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Abstract

Multivariate binary data are often collected in scientific fields such as psychology, economics
and epidemiology. Worku and de Rooij (2018) proposed a marginal model for the analysis of
this type of data in a distance framework: The multivariate logistic distance (MLD) model. Two
different models were introduced by Worku and de Rooij: a restricted and an unrestricted MLD
model. The interpretation of bothmodels is clear, and a log-odds aswell as a biplot representation
can be used. In this work we proposed three extensions to the restricted model and showed
the implications of the extensions for the interpretation of the corresponding biplot as well as
for the log-odds. First, we showed how the model can be extended by making it possible for a
response variable to belong to multiple dimensions. Consequently, the extended model can be
used to examine other dimensionality structures compared to the original model. Second, we
allowed for non-linear relationships of the predictor variables with the response variables in the
model and therefore making the model more flexible. Finally, the dimensionality structure as
well as the final predictor variables need to be selected. We showed how to use the prediction
capability of a model as a selection criterion to select between competing models. This is a more
versatile method to perform model selection, based on the bias-variance trade off, compared to
the likelihood based criterion used in the original model. We fitted 16 variations of the model to
an empirical data set to compare performance based on their prediction capability. All variations
of the model can be estimated using standard statistical software for univariate models.
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1

Introduction

1.1 General introduction
Worku and de Rooij (2018) proposed theMultivariate Logistic Distance (MLD) model to analyse
multivariate binary responses in the presence of one or more predictor variables. This type of
data is often collected in empirical sciences and over the years a variety of models for the ana-
lysis of this kind of data have been proposed. One way of dealing with multivariate binary re-
sponses is the Generalized Linear Mixed-Effects Model (GLMM: D. A. Anderson & Aitkin, 1985;
Stiratelli, Laird, & Ware, 1984). GLMM is an extension of Generalized Linear Models (GLM) as
proposed by Nelder and Wedderburn (1972). GLMM introduces a random effect in the model
to capture within subject/cluster correlations. GLMM fully specifies the joint distribution of the
responses and therefore inferences can be based on likelihood methods. However, estimation is
computationally very difficult for non-normal multivariate data. In general, there is no simple
closed-form solution to compute the likelihood (Chiou&Müller, 2005). This is why the software
uses numerical integration techniques to compute the likelihood. Alternatively, Laplace-type
approximations of the integrand can be used to obtain a closed-form expression of the approxi-
mated likelihood. For details about these techniques see Molenberghs and Verbeke (2005).

The absence of a multivariate distribution for binary responses renders the maximum like-
lihood estimation of the joint distribution of the responses computationally difficult. To ad-
dress this problem Zeger and Liang (1986) proposed Generalized Estimating Equations (GEE),
an estimation method modelling population averages of correlated categorical data. Contrary
to GLMM, the model under GEE has a marginal and not a subject-specific interpretation. GEE
can be seen as a multivariate extension of Wedderburn’s (1974) quasi-likelihood method, and of
Generalized LinearModels (Nelder&Wedderburn, 1972). An advantage of usingGEE is that no
assumptions are made for the joint probability of the correlated data. Another advantage of es-
timating a marginal mean model using GEE, is that the parameter estimators are consistent and
asymptotically normal when the model for the mean response is correctly specified. This holds
even when the dependence structure is misspecified (Halekoh, Højsgaard, & Yan, 2006; Zeger &
Liang, 1986). The MLD model is part of a family of marginal models, like the GEE model, which
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Introduction

will be elaborated on further in this paper.
Comorbidity is a well-known phenomena in medical studies and behavioural studies and

refers to the co-occurrence of two or more diseases or disorders at the same time. Especially
in the field of mental disorders scientists are often interested in the underlying factors that are
shared between disorders. Studies have consistency shown that disorders rarely occur in isola-
tion of other disorders (e.g. Brown, Campbell, Lehman, Grisham, & Mancill, 2001; Spinhoven,
van der Does, Ormel, Zitman, & Penninx, 2013). It is generally assumed that certain underly-
ing factors, also referred to as dimensions or latent traits, are shared between disorders that tend
to co-occur (Drost, Van der Does, van Hemert, Penninx, & Spinhoven, 2014). However, GEE
cannot be used to access the dimensional structure of the response variables. To gain insight in
these dimensions, latent variable models are often used. In general, latent variable models link
continuous or categorical responses to unobserved latent traits. Confirmatory factor analysis, for
example, can be used to test different theories about the number of latent variables and how the
different response variables relate to these latent variables. Yet, for binary indicators, these mo-
dels often make unverifiable distributional assumptions about the response variables and/or the
underlying dimensions (e.g. Worku, 2018, Chapter 2).

TheMultivariate LogisticDistancemodel ofWorku and deRooij (2018) can be used to access
the dimensional structure ofmultivariate data withoutmaking distributional assumptions about
the dimensions or the response variables. This is a clear advantage over latent variable models
that are often used within empirical sciences to gain insight into the dimensional structure of the
data. The MLD model has the possibility for dimension reduction as a form of regularization.
Moreover, the model can be used to compare different theories about the dimensional structure
of the data within one unified framework.

1.2 Problem statement
The MLD model has some advantages over other models for the analysis of multivariate data:
The model can be used to access the dimensional structure of multivariate binary responses, as
well as modelling the effect of the different predictor variables on the response variables; the
interpretation of themodel is clear, and both a log-odds aswell as a biplot representation (Gabriel,
1971; Gower&Hand, 1995) can be given of themultivariate distancemodel. Although theMLD
model has clear advantages, the model has some drawbacks too. The purpose of this thesis is to
improve upon the current model by proposing three extensions to the model to overcome some
of its pitfalls:

1. One of the advantages of latent variable models is the possibility of examining different
theories about the dimensional structure of the model. The current MLD model can be
used to access this dimensional structure as well, although the model is restricted. It only
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Introduction

allows for the assessment of dimensional structures in which every response variable re-
lates to a single dimension. This limits the method in its flexibility to analyse comorbidity
patterns in the data compared to latent variablemodels. We propose to extend the current
model by making it possible for a response variable to relate to multiple dimensions.

2. The current model is part of a broad family of models in which the predictor variables
have a linear relationshipwith themean of the (transformed) response variables. However,
because of the nature of the data it is possible that a linear relationship does not capture
the true underlying pattern of the data. Therefore, we like to propose to extend the current
MLD model by allowing for non-linear relationships of the predictor variables with the
response variables, through the use of splines.

3. Finally, we desire to select a model that is parsimonious, but able to capture the underly-
ing structure as well as the comorbidity patterns in the data. Therefore, the dimensionality
structure as well as the final predictor variables need to be selected. We propose to use
the prediction capability on independent test data to validate the model and to select be-
tween competingmodels. Comparing different candidatemodels in their ability to predict
classes for independent test data will be used to select between these models.

1.3 Data and Software
Wewill use theNetherlands Study ofDepression andAnxiety (NESDA; Penninx et al., 2008) data
set to illustrate the proposed extensions of the model. The NESDA is an ongoing longitudinal
cohort study in which data are collected to study personality traits, and their relationship to de-
pressive and anxiety disorders. Furthermore, the studies interest lies in enhancing insight about
the co-morbidity between depressive and anxiety disorders (Penninx et al., 2008; Spinhoven, de
Rooij, Heiser, Smit, & Penninx, 2009). The NESDA study focuses on several disorders: Major
Depresive Disorder (MDD), Dysthemia (DYST), General Anxiety Disorder (GAD), Panic Dis-
order (PD), and Social Phobia (SP).MDD andDYST are indicators of depression, whereas GAD,
PD and SP are indicators of anxiety disorders. The personality traits in this data set are extraver-
sion (E), neuroticism (N), agreeableness (A), openness to experience (O), and conscientiousness (C).
Other (background) variables that are taken into account are age, years of education, and gender.

The sample used in this thesis consists of 1954 women and 984men aged 18 through 65 with
a mean age of 42 (S.D. = 13.1). The participants have had an average of 12.2 years of education
(S.D. = 3.3). A comprehensive description of the design and sampling procedure of the NESDA
is given by Penninx et al. (2008). The data consists of 1266 healthy people without a disorder and
1672 participants who suffered from one or more depressive or anxiety disorders. In this study
the five disorders serve as response variables.

3



Introduction

For implementation of the model throughout the thesis, the statistical software R (version
3.5.1) was employed (R Development Core Team, 2008). Additional used software packages will
be named when used throughout the thesis. For reproducibility purposes, scripts for all the ana-
lyses are available upon request.

1.4 Organisation
The organisation of this thesis is as follows: In the next chapter an in-depth overview of the cur-
rent model is documented. Thereafter, the next three chapters will address the limitations of the
current model as well as the proposed solutions to each of them. The sixth chapter will provide
an overview of the extendedMLDmodel, themost important results, and a discussion about the
proposed model.
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Current MLD model

The MLD model is an extension of the Ideal Point Classification (IPC) model (de Rooij, 2009)
to analyze multivariate binary responses. The IPC model is a classification model based on dis-
tances and is a simplification of ideal point discriminant analysis (IPDA) proposed by Takane,
Bozdogan, and Shibayama (1987). The model was originally introduced to analyse univariate
polytomous responses. In the IPC model coordinates representing the subjects and the classes
are defined in a joint space. Let yi denote the observed value for person i on a binary response
variable, yi ∈ {0, 1} and let xi be the observed values of person i on the p predictor variables,
xi = (xi1, xi2, . . . , xip)

T . When dealing with univariate binary responses, the probability for
the first category given the predictor variables, π(xi), can be defined in the IPC model as:

π(xi) =
exp[−0.5 δ1i]

exp[−0.5 δ0i] + exp[−0.5 δ1i]
, (2.1)

with:
δ1i = (ηi − γ1)

2 and

δ0i = (ηi − γ0)
2,

(2.2)

where δ0i and δ1i are the squared Euclidean distances between the position of person i, and the
points representing the twocategories. Byηi the coordinate of theposition for subject i is denoted.
This coordinate is a linear combination of the predictor variables, i.e. ηi = β0 + xTi β. By γc the
coordinate for category c is denoted ( c ∈ {0, 1}). The smaller the relative Euclidean distance
between the person and a class point,the larger the probability that this person belongs to that
class.

Anunivariate logistic regressionmodel can be expressed as an unidimensional IPCmodel, as
defined in (2.1). Before we discuss the extended MLD model, we will recapitulate the fundamen-
tals of logistic regression and the relationship between the univariate logistic regression model
and the unidimensional IPC model.
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Current MLDmodel

2.1 Logistic Regression
In the same way normal regression models are based on the Gaussian distribution, a binary re-
sponse model is derived from a Bernouilli distribution. The Bernouilli probability mass function
(pmf) of Y over possible outcomes y can be expressed as:

P (Y = y|π) = πy(1− π)1−y for y ∈ {0, 1}, (2.3)

where y denotes the value on a binary response variable and π denotes the probability of Y = 1.
Nelder and Wedderburn (1972) formulated Generalized Linear Models (GLMs), an extension of
ordinary linear regression. GLMs are a class of models that allow exponentially distributed re-
sponse variables to be linearly related to thepredictor variables via amonotonic anddifferentiable
link function, g(.) = η∗. The logistic regression model is part of the family of GLMs and is one
of the most commonly used statistical methods for the analysis of binary response data (Hilbe,
2009). In logistic regression the Bernouilli distribution for every observation yi is rewritten as

f(yi; π(xi)) = exp
{
yi log

(
π(xi)

1− π(xi)

)
+ log(1− π(xi))

}
, (2.4)

with:

log
(

π(xi)
1− π(xi)

)
= η∗i = α + xTi β

∗. (2.5)

Using the inverse of this relationship we can write π in terms of η∗:

π(xi) =
eη

∗
i

1 + eη
∗
i
. (2.6)

One of the reasons why the logistic link function gained popularity, is because log
(

π
1−π

)
has

a clear and nice interpretation in itself: The logistic transformation, also called the logit transfor-
mation or the log-odds, is the logarithm of the odds and maps the probability with range [0, 1]
to a scale with range [−∞,∞]. The odds are an important concept within probabilistic models
and are an expression of the relative probability of a certain outcome over another outcome.

Within theGLM framework the regression parameters, α andβ∗, are estimated usingmaxi-
mum likelihood (ML) estimation. ML estimation is a technique to estimate the most likely values
of the parameters, given the observed data. The idea of maximum likelihood estimation is to
find a set of values for the parameters that maximize the likelihood. To find the maximum like-
lihood estimates we need to differentiate the (log) likelihood with respect to the parameters, set
the derivatives equal to zero, and solve the obtained system of equations. However, as for most
models in the GLM framework, the system of equations has no analytical solution. Therefore,
it must be solved by numerical methods. Many optimization algorithms are available for such
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problems.The method frequently used by R and other statistical packages like SAS to obtain the
regression parameters of the logistic regression model, is the Newton-Raphson method. The
Newton-Raphson algorithm is an iterative approach and begins with an initial guess for the re-
gression coefficients. The updated coefficients are found by a second-order Taylor expansion
evaluated at their current values. This process continues until convergence. In addition to an
estimate of the regression parameters of our model, we can also obtain the standard errors of the
coefficients by means of the Newton-Raphson method.

2.2 Relationship logistic regression with the IPC
model

The IPC model (2.1) as defined by de Rooij (2009) can be expressed as an univariate logistic
regression model. When writing the IPC model (2.2) in terms of the log-odds, this gives us the
following expression:

log
(

π(xi)
1− π(xi)

)
= 0.5 δ0i − 0.5 δ1i

= 0.5 (ηi − γ0)
2 − 0.5 (ηi − γ1)

2

= 0.5 η2i − γ0ηi + 0.5 γ2
0 − 0.5 η2i + γ1ηi − 0.5 γ2

1

= ηi(γ1 − γ0) + 0.5 (γ2
0 − γ2

1)

= (β0 + xTi β)(γ1 − γ0) + 0.5 (γ2
0 − γ2

1)

(2.7)

From equation (2.7) we can see the relationship with the univariate logistic model:

α = β0(γ1 − γ0) + 0.5 (γ2
0 − γ2

1)

β∗ = β(γ1 − γ0)
(2.8)

To identify the IPC model, we need to define both the scale and the origin. This can be done by
imposing a constraint on the coordinates of the category points. For example, by imposing the
constraint that γ0 = 0 and γ1 = 1, both the scale and the origin are fixed. Other choices can be
made regarding the identification of themodel, we can for example center the data around zero to
define the origin, and set the distance between the two categories of the response variable to one
(i.e. γ1 − γ0 = 1) to define the scale. By imposing the latter constraints, the relationshipwith the
univariate logistic model becomes: α = 0.5 (γ2

0 − γ2
1) which can, because of the identifiability

constraint, be simplified to −γ1 + 0.5 and β∗ = β. Hence, we can obtain the estimates of the
univariate model using standard statistical software for logistic regression.

7



Current MLDmodel

The regression coefficients, β, represent the effect on the log-odds, eg. when x1 increases
with one unit, the log-odds of membership to category 1 versus the baseline category 0 changes
by β1. Note that henceforth, we will assume that our predictor variables are centered and scaled,
i.e. the origin is fixed with β0 = 0.

2.3 Multivariate extension
Worku and de Rooij (2018) extended the IPC model for a single response variable into a mo-
del with multiple binary response categories. Let yi = (yi1, yi2, . . . , yiJ) be the multivariate re-
sponses of subject i on theJ response variables. When an unidimensional space is used, the diffe-
rent points representing the categories of the response variables all lie on the same line. When
multiple dimensions are used to represent the class points, the definition of the distance becomes:

δ(ηi,γcj) =
M∑

m=1

(ηi,m − γcj,m)
2, (2.9)

wherem = 1, . . . ,M are the dimensions, ηi,m is the coordinate representing the point of subject
ion thedimensionm andγcj,m is the coordinate for category c ∈ {0, 1}of response variable j on
dimensionm. The coordinate representing the person on this dimension is a linear combination
of the predictor variables on dimensionm: ηi,m = xTi βm, withβm being a vectorwith regression
coefficients of dimensionm. In the model of Worku and de Rooij (2018), each response variable
belongs to only one dimension. Let the probability for subject i for the first category of response
variable j given the predictor variables be written as:

πj(xi) =
exp[−0.5 δ(ηi,γ1j)]

exp[−0.5 δ(ηi,γ0j)] + exp[−0.5δ(ηi,γ1j)]
. (2.10)

Worku and deRooij (2018) showed that the log-odds representation of the univariatemodel (2.7)
can be extended into the log-odds representation of the multivariate distance model and can be
expressed as:

log
(

πj(xi))
1− πj(xi)

)
=

M∑
m=1

{
xTi βm(γ1j,m − γ0j,m) + 0.5(γ2

0j,m − γ2
1j,m)

}
. (2.11)

When, in a multidimensional model, all response variables belong to a single dimension, like in
the model of Worku and de Rooij (2018), the log-odds representation of the distance model can
be further simplified: For a response variable j that does not belong to dimension m, γ0j,m and
γ1j,m equal zero. Therefore, only the part of the dimension to which response variable j belongs,
will contribute to the log-odds and hence equation (2.11) simplifies to a single equation, like (2.7),
instead of a sum over multiple dimensions.
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Current MLDmodel

Worku and de Rooij (2018) proposed a restricted and an unrestricted variant of the MLD
model. The former refers to a model in which the distance between the two categories of every
response variable are set to be equal. The predictor variables in this model discriminate equally
well between the categories of all response variables. The latter refers to a model without the
equality constraint. All the extensions proposed in thismanuscript concern the restrictedmodel.
The number of independent parameters estimated in the unrestricted MLD model equals
[( J − M) × 2 + M × p ], in which p is the number of predictor variables. When fitting the
restricted model, only [M × p + J ] parameters have to be estimated.

2.4 Estimation MLD model
Theabsence of a distribution formultivariate binary responses that accounts for the dependence,
renders the maximum likelihood estimation of the joint distribution of the responses computa-
tionally difficult. The parameters in the MLD model are therefore calculated by maximizing the
quasi-likelihood (Wedderburn, 1974). For multivariate binary data, the log-likelihood under the
assumption of independence and the quasi-likelihood function are identical. That is,

ℓ (β; y) =
n∑

i=1

J∑
j=1

(
yij log

(
πj(xi)

1− πj(xi)

)
+ log (1− πj(xi))

)
. (2.12)

When dealingwithmultivariate data it is unreasonable to assume that responses are indepen-
dent, because the observations of the same participant tend to be correlated. Parameter estimates
obtained bymaximizing the quasi-likelihoodwill still be consistent (undermild conditions), but
standard errors derived from the Hessian matrix when fitting the quasi-likelihood will generally
be incorrect (Sherman & Cessie, 1997; Wedderburn, 1974; Zeger & Liang, 1986).

By restricting the distance between the two categories of every response variable to be equal,
the MLD model can be fitted using standard statistical software to fit logistic regression models.
Correct standard errors can then be obtained by applying a clustered bootstrap method as pro-
posed by Sherman and Cessie (1997). This method is based on a bootstrap procedure in which
the correlation structure between the multivariate responses is retained. To employ this method
the ClusterBootstrap package in R could, for example, be utilized (Deen & de Rooij, 2019).

Alternatively the restrictedmodel can be fitted usingGeneralized Estimating Equations (GEE)
as proposed by Zeger and Liang (1986). GEE extends the generalized linear model to allow for
the analysis of correlated data, such as clustered data. The GEE method accounts for the depen-
dency within clustered data, without fully specifying the likelihood or the dependence structure.
Instead of optimizing a likelihood function, the parameters of the model are obtained by iter-
atively solving estimation equations. GEE is therefore not a likelihood-based approach, it is an
estimation method in which the quasi-likelihood is constructed from the estimating equations
(Pan, 2001). The estimation equations are a marginal formulation of the likelihood function that
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use a working correlation matrix to adjust for the dependency within clusters. To obtain robust
standard errors Zeger and Liang (1986) proposed a sandwich estimator. Originally the sandwich
estimator was proposed by Huber (1967) and White (1982), Zeger and Liang extended the idea
to longitudinal data. The sandwich estimator adopts a “working” assumption about the associa-
tion structure of the data. Zeger and Liang showed that asymptotically correct standard errors
are obtained by means of the sandwich estimator. This is true regardless of the true correlation
structure of the data as long as themean structure of themodel is correctly specified and the data
are sufficiently large. Under the independence working assumption, the estimated parameters
equal those obtained with logistic regression. However, the standard errors will differ from the
standard errors obtained by logistic regression (Molenberghs & Verbeke, 2005).

2.4.1 Implementation

Worku and de Rooij (2018) proposed an unrestricted and a restricted MLD model. The unre-
stricted model can be fitted in its own right. Because all the proposed extensions are related to
the restricted model, fitting the unrestricted model is beyond the scope of the present thesis. By
setting the distance between the two categories of all response variable to be equal, the restricted
MLD model becomes equivalent to estimating a marginal model for multivariate binary data us-
ing Generalized LinearModels or Generalized Estimating Equations. Hence, standard statistical
software for these methods can be utilized to fit the model. Alternatively, the mldm package can
be employed to fit the restricted model (Worku, 2018).

For the implementation of the MLD model Worku and de Rooij (2018) used a technique
proposed by Wright (1998). Wright showed that multivariate models may be estimated using
software for univariate models (such as GLM and GEE). When using this technique, one has to
modify the structure of the data: Themultivariate responses need to be reordered in a vector and
thematrixwith predictor variables needs to be reorganized. Wewill illustrateWright’smethod by
means of an example: Consider three response variables for allnobservations, we can restructure
themultivariate responses into a vectorY . Supposewewant the first two response variables to be
represented on the first dimension and the third response variable to be represented on second
dimension. Let Z be the matrix that specifies to which dimension the response variables belong,
with the rows representing the response variables and the columns representing the dimensions.

10



Current MLDmodel

Further, let there be two predictor variables represented in predictor matrixX. We get:

Y =



y11

y12

y13
...

yn1

yn2

yn3


, Z =


1 0

1 0

0 1

 , and X =


x11 x22

...
...

xn1 xn2

 . (2.13)

The MLD model may be estimated using the design matrix S which is obtained by taking the
Kronecker product between the response indicator matrix Z and the predictor matrix X and
concatenate it with an 3x3 identity matrix for each subject, i.e.

S =



1 0 0 x11 x12 0 0

0 1 0 x11 x12 0 0

0 0 1 0 0 x11 x12

...
...

...
...

...
...

...
1 0 0 xn1 xn2 0 0

0 1 0 xn1 xn2 0 0

0 0 1 0 0 xn1 xn2


. (2.14)

Matrix S shows that the restricted model of Worku and de Rooij (2018) implies the predictor
variables to discriminate equally well for all response variables belonging to the same specific
dimension. It could be argued that such an assumption is not always justified. We will elaborate
on this further in Chapter 5.

The predictormatrix S can be used together with response vector Y, to fit themodel with, for
example, the function glm() in R. We will obtain an intercept for each of the response variables
and a coefficient per dimension for each of the predictor variables. From the three intercepts we
derive the coordinates of the class points for response variables for theMLDmodel (see Equation
2.8). These are the coordinates of the class points for the dimension they belong to. Furthermore,
the other four obtained regression parameters of the GLM correspond directly to the regression
coefficients, β, of the MLD model (see Equation 2.8).

2.5 Model selection
The assumption of which response variable belongs to which dimension has a crucial impact on
the interpretation of themodel. Therefore, not only do the predictor variables need to be selected,
but also the dimensionality structure of the model has to be determined. Within the likelihood
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Current MLDmodel

framework, information criteria are typically used to compare and select between competing
models. Methods like Akaike’s Information Criterion (AIC) (Akaike, 1974) balance between the
goodness of fit and the simplicity of the model by penalizing the fit for the number of estimators
in the model.

Pan (2001) proposed an extension of theAIC criterion to select the best fitting model when
using GEE: the quasi-likelihood under the independence model criterion (QIC). QIC is a modi-
fication of AIC, in which the likelihood is replaced by the quasi-likelihood and the penalty term
is adjusted accordingly. Worku and de Rooij (2018) usedQICu, a simplified version ofQIC , to
determine the dimensionality of themodel. Furthermore, variable selection in the originalMLD
model is based on a Wald test performed on the regression parameters with standards errors
obtained with the sandwich estimation method or the clustered bootstrap method.

2.6 Visualisation of the model
The MLD model is an appealing model since the interpretation based on distances is noticeably
intuitive for classification purposes. In addition, a log-odds as well as a visual representation of
themodel can be given. We can visualize theMLDmodel bymeans of a biplot which can be seen
as the multivariate equivalent of an ordinary scatterplot (Blasius, Eilers, & Gower, 2009; Gabriel,
1971). Traditionally the elements of a biplot are a set of axes representing the predictor variables
and a set of points representing subjects, visualized in two or three dimensional space (Gower
& Hand, 1995). To visualize the MLD model, another component needs to be included in the
biplot, the categories of the response variables. Before introducing the biplot that accompanies
the original model, we will first discuss the interpretation of the variable axes and the response
space.

2.6.1 Variable axes

In the biplot accompanying the original model, the variable axes are derived by multiplying the
obtained regression coefficients of the variable to be plotted (one coefficient per dimension) with
a vector containing values ranging from -3 to 3, increasing with increments of one. We assume
most of the scores on the predictor variables to be within three standard deviations of the mean.
Because the predictor variables are centered and scaled this corresponds to a score between -3
and 3, hence the choice for the values in our multiplication vector. The obtained coordinates
are connected and form the variable axis for the given variable. The coordinates that are used
to form the variable axis can be interpreted as the coordinates of different subjects with scores
ranging from -3 to 3 on this variable and a score of zero on the other predictor variables. The
relative length of a variable axis projected on the dimension corresponds to the strength of the
effect of the variable on the response variables belonging to this dimension. Let us explain this
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by means of an example: Figure 2.1 visualizes class points of a response variable belonging to a
single dimension, D1, and the position of subject ρ and τ in two dimensional Euclidean space.
For notational simplicity, henceforth, in this example we will write γ0 for γ0j,1 an γ1 for γ1j,1 to
denote the coordinates of the class points of variable j on D1. The two subjects differ one unit
in their scores on variableX . Let ρ′ and τ ′ be the orthogonal projections of the two subjects on
the first dimension. These projections equal, by definition, the subjects coordinate on the first
dimension, e.g. ρ′ ≡ ηρ1.

The squared Euclidean distance in M -dimensional space between two points is defined as
the sum of the squared differences per dimension. This follows directly from the Pythagorean
formula. Thus, the squared Euclidean distance between ρ and γ0 equals the sum of the squared
line segment between ρ and ρ′ and the squared line segment between ρ′ and γ0. The log-odds of
subject ρ can be written as:

log
(

π(Xρ)

1− π(Xρ)

)
=

1

2
δ(ρ, γ0)−

1

2
δ(ρ, γ1), (2.15)

which simplifies to 1
2
(ρ′−γ0)

2− 1
2
(ρ′−γ1)

2, since the response variable only belongs to the first
dimension (Worku & de Rooij, 2018). When the constraint that γ0 − γ1 = 1 holds, the above
can be rewritten as 1

2
(γ2

1 − γ2
0) − ρ′. Hence, the factor by which the log-odds of person ρ and

τ differ, equals the difference of their orthogonal projections onD1. This is illustrated in Figure
2.1 by a blue arrow; whenX increases with one unit the log-odds, change by βx.

Figure 2.1 Projection of variable axisX on the first dimension.
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2.6.2 Response space

Figure 2.2 shows the class points of the response variables of the fittedMLDmodel on theNESDA
data in two-dimensional Euclidean space. Since the response variables belong to only one dimen-
sion in the model of Worku and de Rooij (2018), the coordinates of the response variables are
zero for the other dimension. The category points of MDD, GAD and DYST are positioned on
the first dimension. The category points of SP and PD are positioned on the second dimension.
In addition, decision boundaries are displayed in Figure 2.2. A decision boundary is the set of
points for which the log-odds of a response variable are zero. Because the Euclidean distance is
used in the MLD model, the decision boundary equals a line orthogonal to the dimension on
which γ0j and γ1j are positioned, going through the point halfway between γ0j and γ1j . The
decision lines partition the space of Figure 2.2 into regions, each ofwhich are representing an area
in which the predicted odds are in favor of a specific response profile. The class points together
with the decision boundaries compose the response space, as visualized in Figure 2.2. From the
plotwe can see that the response patterns account for comorbidity in the data. Each region shows
a disorder profile; the bottom left region represents the absence of disorders, while the top right
region represents the comorbidity of all five disorders.

Figure 2.2 Response space of the MLD model fitted on the NESDA data with a two-
dimensional structure.
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2.6.3 Biplot

Figure 2.3 shows a biplot of theMLDmodel fitted on theNESDAdata, similar to themodel fitted
in Figure 2.2. Thepositions of the subjects are constructed by taking a linear combination of their
scores on the predictor variables and are included in the plot as points. Most of the subjects are
positioned in the bottom left response region, corresponding to amost probable response profile
without any disorders. From the plot we see that the two dimensions are positively correlated;
subjects that have a higher probability of having one or more disorders on the first dimension
also generally have a higher probability of having one or more disorders positioned on the other
dimension.

Figure 2.3 only shows the variable axes of the finalmodel as proposed byWorku and de Rooij
(2018), i.e. education, neuroticism, extraversion and conscientiousness. On the variable axes, mark-
ers are placed at values ranging from -3 to 3, with increments of one. In addition labels are in-
cluded at the positive side of the variable axes. As mentioned in Section 2.6.1, the relative length
of a variable axis projected on the dimension corresponds to the strength of the effect of the
predictor variable on the disorders belonging to this dimension. From the plot we can see that
neuroticism has a large effect on disorders associated with both dimensions, while, for example,
conscientiousness only has a minor effect on the disorders positioned on the second dimension.

Figure 2.3 Biplot of the MLD model fitted on the NESDA data with a two-dimensional struc-
ture.
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3

Response variable on
multiple dimensions

The MLD model as proposed by Worku and de Rooij (2018) can be used to represent different
dimensional structures. Moreover, the model can be used to compare different structures in an
unified framework. In the currentMLDmodel each response variable belongs to a single dimen-
sion. However, it should be taken into account that a response variable can relate to multiple
dimensions, because of the nature of the data. Let us illustrate this phenomenon by means of an
example based on the NESDA data set: Previous research suggests that comorbidity patterns of
common mental disorders can be reflected using different structures, that is:

• A two-dimensional ‘distress-fear’ (d/f) structure with one dimension representing distress
[MDD, GAD & DYST] and the other dimension representing fear [PD, & SP] (Beesdo-
baum et al., 2009; Kotov, Gamez, Schmidt, & Watson, 2010; Krueger, 1999; Spinhoven,
Penelo, De Rooij, Penninx, & Ormel, 2014).

• A two-dimensional ‘depression-anxiety’ (d/a) structure with one dimension representing
depression [MDD & DYST] and the other dimension representing anxiety [PD, SP &
GAD] (Penninx et al., 2008; Spinhoven et al., 2009, 2013).

• An ‘uni-dimensional’ structure with all five disorders represented on a single dimension
(Penninx et al., 2008).

The MLD model can be used to represent and compare all of the structures presented above. Be-
cause of the discrepancy between the first two theories one could, for example, want to examine
a model with a dimensional structure in which GAD is represented on both the first and the se-
cond dimension. This is currently not possible with the model, because of the restriction posed
on the response variables. The following chapter provides a describtion of an extension of the
current MLD model by making it possible for a response variable to belong to multiple dimen-
sions. In addition, the impact of this extension on the log-odds and the biplot representation of
the model will be discussed.
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3.1 Extension current model
When employing theMLDmodel, it is assumed that the logit transformation of the response vari-
ables have a linear relationship with the predictor variables, as described in the previous chapter.
The logit transformation, or the log-odds, are therefore an important concept when interpreting
the MLD model. Like in the univariate case the log-odds of the multivariate case can be written
as:

0.5 δ(ηi,γ0j)− 0.5 δ(ηi,γ1j), (3.1)

where ηi denotes the coordinates representing the position of subject i. The position of the co-
ordinate per dimension is determined by a linear combination of the predictor variables, e.g.
ηim = xTi βm, where ηim is the coordinate representing the point of subject i on dimension m.
As stated in (2.11), the log-odds representation of the MLD model can be denoted as:

log
(

πj(xi))
1− πj(xi)

)
=

M∑
m=1

{
xTi βm(γ1j,m − γ0j,m) + 0.5(γ2

0j,m − γ2
1j,m)

}
.

When all response variables relate to a single dimension, like in the model of Worku and de
Rooij (2018), the log-odds representation simplifies to a single equation instead of a sum over
multiple dimensions (see page 8). However, if we allow response variables to belong to multiple
dimensions, the former simplification does not apply. Equation (3.2) shows the log-odds repre-
sentation of the MLD model for which γ1,m − γ0,m = 1 ∀ m holds, without the restriction
that response variables belong to a single dimension. The regression coefficients βm represent
the effect on the log-odds.

log
(

πj(xi)
1− πj(xi)

)
=

M∑
m=1

{
xTi βm(γ1j,m − γ0j,m) + 0.5(γ2

0j,m − γ2
1j,m)

}
=

M∑
m=1

{
xTi βm + 0.5((γ1j,m − 1)2 − γ2

1j,m)
}

=
M∑

m=1

{
xTi βm + 0.5(γ2

1j,m − 2γ1j,m + 1− γ2
1j,m)

}
=

M∑
m=1

{
xTi βm − γ1j,m + 0.5

}
.

(3.2)
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When denoted as a logistic regression model, we write:

α = 0.5M −
M∑

m=1

γ1j,m and

β∗
X =

M∑
m=1

βX,m forX = 1, . . . , p,

(3.3)

where regression coefficient β∗
X is the linear effect of variableX . The regression coefficients,

βX,1, βX,2 . . . βX,m, represent the effect on the log-odds; when X increases with one unit, the
log-odds of membership to category 1 versus the baseline category 0 change by

∑M
m=1 βX,m.

Because α = 0.5M −
∑M

m=1 γ1j,m, the multivariate logistic distance model in Equation
(3.2) is not uniquely identified. Let us illustrate this by means of an example. Suppose we have
a response variable j that belongs to two dimensions and one predictor variable. The log-odds
representation of the model becomes:

log
(

πj(Xi)

1− πj(Xi)

)
=

2∑
m=1

{
βmXi(γ1j,m − γ0j,m) + 0.5(γ2

0j,m − γ2
1j,m)

}
= (β1 + β2)Xi − γ1j,1 − γ1j,2 + 1

Hence, the logistic regression representation equals: α = 1 − γ1j,1 − γ1j,2 and β∗ = β1 + β2.
Suppose we fit themodel bymeans of standardGLM software and obtain a value forα, for exam-
ple α = −3. Figure 3.1 visualizes α as a line in two dimensional space for which α = −3 holds.
The coordinate of category one on the first dimension, γ1j,1, could be 3 when the coordinate of
category one on the second dimension, γ1j,2, equals 1, yet γ1j,1 could also be 2 when γ1j,2 = 2.
Therefore, additionally to the equality constraint another identifiable constrained is needed to
identify this model. By imposing the constrained that γ1j,1 = γ1j,2, the two dimensional MLD
model is identified for response variables lying on multiple dimensions. Although many identifi-
able constraints can be proposed, we choose to impose this particular constraint for visualization
purposes. When the coordinates of the two categories of a response variable are equal for both di-
mensions, their coordinates can be combined to form the coordinates lying on a projection line,
P , as visualized in Figure 3.1. P is orthogonal to the line visualizingα, it goes through the origin
and the angle between the projection line and the two dimensions equals 45 degrees. Hence, the
distance between the coordinates of the response categories on the different dimensions and the
projection line are in the ratio 1 : 1 :

√
2 which follows from the Pythagorean theorem.

18



Response variable on multiple dimensions

Figure 3.1 Visualization of a response variable on two dimensions with α = −3.

3.2 Estimation extended model
The model can be estimated, employing standard statistical software to fit GLM or GEE models,
by applying the same method as described in Section 2.4.1.

Compared to the original MLD model, an adapted response indicator matrix is used when
fitting the extended MLD model. Let Z be the response indicator matrix used to fit the original
model with a two-dimensional ‘distress-fear’ structure on the NESDA data. Furthermore, let
Z′ be the response indicator matrix of the extended model, where GAD is positioned on both
dimensions. We get:

Z =



1 0

1 0

1 0

0 1

0 1


and Z′ =



1 0

1 0

1 1

0 1

0 1


. (3.4)

The MLD model may be estimated using a design matrix S which is obtained by taking the Kro-
necker product between the response indicator matrix Z′ and the predictor matrix X, Z′ ⊗ X,
and concatenate it with an J × J identity matrix for each subject, such that
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S =



1 0 0 0 0 x11 x12 . . . x1p 0 0 . . . 0

0 1 0 0 0 x11 x12 . . . x1p 0 0 . . . 0

0 0 1 0 0 x11 x12 . . . x1p x11 x12 . . . x1p

0 0 0 1 0 0 0 . . . 0 x11 x12 . . . x1p

0 0 0 0 1 0 0 . . . 0 x11 x12 . . . x1p

...
...

...
...

...
...

...
...

...
...

...
...

...
1 0 0 0 0 xn1 xn2 . . . xnp 0 0 . . . 0

0 1 0 0 0 xn1 xn2 . . . xnp 0 0 . . . 0

0 0 1 0 0 xn1 xn2 . . . xnp xn1 xn2 . . . xnp

0 0 0 1 0 0 0 . . . 0 xn1 xn2 . . . xnp

0 0 0 0 1 0 0 . . . 0 xn1 xn2 . . . xnp



. (3.5)

3.3 Effect on the interpretation of the biplot
The extension of the model does not have implications for the interpretation of the points re-
presenting the subjects in the corresponding biplot. Yet, the interpretation of the variable axis, in
relation to the response variable on projection lineP , changes. Furthermore, the response space
of the model changes when we allow response variables to pertain to multiple dimensions. To
enhance understanding about the interpretation of the biplot of the extendedmodel, we will first
discuss the interpretation of the variable axes of the biplot accompanying the extended model.

3.3.1 Variable axes extended model

Let us consider a two dimensional joint space, in which the class points for response variable j
and the variable axis of variableX are defined. We assume the following conditions:

1. The response variable j, belongs to the two dimensions.

2. The following constraints hold: γ1j,m − γ0j,m = 1 and γ0j,1 = γ0j,2.

Moreover the class coordinates for response variable j have the following form:

γ =

[
γ0j,1 γ0j,2

γ1j,1 γ1j,2

]
. (3.6)

Figure 3.2 is a visualisation of the above: The coordinates of the class points can be combined to
form the class points lying on projection line,P . Furthermore, the the position of subjects ρ and
τ in two dimensional Euclidean space are visualized, representing two subjects with a score of 1
and 2 on variableX respectively. In the biplot accompanying the originalmodel ofWorku andde
Rooij (2018) the difference between the orthogonal projections of two subjects on the dimension,
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relates to the difference in the log-odds of these two subjects. Because, in this example, the class
points of variable j are positioned on both dimensions, we can project the position of subjects ρ
and τ , perpendicular to projection line P . The projections are visualized by ρ′ and τ ′ in Figure
3.2. β1 and β2 show respectively the difference on the first and second dimension of points ρ and
τ . β12 shows the difference of the projections of ρ and τ , on the projection line.

A45◦- 45◦- 90◦ triangle is visualizedby reddotted lines, inFigure 3.2. This triangle consists of
a line drawn from ρ parallel toβ12 in combinationwith the prolongment ofβ1 and the projection
of τ on projection line P . It can be shown that the hypotenuse of this triangle equals β1 + β2,
because a 45◦- 45◦- 90◦triangle has a ratio of 1 : 1 :

√
2. Therefore the congruent legs as well as

β12 equal 1√
2
(β1 + β2). From here we can see that the log-odds change by

√
2β12 which equals

β1+β2. The multiplication follows directly from the Pythagorean theorem as mentioned before
and is in line with Equation (3.2).

Figure 3.2 Visualization of a response variable on two dimensions and predictor variableX .

3.3.2 Decision regions of the biplot

As in the restrictedMLDmodel, the decision boundary is the set of points forwhich the log-odds
are zero. The decision boundary is perpendicular to the projection line that goes through the two
class points, γ0j andγ1j . Similar to the restrictedmode, the decision boundary is going through
the point halfway between the class points.

Figure 3.3 is a visualisation of the response space of the fittedMLDmodel on theNESDAdata
in two-dimensional Euclidean space. Contrary to Figure 2.2, not all response variables belong
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to only one dimension, GAD is positioned on both dimensions. The decision boundaries are
displayed in Figure 3.3. The decision lines partition the space of Figure 3.3 into regions, each
representing a most probable response profile. From the plot we can see that allowing response
variables to belong to multiple dimension, has a crucial impact on which regions occur. For
example, 12 response regions occurred while fitting the original MLD model on the NESDA
data with a “distress-fear” structure (see Figure 2.2), while 14 response regions occur when fitting
the extended MLD model on the NESDA data when GAD is positioned on both dimensions
(see Figure 3.3). The maximum number of admissible response patterns with the dimensionality
structure as presented in Figure 3.3 is 14 and the minimum number of response patterns is 12
(Coombs, 1964).

Figure 3.3 Response space of the extended MLD model fitted on the NESDA data.

Figure 3.4 visualizes a biplot of the extended MLD model fitted on the NESDA data similar
to the model fitted in Figure 3.3. The positions of the subjects and the variable axes are obtained
in a similar fashion as in the original model (see Section 2.6). The interpretation of the plot is
similar to the interpretation of Figure 2.3, except for the interpretation of the variable axes (see
Figure 3.2); in the originalmodel the relative length of a variable axis projected on the dimension
corresponds to the strength of the effect of the variable on the disorders belonging to the dimen-
sion. When we allow response variables to pertain to multiple dimensions, the relative length

22



Response variable on multiple dimensions

of a variable axis projected on the projection line corresponds to the strength of the effect of the
variable on the disorder, with a scaling factor of

√
2 (see Section 3.3.1). Figure 3.4 only shows the

variable axes of the predictor variables education, neuroticism, extraversion and conscientiousness.
From the plot we can see that the variable axes are almost similar to the variable axes in Figure
2.3.

Figure 3.4 Biplot of the extended MLD model fitted on the NESDA data.
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4

Non-linearity in the
predictor variables

The multidimensional logistic distance model can be placed in a broader family of linear para-
metric models. These models assume that, on average, the change in the response variable is pro-
portional to the change in the predictor variables. Linear models are sometimes an inevitable,
approximation of the true function f(X) = E(Y |X). Inevitable because with a large number
of predictors and a small number of observations, a linear model is all we can do without over-
fitting the data. Although linear models often tend to be easy to interpret, it is unlikely that the
true function f(X) is linear in its predictors. When we estimate a function that is not linear in
its predictors by a standard (generalized) linear model, this can result in a model with very poor
predictive power (Fox, 2015).

This chapter is concerned with the situation in which the assumption of linearity between
the mean response and the predictor variables is not justified. Different approaches will be dis-
cussed on how to deal with non-linearity in the predictor variables. In essence all of the different
approaches replace the predictor variables, X, with transformations of these variables. The new
variables are used to fit a (generalized) linear model and the model is therefore linear in its coef-
ficients. We will assume until Section 4.3 that we only have one predictor variableX .

4.1 Global functions
Consider a model with one predictor variable X . The function f(X) is represented by a linear
combination of transformations ofX :

f(X) =
B∑
b=1

βbhb(X), (4.1)

with known transformations, also referred to as basis functions, hb(X), b = 1, . . . , B and para-
meters βb that need to be estimated. When choosing a basis, we define the space of functions of
which f(X) is an element. Different choices can be made when choosing a basis: One way of
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dealingwith non-linearity is by fitting a polynomial regressionmodel. Within polynomial regres-
sion the predictors are raised to a power e.g. X,X2, X3, . . . XD. For a polynomial regression
model with degreeD we get hd(X) = Xd and d = 1, . . . , D, when denoted like equation (4.1).

Figure 4.1 shows the probability of having MDD against different levels of conscientiousness
for theNESDAdata set. Themodel fitted, is a logistic regressionmodel ofMDDusingpolynomial
functions of the variable conscientiousness with D = 4 as predictors. The estimated point wise
standard error is used to approximate a 95% confidence interval around the fitted model.

Figure 4.1 A4th degree polynomial of the probability of havingMDDas a function of conscien-
tiousness with an estimated 95% CI.

WhenD is large enough, polynomial models offer a lot of flexibility without losing the inter-
pretability of a linear model. Although, it must be noted that polynomials tend to be extremely
flexible near the boundary of the domain ofX , causing them to have unpredictable tail behavior
(Friedman, Hastie, & Tibshirani, 2001). It can be seen from Figure 4.1 that the standard error
near the boundaries of X tends to increase. Another disadvantage of using polynomial regres-
sion is, that polynomials are limited by their global nature. Changing the coefficients to model
the form in one region can cause the function to change drastically in remote regions (Ramsay,
1988).

4.2 Piecewise Polynomials and Splines
As an alternative to fitting a single high degree polynomial over the whole domain ofX , we can
partition the data into distinct non-overlapping regions:

X < ξ1, ξ1 ≤ X < ξ2, . . . , ξK−1 ≤ X < ξK , ξK ≤ X, (4.2)
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fitting a different lowdegree polynomial in each region. Thepoints between regions are known as
knots, ξk, with k = 1, . . . , K . The domain ofX consists ofK+1 regions. Therefore, to indicate
the different regions K + 1 basis functions are needed. When employing local basis functions
instead of global basis functions, a given observation only affects the nearby fit, not the fit over
the whole domain.

Although fitting a piecewise polynomial allows for a flexible local fit, it is generally desirable
to restrict the resulting function to be continuous in value and sufficiently smooth at the knots. A
piecewise polynomial spline, or spline for short, achieves these objectives by requiring the adjacent
piecewise polynomials to join with a specified degree of smoothness at the knots. That is to say, a
spline of degreeD, with knots ξk, k = 1, . . . K , consists ofK+1 polynomial pieces of degreeD
and is required to be continuous and have continuous derivatives up to theD−1’th derivative at
each of the knots. It is claimed that a cubic spline, i.e. a piecewise polynomial spline of degree 3, is
the lowest order spline for which knot discontinuity is not noticable to the human eye, therefore
it is the most commonly used spline in practice (de Boor, 1978; Friedman et al., 2001).

4.2.1 Spline Bases

The set of splines of order D over the knot sequence ξk, with k = 1, . . . K can be written as a
linear combination of D + K basis functions. Thus, the space of a spline is a vector space and
therefore there are many basis functions to represent them, called equivalent bases. The design
matrix obtained by a spline basis can be used to replace the column of the variable of interest
in our predictor matrix. This modified predictor matrix can be used to fit the MLD model by
applying the same method as described in Section 2.4.1.

The truncated power (TP) basis is a popular choice of basis functions, advocated by for exam-
ple Ruppert,Wand, andCarroll (2003), because it is intuitive and conceptually simple. Generally,
when using a TP basis of degreeD andK knots, ξk, the function is given by:

f(X) =
D∑
j=1

βjX
j +

K∑
k=1

βD+k(X − ξk)
D
+ (4.3a)

with:

(X − ξk)
D
+ =

{
0 X < ξk

(X − ξk)
D X ≥ ξk

. (4.3b)

It can be shown that the TP basis satisfies the constraints of a spline with continuous derivatives
up toorderD−1 at eachof the knots. Averificationof this is given inAppendixA. Fromequation
(4.3a) and (4.3b) we can see that the TP basis representation has a nice natural interpretation of
global polynomial of degreeD, with local modifications to the right of each knot.
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The design matrix obtained by the TP basis contains the values X to XD in the first D
columns, followed by K columns with the values of (X − ξk)

D. The obtained design matrix
then, can be used to fit, for example, the MLD model.

Although the simplicity of the TP basis makes its use very attractive, their numerical proper-
ties are not favourable: Due to their construction of polynomials, the values in the design matrix
of the TP basis can be very large or very small, which can lead to overflow errors and instabilities.
Moreover, when the knots are very close together, the associated terms of the basis functions of
the TP basis are almost similar for all observations, whichmakes them nearly co-linear (de Boor,
1978; Fahrmeir, Kneib, Lang, & Marx, 2013; Friedman et al., 2001).

Anotherway to represent splines, is throught the use of a B-spline basis (Curry&Schoenberg,
1947; de Boor, 1978). Despite the fact that they have a less intuitive interpretation, the B-spline
basis functions are not linearly dependent and their values are always between 0 and 1, making
themnumericallymore stable compared to theTPbasis splines. Note thatweuse the term ‘degree’
to indicate splines that consist of piecewise polynomials of degree D. It should be mentioned
that it is conventional, in the literature on splines, to use ‘order’, which equals D + 1. Therefore,
henceforward we will not indicate a spline by its degree, but by its order, which will be denoted
byQ. An orderQ spline withK knots is characterized byQ+K−1 parameters (Eilers &Marx,
2010). For B-splines of orderQ, the basis functions consist of polynomial pieces of degreeQ−1,
which are non-zero on a domain spanned byQ+1 knots. To construct a B-spline representation
of an orderQ spline let us first define an augmented knot sequence:

ξ∗ = ξ1, ξ2, . . . , ξK+2Q−1,

resulting in K + 2Q − 1 knots for K + Q − 1 basis functions. By Br,q the B-spline basis r of
order q is denoted, where r = 1, . . . , K + 2Q − 1 and q ≤ Q. The B-spline basis functions
satisfy the recursive relation in terms of their divided differences and are given by:

Br,1 =

{
1 whenX ∈ [ξr, ξr+1)

0 otherwise,
(4.4a)

for r = 1, . . . , K + 2Q− 1 and

Br,q =
X − ξ∗r

ξ∗r+q−1 − ξ∗r
Br,q−1(X) +

ξ∗r+q −X

ξ∗r+q − ξ∗r+1

Br+1,q−1(X), (4.4b)

for r = 1, . . . , K + 2Q− q.

Figure 4.2 illustrates a sequence of B-spline basis functions up to order fourwith 7 equidistant
knots. From the figure we can see that, at any given point in the domain of the B-spline, onlyQ
basis functions are non-zero and they are constructed, such that

K+Q−1∑
r=1

Br(X) = 1 ∀X. (4.5)
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The B-spline basis is locally defined, i.e. the basis functions are only positive on an interval
based on Q + 1 knots. This differentiates them from the truncated polynomials of the TP basis
which have positive values starting from a certain knot. Therefore, in contrast to the TP basis, we
cannot make a distinction between global and local components. This makes the interpretation
of the B-spline basis less intuitive (Fahrmeir et al., 2013).

Although the interpretation of the design matrix obtained by the B-spline basis is not as ap-
parent as that of the one obtained by the TP basis, it can still be used to fit, for example, the MLD
model, yielding the same fitted values as the model acquired by the TP basis.

Figure 4.2 B-splines of order 2 to 4 from top to bottom, with 7 equidistant knots. The basis
functions together span a spline space.

4.3 Multiple predictors
Until now we assumed X to be one-dimensional. Generalized additive models (T. Hastie &
Tibshirani, 1986; T. J. Hastie & Tibshirani, 1990) can be used to identify and characterize non-
linearity in the presence of multiple predictor variables. A generalized additive model (GAM) is
a generalized linear model consisting of the sum of transformations of the predictors X (Wood,
2006). In general the model looks like:

g(µ) = β0 + f1(X1) + f2(X2) + · · ·+ fp(Xp), (4.6)

where g(.) is a smooth monotonic link function, µ = E(Y |X1, X2 · · · , Xp) with Y ∼ some
exponential family distribution, and the functions f1(.), f2(.), ..., fp(.) are different non-linear
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transformationsof ourpredictor variables. The link functionused in amultivariate logisticmodel
is the logit link function. We model transformation fp(.) as:

fp(Xp) =
B∑
b=1

βp,bhp,b(Xp), (4.7)

where hp,b(.) is the b’th transformation of variable Xp. When the basis functions hp,b(.) are de-
termined, the model is linear in these transformations, which allows for the same interpretation
as in a generalized linear model. Employing GAM gives us the possibility to model a function
f(X) that is linear in some predictors, i.e. hp,b(Xp) = Xp, and non-linear in others. This is
particularly useful in modeling, for example with the MLD model, when we expect only some
predictors to have a linear relationship with the response variable.

4.4 Visualization non-linear MLD model
To illustrate the impact of the proposed extension of the currentMLDmodel by allowing for non-
linearity, on the interpretation of the model, let us consider again the NESDA data set. From
the personality traits, only extraversion and neuroticism had a statistically significant effect on
both dimensions when fitting the original model with a two-dimensional ‘distress-fear’ structure.
There is no indication of a linear association between, for example, conscientiousness and the
log-odds ratio of the different response variables positioned at the two dimensions. However,
it is theoretically possible for the trait conscientiousness to have a non-linear relationship with
one or both dimensions and therefore with the disorders positioned on these dimensions. One
could, for example, imagine that the effect of conscientiousness accelerates at some point along
a dimension, increasing the probability of belonging to a certain category with respect to the
other category. Moreover, it could even have a non-monotonic relationship with the dimensions,
showing a negative effect on the log-odds when having a low score and a positive effect on the
log-odds when having a higher score, or vice versa.

For illustration the MLD model was fitted on the NESDA data set, where the predictor vari-
able conscientiousness was replaced in the design matrix by a cubic B-spline basis, with a single
knot at zero, resulting in a spline basis with four basis functions. Figure 4.3 shows the relationship
of the personality trait conscientiousnesswith the two dimensions separately. The figure indicates
that, overall, a higher level of conscientiousness is associated with an increase in the probability
of having a disorder that belongs to the ’distress dimension’, that is, the log-odds of membership
to category 1 versus the baseline category 0 increase, with higher scores on the personality trait
conscientiousness. This effect seems to reverse at a score of approximately minus one and again
around a score of one. The preceding indicates that, in between these scores, a higher score of
conscientiousness is associated with a negative effect on the log-odds of the disorders positioned
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on this dimension. The effect of conscientiousness on the ’fear dimension’ seems to vary over the
range of scores as can be seen from the plot. Overall a very high or a very low conscientiousness
score is associated with a higher probability of having a disorder belonging to this dimension.

Figure 4.4 shows a plot of the variable axis as shown in Figure 4.3 for the two dimensions
combined. The interpretation of the variable trajectory for both dimensions is similar to the
interpretation of Figure 4.3. Along the variable axis an indication of the standard deviations
of the trait is given. Because a score of three standard deviations falls outside the range of the
observed data, it is not visualized.

Since the model is still linear in the basis functions, coordinates representing the position of
subject i, ηi, can still be obtained by taking a linear combination of the augmented matrix of the
predictor variables. Figure 4.5 visualizes two variables, X1 and X2, having a non-linear and a
linear relationship with the two dimensions respectively. Because the effect is additive in nature,
we can obtain a subject’s coordinates in two dimensional space by adding the two curves together,
as in the original model. This can be done in a similar way as with completing parallelograms in
vector addition: by shifting the origin of the vector to the point of the subjects score on the second
variable trajectory, as illustrated in the figure.

Figure 4.3 Cubic spline with one knot of the predictor variable conscientiousness fitted with
the MLD model on the NESDA data set visualized for the distress dimension (left) and the fear
dimension (right).
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Figure 4.4 Cubic spline with one knot of the predictor variable conscientiousness fitted with
the MLD model on the NESDA data set with an ‘distress-fear’ structure.

Figure 4.5 Twodimensional spacewith two variable trajectories represented by lines and scores
on the variables represented by dots. Their combined coordinate in space is obtained by the
intersection between the two projections of the variables on the other variable.
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4.5 Equivalent Bases and Regularisation
Besides the choice of basis, splinemodelling involves choosing the number and placement of the
knots in the model. Choices regarding the number and placement of the knots can potentially
have a substantial effect on the fit; too many knots can cause interpolation of the data, while too
few knots can cause the model to be not flexible enough to capture the trend of the underlying
data generating process.

To avoid overfitting of the model, we can use a penalization approach. Penalized (genera-
lized) regression shrinks the regression coefficients of the model towards zero by putting a con-
straint on their size. Different penalties can be employed, although constraining theL1 norm or
the L2 norm of the regression coefficients is most frequently used in practice (Friedman et al.,
2001).

Tibshirani (1996) proposed LASSO (Least Absolute Shrinkage and Selection Operator) as a
tool to perform variable selection, as well as regularization in order to enhance interpretability
and to improve the prediction accuracy of a regression model. LASSO regression shrinks the
regression coefficients, by constraining theL1 normof the coefficients. TheLASSOestimatorwas
originally formulated for OLS, but can be extended for the GLM situation. Given the outcome
vector Y = (y1, . . . , yn)

T , the n × p matrix of predictor variables X, and tuning parameter
λ ≥ 0, the original LASSO estimate can be defined as

β̂LASSO ∈ argmin
β

1

2
||Y − βX||22 + λ||β||1. (4.8)

Here β = (β1, . . . , βp)
T , ||.||2 is the Euclidean norm and ||.||1 equals the L1 norm. Note the

element notation in 4.8, the LASSO only has a unique solution when rank(X) = p, because only
then the criterion is strictly convex. Because of the nature of the L1 norm, making λ sufficiently
large, will cause some of the coefficients in the solution, to be shrunken exactly to zero. When
λ = 0, no constraints are imposed and an OLS fit will be obtained. Moreover, when λ = ∞, the
constraint penalizes all curvature, thereby setting all coefficients to zero except for the intercept.

Ridge regression is a shrinkagemethod likeLASSO, introducedbyHoerl andKennard (1970).
The Ridge estimate is defined by

β̂Ridge = argmin
β

1

2
||Y − βX||22 + λ||β||2. (4.9)

Because of the nature of the constraint, coefficients are also shrunken towards zero. Yet, contrary
to LASSO, Ridge does not set coefficients in the solution exactly to zero. Instead of setting one of
the regression terms of two co-linear predictor variables to zero, Ridge will share the regression
weight between them. Asλ goes to∞ the Ridge estimator approaches zero but never equals zero.
Again when λ = 0, no constraints are imposed and we will obtain a OLS model.
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Although overfitting can be controlled by bothmethods, the use of anL1 norm enables us to
obtain a sparse solution. Both LASSO and Ridge are not scale invariant, so we assume that our
input matrixX is standardized to have a mean of zero and a variance of one.

We will now illustrate regularisation with LASSO and Ridge in the context of splines by
means of an example: A simulation study has been conducted to show the fit of three different
models: an ordinary least squares fit, the LASSO estimator and the Ridge estimator. Data are
simulated as follows: The Xi are taken uniformly over the interval [0, 1] and Yi are simulated
using f(Xi) + ϵi, where f(.) is a known non-linear function and ϵ ∼ N(0, 2). The following
function is used:

f(X) = 0.2X11 × (10 (1−X))6 + 10 (10X)3 × (1−X)10. (4.10)

A function to obtain the TP basis was implemented in R, furthermore the bs function from the
package splines (R Development Core Team, 2008) was employed to obtain a B-spline basis.
First we confirmed that the two different bases yield the same estimates, when an OLS model is
fitted on the obtained design matrices. Hereafter the LASSO estimator and the Ridge estimator
were obtained by implementing the model in the package glmnet (Friedman, Hastie, & Tibshi-
rani, 2010), using the maximum number of knots, that is the number of unique values of the
predictor variable minus one. The hyper parameter of both models, λ, was selected by perform-
ing ten-fold cross-validation, a technique which will be elaborated on further in the next chapter.

Figure 4.6 shows the models fitted, using a TP basis. As can be seen from the plot, the OLS
fit nearly interpolates all data points. Both the LASSO estimator and the Ridge estimator yield a
smooth function, while globally following the trend of the data. This is due to the fact that the
TP basis is globally defined as long as the first three coefficients are not set to zero. From the
plot we can see that the fit obtained by the LASSO estimator is closer to the true function than
the one obtained by the Ridge estimator. In this example only 50 coefficients were retained with
the LASSO estimator, these are based on 46 knots (50 coefficients min the intercept and the first
three global terms). The initial model had 502 basis functions, based on 499 knots.

Figure 4.7 shows themodel fitted, using a B-spline basis. Contrary to the unpenalizedmodel,
the two bases do not give an equivalent fit when the LASSO estimator and the Ridge estimator
are employed. As can be seen from the plot, the OLS fit interpolates the data points. The LASSO
estimator yieldsnot a smooth function aswith theTPbasis. This is due to the fact that theB-spline
basis is only defined locally; the curve equals the intercept on pieces of the range ofX , where the
coefficients are shrunken towards zero. In this example only 41 coefficients where retained with
the LASSO estimator, where the initial model had again 502 basis functions. Although none of
the coefficients of the Ridge estimator equal zero, we do not obtain a smooth function with the
Ridge estimator either.

Figures 4.7 and 4.6 show that both penalized solutions approximate the true function f(.)

quite poorly. A better solution is obtained when a spline with less knots is fitted. Figures 4.8
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and 4.9 show the same models fitted on cubic spline bases with only five equidistant knots, in-
stead of the maximum number of knots. When a truncated power basis is used (see Figure 4.8),
the OLS fit, as well as the fit obtained by the LASSO estimator, describe the underlying trend in
the data much better than the models in Figure 4.6. However, the Ridge estimator still behaves
poorly. When fitting the same models with a B-spline basis (as in Figure 4.9), all three models
approximate the true function f(.) well.

The question why to use a penalized solution at all remains, given that the OLS fit describes
the pattern in the data as adequate as the penalized solutions when only five equidistant knots are
used (see Figure 4.8 and 4.9). One of the reasons we are often not satisfies with the OLS fit is that
although the fit often has low bias, it can be high in variance. Especially when our model is more
complex, it is prone to overfitting (as we already saw in Figures 4.6 and 4.7). By introducing a
little bias into the model, by means of a penalty term, we can reduce variance and can sometimes
improve prediction accuracy. Wewill elaborate further on the prediction accuracy and the trade-
off between the bias and the variance in the next chapter. Furthermore, when we have a large
number of predictor variables, we often want to perform model selection which can be done
with LASSO. As mentioned before the LASSO estimator can cause some of the coefficients to
be biased exactly to zero. Fitting a non-linear model with a small number of equidistant knots
(for example five) and a B-spline basis is favourable. Note that although the fit obtained with
unpenalized spline regression is equivalent for bothbases, theB-splinebasis is favourable because
of the attractive numerical properties of the basis.
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Figure 4.6 LASSO estimator (red), Ridge estimator (green) and an OLS fit (blue) of a cubic
spline with a truncated power basis and the maximum number of knots.The black curve repre-
sents the true function.

Figure 4.7 LASSO estimator (red), Ridge estimator (green) and an OLS fit (blue) of a cubic
spline with a B-spline basis and the maximum number of knots.The black curve represents the
true function.
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Figure 4.8 LASSO estimator (red), Ridge estimator (green) and an OLS fit (blue) of a cubic
spline with a truncated power basis and five knots.The black curve represents the true function.

Figure 4.9 LASSO estimator (red), Ridge estimator (green) and an OLS fit (blue) of a cubic
spline with a B-spline basis and five knots.The black curve represents the true function.
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4.6 Biplot model with non-linear penalized terms
To illustrate the impact of the use of non-linear relationships in the MLD model on the inter-
pretation of the corresponding biplot, let us again consider the NESDA data set. In the paper
of Worku and de Rooij (2018) the predictor variables openness to experience, agreeableness and
conscientiousness were excluded from the final model because of their performance in the linear
model. We fitted amodel with a two-dimensional ‘distress-fear’ structure for which the predictor
matrixXwas augmented. This is done by replacing the columns of predictor variables openness to
experience, agreeableness and conscientiousness by a cubic B-spline basis of these variables, all with
three equidistant knots. The augmented predictor matrix is used to fit a non-linear MLD model,
in which we penalized the estimators obtained by the spline bases by means of the LASSO esti-
mator. The model is fitted, using the glmnet package (Friedman et al., 2010). Because only the
basis functions of the spline terms are penalized, we could potentially obtain solely linear terms.
Figure 4.10 shows a biplot of the model with a two-dimensional ‘depression-fear’ structure. The
positions of the subjects and the categories of the response variables are obtained in a similar
fashion as in the original model (see Section 2.6). The trajectories of the non-linear terms are
obtained in the following way: We first create a cubic B-spline basis with three knots of a vector
with scores ranging from -3 to 3 with increments of .03. Thereafter, we multiply the obtained B-
spline basis with the corresponding coefficients of the basis functions of the fittedmodel for both
dimensions. We then connect the obtained coordinates to form a non-linear variable trajectory.
The coordinates that are used to form the variable trajectory can be interpreted as the coordinates
of different subjects with scores ranging from -3 to 3 on this variable and a score of zero on the
other predictor variables. All predictor variables are included in the plot. Additionally labels are
included at the positive side of the variable axes of the variable axes that are clearly visible, i.e.
education, neuroticism, gender, extraversion and conscientiousness, are shown. From the plot we
can see that we did not only obtain linear terms. However, the effect of openness to experience
and agreeableness on both dimensions is very small and not clearly visible in the plot. This is due
to the fact that the B-spline basis is locally defined and the LASSO estimator, with λ = 0.0031,
shrunk some of the coefficients of the basis functions to zero; the variable trajectories for some
of the variables only deviate from zero on a small part of their range.

Figure 4.11 shows a small part of the biplot visualized in Figure 4.10 in more detail. Only the
variable trajectory of the predictor variable conscientiousness is vizualized in the figure. On the
variable trajectorymarkers are placed at values ranging from -2 to 3, with increments of one. The
figure indicates that, up until a score ofminus one, a higher level of conscientiousness is associated
with a positive effect on the log-odds of disorders positioned on the first dimension. The effect
seems to reverse around a score of approximatelyminus one. However, a score of one and higher
seems to have no effect on the log-odds of disorders belonging to the first dimension.
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Theeffect of conscientiousness on the seconddimension seems to vary over the range of scores
as wel: The log-odds of membership to category 1 versus the baseline category 0 decreases with
higher scores on the personality trait conscientiousness. This effect seems to reverse at a score of
approximately minus two: With a score of minus two and higher, a higher score on the predictor
variable conscientiousness is associated with a higher probability of having a disorder belonging
to this dimension.

Figure 4.10 Biplot of a penalized non-linear MLD model fitted on the NESDA data with a two-
dimensional ‘distress-fear’ structure.
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Figure 4.11 Enlargement of the variable trajectory of the predictor variable conscientiousness as
shown in Figure 4.10.
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Model Selection

5.1 Model selection original model
In theMLDmodel, the predictor variables for the final model as well as the dimensionality struc-
ture of the model need to be determined. We desire to select a model that is parsimonious, but
still able to capture the underlying structure as well as the comorbidity patterns of the data.

By setting the distance between the two categories of a response variable in theMLDmodel to
one, as in the restrictedmodel, it becomes equivalent to amarginalmodel formultivariate binary
data. Themodel can therefore be estimated byusingmarginal quasi likelihoodmethods. Because
of the restriction on the class points, we presume that the predictor variables discriminate equally
well for all response variables belonging to the same dimension. When this assumption is not
justified, the mean structure of the model is not correctly specified. Moreover, when the mean
structure of themodel is not correctly specified, the obtainedmodel will be biased. The bias of an
estimator is a measure on how good our estimator is estimating the real value of our parameter.
The bias of an estimator is defined as:

bias(θ̂) = E(θ̂)− θ, (5.1)

where E(θ̂) is the expectation of the parameter estimate and θ is the true underlying parameter.
The estimator is biased when the expected value of the estimated parameter differs from the true
underlying parameter. Biased estimators tend to systematically over- or underestimate the true
parameters.

Variable selection in the original MLD model is based on a Wald test performed on the re-
gression parameters with standards errors, obtainedwith the sandwich estimationmethod or the
clustered bootstrap method. If the MLD model is biased, the estimated variances of the regres-
sion coefficients, based on the sandwich estimation method, will be biased as well because the
GEE method assumes the mean structure of the model to be correctly specified. The violation
of this assumption invalidates null-hypothesis significance tests, like the Wald test (Fox, 2015).
Therefore, when the predictor variables do not discriminate equally well, i.e. ourmodel is biased,
we need an alternative to select predictors in our model.
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Lately, there has been an increased interest in predictive power, in contrast with explanatory
data analysis. When accessing the prediction capability of a model, the interest lies in the pre-
dictions generated by the model, not in the predictor variables itself (Shmueli, 2010). Instead
of trying to determine if a coefficient equals zero, as in null-hypothesis significance testing, we
would like to focus on a predictors relevance to the response variable when selecting a predictor
in the model. Therefore we propose to use the prediction capability of a model on independent
test data to validate the model. We can use the ability to predict classes for independent test data
to select between different competing models.

In the original MLD model, the QICu norm (Pan, 2001) was used to determine the dimen-
sionality structure of the model. When comparing different models on their prediction capabil-
ity, we provide a unified framework in which we can both examine the predictive power of the
variables in the model, as well as the dimensionality structure of the model.

5.2 Bias-variance trade off
Within the context ofmachine learning, the performance of amodel relates to its prediction capa-
bility on independent data (Friedman et al., 2001). When employing maximum likelihood, the
optimal model is determined by choosing parameters that make the observed data ’most likely’.
However, such amodel does not necessarily provide the best prediction. Because we evaluate the
model using the data we used for training, we are prone to overfit the model: The model stores
information that is specific to the training data used to obtain the model and is not part of the
general trend of the data generating process, rendering the model non-generic. A model that is
overfitting the data is said to be high in variance, i.e. the estimators obtained by the model vary
heavily when different data sets would have been used to fit the model. The opposite is called
underfitting, and refers to an overly simple model that can neither model the training data, nor
capture the important trends of the data generating process. Although a model underfitting the
data is more stable, and therefore low in variance, it yields a model that is high in bias. In general
we desire to select a model that is not too strongly tailored to the particularities of the training
set, but still is able to capture the general trends of the data generating process, i.e. a model with
a good predictive performance on independent new data.

In order to clarify the relationship between the two mechanisms that are a source of error,
bias and variance, let us show the decomposition of the expected prediction error, that is, the
expected error on new input, also known as test or generalization error. The expected prediction
error using squared-error loss, can be decomposed as:

EPE = Var(y)︸ ︷︷ ︸
irreducible error

+ Var(f̂(x)) + Bias2(f̂(x))︸ ︷︷ ︸
reducible error

. (5.2)
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The Expected Prediction Error of using the fitted model, f̂(.), to predict y is the sum of the vari-
ances of f̂(x) and y plus the squared bias of f̂(x). The the variance and the squared bias of our
estimator f̂(x) form the mean squared error (MSE) between the true function and the predic-
tions. Unfortunately we cannot influence the irreducible noise, the variance of y, but the MSE is
a function of our estimator it can possibly be reduced (Goodfellow, Bengio, & Courville, 2016;
Matloff, 2017).

As mentioned before, by wrongfully making the assumption that a predictor variable dis-
criminates equally well for all response variables pertaining to one dimension, a biased model
is obtained. When the assumption is not justified, we know in advance that our model is not
capable of capturing the true underlying structure in the data, that is, the model is not complex
enough to capture this structure and the estimators obtained by the MLD model will therefore
structurally underfit our data. Yet, the obtained estimators are low in variability, i.e. they are
more stable, compared to estimators obtained by a more complex model like the unrestricted
model. Thus, although there is an increase in bias, compared to an unrestricted model, there will
be a decrease in variance.

5.3 Cross-validation
Ideally we would evaluate the predictive performance of a model by randomly dividing the data
into two parts: A training set on which we fit the model and a validation set which is used to
estimate the prediction error of the model. A disadvantage of this method is that it is not very
efficient, i.e. only part of the data is used to fit themodel. We therefore desire to employ amethod
to access the predictive performance of themodel, while utilizing the datamore efficiently. Cross-
validation (Allen, 1974; Stone, 1974) is one of the most elegant and commonly used methods to
evaluate predictive performance of amodel in fields asmachine learning and pattern recognition.
When performing cross-validation the data are randomly partitioned into V equally sized folds.
Iteratively each fold v is retained as the validation set, while the other V −1 folds combined form
the training set. A model is trained on the training set and its predictive error is evaluated on
the validation set. We do this for v = 1, . . . , V and average the V estimates of prediction error
to obtain a final estimate of the prediction error. Optionally a standard error of this estimate
can be calculated as well. Note that this approach is often referred to asK-fold cross-validation.
However, using the letterK in this regardwould lead to confusion, as it is already used to indicate
the number of knots. In the field of unsupervised learning themethod is often calledV -fold cross-
validation, therefore we choose to use this notation instead.

How to select an adequate value for V has been substantively studied in the literature. This
choice is again based on a bias-variance trade-off: WhenV is large the obtained estimator is likely
to have a low bias with regard to the true prediction error. Yet, the expected prediction errors of
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the trainedmodels are highly (positively) correlated with each other because the training sets are
so similar. The expected prediction error of highly correlated folds has higher variance compared
to the expected prediction error of folds that are not as highly correlated (James, Witten, Hastie,
& Tibshirani, 2013). Contrary, when V is small, the expected prediction error obtained by cross-
validation has lower variance, but the bias could potentially be higher. Hence, we want the size
V to be a good compromise between the bias and the variance of our estimate. Typically five- or
tenfold cross-validation is recommended to balance between the bias and the variance (Breiman
& Spector, 1992; Friedman et al., 2001; Kohavi, 1995).

When employing cross-validation to examine the prediction error of the MLD model, we
need to retain the correlation structure between themultivariate responses (see Equation (2.14)).
For this reason clustered cross-validation can be utilized. This is a cross-validation procedure in
which the data is partitioned in folds on a subject level. In this fashion, the generated folds retain
the same dependence structure as the original data (Roberts et al., 2017).

5.3.1 Nested Cross-validation

Apart from model selection, cross-validation can be used to tune the parameters of a model (for
exampleλwhenperformingRidge regressionorLASSO).Wedesire to select thehyper parameter
with a value that minimizes the loss function. Yet, when cross-validation is simultaneously used
to evaluate the model and to select the hyper parameters, we need to be careful: When the same
test set is used to both select the values of the parameter and evaluate the model, we are prone to
underestimate the prediction error and therefore overfit our model, as pointed out in the paper
of Cawley and Talbot (2010).

To overcome this problem nested cross-validation is required. As in normal cross-validation
each fold v is retained once as the validation set, while the other V −1 folds combined form the
training set. This training set is used to employ inner cross-validation, that is, we randomly par-
tition our training set again in folds, used to perform cross-validation to tune the parameters.
Hereafter, the model selected by inner cross-validation is evaluated on our validation set v.

5.4 Loss function
When evaluating the predictive performance of a model, we compute the prediction error by
means of a loss function. Since the decomposition of the expected prediction error of the squared
loss is quite trivial (as shown in Section 5.2), the mean square error (MSE) is a popular choice of
loss function. When f̂(x) is a probability of belonging to a certain class, as in the MLD model,
the MSE equals the mean squared error of the prediction and is generally referred to as the Brier
Score (Brier, 1950) and is defined in the multivariate setting as
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Brier =
1

n

n∑
i=1

J∑
j=1

(yij − πj(xi))2. (5.3)

Note that the original definition of the Brier Score accounted for the number of classes within a
multinomial setting, i.e. the mean squared loss multiplied by the number of classes. Despite this,
the formulation without themultiplication factor is most commonly used (Jolliffe & Stephenson,
2012) and will henceforth be the formulation in this thesis.

Other choices of loss functions can be made to evaluate our model. For example, one might
be interested in utilizing the miss-classification rate or the cross entropy error. However, the use
of alternative loss functions can result in different conclusions about the ’optimal’ model. We
choose to use the Brier Score because of its mathematical properties (e.g. we can easily decom-
pose the Brier Score into the squared bias and the variance) and because of the popularity to use
the (mean) squared loss function within a regression setting.

5.5 Model validation
To illustrate and compare the different models proposed in this thesis, 16 different models were
fitted on the NESDA data set. All data were centered and scaled before fitting the models. The
dimensionality structure of the proposed models is

• an ‘uni-dimensional’ structure with all five disorders represented on a single dimension;

• a two-dimensional ‘distress-fear’ (d/f) structure with one dimension representing distress
[MDD, GAD & DYST] and the other dimension representing fear [PD, & SP];

• a two-dimensional ‘depression-anxiety’ (d/a) structure with one dimension representing
depression [MDD & DYST] and the other dimension representing anxiety [PD, SP &
GAD];

• a two-dimensional structure where the response variable GAD is represented on both di-
mensions (GAD 2d): One dimension represents [GAD, MDD & DYST] and the other
dimension represents anxiety [PD, SP & GAD];

Thedifferent dimensionality structureswereused tofit eight linearmodels: Fourunpenalized
linear MLD models were fitted utilizing the glm() function in R. Furthermore, four penalized
linearMLDmodels were fitted, inwhich the LASSO estimatorwas used. Thiswas done bymeans
of the glmnet package (Friedman et al., 2010).

Additionally, eight the samebutnon-linearmodelswerefitted employing thedifferent dimen-
sionality structures. In the original paper of Worku and de Rooij (2018), the predictor variables
openness to experience, agreeableness and conscientiousness were excluded from their final model
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because of their performance in the linear model. We augmented the predictor matrix X by re-
placing the columns of these variables by a cubic B-spline basis of these variables, all with three
equidistant knots. Thereafter we used the augmented predictor matrix to fit four unpenalized
MLD models function, and four penalized MLD models employing the L1 norm. The models
were fitted respectively by means of the glm() function and the glmnet package in R. Note that,
in the panalized solution, we only penalized the estimators obtained by the spline bases. Because
LASSO is not scale invariant, our data needs to have the same scale, but the values of our obtained
spline basis are bounded between zero and one (see Section 4.2.1) and their scale therefore differs
from the other variables (Denison, Mallick, & Smith, 1998; Osborne, Presnell, & Turlach, 1998).

Ten-fold clustered cross-validation was performed to examine the prediction error of all mo-
dels. This was done in order to preserve the correlation structure between the multivariate re-
sponses. In addition, we estimated penalty parameter λ for the penalized models by means
of nested cross-validation (see Section 5.3.1). Again ten folds were used for the inner cross-
validation to select the penalty parameter.

One could consider to select the number of knots and order of the spline bases through the
use of nested cross validation as well. Because it is claimed that a cubic spline, a spline of order
four, is the lowest order spline for which knot discontinuity is not noticable to the human eye,
it is the most commonly used spline in practice. Therefore, we choose not to select the degree
of our spline bases through the use of nested cross-validation, but to use a cubic spline instead.
Moreover, we choose not to employ nested cross-validation to select the number of knots in our
spline bases because of the computational burden it entails.

We evaluated the predictive performance of the models by means of cross validation. The
cross validation errors of all models are shown in Table 5.1 accompanied by their corresponding
standard error, obtained over the ten folds. The Brier Score was employed as a loss-function to
evaluate the different models and equals the cross-validation error. The cross-validation error of
the different linear and non-linear unpenalized models tend to be negligible.

By introducing non-linear terms in the unpenalizedmodel, themodel ismore flexible. There-
fore a model with less bias could be obtained. Yet, there tends to be no difference in the expected
prediction error of the linear models compared to the non-linear model. Suggesting that the
decrease in bias is compensated by a increase in variance, leading to a model with no better pre-
diction performance. Likewise, there tends to be no difference in the cross-validation error of the
different linear and non-linear penalizedmodels. Yet, there appears to be a substantial difference
in the cross-validation error of the unpenalized models compared to the penalized models; the
predictive performance of the penalizedmodels is favourable over the unpenalizedmodels. Thus,
by introducing extra bias into the model through the use of a penalty term, the variance drops.
This results in a sparse solution with better prediction capability compared to the unpenalized
models.
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Whenmodels donot substantially differ in their predictive performance, it is custom to select
the most parsimonious, and therefore least complex, model within one standard deviation of
the model with the lowest prediction error. For this reason we do not choose to select a non-
linear model, as it does not improve the predictive performance, but makes the understanding
of the model more complex. The most parsimonious model is the unidimensional penalized
model. The LASSO estimator, with λ = 0.0034, shrunk the coefficient of some of the predictor
variables to zero. The selected variables in the finalmodel are education, neuroticism, extraversion
and agreeableness.

Table 5.1 Cross-validation error of sixteen different MLD models.

Unpenalized Penalized

CV error S.E. CV error S.E.

Linear models
1 dimensional .1925 .0044 .1379 .0031
2 dimensional (d/f) .1929 .0044 .1378 .0031
2 dimensional (d/a) .1933 .0044 .1377 .0031
2 dimensional (GAD 2d) .1903 .0043 .1391 .0030

Non-linear models
1 dimensional .1931 .0045 .1382 .0031
2 dimensional (d/f) .1934 .0044 .1377 .0030
2 dimensional (d/a) .1938 .0045 .1377 .0030
2 dimensional (GAD 2d) .1910 .0043 .1390 .0029

CV error = cross-validation error based on the Brier Score,
S.E. = standard error.
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Discussion

Worku and de Rooij (2018) proposed a marginal model for the analysis multivariate binary data
in a distance framework, the multivariate logistic distance (MLD) model. Two different models
were introduced by Worku and de Rooij, both a restricted and an unrestricted MLD model. The
former model imposes a restriction on the class points of the response variables. In this work
we have extended the work of Worku and de Rooij (2018) by proposing three extensions to the
restricted MLD model. The extended model may be estimated using software for univariate mo-
dels (such as GLM and GEE). The current chapter provides a concise summary of the extensions
of the MLD model as presented in Chapters three to five. Furthermore, suggestions for future
research will be given.

6.1 Modification dimensional structure
In the original MLD model, different theories about the dimensional structure could be studied
to access comorbity patterns in the data. However, the model only allowed for the assessment
of dimensional structures in which each response variable relates to a single dimension. As a
result of this restriction, other dimensional structures that could, for example, be accessed with
Structural Equation Modelling (SEM) or Confirmatory Factor Analysis (CFA), can not be studied.

In this thesis, we examined the possibility for a response variable to belong to multiple di-
mensions. We showed that, by imposing an extra constraint on the class points, the model with
response variables on multiple dimensions could be defined. The constraint dictates that, if a
response variable belongs to multiple dimensions, the coordinates for the different class points
are equal for all dimensions. That is, γ0j,m = γ0j,1 and γ1j,1 = γ1j,1 ∀ m, for response variables
pertaining to multiple dimensions.

The amendment of the model entails changes in the interpretation of the corresponding bi-
plot, which is illustrated in two dimensional space in Section 3.3.1. The class points of a vari-
able belonging to both dimensions are positioned on a projection line. This projection line goes
through the origin and has a 45 ◦angle with both dimensions. The scores of subjects can be
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projected perpendicular to the projection line. The scaled distance between the projections is
associated with the difference in the log-odds of membership to the different classes of disorders
positioned on this projection line.

An advantage of the original MLD model of Worku and de Rooij over existing marginal mo-
dels for multivariate data, is the possibility for dimension reduction as a form of regularization.
Themodel is less complex compared to a standardmarginalmodel formultivariate data, because
less parameters are estimated. We have shown the application of the proposed extension employ-
ing an empirical data set, the NESDA data set. The biplot in Figure 3.4 is partitioned in different
regions indicating the most probable response profiles. From the figure we can see that the pro-
posed extension has a crucial impact on which regions occur: Allowing a response variable to
belong to multiple dimensions leads to more response profiles. Therefore, the extended model
is less restricted compared to the original model, while the same number of parameters are esti-
mated.

The extended model is related to multivariate marginal models as proposed by Asar and İlk
(2013). When employing the method of Asar and İlk, parameter estimations are obtained by the
GEE approach. Compared to our extendedmodel, each response belongs to a unique dimension
resulting in a J-dimensional model. However, equality restrictions can be incorporated, result-
ing in shared parameters between some of the response variables for certain predictor variables.
Yet, in our model all parameters are shared for response variables pertaining to the same dimen-
sion. For response variables that belong to multiple dimensions the parameters are obtained by
taking the sum of the parameters per predictor variable over the different dimensions.

In empirical sciences latent variable models are often used to study comorbidity patterns in
the data (see for example Spinhoven et al., 2013; Beesdo-baum et al., 2009). Yet, these models
often make unverifiable distributional assumptions about the response variables and the latent
variables (see Worku, 2018, Chapter 2). We have shown that the extended MLD model can be
used for comparing theories about the comorbity patterns, without making these assumptions.
Moreover, the extended model is not restricted in the dimensional structures, as in the original
model.

6.2 Incorporating non-linear relationships
In the original model of Worku and de Rooij (2018), a strong linearity assumption was made,
i.e. we could solely examine the linear effect of a predictor variable on the logit transformation
of the probabilities of different classes of response variables. However, it is unlikely that this
effect is always linear. We showed that we could extend the model by allowing for non-linear
relationships. Different approaches to incorporate non-linear relationships into the model were
presented. All approaches include augmentation of the predictormatrix, before fitting themodel.
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In addition, we showed the implications for the interpretation of the biplot when incorporating
a non-linear variable axis into the model through the use of a spline basis (see Figures 4.4 and
4.5).

The biplot accompanying the non-linear MLD model is related to spline-based nonlinear bi-
plots, as proposed by Groenen, Le Roux, and Gardner-Lubbe (2015). This is a visualisation tech-
nique to show the relationship between subjects and variables in a single plot usingB-splines. The
main difference between the biplot of Groenen et al. and the biplot accompanying our model, is
the interpretation of the plot: In the plot of Groenen et al., subjects and curves representing the
variables are visualized in low dimensional space in such a way that the point on the curve near-
est to the subject relates to the predicted value for that subject on the corresponding variable. In
the biplot accompanying ourmodel, the position of the subjects is computed as a linear combina-
tion of their scores on the (transformed) predictor variables. Furthermore, wemake a distinction
between response variables, represented as points, and predictor variables, represented as curves.

When employing spline bases, the number and placement of the knots could potentially have
a substantial effect on the fit. Therefore, we conducted a simulation study in which penalized re-
gression was used to prevent overfitting, while utilizing the maximum number of knots (see Sec-
tion 4.5). We compared two different spline bases, the Truncated Power basis and the B-spline
basis, and tested if they are equivalent when fitting penalized regression both with an L1 and an
L2 constraint. It was shown that the bases do not result in an equivalent fit when used for penal-
ized regression. Only the TP basis resulted in a smooth fit when using the maximum number
of knots (see Figure 4.6). This is due to the fact that the function is globally defined. In contrast,
the B-spline basis is locally defined. Therefore on pieces of the range of the predictor variable,X ,
where all coefficients are shrunken towards zero, the curve is equal to the intercept (see Figure
4.7).

Employing a spline basis with substantially less knots yields a model with a considerably bet-
ter fit compared to a model with the maximum number of knots (see Figure 4.6 and 4.8). Com-
pared to the TP basis, the B-spline basis shows a better fit, presumable because of the numerical
properties of the basis. We conclude that, fitting a non-linear model with a small number of
equidistant knots and a B-spline basis is favourable for the MLD model. It should be noted that
more research is needed to study the performance of penalized spline regression in theMLDmo-
del. Moreover, other penalization approaches could be explored like Smoothing splines, in which
thewiggliness of the curve is controlled by penalizing the integrated squared secondorder deriva-
tive (see for example Friedman et al, 2001); P-splines, in which the finite order differences of the
coefficients is penalized (Eilers & Marx, 1996); or Adaptive Ridge, a technique comparable with
P-splines with the noticeable difference that automatic knot selection can be obtained by this
method (Goepp, Bouaziz, & Nuel, 2018). We suggest future research to study the use of these
different penalization approaches. The exploration of these techniques is beyond the scope of
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this thesis, we solely accessed penalization approaches most frequently used in practice (Fried-
man et al., 2001).

Besides exploring the effect of other penalization approaches we suggest experimenting with
other empirical data sets to see if the number and the placement of the knots still has minor
influence on the fit, especially when observations are not evenly distributed over the range ofX .

Furthermore, we were only able to penalize estimators of the same order, that is, when work-
ing in a multivariate setting, we can only penalize the non-linear terms, provided they are of the
same order, or the linear terms. This is due to the fact that both LASSO and Ridge are sensitive
to scaling. We suggest for future research the use of group penalization in which a penalty term
per group coefficients of the same order is used (Osborne et al., 1998). Alternatively one could
explore the possibility of centering and scaling the variables without a spline basis such that they
are bounded between zero and one. In this way, when employing a B-spline basis, all variables
are of the same order.

6.3 Change of model selection criterion
In statistical analysis, we oftenwant to select amodel from a set of candidatemodels, with the op-
timumbalance between complexity andmodel fit (D. Anderson&Burnham, 2004). In theMLD
model the dimensionality structure as well as the final predictor variables need to be selected.

Traditionally in scientific fields like psychology, economics and epidemiology, statistics is
focused on explanatory modelling. Often researchers mistakenly assume that models with high
explanatory power are also high in predictive power. Lately, there has been an increased inter-
est in predictive modelling. In predictive modelling the prime interest is in the predictions the
model generates, not in causal explanation (Breiman, 2001; Hand, 1999; Shmueli, 2010). In the
restrictedMLDmodel ofWorku anddeRooij (2018), it is assumed that response variables belong-
ing to the same dimension have the same underlying relationship with the predictor variables.
When this assumption is not justified, an obtained parameter is not a good reflection of the true
relationship between a predictor variable and the individual response variables, but a measure of
the average effect of the predictor variable over all response variables pertaining to a dimension.
The obtained estimates of the model are therefore likely to be biased. Hence, performing null-
hypothesis significance tests with these obtained estimates, as suggested by Worku and de Rooij,
is not an adequate method for selecting variables in the model. Therefore, we propose to select
the predictor variables based on prediction capability. One of the most elegant and commonly
used methods to evaluate the predictive performance of a model is cross-validation. The pro-
posed selection criterion is in line with the recent interest in predictive modelling and rests on
the bias variance trade-offmechanism (as explained in Section 5.2). Contrary to themodel selec-
tion criterion proposed by Worku and de Rooij, prediction error can be used to simultaneously
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select the dimensionality structure and the final predictor variables of the model in one unified
framework.

In order to show the application of employing prediction capability as a selection criterion
for the MLD model, we compared 16 different models: Four different dimensionality structures,
with and without non-linear terms and with and without L1 penalization were fitted. Ten-fold
clustered cross-validation was performed to examine the expected prediction error of all fitted
models. The Brier Score was used as a loss-function to evaluate the different models. The cross-
validation error of all models, which equals the Brier Score, can be found in Table 5.1. It should
be noted thatwe can partition the data into ten folds inmanyways, leading every time to a slightly
different estimate of the expected prediction error of our models. Repeating the cross-validation
procedure a number of times, as advocated by for example Harrell (2015), is therefore strictly
more precise than non-repeated cross-validation. However, the computational burden is also
considerable, requiring more applications of the model. For this reason we only repeated the
procedure once per model.

Itwas shown that the cross-validation error of thedifferent linear andnon-linear unpenalized
models vary little. Likewise, there tends to be no substantial difference in the cross-validation
error of the different linear and non-linear penalized models. There seems to be a substantial
difference in the prediction capability of the penalized models compared to the unpenalized mo-
dels: The penalized models tend to outperform the unpenalized models. By introducing some
extra bias the model, by means of theL1 constraint, a sparse solution is obtained. This results in
a model with better prediction capability.

Again, themain limitation of this thesis is thatwe only evaluated themodels on one empirical
data set. Therefore, we recommend experimenting with other empirical data sets to evaluate
prediction error as a selection criterion for the MLD model.

In this thesis we used the Brier score to evaluate the prediction capability of the MLD model.
however, other loss functions that can be utilized to evaluate the prediction capability of the mo-
del. For example, one might be interested in the use of the miss-classification rate or the cross
entropy error as a loss function. An interesting subject for future research would be to study
the implications of the choice of loss function for the MLD model. Here the question is how to
choose the most suitable loss function for multivariate binary data.

Besides experimenting with different loss functions, we would suggest future research to
study the use of the .632+ bootstrap estimator as proposed byEfron andTibshirani (1997) to eval-
uate the expected prediction error of the model. The research of Efron and Tibshirani suggests
that even a better estimate of the prediction error can be obtained by using the .632+ bootstrap
estimator, yielding an estimate with low variance and only moderate bias.

In the original model of Worku and de Rooij theQICu norm is used to select between com-
petingmodels. This is ameasure of the penalized likelihood and the equivalent of the AIC, when

51



Discussion

quasi likelihood is used. Cross-validation, in that sense, is a more versatile selection method not
depending on a (quasi-) likelihood methodology. It should be noted that leave-one-out cross-
validation (a variant ofV -fold cross-validation in whichV equalsn) is asymptotically equivalent
to AIC for ordinary linear regression models (Stone, 1977). However, there is no indication that
this is true in the multivariate binary setting, especially not when other loss functions than the
squared loss are used.
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A Verification truncated power basis
Let

h(x) = h1(x) = β11x+ β12x
2 + β13x

3 if x < ξ

h(x) = h2(x) = β21x+ β22x
2 + β23x

3 if x ≥ ξ,

such that h1(ξ) = h2(ξ), h′
1(ξ) = h′

2(ξ) and h′′
1(ξ) = h′′

2(ξ).
Then,

β11 ξ + β12 ξ
2 + β13 ξ

3 = β21 ξ + β22 ξ
2 + β23 ξ

3

β11 + 2β12 ξ + 3β13 ξ
2 = β21 + 2β22 ξ + 3β23 ξ

2

2β12 + 6β13 ξ = 2β22 + 6β23 ξ

and from this follows:

β22 − β12 = −3(β23 − β13)ξ

β21 − β11 = −2(β22 − β12)ξ − 3(β23 − β13)ξ
2

= 6(β23 − β13)ξ
2 − 3(β23 − β13)ξ

2

= 3(β23 − β13)ξ
2

and

(β23 − β13)ξ
3 = −(β22 − β12)ξ

2 − (β21 − β11ξ

= 3(β23 − β13)ξ
3 − 3(β23 − β13)ξ

3

= 0.

When we define h(x) as h1(x) + (β23 − β13)(x− ξ)3+ it can be shown using the above that:

h(x) = h1(x) when x < ξ

h(x) = h2(x) when x ≥ ξ
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Verification when x ≥ ξ:

h(x) = h1(x) + (β23 − β13)(x− ξ)3+

= β11x+ β12x
2 + β13x

3 + (β23 − β13)x
3 − 3(β23 − β13)ξx

2

+ 3(β23 − β13)ξ
2x− (β23 − β13)ξ

3

= β11x+ β12x
2 + β13x

3 + (β23 − β13)x
3 + (β22 − β12)x

2

+ (β21 − β11)x− (β23 − β13)ξ
3

= β21x+ β22x
2 + β23x

3

= h2(x)
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