delbert Dueck. “Clustering by Passing Messages Between
Data Points”. In: Science (New York, N.Y.) 315 (Mar. 2007), pp. 972–6.

[16] Paul Jaccard. “”The Distribution of the flora in the alpine zone””. In: New
Phytologist (1912).

[17] Zilke J.R., Loza Mencía E., and Janssen F. “Interpretability via Model Ex-
traction”. In: In: Calders T., Ceci M., Malerba D. (eds) Discovery Science.
Lecture Notes in Computer Science, vol 9956. Springer, Cham 9956 (2016).

[18] C.-C. Jay Kuo et al. “Interpretable Convolutional Neural Networks via Feed-
forward Design”. In: CoRR abs/1810.02786 (2018). url: http://arxiv.org/
abs/1810.02786.

[19] Thibault Laugel et al. “Inverse Classification for Comparison-based Inter-
pretability in Machine Learning”. In: (2017). doi: arXivpreprintarXiv:1712.
08443.

[20] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why Should I
Trust You?”: Explaining the Predictions of Any Classifier”. In: CoRR (2016).
arXiv: 1602.04938. url: http://arxiv.org/abs/1602.04938.

[21] Saharon Rosset, Ji Zhu, and Trevor Hastie. “Margin Maximizing Loss Func-
tions”. In: NIPS’03 (2003), pp. 1237–1244. url: http : / / dl . acm . org /
citation.cfm?id=2981345.2981498.

[22] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning Impor-
tant Features Through Propagating Activation Differences”. In: CoRR (2017).
arXiv: 1704.02685. url: http://arxiv.org/abs/1704.02685.

[23] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for
Deep Networks”. In: CoRR abs/1703.01365 (2017). arXiv: 1703.01365. url:
http://arxiv.org/abs/1703.01365.

[24] Sandra Wachter, Brent D. Mittelstadt, and Chris Russell. “Counterfactual
Explanations without Opening the Black Box: Automated Decisions and the
GDPR”. In: CoRR abs/1711.00399 (2017).

[25] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. “Interpretable Convo-
lutional Neural Networks”. In: CoRR abs/1710.00935 (2017). arXiv: 1710.
00935. url: http://arxiv.org/abs/1710.00935.

[26] Bolei Zhou et al. “Learning Deep Features for Discriminative Localization”.
In: CoRR abs/1512.04150 (2015). arXiv: 1512.04150. url: http://arxiv.
org/abs/1512.04150.

77


