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Abstract

Prediction models are of major importance for many fields, including medicine for decision mak-
ing.
An example is predicting if a patient with a venous thrombosis is at risk of experiencing a second
thrombosis. A venous thromboembolism (VTE) arises when a blood clot is formed inside a blood
vessel and blocks blood flow. VTE is a life-threatening disease and is considered as the most
common vascular disease after myocardial infarction and stroke.

A considerable number of statistical methods have been proposed for variable selection to
construct prediction models. The specific aims of this thesis were to provide a comprehen-
sive overview, compare and assess the performance of three popular variable selection methods:
Backward Elimination, LASSO in conjunction with Percentile Lasso and Closed Testing . Ad-
ditionally, we attempted to identify the relative and absolute strengths and limitations of these
variables selection methods.

The methods were used to build prediction models for recurrence of VTE, for patients with
first VTE, using the MEGA study, a large follow-up study on 4956 patients with a first throm-
bosis. Two different prediction models were investigated: 1. A prediction model using clinical,
genetic and laboratory factors (model A) and 2. A prediction model using only clinical and easy
to obtain genetic factors (model C).

The results show that Backward selection has the advantage of being simple, available in
most statistical packages and is widely used model selection method. On the other side, its
performance is likely to depend on the choice for the stopping rule, and it results in regression
coefficients β’s that are usually inflated.
Lasso is considered as one of the new and well-acknowledged variables selection methods, with an
important advantage over the traditional model selection methods that is mostly manifested in
high-dimensional data or in presence of high multicollinearity among variables. However, lasso
has the disadvantage of model instability due to fold assignment during the cross-validation.
Similarly, as backward elimination, lasso tends to select randomly just one variable from a set of
highly correlated variables.
Further, percentile lasso has the advantage of model stability selection but was quite computa-
tionally demanding.
Lastly, the closed testing method has the advantage of generating a collection of minimal models
that can fit as good as the full model, further it quantifies the uncertainty of the selected models
by providing the confidence set for each selected model and has the ability to work with any
choice of a local test. For all that, the closed testing procedure in its standard form has the
disadvantage of unfeasible computation.
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Application of these different methods to the MEGA study showed that, for building model
A , lasso (in conjunction with percentile lasso) has the best discriminative performance with 10
variables , whereas the backward elimination performance was slightly lower with 11 variables. In
addition, the closed testing procedure could not be applied here due to computer time constrains
because of the large number of candidate predictors. Model A by lasso requires three laboratory
factors ( factor VIII, D-dimer, and VWF) for which stopping the anticoagulant treatment is
needed for a correct interpretation of the values.

The performance of the obtained models was slightly lower when considering a model with
only clinical and genetic factors. Backward elimination selected 8 variables, lasso 12 variables,
and with closed testing different models were selected ranging between 6 to 10 variables . With
closed testing, three different models with 6 variables were selected. Model C6 (Surgery, plaster
cast, pregnant, hormone, location VT and gender ) has the desired parsimonious character with
a diminutive difference in terms of corrected for optimism C statistics, and moreover requires no
laboratory measurements.

Our study results suggest that closed testing is indeed a useful method, that can be imple-
mented as a variable selection method. In addition, these results indicate that models (shortlist)
proposed by closed testing have slightly lower corrected C-statistic, but their added value is
mostly its parsimonious character and clinical utility .

Keywords: Recurrence Venous Thrombosis, Anticoagulant, Variable Selection, lasso, Per-
centile lasso, Backward Selection, Closed Testing, Survival Analysis, Cross Validation, Confidence
Set. Bootstrap Internal Validation.
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Introduction

Prediction models play an important role in many research fields, including epidemiology for
decision making, especially after the switch from the “subjective” decision to evidence-based
medicine [48]. Often the research question involves selecting the true predictors from a set of
candidate variables to build a prediction model. The main aim of model selection is to reduce
the set of candidate variables to a small set that can replace the full set and account almost
for the same variance as is accounted for by the full set of variables. A considerable number of
methods have been proposed for variable selection. In this thesis three variables selection meth-
ods, each having their strengths and limitations are investigated to build a prediction model for
the recurrent VT.

Backward selection was used to build a prediction model for the recurrent VT(Timp [54]).
This method is considered as one of the most widely used model selection methods, and is easily
available in most statistical packages. Additionally, in our thesis, we will investigate the perfor-
mance of two other variable selection methods i.e. lasso in conjunction with percentile lasso and
closed testing procedure.
Lasso is considered as one of the new and well-acknowledged methods to select variables, es-
pecially in high-dimensional data where the number of observations is smaller than or close to
a number of candidate variables (n<<p). Lasso possesses an important property that other
regularized methods (like a ridge and elastic net) do not have: it allows for automatic variable
selection by shrinking some of the coefficients all the way to zero. By doing so, the lasso is
performing variables selection. Furthermore, percentile lasso is considered here as a technique
to stabilize lasso model selection.
In addition, we will discuss the closed testing procedure in the context of variable selection meth-
ods. Commonly, this method is used to control the family-wise error rate (FWER) when several
statistical tests are performed simultaneously. To the extent of our knowledge, there are not
enough studies done on its application as a variable selection method. Therefore, in this thesis
we investigate the possibility of its application and compare its performance to the aforemen-
tioned methods.

Modeling the relationship between the recurrent VT and a set of candidate variables is a
challenging problem. This requires selecting a subset of possible candidate variables that are
associated with recurrent VT, and which will provide accurate predictions of future observa-
tions. Venous thromboembolism (VTE) arises when a blood clot is formed inside a blood vessel
and blocks blood flow. The VTE is a serious, frequent, potentially lethal, and life-threatening
chronic disease that requires immediate medical attention. In general, there are two types of
VTE, Deep Venous Thrombosis (DVT) and Pulmonary Embolism (PE). It is widely known that
patients who suffered from the first venous thrombosis, are at high risk of developing recurrent
venous thromboembolism [54]. The occurrence of vein thrombosis is classified into two classes
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i.e. Provoked and Unprovoked (idiopathic) VTE. The provoked VTE is defined as the one that
is likely caused by some major clinical risk factors e.g., major surgery, hospitalization, immobil-
ity, trauma, pregnancy, whereas the unprovoked VTE is defined as the occurrence of VTE in a
patient with no antecedent (within 3 months) major clinical risk factor for VTE.

Commonly, anticoagulant drugs are considered the best treatment to prevent the recurrence
of VT. However, the anticoagulant treatment duration in the current guidelines is based on the
previous VTE classification i.e. provoked versus unprovoked[27] . These guidelines suggest that
all patients with a provoked VTE should cease anticoagulant treatment after 3 months, whereas
patients with an unprovoked VTE are recommended to continue the treatment for at least 3
months [27].
The vast majority of published studies on the assessment of the risk of recurrent VT have focused
on provoked versus unprovoked VTE categories. However, there are some problems with this
approach:

• There is no unequivocal definition of unprovoked event [54]

• The definition of provoked VTE has been prolonged over years to contain more risk factors,
by including, for instance, body mass index > 30 kg/m2, prolonged travel, lower extrem-
ity paralysis or paresis, inflammatory bowel disease, congestive heart failure, and renal
impairment [42].

• This approach does not take into consideration the difference between patients in the same
group [54].

In this thesis, a dataset from the MEGA study [54] was used. In order to assess the association
between some risk factors and recurrence of venous thrombosis 3750 patients aged 18-70 years
with the first episode of venous thrombosis were followed [54]. Our dataset contains 38 candidate
variables, divided into three clusters of factors: clinical, genetic and laboratory factors. Despite
that predictors for the first venous thrombotic episode are well-established [40], this knowledge
cannot always be directly used to predict the recurrent events [50].

Having the aforementioned limitations in mind, we aim to build a prediction model for all
patients with first VT without a distinction among patients VTE classes i.e. provoked versus
unprovoked VTE. The aim is to build two models: model A which uses clinical, genetic and
laboratory factors as predictors and model C which uses clinical and genetic factors. Variable
selection is performed using the three different statistical methods. In addition, the specific aims
of this thesis were to provide a comprehensive overview, compare and assess the performance
of these three popular variable selection methods to build a prediction model. Similarly, we
attempted to identify the relative and absolute strengths and limitations of these variables se-
lection methods. Moreover, we provide a few solutions to some limitations of the investigated
methods.
To the best of our knowledge, despite the many proposed methods for variables selection, di-
rect comparisons among the investigated methods, either theoretical or experimental, are rare.
This thesis is attempting to provide such comparison, and more importantly, our thesis offers
a comprehensive and practically relevant discussion on theoretical aspects of each method. By
doing so, we hope to enrich the discussion about variables selection methods in the statistical
community, and ultimately to aid the practitioner in making an evidence-based choice of model
selection, that is more suitable to answer his/her research question.
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The outline of this thesis is as follows. Chapter 1 provides a general introduction to the
required medical backgrounds of venous thrombosis VT. In chapter 2, we give several views
on the data through descriptive statistics. In chapter 3, a theoretical outline of the important
survival analysis functions is presented. In chapter 4, a theoretical detailed overview and a
discussion of the strengths and limitations of all three variable selection methods are provided,
additionally, we offer a few practical examples to clarify the theory. In chapter 5, results from
the application of the three model selection methods on MEGA dataset are summarized. In
chapter 6, we give a detailed discussion of the obtained results, and we suggest some solutions.
Moreover, we highlight directions for future research and finally, we formulate our conclusion.
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Chapter 1

Medical background

1.1 Thrombus formation

Hemostasis (hemo- meaning blood, and stasis meaning stopping) is the natural process which
induce bleeding to stop, by forming a clot to prevent blood loss after vascular damage. This
process involves coagulation, i.e. changing the blood state from a liquid to a gelatinous state
[32].

Thrombus formation is a complex process, it depends on a delicate interplay between bleeding
and clotting, and involves various factors (von Willebrand factor and coagulation factors), fluid
components (the platelets) and cells (endothelium) all working together in a balanced way to heal
wounds (blood clotting) and prevent blood loss (bleeding). When an imbalance in the hemostasis
system occurs, a blood clot may be formed in a venous system, causing a thrombus.

1.2 Venous thromboembolism (VTE)

Venous thromboembolism (VTE) ascribe the blood clot that develops in a vein and is considered
as the third most common leading vascular disease after myocardial infarction and stroke [37].
The incidence of any category of VTE is estimated to be around 0.1%-0.2% per year, this rate
is estimated to be higher for elderly persons, i.e. around 5 in 1000 persons per year [54].

There are two different types of VTE, Deep Venous Thrombosis (DVT) and Pulmonary
Embolism (PE). The Deep Venous Thrombosis (DVT), happens when a blood clot (thrombus)
develops in a deep vein usually in a leg, whereas Pulmonary Embolism happens when a DVT clot
snap off and moves to the lungs and then blocks the blood flow, hence becoming a life-threatening
embolus [41]. PE happened to be present in around 30-40% of patients with VTE, whereas it
is observed that the death occurs in 6% of DVT cases and 12% of PE cases within 1 month of
diagnosis [59]. DVT in his turn can be categorized into two levels: Proximal and Distal. The
distal DVT occurs below the knee in the deep veins of the calf, where the majority of thrombi
usually starts, whereas the proximal DVT occurs above the knee.

VTE is a serious and life-threatening condition that requires immediate medical attention [8].
Therefore it is important to pay attention to some signs and symptoms of VTE and seek medical
attention if they occur. Some signs and symptoms of DVT include: Swelling and pain, red or
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discolored skin and feeling of warmth in the affected leg, and for PE the common symptoms
include: fast heart rate, rapid breathing, chest pain, feeling dizzy, or coughing up blood.

1.3 Risk factors

The venous thromboembolism VTE can be caused by anything that prevents your blood from
circulating or clotting normally. The most common triggers are injury to a vein, surgery, active
cancer, immobilization such as after surgery or sitting for long periods of time, such as when driv-
ing or flying, hospitalization, obesity, and aging. Additionally, it is known that pregnant women
and women who use hormones like oral contraceptives or estrogen for menopause symptoms have
a higher risk of developing VTE [50],[59].

1.4 Recurrent Thrombosis

Patients who suffered from the first episode of VTE are at major risk for recurrent venous
thromboembolism (VTE) [54]. It was noted that the risk of recurrence of VTE, as well as the
treatment (anticoagulant) duration, differs among two important categories of VTE: i.e. pro-
voked and unprovoked VTE (idiopathic) [54] [26]. The provoked VTE is defined as the one that
is likely caused by transient major risk factors (e.g., major surgery, hospitalization, immobility,
trauma, pregnancy) or persistent risk factors: inheritable thrombophilia’s, chronic heart failure,
and cancer. The unprovoked VTE is defined as the occurrence of VTE in a patient with no
antecedent (within 3 months) major clinical risk factor for VTE.

1.5 Anticoagulant guidelines

Current guidelines that are commonly followed by practitioners for administration of anticoagu-
lant drug, recommend that patients with an unprovoked VTE to be treated with anticoagulation
for at least 3 months. According to these guidelines, the decision to continue the treatment
beyond 3 months should be evaluated for each patient based on the balance between the risk
of recurrence if treatment is stopped and the risk of bleeding during the anticoagulation [27].
Furthermore, these guidelines suggest that all patients with a provoked VTE should cease anti-
coagulant treatment after 3 months. In general, there is an agreement for general patients with
venous thromboembolism, that the risk of recurrent VTE can be alleviated by anticoagulant,
with a large effect in preventing recurrent VTE in the first period following the VTE event,
whereas there was not such benefit if the anticoagulant treatment was extended [12].

Despite that predictors for the first venous thrombotic episode are well-established [40], this
knowledge cannot always be directly used to predict the recurrent events [50]. Take for instance
age which is strongly associated with first events, or the presence of genetic thrombophilia,
however these predictors are proven to be weakly associated with recurrent venous thrombosis
[54],[50]. Therefore, one needs a model that can predict well the recurrence of VTE.
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Chapter 2

The MEGA study on thrombosis

2.1 Patients population

The MEGA study (Multiple Environmental and Genetic Assessment of risk factor for venous
thrombosis) is a large case-control study, aimed at estimating the incidence of recurrent venous
thrombosis and at identifying those risk factors (combination) that are associated with the risk
of recurrence of venous thrombosis [30]. Patients that suffered from a first episode of venous
thrombosis (deep vein thrombosis and/or pulmonary embolism) were enrolled to MEGA study
from six anticoagulation clinics in the Netherlands from March 1999 until September 2004. The
partners of these patients, as well as individuals collected via random digit dialing, were invited
to participate as control subjects (subjects without a history of venous thrombosis) [54].

All participants of the MEGA study were invited for an interview, furthermore, a blood
sample or a buccal swab was collected for each participant at least three months after the dis-
continuation of anticoagulant therapy. If patients did not stop anticoagulant therapy, one year
after the first thrombosis, blood samples were drawn from these patients [54]. Information on
common laboratory (e.g. D-dimer, factor VIII... ), as well as clinical factors (e.g. Age, BMI,
gender...), have been measured, in addition, information on three genetic factors ( factor V Lei-
den and blood type) were collected as well (table 2.1). This study was approved by the ethics
medical committee of the Leiden University Medical Center (LUMC), and all participants pro-
vided written informed consent [54].

There were 4956 patients in the MEGA study, aged 18-70 years with the first episode of
venous thrombosis, deep venous thrombosis (DVT) or pulmonary embolism (PE). Cases of the
MEGA study were further followed for recurrent venous thrombosis (MEGA follow-up study).
Out of the 4956 included patients, 1206 were excluded from the MEGA follow-up study for the
following reasons: 225 patients did not consent, of 715 patients their follow-up ended before or
at the moment of discontinuation of anticoagulant treatment. In addition, 266 patients were
diagnosed with cancer within five years before VT or data were missing with regard for cancer
diagnosis [54]. A flowchart for the number of included and excluded patients as well as the
reasons are illustrated in figure 2.1. The vital status of all patients was obtained between 2007
and 2009 from the central Dutch population register [53].
Furthermore, between June 2008 and July 2009 a short answer form concerning recurrent VT
were sent by mail to all survivors and consenting individuals, and supplemented by telephone
interviews [39]. In addition, all patients were asked to complete a second questionnaire on the
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presence of risk factors for VT after their first thrombosis [54].

2.2 Data description

One main question intended to be tackled with our dataset (MEGA follow-up study data) is the
assessment of risk factors for recurrence of venous thrombosis. The dataset contains detailed in-
formation about 38 variables, some are continuous (e.g. BMI, Age . . . ) and others are categorical
(e.g. gender, surgery..). These 38 variables are classified into three different categories, namely:
laboratory, clinical and genetic variables. The laboratory category consists of 21 variables, of
which some of them are log transformed. The genetic category consists of 2 variables, and the
clinical category contains 15 variables. Descriptive statistics of these variables are summarized
in table 2.1.

The main question that this thesis intended to answer involves time until recurrent throm-
bosis. Therefore we need survival analysis methods, for this purpose we define the “Time to
event” as the time between the instant of cessation of anticoagulant treatment, and the date of a
recurrence or, in its absence, the date of returning the answers to the second questionnaire [53].
The “Event” is defined to be the ”recurrence” of venous thrombosis. For a rigorous definition of
recurrence, the interested reader is referred to section 2 from [54]

Figure 2.1: Flow diagram of the inclusion of the MEGA follow-up study. Included for analysis :
N=3750 patients with first venous thrombosis [54]
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Table 2.1: Baseline characteristics of the investigated cohort with n= 3750

Clinical factors Class Numbers(%) or median(range) Missing, N(%)
Provoked additional factors categorical 1893 (50%) 478(12.7%)
Cardiovascular disease categorical 194 (5.1 % ) 227 (6.1%)
BMI continuous 26.2 (15.2 - 63.2) 304 (8%)
Age continuous 48.4 (18 - 70) 0
Gender, male categorical 1684 (45 %) 0
Pregnancy categorical 160 (4.2 %) 16 (0.4%)
Surgery categorical 566 (15 %) 13(0.3%)
Type VT: categorical
DVT 2231(59.4 %) 0
PE 1184 (31.5 %) 0
PE + DVT 335 (9 %) 0
Hormone use categorical 1181 (31.5 %) 41 (1.1%)
Plaster cast categorical 198 (5.2 %) 0
Hospitalization categorical 582 (15.5 %) 0
Location VT:
Proximal vs Distal categorical 634 (17%) 880 (23.5%)
Cerebrovascular disease categorical 82 (2.1%) 227 (6.1%)
Posthrombotic syndrome : categorical 29.6%
mild 244(6.5%)
severe 81(2.5%)
Disease additional comorbiditie categorical 503 (13.4%) 227(6.1%)
Genetic factors Class Numbers(%) Missing, N(%)
factor V Leiden mutation categorical 568 (15.1%) 314 (8.4%)
Blood group non-O vs O categorical 2464 ( 65.7%) 329 (8.8%)
Laboratory factors Class Median (range) Missing, N(%)
Von Willebrand factor∗ continuous 5 (3.6 - 6.5) 1643(43.8%)
C-reactive protein (CRP)∗ continuous 0.66 (-3.9 - 4.8) 1644 (43.8%)
Antithrombin continuous 105 (56 - 158) 1643 (43.8%)
Fibronegen continuous 3.4 (1.2 - 8.9) 1643 (43.8%)
Ddimer ∗ continuous 5.8 (3.8 - 10.4) 1834 (49%)
Factor II continuous 112 (22 -173) 1829 (48.8%)
Factor V continuous 0.93 (0.4 - 2.2) 1643 (43.8%)
Factor VII continuous 112 (30 - 250) 1829 (48.8%)
Factor VIII∗ continuous 5 (3.58 - 6.28) 1645 (44%)
Factor IX continuous 107.5 (60.5 - 209.6) 1830 (48.8%)
Factor X continuous 118 (10 - 201) 1829(48.8%)
Factor XI continuous 104 (48 - 221) 1643(43.8%)
Protein C continuous 115 (34 - 213 ) 1829 (48.8%)
TFPI continuous 1.71 (0.42 - 4.17) 1649 (44%)
ETP continuous 397.5 (0 - 1055.7) 1837 (49%)
APC ratio ∗ continuous 0.78 (-2.5 - 2.6) 1772 (47.3%)
Hemoglobin continuous 8.7 (4.1 -11.6) 1669 (44.5%)
Protein S,free ∗ continuous 4.5 (2.8 -5.6) 1839 (49%)
White blood cell ∗ continuous 1.8 (0.35 - 4.07) 1669 (44.5%)
Monocyte percetage ∗ continuous 1.8 (-0.35 - 3.1) 1690 (45.1%)
Red cell Distribution width ∗ continuous 2.5 (2.3 - 3.3) 1670 (44.5%)

* A log-transformation was decided upon after a visual check of the distribution curve when a non-normal
distribution was found [54].
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2.2.1 Correlations between variables

Figure 2.2: Heatmap of correlations between variables in the MEGA study

The heatmap correlation in figure 2.2 displays the correlation pattern among the 38 variables.
When looking at the currently displayed correlation heatmap figure, high correlation values are
observed in some clusters of factors. We have identified 5 clusters of variables that display a high
correlation and have assigned names to them:

• Inertia factors: surgery, plaster cast and hospitalization (Hospital stay). A high correlation
value (0.56) was observed between surgery and hospitalization.

• Coagulation factors and proteins : Protein C, Factor VII, Factor IX, Factor II, Factor X,
Factor XI and C-reactive protein, These factors are highly correlated, a correlation values
arranging between 0.2 (Protein C vs. C-reactive protein) and 0.6 (factor II vs. factor X)
were observed in this cluster of variables.

• Clot formation factors : factor VIII, D-dimer, Von Willebrand factor (VWf) and Blood
type. Correlation values arranging between 0.02 (factor VIII vs. Blood type) and 0.9
(factor VIII vs VWf) was observed.
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• Location and type factors: Pulmonary embolism, Deep Vein Thrombosis and Proximal and
Distal deep vein thrombosis (location). Correlation values arranging between 0.25 (PE vs
location) and 0.83 (PE vs DVT) were observed.

• Gender factor: Gender, Hormone and Hemoglobin: a negative correlation value -0.65 be-
tween hormone and gender (male) and a positive correlation value of 0.56 between gender
and hemoglobin.

Until 2002 , blood samples were acquired from the MEGA study population. Blood samples
and measurements on laboratory markers were available for 2107 patients out of the total number
of 3750 patients [53]. After June 2002 due to logistical reasons no blood samples were collected.
This fact is major reason for the displayed missing pattern in figure 2.3.

Figure 2.3: Missing values of the candidate predictors of recurrent thrombosis
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Chapter 3

Survival analysis background

In this chapter, an overview of the survival analysis methods will be presented. The emphasis
will be on the theoretical background, supported with some practical examples. We start by
introducing the censoring types. Further, we will discuss the main different survival functions,
the Cox proportion hazard (PH) model, partial likelihood and Cox model assumption. We close
this chapter by the measure metric of discrimination in survival analysis.

3.1 Introduction

The term ‘Survival analysis’ originates from studies where the outcome of interest was death.
Commonly in these type of studies, one is interested in the time between a certain start point
(e.g. time of diagnosis) and the occurrence of the event. Now the scope of the survival analysis
is broadened to contain different outcomes of interest, such as in our example recurrence of
thrombosis.
Many epidemiological studies nowadays involve following patients over time, the follow-up time
for the study may range from a few weeks to many years. The common endpoint of interest in
those studies is time until an event occurs e.g. death, recurrence, relapse, time to develop heart
disease, heart transplants and time until death etc. Besides the medical application, survival
analysis has many filed of application (e.g sales, industry, manufacturing etc). In general, the
survival analysis is defined as a set of statistical methods applied in order to analyze time to
event data, to find out if there is a link between the covariates and survival.

3.2 Time to event data and censoring

In time to event research, not all individuals might experience the event in the study. There
are many possible reasons. For instance, patients may drop out from the study, for a patient
in this situation the survival time is considered to be at least as his last known observed time.
Another possible reason is the occurrence of the event of interest outside the follow-up time,
and the survival time for this patient is considered to be at least as long as the duration of the
study period [57]. These two examples are known as right-censored observations. Censoring is
an essential concern in survival analysis, illustrating a particular type of missing data.

In our study where the follow-up started in 1999 and last until 2010, table 3.1 shows data of
the first 6 patients, where Time column represents the time since the inclusion in the study, and

18



Status column indicates the censorship i.e. censored (0) or event (1). For instance, patients 1
and 2 did not experience a recurrence of thrombosis during the follow-up period, whereas patient
3 had experienced a recurrence after 1.54 years.

ID Time Status
1 8.74 0
2 8.29 0
3 1.54 1
4 8.62 0
5 8.28 0
6 8.26 0

Table 3.1: The first
subjects from the
dataset.

Another type of censoring is known as left censoring, that is when
the event of interest has already occurred before enrolment, which is not
the case in our study, where any patient who did experience the recur-
rence of thrombosis before the study’s start are not included. Finally,
the last form of censoring is known as interval censoring. The interval
censoring is encountered in many medical situations where a random
variable of interest, in our case recurrence of thrombosis, is known only
to lie within a time window and cannot be observed exactly. For in-
stance, in an epidemiological study, assume patients are observed every
6 months. It might happen that the event of interest has occurred be-
tween the two consecutive visits. Figure 3.1 illustrates the three types
of censoring.

Figure 3.1: A graphical illustration of all three types of censoring.

3.3 Basic survival analysis functions

3.3.1 Survival function

In order to estimate important model parameters, survival analysis methods incorporate the
information from both censored and uncensored observations. The dependent variable in survival
analysis contains two arguments: time to event and the event status, this is an indicator whether
the event under study has occurred or not. Two time dependent functions are the key concepts
in analyzing the distribution of non-negative random variable T (time until an event) : Hazard
and survival function. Let f(t) be the probability density function (pdf) of T and F (t) be
the cumulative density function. The survival function S(t) is the probability that a random
individual will survive beyond time t.

S(t) := P (T > t) = 1− F (t) equivalent F (t) = 1− S(t); ∀t ≥ 0 (3.1)

PDF and survival function are related as

f(t) = − d

dt
S(t). (3.2)
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and

S(t) =

∫ ∞
t

f(u)du. (3.3)

From (3.2) we can easy calculate S(0) and S(∞), simply by using the property that PDFs
integrate to one. S(0) =

∫∞
0
f(u)du = 1 and S(∞) = limt→∞

∫∞
t
f(u)du = 0 Note that this is a

decreasing 1 function over time, as the time progresses there will be a smaller chance of surviving.
Let t1 < t2 < ... < tD to be the distinct death times (time when events are observed) and let di
be the number of individuals who experience the event of interest at time ti. The Kaplan-Meier
estimator (Kaplan and Meier, 1958) that is a.k.a product limit estimators is a non parametric
method used to estimate the survival function S(t). The estimate Ŝ(t) is given by:

Ŝ(t) =
∏
i:ti≤t

(
1− di

Yi

)
where Yi is the number of individuals who are at risk at time ti.

3.3.2 Hazard rate function

The hazard rate function h(t) that is also known as the instantaneous risk of experiencing the
event, is defined as the probability that an event will occur in the interval [t, t+ ∆t], given that
it has not occurred before. This is a positive function h(t) ≥ 0 and might be an increasing,
decreasing or constant function.

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

(3.4)

The relation between hazard function h(t) and survival function S(t), can be derived from
the following;

P (t ≤ T < t+ ∆t|T ≥ t) = 1− P (T ≥ t+ ∆t|T ≥ t)

= 1− P (T ≥ t+ ∆t)

P (T ≥ t)

= 1− S(t+ ∆t)

S(t)

Hence:

h(t) = lim
∆t→0

1− S(t+∆t)
S(t) )

∆t
= lim

∆t→0

S(t)− S(t+ ∆t)

∆t.S(t)
=
−1

S(t)
lim

∆t→0

S(t)− S(t+ ∆t)

∆t︸ ︷︷ ︸
derivative S’(t)

=
−S′(t)
S(t)

By using the logarithm derivatives rule, we recognize this last as: h(t) = − d
dt log(S(t)). Note that

by using (3.2) we may express the hazard rate as a function of the probability density function

as well, hence h(t) = f(t)
S(t) . By introducing the cumulative hazard function as :

H(t) =

∫ t

0

h(u)du

1note that F is a monotoon increasing function over [0,∞[
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The relation between S(t) and H(t) can be written as:

S(t) = e−
∫ t
0
h(u)du = e−H(t) and equivalant by H(t) = −log(S(t)) (3.5)

One way of estimating the cumulative hazard H(t) by using the Product-Limit estimator is given
as :

Ĥ(t) = −log(Ŝ)

A better performance estimator Ĥ(t), when sample size is small, was given by Nelson-Aalen as:

Ĥ(t) =
∑
ti<t

di
Yi

3.4 Cox Proportional Hazards model

Suppose we wish to evaluate the impact of some predictor variables, called covariates in survival
analysis, on the time to the reoccurrence of thrombosis. For example we may wish to investigate
the impact of surgery and age on the time to the recurrence of thrombosis. This specific research
question can be approached by a Cox Proportional-Hazards (PH) model. Cox PH model (David
Cox, 1972,[7]) is a specific regression model that is used in many medical and engineering set-
tings, to explore the association between one or more predictor variables and the time to event.
In the Cox regression models, one can incorporate quantitative as well as categorical covariates
to evaluate simultaneously the effect of several covariates on survival time. In our study the
outcome of interest is the recurrence of thrombosis, hence the hazard rate will express the recur-
rence rate at a specific point in time.

Commonly, the data in survival analysis is expressed in the form of the triple indicators
(Ti, δi,X i(t)), for i-th individuals with i = 1, ..., n, where Ti indicate the time under study for
the i-th patient, δi indicates the event indicator, with δi = 0 right-censored event and δi = 1 if
reoccurrence has happened and X i = (Xi1, .., Xip)

T the values of the covariates for i-th patient.
The hazard function h(t|X = (Xi1, .., Xip)) of the Cox PH model for individual i has the form:

h(t|X ) = h0(t)eβ
TX = h0(t)e

∑p
j=1 β

T
j X j (3.6)

where h0(t|X ) is the baseline hazard rate at time t. This is equal to hazard function when
Xi1 = Xi2 = .. = Xip = 0. The baseline hazard rate is analogous to the intercept term in a mul-
tiple regression, and β = (β1, .., βp)

T is a vector of regression coefficients. Once the conditional
hazard rate is computed, the condition survival function S(t|X ) and cumulative hazard function
H(t|X ) are found by the formula (3.5).

When the survival time distribution is parametric then using a maximum likelihood approach
to estimate the survival time is appropriate, but often in real problems this is not the case, the
survival time distribution is unknown. An interesting feature of Cox PH model (3.6) is that it is
semi-parametric. This means that one can split the component of the model into two main parts:

a parametric covariate effect on the hazard e
∑p
j=1 β

T
j Xj , and a non-parametric part consisting of

a baseline hazard h0(t), where no assumptions are made about its form.
When we consider two individuals with covariates values X and X’, then the ratio of the hazards
of these individuals can be written as:

h(t|X)

h(t|X ′)
=

h0(t)eβ
TX

h0(t)eβTX′ =
eβ

TX

eβTX′ = eβ
T (X−X′) (3.7)
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which show clearly how the baseline hazards are canceled out from this ratio, hence the hazard
ratio for the two individuals is independent of lifetime t, constant and proportional. Actually,
this is the reason why the Cox model is called a proportional hazards (PH) model. The ratio
(3.7) is called the Hazard Ratio (HR) or Relative Risk (RR) of an individual with covariates X
having the event as compared to an individual with covariates X’.
For instance, let X1 indicates the gender effect, and suppose that all other covariates are constant

then, h(t|X)
h(t|X′) = eβ1 , represents the risk of having the event if the patient is a male relative to the

risk of having the event should the patient be a female.

X1 =

{
X1 = 1, individual is male

X1 = 0, individual is female

Regarding the interpretation of the coefficients in a Cox model setting, one may choose between
using the regression coefficients or the hazard ratio (HR). A positive regression coefficient for
a covariate can be interpreted as the risk is higher for patients with higher values of the corre-
sponding covariate, hence the prognosis is worse. This is equivalent to HR > 1. On the other
hand, a negative regression coefficient suggests a better prognosis for patients with higher values
of the corresponding covariate. This is equivalent to HR < 1. If the regression coefficient for
a covariate is 0, which correspond to HR=1, this can be interpreted as the covariate having no
effect on the outcome. In the Cox model, the HR is often used instead of regression coefficients
for purpose of interpretation.

3.5 The partial likelihood

From the interpretation of the model, it is clair that β determines the effect of covariates Xj ’s.
Hence β should be the focus of our inference. The contribution to the likelihood for an observed
failure at time t is:

fi(t) = hi(t)Si(t) = h0(t)eβ
TX [S0(t)]e

βT X

In the same way the contribution to the likelihood for a right censored observation at time t is
given by:

Si(t) = [S0(t)]e
βT X

As defined in the previous paragraphs, consider δi = 0 if ti is a censoring time and δi = 1 if
ti is a failure time. Assume that patients to be independent of each other, and furthermore we
assume that censoring is noninformative and in absence of ties 2 between the event times. Then
the joint likelihood is given by:

2Two event are tied when they occur at the exact same recorded time.
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n∏
i=1

[fi(ti)]
δi [Si(ti)]

1−δi =

n∏
i=1

[hi(ti)Si(ti)]
δi [Si(ti)]

1−δi

=

n∏
i=1

[hi(ti)]
δiSi(ti)

=

n∏
i=1

[ hi(ti)∑
j∈R(ti)

hj(ti)

]δi
[
∑

j∈R(ti)

hj(ti)]
δiSi(ti)

=

n∏
i=1

[ eβ
TX∑

j∈R(ti)
eβTX

]δi
︸ ︷︷ ︸

Partial likelihood

n∏
i=1

[
∑

j∈R(ti)

h0(ti)e
βTX ]δiSi(ti)

where R(ti) is the risk set at time ti.
Estimation is difficult since h0(t) is an infinite dimensional nuisance parameter. Instead of the
full likelihood, Cox (1972, JRSS B and 1975, Biometrika ) proposed the partial likelihood. The
partial likelihood can be introduced as:

Lp(β) =

n∏
i=1

Li(β)δi with Li(β) =
hi(T |X)∑

j∈R(ti)
hj(T |X)

Hence:

Lp(β) =

n∏
i=1

[ eβ
TX∑

j∈R(ti)
eβTX

]δi
(3.8)

To give you an idea how the partial likelihood can be calculated, suppose we have a small
data set (table 3.2), the following calculation will illustrate how partial likelihood is computed :

Table 3.2: a small data example for calculating the partial likelihood

Patient ID ti δi X1

1 1 1 2
2 2 0 3
3 4 1 1
4 6 1 5

The partial likelihood is given by:

L(β) =

4∏
i=1

[ hi(T |X)∑
j∈R(ti)

hj(T |X)

]δi
=
( h1(1)

h1(1) + h2(1) + h3(1) + h4(1)

)
.
( h3(4)

h3(4) + h4(4)

)
.
(h4(6)

h4(6)

)
=
( e2β

e2β + e3β + e1β + e5β

)
.
( e3β

e1β + e5β

)
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Taking the logarithm of function (3.8), the corresponding log-partial likelihood can be written
as:

l(β) = logL(β) =

n∑
i

δi(β
TX − log(

∑
j∈R(ti)

eβ
TX )) (3.9)

This function is maximized w.r.t β, by taking the derivative of this function, and set derivative
equal to 0 . This yields the estimated coefficients of the Cox model.

3.6 Cox Model assumptions

Three important assumptions for the Cox regression model should be made, namely:

1. Non-informative censoring: Individuals who withdraw from the study should do so for
motives unrelated to the study. An example of this would be a study where we compare the
effect of two treatments (intervention vs. control) on survival time. If the treatment was
effective, the patients in the intervention arm may be completely recovered and therefore
they might feel no longer the need to follow-up. On the other hand, the ineffective treatment
for the control group may lead to more incidents, and as a consequence the patients in this
arm might become too sick to follow-up. In this situation, the censoring is informative
leading to biased study results i.e. the true treatment effect is masked by informative
censoring [43].

2. The proportional hazards: According to the PH model, for any two individuals with
covariates values X and X’, the hazards ratio (3.7) does not depend on time t. This
implies that the ratio of the two hazards is a constant over time t. The proportional
hazards assumption is often checked in two different ways, i.e. a graphical and/or numerical
tests. For the former a Schoenfeld residuals plots are commonly used. One can also plot :
log(Ĥ(t)) = log(−log(Ŝ(t))) vs. log(t) for two different subgroups (e.g. male vs. females).
For this plot, if estimated survival curves are fairly separated (i.e. no cross between curves
is observed) we can be confident that the PH assumption holds. For the later a numerical
test called proportional hazards tests (Grambsch and Therneau (1994)) is performed by
means of the function cox.zph(.) from the (survival) R package. In case the test results
displayed a p-value smaller than 0.05, this may indicate that there are time-dependent
covariates which one need to take care of and the PH assumption is violated.

3. Linearity: A linear relationship between the log hazard and each covariate is required, by
taking the logarithm of (3.6):

log[h(t|X )] = log[h0(t)] + βTX

Commonly the Martingale residuals plots are provided to check the linearity.

3.7 Measure of discrimination in survival analysis

The concordance c-index a.k.a C-statistics, is one of the most extensively used metric of model
discrimination in the context of survival analysis. By model discrimination we mean the model
ability to correctly classify subjects into one of two categories i.e. model is able to distinguish
between individuals who will have the event from those who will not. In this regard, we say that
a model has perfect discrimination in case it will assign each subject in the class to which it truly
belongs, on the other side a model is considered to have a poor discrimination ability when it
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assigns subject to the wrong class.

Since the aim of this thesis is the comparison of different methods to build prediction models,
evaluating the performance of a predictive model is an essential step. For this purpose we have
chosen to use the C- statistics (Harrell [22]), for its widespread use and being relatively simple
to calculate and explain to a medical audience. The c-index is similar to the estimated area un-
der Receiver Operating Characteristics (ROC) for a binary outcome. Similarly, its values range
between 0 and 1. A c-index value of 0.5 or less indicates a random classification model (worse
model), and a c-index value higher than 0.6 is generally considered to be clinically useful model.

The concept underlying the concordance c-index calculation is explained as follows : Consider
all possible pairs (i, j), we denote T1, T2...Tn to be the survival times of patients in our cohort,
in addition we denote the predicted survival time by t̂1, t̂2...t̂n. Then a pair of patients is said
to be concordant with the outcome if the model predicted survival time is larger for the patient
who lived longer i.e. for a pair (i, j), Ti > Tj and t̂i > t̂j or Ti < Tj and t̂i < t̂j . Furthermore, a
pair (i, j) is said to be discordant, if Ti < Tj and t̂i > t̂j or Ti > Tj and t̂i < t̂j . In the presence
of right censored data, Harrell [22] proposed estimating the c-index as the mean of concordance
Cij over all pairs (i, j). We Restate Harrell’s definition of the overall c-index for the survival
analysis as follows:

Cij =


1, if Ti > Tj and t̂i > t̂j
1
2 , if t̂i = t̂j

1, if Ti < Tj and t̂i < t̂j

0, if discordant

hence c = 1
#(M)

∑
(i,j)∈M Cij , where M is the set of all usable pairs of subjects (i, j).
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Chapter 4

Model selection methods

In this chapter, an overview of the statistical methods for variable selection will be presented.
We start by Backward elimination in section 4.2, then we discuss shrinkage method in section
4.3 : lasso, followed by percentile lasso as an alternative in section 4.4 and as for the last one we
discuss the Closed Testing procedure 4.5 as having been introduced by Goeman and Solari [20].
The emphasis is on theoretical background, technical details and the application in a survival
setting, finally some limitations are discussed too.

4.1 Introduction

Model selection plays an important role in many research fields. Often the research question
involves selecting the best predictors from a set of candidate variables. The main aim of model
selection is to reduce the set of predictors to a small set that can replace the full set and account
almost for the same variance as is accounted for by the full set of variables. The question is
commonly phrased in terms of “which predictors out of the variables set do I really need?”.

By applying the selection methods one ’s aim is to separate between variables that have
the true signal from those that are noise. This can be a challenging problem that a researcher
may encounter, especially when there are many candidate variables subject to selection as well
as having in mind the parsimony principle i.e. the desire to identify a model that can explain
the phenomenon under investigation with a minimum number of predictor variables. Different
variable selection methods have been proposed to yield the most appropriate model. e.g. Step-
wise regression or automatic selection: Forward selection, Backward elimination, and Stepwise
(Bidirectional) elimination. Regularized methods: ridge, lasso, and elastic net and Best subset
regression etc. In the current chapter we will focus only on 3 methods i.e: backward selection,
lasso in conjunction with percentile lasso and closed testing.

4.2 Backward selection

Backward selection a.k.a backward elimination is a variable selection method. This variable
selection technique belongs to the automatic variable selection which is also known under the
stepwise procedure terminology. Stepwise procedure techniques are widely used in medical re-
search to build multivariate regression models. There are many reasons for the wide use of this
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method: 1)- It is implemented in major statistical software (R, Stata, SAS, SPSS. etc.), 2)- Its
computational mechanism is simple.

4.2.1 Model selection using p-value procedure

In backward selection, one starts by fitting a model with all candidate variables at the same
time, testing the significance of each variable. Then sequentially one variable at a time with
the largest p-value resulted for example by the likelihood ratio test (LRT) is dropped, so long
as it is not significant at our chosen stopping criterion. After a variable is eliminated, we refit
the model without the eliminated variable, the remaining variables with the largest p-value is
considered next. We continue by successively re-fitting reduced models and applying the same
rule, the procedure stops when there are no variables in the model that are statistically significant.

In order to perform backward elimination, we have to ensure that the number of observations
(n) is higher than the number of candidates variables (p), because the partial likelihood estimates
β’s are not uniquely determined in case where n << p.
The stopping rule is the criterion of elimination at which backward elimination performs variables
elimination, often this is denoted as P-to-stay. These criteria as reported [9][44][28] have clearly
affect the size of the final selected model. In a study comparing many stopping rules in forward
selection, Bendel & Afifi [1] found that the stopping rule has an important impact in withstanding
noise variables and allowing true variables to enter the final model.

4.2.2 Limitations

Despite its widely extensive use in epidemiology as well as in other research fields for many
years, blackward selection has it’s own drawbacks . Harrell is one of the opponents of using the
stepwise procedure techniques, he calls openly to reject it, because it violates every principle
of statistical estimation and hypothesis testing [21]. Briefly, we give a summary according
to Harrell [21] of the main pitfalls of stepwise procedure techniques:

1. The goodness of the fit measures will be biased and will be too high.

2. The likelihood ratio test statistics do not have the claimed χ2 distribution.

3. The provided standard errors of regression coefficient estimates are biased low, as conse-
quence the confidence intervals for effects are falsely narrow.

4. The regression coefficients β‘s are inflated (biased high in absolute value ) away from the
zero.

5. The provided p-values are too small.

In a Monte Carlo study, Derksen and Keselman [9] have investigated the effect of five pa-
rameters on the frequency of selecting true variables, from a large set of predictor variables that
contains true (with βj 6= 0 ) and noise predictors (with βj =0 ). The investigated parameters
were :

• The effects of the correlation between predictor variables (ρXjXj′ ).

• The sample size n.

• the number of candidate predictor variables p.
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• The level of significance for the inclusion and/or deletion of candidate variables.

• The type of subset selection algorithm.

Derksen and Keselman conclude that the number of true and noise variables that ended up in
the selected models was very much influenced by :

1. The degree of collinearity among predictors ρXjXj′ : they found that the increase of this
parameter ρXjXj′ resulted in a decrease in the true predictors and an increase in the noise
variables contained in the final subset.

2. The sample size n: Surprisingly a large sample size had a small positive effect on the
number of true predictors in the final model.

3. The number of predictors p: this was mainly the important parameter that affect both the
number of noise variables as well as the number of true variables that enter the final model
i.e. when the number of candidate variables p increased, the amount of noise variables
entered the final models increased too.

4. R2 is always overestimated.

In addition, the stopping rule which is defined as the criterion of elimination at which back-
ward selection performs variables elimination (often denoted as P-to-stay). These criteria as
reported [9][44][28] have clearly effect on the size of the final selected model. In a study com-
paring many stopping rules in forward selection, Bendel & Afifi [1] found that the stopping rule
has an important impact in withstanding noise variables and allowing true variables to enter the
final model.

By investigating the effect of sample size n, the correlation ρXjXj′ and the number of variables
p on the number of true and noise final model variables, Derksen and Keselman [9] have found
that, even in the most favorable case i.e. where sample size of n= 90, and uncorrelated (ρXjXj′ =
0) 12 candidate variables, 20 % of of the final model variables were noise. Further they showed also
that 74 % of the selected variables were noise in the worst case scenario i.e. n = 30, ρXjXj′ =
0.8, p = 24 . In an independent study, Flack and Chang [13] have shown that the median
percentage of noise variables in the final model ranged from 33% to 89%. This supports the
finding by Derksen and Keselman [9], where they have shown that the average of true variables
in the final model was less than the number of investigated true candidate variables
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4.3 Shrinkage method

As we have mentioned in the previous section (4.2.2), one of the many drawbacks of variable
selection by backward elimination is that it results in model coefficients that are inflated away
from zero. In this section, we review some of the many alternatives to backward elimination, the
so-called shrinkage methods with the main focus on the lasso.

In the current section, we will give an introduction to shrinkage (regularization) methods
for linear regression. Subsequently, we will discuss the application of lasso in linear regression
setting as well as for Cox PH model. Finally, we will touch upon some limitations of lasso and
provide an alternative solution.

4.3.1 Introduction

By shrinkage methods we mean the shrinking process of the regression coefficients toward zero.
The most known shrinkage methods are: ridge, lasso and elastic net, these are new and well-
acknowledged methods in which we don’t actually select variables explicitly but rather we fit a
model containing all (p) candidate variables by using one of the mentioned methods that will
shrink the coefficient estimates towards zero (ridge) or exactly zero (lasso) [15].

In linear regression, fitting the full model with many predictors without penalization will
result in large noise and a scares signal, and the Ordinary Least Squares (OLS) estimates may
not uniquely exist. This is the case for instance when the predictors are highly correlated (Mul-
ticollinearity), or the number of predictors exceeds the number of observations (p >> n, High-
dimensional Data). The later is often the case in some medical data’s (Omics data). In the case of
severe multicollinearity, the design matrix X can be ill-conditioned, therefore (XtX)−1 might not

exist. As we know, the least squares estimates depend upon (XtX)−1 (β̂ols = (XtX)−1XtY ), in

this case we would have problems in computing β̂ols. The other consequence of multicollinearity
is that the (OLS) estimate will produce coefficient estimates that have a high variance which will
make the estimates very sensitive to small changes in the model. Consequently the estimated
coefficient will be unstable and hard to interpret [2].

The shrinkage methods can be considered as an alternative to estimate the coefficients in
case of multicollinearity, or when the number of predictors exceeds the number of observations
(p >> n). As a consequence of shrinking the coefficients estimates toward zero some bias 1

is introduced. On the other hand the variance 2of coefficients estimates might be significantly
decreased. If the latter effect is small, the model will have large generalization power. When the
variance in our model increase, the spread of the prediction will also increase leading to wrongly
predicted values in the new data. The most important improvement of regularized methods
regression over OLS is in the bias-variance trade-off. Although there are no explicit formulas for
the bias and variance of the lasso estimate, in general we can say that: 1)The bias increases as
λ (amount of shrinkage (4.1)) increases, 2) The variance decreases as λ increases [23].

1It simply means how far away is the estimated values from true values
2It is a measure of spread or variations in our predictions
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Figure 4.1: The Variance-Bias trade-off

4.3.2 LASSO for linear regression model

Lasso (Least Absolute Selection and Shrinkage Operator) works on the same principle as other
regularized methods, in sense they all try to shrink the estimated coefficients toward zero. Lasso
possesses an important property that other regularized methods do not have: it allows for auto-
matic variable selection by shrinking some of the coefficients all the way to zero and consequently
improvement of interpretability. This is why lasso is often used as a selection variable methods.
By considering a standardized data,3 the lasso estimate is defined by:

β̂lasso = argmin
β
‖Y −Xβ‖22 subject to

p∑
j=1

|βj | ≤ c (4.1)

We can also write the lasso equation in the equivalent Lagrangian form as:

β̂lasso = argmin
β
‖Y −Xβ‖22 + λ‖β‖1

= argmin
β

N∑
i=1

(yi −
p∑
j=1

xijβj)
2

︸ ︷︷ ︸
sum of squares

+ λ

p∑
j=1

|βj |︸ ︷︷ ︸
lasso penalty

(4.2)

Where xij is the value of jth covariate for observation i and yi is the response of the i-th.
observation . The term yi−

∑p
j=1 xijβj is actually the difference between the observed response

yi and the predicted response ŷi =
∑p
j=1 xijβj . So, the solution β to the problem, is the β that

minimizes the error, under the constraint
∑p
j=1 |βj | ≤ c. Note that the solution for β0 is ȳ and

thereafter we fit a model without an intercept. Notice that decreasing c in (4.1) is the same
as increasing the λ in (4.2). By making c very large (or λ ≈ 0), there will be no constraint
(penalization) at all and the value of estimate coefficients will be close to that of an OLS.

3Since lasso shrinks the coefficients associated with each variable, it is therefore, necessary to standardize the
data such that all variables have a unite variance and the shrinkage value will affect all β’s equally
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For further illustration of the effect of λ on the number of variables that will end up in the
final model, we have plotted the regularization path from our data (figure 4.2). This figure shows
clearly the effect of the λ on the number of covariates that are included in the model. As we
can see, a large value of λ forces all β’s to be 0, hence fewer variables will end up in the model.
Whereas a small value of λ , the coefficients start to take nonzero values, thus more covariates
will be contained in the final model. In the next section will provide a geometric explanation of
this effect.

In general there is no closed formula for calculating β̂lasso(λ). The coefficient vector has to
be determined through iterative processes for each λ. This is a numerically challenging problem,
some resort to numerical optimization procedures. Tabshirani proposed quadratic programming
to solve (4.1) in his original article [51], whereas Goeman [18] proposed a new algorithm that is
based on a combination of gradient ascent optimization with the Newton–Raphson algorithm,
and Efron et al. [11] used the LARS algorithm, which simultaneously solves (4.1) and (4.2) for
all values of the tuning parameters c and λ .

Figure 4.2: Regularization path for our dataset. For each λ , the log(λ) versus individual
coefficient values are displayed. Each curve traces the change of coefficient values for one variable.
Starting from the right and moving to the left (large values of λ) no covariates are selected.
Gradually, more covariates are included into the models (coefficients > 0).

4.3.3 Geometric interpretation for linear regression model

For simplicity, we will discuss here the geometric interpretation of lasso in two dimensions space
(β1,β2). Note that this is only an intuition approach behind lasso method.

Let f(β) = ‖Y − Xβ‖22 be the loss function Residual Sum of Squares (first component of
4.2), its contour plot is shown in black in figure 4.3. There exists a minimum for this function.
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Suppose this is in the middle of the black contours. Let us now add a new objective g(β) ,where
g(β) = λ(|β1|+ |β2|) (second component of 4.2) this is plotted as rhombus contour in red in figure
4.3. When we decrease λ (≈ 0), the contours of rhombus will expand, therefore the intersection
of red rhombus with black f(β) contours comes closer to the center of the black circle, thus we
get a non-penalized solution. i.e the βlasso = βols OLS estimates. And vice versa will happen
to the contours when we increase λ. Now we have to find the minimum of the sum of this two
objectives: f(β) + g(β) but this is obtained when two contour plots meet each other. In the
figure 4.3 is now clearly shown that when the first contour of f(β)(black contours) intersects
the lasso constraint region (red) |β1|+ |β2| ≤ c. In the figure 4.3 this will result in β1 = 0 and
β2 6= 0 therefore the predictor X1 is automatically eliminated. We have restricted our plot on
(β1,β2) space, but the same argument also applies to the case when the number of predictors
p > 2; the lasso constraint will have pointy edges (a diamond form), which increases the chances
of eliminating variables. That is why lasso gives us sparse solution, making some of parameters
exactly equal 0, in this context lasso does a kind of continuous subset selection.

Figure 4.3: The black ellipses are the contours of the least squares error function, while the red
contours are the constrain regions for lasso λ(|β1|+ |β2|) ≤ c [23].

4.3.4 Lasso for Cox regression model

In the previous subsections, we discussed the original (i.e. linear regression models) setting for
which lasso shrinkage method was intended to. In the current section we will further extend the
application of lasso to Cox regression models. Recall that partial log likelihood for Cox regression
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model that was introduced in chapter 3 and defined in (3.9) by:

l(β) = logL(β) =

n∑
i=1

δi(β
TX − log(

∑
j∈R(ti)

eβ
TX ))

Tibshirani [52] proposed to estimate β via the criterion:

β̂lasso = argmin l(β) subject to

p∑
j=1

|βj | ≤ c (4.3)

This equation (4.3) can also be rewritten as:

β̂lasso = argmin
β

( l(β)︸︷︷︸
Partial log-likelihood

+ λ

p∑
j=1

|βj |︸ ︷︷ ︸
lasso penalty

) (4.4)

and the penalized log partial likelihood is given by:

l(λ)(β) = l(β) + λ

p∑
j=1

|βj | (4.5)

We will discuss in the following subsection how the tuning parameter λ value is obtained.

Cross validation for Cox regression model

In comparison to linear regression, application of cross-validation to Cox model is a bit complex,
this is due to the fact that the terms in log partial likelihood (3.9) are not independent, in sense

that the term log(
∑
j∈R(ti)

eβ
TX ) in (3.9) depends on information about other observations,

those that are still in the risk group, than the i-th observation itself.

The leave-one-out cross-validation (LOOCV) that was introduced by Verweij and van Houwelin-
gen (1993) [56], takes into account that the components of the partial likelihoods are not inde-
pendent as in linear or logistics regression model. This is one of many approaches that try to
circumvent this problem. Unfortunately, LOOCV can be computationally demanding when the
number of observation n and covariates p is very large. However, the same idea as introduced by
Verweij and van Houwelingen (1993) can be used for k-fold cross-validation [34]. Similarly, the
cross-validation penalized partial log likelihood (cvppl) can be defined as follow :

cvpl(λ) =

K∑
k=1

{l(β̂(λ)
(−k))− l(−k)(β̂

(λ)
(−k))} (4.6)

where l(−k) is the log partial likelihood based on all observations except on those in the k-th fold,

and β̂
(λ)
(−k) is the estimate of β that maximize the penalized log partial likelihood l

(λ)
(−k)(β) when

the k-th fold is left out (4.5).
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Minimum λ in glmnet package

The tuning parameter λ in our equation (4.3) is an important key to determine the number of
non-zero coefficients. But how is λ value chosen such that the predictive accuracy of our model is
optimal? One way to achieve this by applying Cross Validation. The most common approach is
K-fold cross validation. In the glmnet R package, the penalized partial log-likelihood deviance4

is used as the loss function, instead of the log-likelihood function itself [47]. The idea is simple :

1. The training data T is partitioned into K separate sets of equal size: T = (T1, T2, ..., TK),
commonly chosen K’s are K = 5 and K = 10.

2. Fit the model to the training set Tk for a particular λ for each k = 1, 2, . . . , K, excluding

the k-th fold , obtaining β̂
(λ)
(−k) estimate .

3. For each k fold compute the deviance :

Dev
(λ)
(k) = −2

[
l(β̂

(λ)
(−k))− l(−k)(β̂

(λ)
(−k))

]
4. Compute the sum of deviance for a particular λ over all k-folds:

Dev(λ) =

K∑
k=1

Dev
(λ)
(k)

5. Repeat 1 to 4 steps for a fine grid of values of λ’s,

6. Find λmin as the one that minimizes the Dev(λ) .

λ̂min = argmin
λ∈(λ1,λ2,....λm)

Dev(λ)

when K = 1, This is called leave-one-out cross validation (LOOCV).

4The deviance is defined as dev= - 2 l( M
Mf

) in words, this is : -2 times the log likelihood ratio of the model

being evaluated compared to the full model (saturated model). This metric provides a measure of goodness-of-fit
of the model of interest when compared to the full model
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Figure 4.4: K fold cross validation method

Form the experimenters point of view, the choice λmin is very conservative, i.e not eliminat-
ing sufficiently many predictors from the model. Another alternative choice was suggested by
Tibshirani called one standard error rule.

One standard error rule

The one standard error rule is considered as an alternative rule for choosing the value of the
tuning parameter λ. This can be described as follows:

1. Find the minimum deviance Dev(λ) and its corresponding (λmin)

2. Calculate also the standard error of the deviance as:

SE(Dev(λmin)) =

√
var(Dev

(λmin)
(1) , .., Dev

(λmin)
(K) )

√
K

3. Find the largest λ such that the partial likelihood deviance curve is still within one standard
error of Dev(λ̂min). We maintain:

λ̂1SE = argmax
Dev(λ)≤Dev(λmin)+SE(Dev(λmin))

λ

Tibshirani has described this as : In words, we take the simplest (most regularized)
model whose error (deviance) is within one standard error of the minimal error
(deviance).

The figure 4.5 is an illustration of our data for the values of (λ1SE), λmin, Partial Likelihood
Deviance and the corresponding number of variables. As we can see in this figure there are two
vertical lines, these lines are drawn at the values of λmin left and λ1SE right. The number of
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non-zero coefficients is shown on the top of the figure 4.5. This means that if we would choose
optimal tuning parameter λmin we would get 13 non-zero coefficients for this example, instead
of 6 predictors by using the one standard error rule (λ1SE). The key point of the 1SE rule, is to
detect the simplest model that can fit as well as the best model that is chosen by λmin .

Figure 4.5: Tuning parameter: λmin and λ1SE rule

4.3.5 Lasso limitations

The stability of the selected model is required for two main reasons : reproducibility and gener-
alization performance of an algorithm. Model instability was the main problem that have been
risen during model selection by lasso in this thesis. Here by stability we main less variability in
model selection, because one is interested in an algorithm that selects nearly the same variables
set when one runs the algorithm again. As have been previously discussed, an optimal value for
the tuning parameter λ̂ is found by using cross-validation method. A downside of this approach
is the fact that lasso can be very sensitive to the fold assignment used during cross-validation,
this was extensively discussed by Bovelstad [3], Krstajic [29] and Roberts [45]. As a consequence
of this extreme variability, the results from lasso analysis might not be reproducible and may
lack interpretability too. In addition, it was pointed out by Zou and Hastie (2005) [61] that lasso
tends to select randomly just one variable from a set of highly correlated variables. Furthermore,
in case n << p (Efron et.[11]) pointed out that lasso can select not more than n predictors out
of p candidate variables.

In order to illustrate the impact of cross-validation fold assignment on the optimal value of
the tuning parameter λ̂, and hence the number of variables of the model selected by the lasso,
we have fitted lasso to our dataset 345 times. The results of this experiment are displayed in
figure 4.6 where λ̂min variates between 0.005 and 0.014, and on the meantime the corresponding
size of the selected models by the lasso ranges from 11 to 23. Investigating the figure 4.6 we can
clearly see that the variability among selected models using ordinary lasso is very large. This
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is clearly showing the potential sensitivity of the lasso solution to the choice of λ̂ as Roberts &
Nowak, 2014 have demonstrated [45]. To overcome the lasso instability model selection, there
were many approaches proposed to this problem [36],[45]. In the following section a method
called the Percentile-lasso is introduced.

Figure 4.6: Analysis on our data set. The left side of the figure illustrates the frequency of values
of optimal tuning parameter λ̂min of non-zero coefficient estimates obtained from the lasso, and
the right side the frequencies of selected models over 345 random fold assignments.
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4.4 Percentile lasso

In the previous section, we have faced a common problem of non-stable model selection by the
lasso. Since one important aim of this thesis is to build a model that is reproducible, we have
tried to circumvent this problem through an alternative.
In the current section, we will start with an introduction to percentile lasso method as stabiliza-
tion tool for ordinary lasso’s model selection. Subsequently, we will discuss the application of
percentile lasso algorithm. Finally, we will provide some arguments for using percentile lasso as
an alternative method.

4.4.1 Introduction

The current section is based entirely on Roberts and Nowak article [45]. By fitting ordinary lasso
on our dataset for 345 times, we have noticed that the proposed models by lasso are very different
i.e. 6 different models were proposed by ordinary lasso, and the number of selected variables in
a model range between 11 and 23 (figure 4.6). This observation raised the next question: which
model containing between 11 and 23 variables should be chosen to serve as a basis for drawing
conclusions ?

4.4.2 Percentile lasso

In a simulation study, Roberts and Nowak [45] showed that as the value of optimal λ̂ increases, an
improvement in the model selected by ordinary lasso was observed. By improvement, we mean
that as λ̂ increases the number of ’false positives’ (false non-zero coefficient β = 0) decreases,
whereas the number of ’true positives’ (true non-zero coefficient β 6= 0 ) remains constant (figure

4.7). Note that the ordinary lasso will choose one of these specific λ̂ solutions that could fall

anywhere in λ̂’s range. This phenomenon (figure 4.7) was the motivation to base the lasso solu-

tion on a specific percentile of a set of possible optimal λ̂ values, instead of using a single value [45].

The percentile-lasso estimate the percentile θ of a set of optimal tuning parameters λ’s that
were generated from a cycle M of cross-validation Λ(M) = {λ̂1....λ̂m}. Roberts and Nowak
have suggested that running the percentile-lasso with θ = 0.95 will be appropriate in most
circumstances. Nevertheless, a complete algorithm to estimate the percentile θ̂ is provided by
the authors too.
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Figure 4.7: Number of true and false non-zero coefficient estimates obtained from
the lasso fitted to the simulated data, corresponding to the values of λ̂ obtained over
1000 random fold assignments. The vertical lines correspond to the 50th and 75th
percentiles of the 1000 values of λ̂ [45].

4.4.3 The percentile lasso algorithm

In this subsection we will present the percentile lasso algorithm as was described by Roberts and
Nowak [45]. Note that the original algorithm was meant for linear regression settings, therefore
we have adapted this algorithm to our thesis methodology. The algorithm is as follow:

1. Fit standard lasso M times using cross-validation for K folds (K=5 or K=10), and find the

M optimal tuning parameters λ̂min or λ̂1SE .

2. Denote the set Λ(M) = {λ̂1, λ̂2, ..λ̂M} the M values of λ̂min or λ̂1SE .

3. Let Θ denote a sequence percentile values θ, e.g. Θ = {75%, 80%, 85%, 90%, 95%}. Com-

pute λ̂(θ) the percentile of the set Λ(M).

4. Re-estimate the parameters of the selected model (i.e from the lasso fitted with λ = λ̂(θ))
using the ordinary partial likelihood.

5. Compute the cross-validation error (partial likelihood deviance) of the re-estimated model.

6. For each θ in Θ repeat steps 3-5, and select θ̂ to be the value of θ̂ ∈ Θ with the smallest
cross validation error (deviance).

7. Compute λ̂(θ) the θ̂ percentile of Λ(M).

8. Fit the standard lasso with λ = λ̂(θ) the percentile lasso solution.
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4.4.4 Percentile lasso as an alternative to ordinary lasso

Roberts and Nowak [45] have suggested percentile lasso as an alternative method that can be
used in conjunction with ordinary lasso to mitigate the model’s variability caused by repeated
cross validation. By restricting the optimal λ̂’s solution on a percentile e.g. θ ≥ 0.75 of Λ(M)

values, the percentile lasso will automatically avoid choosing the smallest λ̂, as was observed
by ordinary lasso. Having this restriction in mind, Roberts and Nowak demonstrated that the
percentile lasso can produce significant reductions in the model selection variability (instability)
that were common with ordinary lasso (figure 4.6).
According to Roberts and Nowak the reduction in model instability can be attributed to two
main factors : (1) the percentile-lasso tends to select values of λ̂ that are larger than the ordinary

lasso, and (2) the values of selected λ̂ are consistent through fold assignments (i.e less variable)
in comparison to the ordinary lasso. As a result, the percentile lasso is an effective alternative
to the ordinary lasso.

The results of fitting ordinary lasso to our data set are displayed in figure 4.6. The selected
models by ordinary lasso ranges from a model with 11 to a model containing 23 variables. In
addition to ordinary lasso, we have fitted percentile lasso 345 times to our dataset i.e. we fit
lasso 100 times and we estimated the percentile of Λ(100) values of tuning parameter as was
described in algorithm section (4.4.3), then we repeated this step 345 times, the results of this
procedure are displayed in figure 4.8. We noticed that percentile lasso had selected only two
models ranging from a model with 11 to a model containing only 13 variables (figure 4.8). This
illustrates the fact that the percentile- lasso, compared to the ordinary lasso, is more likely to
select parsimonious models without missing important variables, suggesting that the additional
selected variables by the ordinary lasso could be noise. Our results are in agreement with the
results from Roberts and Nowak simulation, although these can be seen as side effect benefit,
because the foremost purpose of the percentile-lasso is to produce a stable model compared to
the ordinary lasso.
Hence, the illustrated results in figure 4.8 suggest that percentile lasso is an effective tool for
model stabilization: in 345 repetitions, the number of selected variables ranges between 11 and 13
variables, almost the same model is selected each time it is fitted. Because of this main benefit
( model stability), one needs only a single fit of the percentile-lasso to produce interpretable
results. This is in contrast to ordinary lasso (figure 4.6) where the results are highly sensitive
to the fold assignment, therefore the model instability produced by ordinary lasso will make it
hard to draw a meaningful conclusion.
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Figure 4.8: The left side of figure illustrate the frequency of values of optimal tuning parameter
λ̂ of non-zero coefficient estimates obtained from the percentile-lasso, and the right side are the
frequencies of the selected models, over 345 repetition at λ̂ = λ̂(min(θ̂)). With min(θ̂) we mean
the percentile of Λ(100) at minimal deviance for each single repetition of 345.
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4.5 Closed Testing as a variable selection method

In the current section, we will introduce the closed testing method as was proposed by Goeman
& Solari [14] for exploratory research. Variable selection can also be regarded as exploratory
research unless some expert knowledge is used. Therefore we will discuss the application of this
procedure here as variable selection method. In general, closed testing looks for a collection of
sets with the smallest possible number of variables that still exhibit a significant effect on the
outcome variable. In this context, closed testing can be seen as a variant of the hierarchical
approach [35]. One important characteristic of this procedure is manifested in the possibility to
choose freely a set of variables (selected hypothesis) , and if needed, apply one of the multiple
hypothesis testing procedure to determine the confidence set for the contained number of false
discoveries.

We start this section with an introduction to the closed testing procedure, followed by a brief
discussion of this procedure. Subsequently, we provide a way to construct the confidence set
for true and false discoveries, last but not least we touch upon some limitations. We close this
section by applying the models to a subset from our data.

4.5.1 Introduction

The closed testing procedure was first proposed by Marcus et al. (Marcus, Peritz and Gabriel,
1976) [33]. This procedure is based on a set of intersection hypothesis that are ordered in a
hierarchical way (figure 4.12) such that every hypothesis is a superset of a hypothesis one level
above. With the global hypothesis (e.g. HL

0 ∩HG
0 ∩HS

0 ∩HB
0 ) at the top of the tree, followed

by non-elementary hypothesis (e.g. HL
0 ∩HG

0 ) and the elementary hypothesis (e.g. HL
0 ) at the

bottom. This method was introduced in its original form as a simple and effective solution to
control family wise error rate (FWER). Family-wise error rate (FWER) is defined as the prob-
ability of making at least one type I error when performing multiple hypotheses: P(rejecting at
least one H0|H0). Under the assumption of independence, the chance of rejecting at least one of
the k tests is defined as 1− (1− α)k.

The closed testing methods are among the most powerful multiple inference methods [33],[58].
The present section aims to explain the way that closed testing procedure can be used to select
candidate variables and to construct the confidence set for a number of false discoveries as well as
the number of true discoveries. According to Goeman, this inferential procedure is in agreement
with all the three most distinguishing features of exploratory research (7.2.1), namely mild,
flexible and post hoc (7.2.2).

4.5.2 Closed testing procedure

In this subsection we will provide an overview of the closed testing procedure. First, let us intro-
duce some notations and definitions. To use the closed testing procedure we consider a family of
distinct elementary hypotheses of interest H1

0 , ...,H
m
0 , out of which we want to select hypotheses

to follow up. In our variable selection setting the notation H1
0 means H0 : β1 = 0 and Hm

0

means H0 : βm = 0. Consider now HI = ∩iHi
0, with I ⊆ {1, 2, . . . ,m} all possible intersection

hypotheses. Note that an intersection hypothesis HI of a collection of hypotheses is false if at
least one hypothesis in the collection of hypotheses is false. Similarly, an intersection hypothesis
HI is true if and only if every hypothesis in the collection of hypotheses is true [17]. For instance,
in a regression analysis if null hypothesis HLocation

0 states that the effect of location VT is zero
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βLocation = 0, and the hypothesis HGender
0 states that the effect of gender (Sex male) is zero

βGender = 0, then the intersection hypothesis HLocation,Gender
0 = H location

0 ∩HGender
0 states that

the effects of both covariates are 0, i.e βGender = βLocation = 0.

In the closed testing procedure every single hypothesis Hi
0 of this set HI , is tested at level

α using a particular local test. There are many local tests available that can be used for this
purpose [4] [24][20]. Of note, the choice of local tests has an effect on the efficiency of the closed
test procedure (shortcut) [10]. In our data the likelihood ratio test is used as local test. In
general, the closed testing method proceeds as follows:

1. Test each elementary hypothesis Hi
0 by a suitable local test.

2. Create the closure of the hypothesis set C i.e the set of all possible intersection hypothesis.

3. Perform a suitable local test for every member of the closure C, then reject an elementary
hypothesis Hi

0 if

(a) it is rejected by its corresponding local test, and

(b) every intersection hypothesis HI that includes Hi
0 is also rejected by its local test.

4.5.3 Confidence set for true and false discoveries

This subsection is entirely based on the article of Goeman & Solari [14]. Let us briefly introduce
some important notations. Suppose there is a subset of a true hypotheses among a given m set
of elementary hypotheses H1. . . Hm, and let T ⊆ {1, 2, . . . ,m} be the unknown indices of these
true hypotheses. Denote R to be the rejection set i.e. a set of hypotheses that a researcher
is interested to reject (selected hypotheses), and let Closure C to be the set of all possible
intersection hypotheses. Furthermore we denote the set of all rejected hypotheses (discoveries)
by the closed testing procedure on level α by M ⊆ C. Let τ(R) = |T ∩ R| be the number of
false discoveries i.e hypotheses that are falsely rejected (β = 0), and φ(R) = #R − τ(R) to be
the number of true discoveries i.e hypotheses that are correctly rejected (β 6= 0). For a given set
R, these quantities ( φ(R) and τ(R) ) are a function of model parameters that can be estimated
and also a confidence interval can be constructed. In the following we will discuss how (1−α)%
boundary confidence sets are constructed for the number of false discoveries τ(R), as well as the
number of true discoveries φ(R). A more detailed description and rigorous mathematical proof
of the confidence set, we refer the interested readers to Goeman et al [20]. In this paper they
showed that a (1− α) confidence set for the number of false discoveries τ(R) is given by:

{0, ..., tα(R)} (4.7)

where tα(R) is the size of the largest subset of R for which the corresponding intersection hy-
pothesis is not rejected by the closed testing procedure: in abbreviated math
tα(R) = max{|I| : I ⊆ R,HI 6⊂ M} . Because τ(R) only takes discrete value, we will talk in
terms of confidence set rather than a confidence interval in this setting. On the other hand, the
100(1 - α)% confidence set for the true discoveries φ(R) for a given set R is given by [20]:

{fα(R), ...,#R} (4.8)

where fα(R) = #R− tα(R).

Let us clarify the construction of confidence set by an example from the chart figure 4.12.
Consider for instance, the selected variables set (rejection set) R = {Surgery,BMI}. For this
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specific R set, we get a value of tα(R) = 1. Therefore, when one rejects HSurgery
0 and HBMI

0 ,
the (1 − α)- confidence set for the number of false discoveries as well as for the number of true
discoveries is {0, 1} and {1,2} respectively, therefore for this selected set R, one can be confident
of making at least one true discovery φ(R) = 1 i.e with a model containing Surgery and BMI we
are (1− α)%- confident that at least one variable in the model is truly relevant for recurrence.

By investigating all possible confidence sets, the researcher has the possibility to select a set
R that is more suitable to answer his research question. In doing this one is still keeping correct
(1 − α) coverage of the selected confidence set for the number of true or false discoveries [20].
Having said this, the user will have countless options in selecting a set R of variables and may
review all options and their consequences in order to make his/her choice.

4.5.4 Application

To illustrate the mechanism of the closed testing procedure, let us examine the association
between four candidate variables and the recurrence of thrombosis by using our dataset. Consider
for instance the following four candidate variables to build a Cox regression model h(t|X ) =

h0(t)e
∑4
j=1 β

T
j X j :

1. X1 =Location: proximal vs distal DVT.

2. X2 =Gender: male vs female.

3. X3 =Surgery: within 3 months before VT.

4. X4 =BMI: body mass index.

Figure 4.12 illustrates the application of the closed testing procedure to subset of covariates from
the MEGA study dataset. This chart displays all 15 (24 − 1) possible intersection hypotheses
HI . In the current discussed closed testing procedure, no method of multiplicity control was
applied in our study. In the following illustrative chart (figure 4.12 ), the elementary hypothesis
HLocation

0 : βLocation = 0 refers to location null hypothesis, HGender
0 : βGender = 0 refers to

gender null hypothesis, HSurgery
0 : βSurgery = 0 refers to surgery null hypothesis and finally

the elementary hypothesis HBMI
0 : βBMI = 0 refers to BMI null hypothesis. Furthermore a

non-elementary hypothesis like HLocation
0 ∩HGender

0 refers to location and gender together. i.e:
H0 : βLocation = βGender = 0, in words we say that the regression coefficient of location as well as
the regression coefficient of gender is 0. Hence by rejecting the null hypothesisHLocation

0 ∩HGender
0

we mean that either gender or location regression coefficient is not zero.

In order to test each hypothesis of the closure C i.e. testing the null model against the satu-
rated model, the likelihood ratio test for the Cox model is applied as a local test. The associated
p-values for each elementary as well as for non- elementary are displayed in figure 4.12. In
addition the rejected as non rejected hypothesis by the closed testing procedure are marked in
red and blue respectively. In this example, three out of 4 elementary hypotheses corresponding
to each of the 4 examined candidate covariates were rejected by closed testing, in addition all
non-elementary hypothesis were rejected at the fixed significance level α = 0.05 too.

Applying the closed testing procedure to our dataset has resulted in 14 rejections out of 15
hypotheses, among which there are 3 elementary hypotheses: Location, gender, and surgery (fig-
ure 4.12). The cherry R package includes the closed(.) function that enables us to perform
the closed testing procedure in R. The displayed results (figure 4.9) were generated by using
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the object created by the closed () function in R. This result provides us with a lower confidence
bound on the number of false discoveries τ(R) as well as the upper confidence bound on the
number of true discoveries φ(R) among the collection of all four tested hypotheses. We conclude
that there are likely at least 3 true discoveries among the four selected hypotheses.

Figure 4.9: Closed object results

Sometimes one is interested in a small subset of hypotheses R, in this case one can investi-
gate the number of true and false discoveries among the corresponding subset by using pick(.)
function from the cherry R package. For instance if we select variables location and gender i.e.
R = {Gender, Location}, the displayed output figure 4.10 suggest that these variables are both
true discoveries (βGender 6= 0 and βlocation 6= 0) i.e. these variables should remain in the model.
Whereas when we pick surgery and BMI covariates, we note that there is only evidence for one
true discovery among surgery and BMI covariates (βSurgery 6= 0 or βBMI 6= 0) (figure 4.11).

Figure 4.10: pick object results for the selected variables Location and Gender together

Figure 4.11: Pick object results for the selected variables surgery and BMI together

Furthermore, Defining set and Shortlist set are two important concepts that will be
introduced here which can give more insights into the structure of the results of closed testing.
The defining set is defined as a collection of sets of hypotheses with the property that
for each set in the collection we can be confident that it contains at least one true
discovery i.e β 6= 0 [17]. In the cherry package, this was given by defining(.) function. In
our case, the defining collection is the following singleton sets:

• {Location }

• {Gender }

• {Surgery }
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As each of these sets corresponds to a singleton rejected hypotheses, we can conclude with 95%
confidence that these covariates are truly rejected hypotheses (true discoveries). This is exactly
what the graphical illustration is depicting in figure 4.12. We see that all the three elementary
hypothesis {location, gender and surgery} were rejected, and any set that contains these elemen-
tary hypothesis were also rejected. Remember that an intersection hypothesis HI of a collection
of hypotheses is false if at least one hypothesis in the collection of hypotheses is false. Further-
more, when we select for example a set of hypothesis R = { Location, Gender, Surgery, BMI
}, we will be confident that we have selected at least 3 truly relevant covariates (true discoveries).

In addition, the second concept is introduced here. The shortlist is defined as a collection
of sets of hypotheses with the property that at least one of the sets in the collection
contains only true discoveries i.e (β 6= 0)[17]. Moreover, these sets construct the smallest
models that fit as good as the full model, in other words the shortlist will retains a collection
of the smallest set of variables that still display a significant effect on the outcome variable [35].
The shortlist is given by function shortlist(.) from Cherry R package. In the current discussed
example, the shortlist resulted in a single set containing: { location, Gender, Surgery } .

4.5.5 Limitations and Shortcuts

In general, the size of the graphical representation(figure 4.12) for m elementary hypotheses is
2m–1. In other words, the closed testing procedure has the disadvantage of performing an O(2m)
intersection hypotheses. Though, even for a moderately large m hypothesis, say m around 20-30,
the standard form of closed testing will result in unfeasible computation, let alone if a large
number of hypotheses is to be investigated say m > 1000 (e.g. in GWAS).

To reduce the overall complexity of O(2m), methods for avoiding such large calculation of
some hypothesis tests were investigated, these are known as shortcuts. Shortcuts methods can
be useful to conduct closed testing without evaluating all 2m − 1 hypotheses. Some shortcuts
methods have the ability to reduce the closed testing complexity from O(2m) to O(m2). This is
beyond the scope of this thesis, nevertheless I refer the interested reader to consult [20], [16] and
chapter 2 from [34].
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Figure 4.12: A graphical illustration for all intersection hypotheses for a set of m=4 hypotheses
(elementary and non-elementary) by closed testing procedure for m= 4 hypotheses, H location

1 ,

HGender
2 , HSurgery

3 and HBMI
4 . Rejected hypotheses are colored in red. In the graph HL

1 ∩HG
2

is the same as : HLocation
1 ∩HGender

2 .
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4.6 Model validation: Internal

The goal of a predictive model is to provide a reliably predicted outcome for a new subject.
Model validation is an essential step to evaluate the reliability of models before they can be put
in clinical practice. In general, there are two different validation classes. Internal and external
validation. We talk about Internal Validation when the performance of the model is assessed on
the same data set as was developed. Whereas in an External Validation, the model performance
is assessed on data from a different population. In this study, we have only access to the MEGA
study data set, and no other data set was available to validate our model, therefore internal
validation will be the main focus of this section.
In this section, we will provide a brief overview of three commonly used internal validation tech-
niques: Split Sample (a.k.a Training - Testing), Cross-validation, and Bootstrap.

4.6.1 Split-sample

A straightforward and popular old approach. Commonly the data is randomly split into a
training (2/3) and testing part (1/3): the former part is assigned to develop the model and the
latter to measure its performance. There are many known drawbacks of this approach e.g. model
instability resulted by developing the model using just a part of the data. By chance, the model
could show a good or poor performance, and moreover, the spilt-sample approach requires a
large sample size in order to be reliable [48].

4.6.2 K-fold Cross-Validation

Cross-validation is an extension of split-sample validation technique. In k-th fold cross-validation
(e.g. k=5 or k=10), the data is divided into k equalized subsets. Each time, the model is fitted to
k-1 subsets that form a training set together and tested in the k-th fold. In this way, all patients
have served once to test the model. The error estimation is averaged over all k testing sets in
order to get a total cross-validation error of our model. However, the whole cross-validation
procedure may need more computational time, one needs more repetition of the whole technique
in order to obtain truly stable results [48].

4.6.3 Bootstrapping:

For the bootstrapping techniques, one will generate M samples with replacement from the orig-
inal data set, of the same size as the original data set, i.e. the entire dataset is used for model
development. Often, 100–200 bootstrap samples may be sufficient to obtain stable estimates.
In our case, 200 bootstrap samples of dataset A including 1241 patients were drawn with re-
placement for model A, and 200 bootstrap samples of dataset C including 1881 patients were
drawn with replacement for model C. We fit the model in each bootstrap sample, and evaluate
its performance in the bootstrap sample (estimate of bootstrap performance cboot) and in the
original dataset (estimate of original performance corg)). The technique consists of the following
steps:

1. Develop the model in the original dataset, and calculate the capp.

2. Generate a sample of size n from our dataset with replacement (bootstrap sample).

3. Fit the developed model in the bootstrap sample, and calculate the cboot.

48



4. Apply the fitted model from the bootstrap sample to the original data, and calculate corg.

5. Repeat 2-4 steps B times (e.g 100-200 times).

6. Compute the optimism as :

Opt =
1

B

B∑
b=1

(cbootb − corgb )]

7. Compute the corrected C statistic as:

C- corrected = capp −Opt

Commonly split-sample internal validation performs worse (underestimate performance and
high variability) than bootstrapping [49]. Whereas the Cross-validation is considered not as
precise as the bootstrap: in many cases, cross-validation has to be repeated many times to
achieve adequate precision [49]. Steyerberg and Harrell [49] strongly recommend the bootstrap
resampling approach for internal validation, as it results in a stable and nearly unbiased estimate
of performance.
Since our data set size is not that large, we will abstain from use split-sample approach, instead,
we will perform bootstrapping internal validation in our analysis.
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Figure 4.13: A schema to illustrate the bootstrap internal validation
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Chapter 5

Results

In this section, we will provide an overview of the results from the previously discussed statistical
methods applied to our original dataset. Firstly, in Section 5.1 we introduce our investigated
models. In section 5.2 selecting candidate variables using Backward elimination results are
provided. Then, in the following sections 5.3 and 5.4 the results from the selecting candidate
variables using lasso as well as Closed Testing are described respectively. Finally, in section 5.5
we calculated the degree of discrimination of each model, by means of Harrell’s C statistics and
the corrected C-index for optimism.

5.1 Developing the model

Two models were developed on our data, by means of Cox regression where we perform model
selection using backward selection, lasso in conjunction with percentile lasso and closed testing.
In the current thesis, we studied two models, a full model that contains all candidate variables
.i.e. clinical, laboratory and genetic factors (model A), and a model containing clinical and ge-
netic factors only (model C). The identification of candidate variables for inclusion in the study
was based on : 1) consistent inclusion in the previous prediction models, 2) reported
of the association with recurrence of VTE in literature or 3) expert opinion (Jasmijn
Timp-2018).

Our dataset, data with missing values, contains records on 3750 patients with first VT, either
provoked or unprovoked, among which 86.48% of the patients were censored and 13.52% had
recurrence of thrombosis. The median follow-up time was 5.72 years with an IQR (3.19-7.43),
the most type of first VT were DVT events n= 2231 (59.4%). The mean age of participants
was 48.4 years and 45% were men. All analyses were performed using only the patients with
complete data. For the development of model A, n= 1241(33%) patients were involved, and for
model C, n= 1881 (50%) patients were involved. The baseline characteristics are summarized in
table 2.1.

5.2 Selecting candidate predictor variables by backward
selection

In this section, we provide an overview of the results of backward selection methods. The analyses
were performed in the R-software environment version 3.4.2. In order to perform backward
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selection on our dataset, we used the selectCox() function from the pec package . The technical
details for this method were explained in Section (4.2).

5.2.1 Model A

In this section we will describe the results for Cox regression models obtained by backward se-
lection method using all candidate variables with a removal criterion P-value = 0.1. Among
38 variables that the full model contains, only 11 variables were selected. The hazard ratios
(HR) and the 95% confidence intervals estimated from the Cox proportional hazard model are
summarized in table 5.1.

We have observed a strong positive effect i.e. patients with one of these factors will have a
lower risk of recurrence of thrombosis, with the most important predictors being the hormone use
with a HR=0.44 and 95%CI(0.231, 0.834) and surgery with HR= 0.45 and 95%CI (0.227, 0.893),
followed by Type of the first VT (Pulmonary Embolism) and Fibrinogen (table 5.1). This result
can be interpreted as a patient who uses hormone, holding other factors constant, will have 56%
less risk of recurrence of thrombosis.

In addition, a slightly negative effect was observed for factor X variable with a HR=1.01 and
a 95%CI of (1.00, 1.02) and factor XI with a HR=1.007 and a 95%CI of (0.999, 1.016). This can
be interpreted as a patient with one of these factors, keeping the other covariates at a constant
value, will have a slightly higher risk of recurrence of thrombosis.

Lastly, a strong negative effect indicating a strong relationship between the patients with one
of these factors and increase risk of recurrence of thrombosis. The most important predictors for
this category are factor VIII with a HR= 2.52 and a 95%CI of (1.64, 4.35), Gender (male) with
a HR=1.99 and a 95%CI of (1.22, 3.25), Type of the first VT (PE+DVT) with a HR of 1.74 and
a 95%CI of (1.091, 2.803), followed by APC ratio and D-dimer. These results can be interpreted
for instance as: a patient with a higher level of factor VIII, holding the other covariates constant,
will have a higher risk of recurrence of thrombosis. Or being a male, a patient will have 2 times
higher risk of recurrence of thrombosis in comparison with a female patient, holding the other
covariates constant.

5.2.2 Model C

We repeated the backward selection procedure, but now only using clinical and genetic candidate
variables (model C). The hazard ratios (HR) and the 95% confidence intervals estimated from
the Cox model for model C are summarized in the right-side of table 5.1. Among 17 candidate
variables, backward selection for model C resulted in 8 selected variables.

A strong positive effect predictors, patients with one of these factors have a lower risk of re-
currence of thrombosis, were observed for the pregnancy predictor with a HR= 0.13 with 95%CI
of (0.021, 0.9), followed by surgery with a HR= 0.42 with 95%CI of (0.26, 0.7), plaster cast,
hormone use and Type of the first VT (PE: Pulmonary Embolism).

In addition a strong negative effect was observed indicating a strong negative relationship
between a patient with one of these factors and the risk of recurrence of thrombosis i.e. higher
risk of recurrence of the thrombosis. With gender (male) being the most important predictor
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for this category with a HR= 1.81 and a 95%CI of (1.26, 2.60) and location of VT (distal DVT)
with a HR= 1.53 and a 95%CI of (1.10, 2.13).

5.2.3 Predictors of recurrent thromboembolism models by backward
selection

The selected variables by the different models are presented in table 5.1. The following predic-
tors were found to be common among all selected models: surgery, hormone use, gender and
type of the first VT (PE and PE & DVT). In addition, the following laboratory factors were
additionally predictive for recurrence event for model A: Fibrinogen, protein C, factor X, factor
XI, APC ratio, factor VIII and D-dimer, whereas none of the genetic factors were significant.

On the other hand, the following clinical predictors were additionally predictive for recurrence
for model C: plaster cast, pregnant and location VT. Furthermore, one genetic factor predictor
was also predictive for a recurrent event i.e. factor V Leiden.

Table 5.1: The remaining variables after backward selection, and their corresponding regression
coefficients for models A and C

Model A Model C
Clinical factors Hazard Ratio (HR) (95% CI for HR) Hazard Ratio (HR) (95% CI for HR)
Surgery 0.4504 (0.227, 0.893) 0.4266 (0.260, 0.700)
Hormone use 0.4391 (0.231, 0.834) 0.4749 (0.298, 0.756)
Gender (male) 1.9971 (1.228, 3.249) 1.8153 (1.267, 2.602)
Type of 1st VT(DVT,PE,PE+DVT):
PE 0.7034 (0.465, 1.065) 0.8910 (0.653, 1.216)
PE+DVT 1.7490 (1.091, 2.803) 1.4704 (0.978, 2.211)
Plaster cast - - 0.4637 (0.191, 1.128)
Pregnant - - 0.1371 (0.021, 0.901)
Location of DVT (Prox vs Dist DVT):
Distal DVT - - 1.5380 (1.108 2.136)
Genetic factors Hazard Ratio (HR) (95% CI for HR) Hazard Ratio (HR) (95% CI for HR)
Factor V Leiden - - 1.4636 (1.074, 1.994)
Laboratory factors Hazard Ratio (HR) (95% CI for HR) Hazard Ratio (HR) (95% CI for HR)
Fibrinogen 0.7548 (0.573, 0.995) - -
Protein C 0.9905 (0.981, 1.000) - -
Factor x 1.0099 (1.000, 1.020) - -
Factor xi 1.0075 (0.999, 1.016) - -
APC ratio ∗ 1.3064 (1.050, 1.626) - -
Factor viii∗ 2.5236 (1.464, 4.351) - -
D-dimer ∗ 1.2850 (1.000, 1.652) - -

* log transformed factors.

5.2.4 Check of the Proportional Hazards Assumption

Before using any Cox predictive model we need to have an indication of whether the proportional
hazards (PH) assumption holds or not, and possibly to what degree. There are many ways to
check the (PH) assumption. Here we have chosen to check the validity of (PH) assumption by
using a statistical test (Grambsch and Therneau (1994)) implemented in cox.zph(.) function
from the survival R package. Further we provide just one time an illustration of graphical diag-
nostic based on the scaled Schoenfeld residuals for model A. The Schoenfeld residuals plots for
this model are presented in the Supplement figure 7.3. A systematic departure from a horizontal
line is an indication that proportional hazards assumption are violated, i.e. if that line is fairly
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flat and straight, then PH assumption is supported. We see no pattern with time in figure 7.3,
hence the assumption of proportional hazards appears to be supported for all covariates of our
models.

Our conclusion from the diagnosis of the Schoenfeld residuals figure 7.3 is also supported by
the statistical test result for the proportional hazards assumption table 5.2 and table 5.3. The
output from the displayed test results in tables 5.2 and 5.3 are non-significant for model A as
well as for model C, indicating no violation evidence for the (PH) assumption.

Table 5.2: PH assumption numerical test for
model A

rho chisq p
Surgery -0.02 0.05 0.82
Hormone -0.04 0.20 0.66
Gender -0.09 1.06 0.30
TypeVT2(PE) -0.05 0.31 0.58
TypeVT3(PE+DVT) 0.16 3.64 0.06
Fibrinogen -0.15 2.16 0.14
Protein C -0.05 0.38 0.54
Factor X -0.13 2.69 0.10
Factor XI 0.14 2.67 0.10
APC ratio 0.05 0.32 0.57
Factor VIII 0.16 4.12 0.04
D-dimer -0.11 1.84 0.17
GLOBAL 18.08 0.11

Table 5.3: PH assumption test for model C

rho chisq p
Surgery 0.05 0.53 0.47
Plaster-cast -0.02 0.07 0.80
Pregnant -0.06 0.74 0.39
Hormone -0.03 0.23 0.63
Location VT -0.07 1.30 0.25
Gender -0.04 0.32 0.57
TypeVT2 (PE) -0.06 0.93 0.33
TypeVT3 (PE+DVT) 0.11 3.09 0.08
Leiden V 0.03 0.20 0.66
GLOBAL 6.95 0.64

5.2.5 Predictive value of the different models

Figure 5.1 illustrates the Kaplan-Meier curves for quintiles of the prognostic score for the back-
ward selected models A and C. In order to examine the model ability of discrimination between
risk of recurrence among patients, inverse Kaplan Meier plots for the observed risk of recurrence
in quintiles of the prognostic scores were generated (figure 5.1). The prognostic score for each
patient was calculated by the linear predictor : β1X1 + β2X2 + ... + βpXp, of the model and
then devided into 5 risk groups of patients, using the 20, 40, 60 and 80% quintiles of the linear
predictor estimate.

Increasing quintiles of the prognostic score in figure (5.1) corresponded to an increased ob-
served risk of recurrence. Patients in risk group 1 (figure 5.1 a and b) displayed a low recurrence
risk, whereas patients in the 5th risk group showed a high risk. In general, we see a good dis-
crimination between the 5 risk groups, which is also supported by a small log-rank p-value (p<
0.0001). More importantly, we observe an increase in model ability to distinguish between 5
risk groups when moving form a model encompassing 8 variables (model C) to a model with
11 variables (model A). Furthermore, it is also noticeable that risk groups 1 and 2 are barely
distinguishable for the first 2.5 years after the of the first VT for model A.
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(a) model A (b) model C

Figure 5.1: Probability of recurrence stratified by quintiles of prognostic scores of the backward
selected models

5.3 Selection of the risk factors by lasso method

In this section, we provide an overview of the results of a regularized method (lasso ). The
analyses for lasso were performed in the R-software environment version 3.4.2. To perform lasso
model selection on our dataset, glmnet package was used for this purpose. This package has
possibility to apply lasso method for a Cox regression model. In order to overwhelm the model
instability problem by lasso, we have implemented percentile lasso in conjunction with the or-
dinary lasso. The technical details for this approach are explained in section (Percentile lasso 4.4).

We estimated the percentile θ̂ by following the steps of percentile lasso algorithm in (4.4.3),

where we use M=100. The percentile is estimated to be θ̂ = 95%. i.e. we extract 95% percentile
λ̂ value from Λ(100) values of the optimal tuning parameters. This percentile correspond with a

value of λ̂A = 0.01398578 for model A. By repeating the same steps for model C as for model A,
we got a λ̂C = 0.004330508. Lastly, we then have fit the ordinary lasso at this optimal values.

5.3.1 Model A

By using the estimated θ̂ = 95% percentile of Λ(100) values of the optimal tuning parameters.

The optimal lambda was found to be λ̂A = 0.01398578. This corresponds to a model with 10
predictors among 38 candidate variables that represent the full model (model A). The estimated
hazard ratios (HR) from the Cox proportional hazard model are summarized in the left-side of
table 5.4.
The strong predictors are factor VIII with HR =1.82 followed by gender (male) HR=1.79 and
type of the first VT (PE+DVT) with HR=1.58. The remaining predictors have more modest
effects with hazard ratios smaller than 1.3, these are posthrombotic syndrome 2 with HR = 1.29,
factor V Leiden with HR = 1.28, VWF with HR= 1.21 and D-dimer with HR= 1.06.
Finally, we noticed a category of predictors that have a mild protective effect, these are: hormone
use with HR = 0.73, surgery with HR= 0.79, type of the first VT (PE) with HR=0.85 and
pregnant with HR= 0.99.
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5.3.2 Model C

By repeating the same steps for model C i.e. a model that contains clinical and genetic factors, we
found θ̂ = 95% which corresponds with an optimal λ̂C = 0.004330508. This resulted in a model
with 12 predictors among 18 candidate variables that represent the model C. The estimated
hazard ratios (HR) of the Cox proportional hazard model are summarized on the right-side of
table 5.4.

We noticed that some predictors have a strong negative effect such as: gender (male) with
HR=1.83, followed by location of VT (Distal) with a HR= 1.47, posthrombotic syndrome 2 (se-
vere) with HR = 1.42, type of the first VT (PE+DVT) with a HR =1.40 and factor V Leiden
with HR = 1.36. Only one predictor, i.e. blood type with HR = 1.16, showed a modest effects
with hazard ratios 1< HR < 1.3.

Finally, we observed two categories of predictors, the first have a strong protective effect,
these are: pregnant with HR = 0.33, surgery with HR= 0.51, hormone use with HR= 0.53 and
plaster cast with HR= 0.62, and the second category have a mild protective effect, these are
cardiovascular disease with HR= 0.76, posthrombotic syndrome 1 (mild) with HR=0.84, type of
the first VT (PE) with a HR =0.93 and hospitalization with HR= 0.96.

5.3.3 Predictive value of the different models

Figure 5.2 illustrates the Kaplan-Meier curves for quintiles of the prognostic score for the selected
models by lasso method. In order to examine the model ability of discrimination between risk
of recurrence among patients, inverse Kaplan Meier plots for the observed risk of recurrence in
quintiles of the prognostic scores were generated (figure 5.2). Increasing quintiles of the prog-
nostic score in figure 5.2 corresponded with an increased observed risk of recurrence.

In general, we see a good discrimination between the 5 risk groups, which is also supported by
a small log-rank p-value (p < 0.0001). More important, we observe an increase in model ability to
distinguish between 5 risk groups when moving form a model encompassing 10 variables (model
A) to a model with 12 variables (model C). Furthermore, It is also noticeable that risk groups 2
and 3 are barely distinguishable for model A, whereas for model C this was just the case for the
first 2.5 years after the first VT .
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(a) model A (b) model C

Figure 5.2: Probability of recurrence stratified by quintiles of prognostic scores of the lasso
selected models

5.3.4 Predictors of recurrent thromboembolism models by lasso

Table 5.4 represents a summary of selected variables by mean of the lasso. The following pre-
dictors were found to be common among the models: surgery, hormone use, gender and type of
the first VT (PE and PE & DVT), pregnant, PTS 2 (severe) and factor V Leiden.

Furthermore, the following laboratory factors were additionally predictive for recurrence event
for model A: factor VIII, D-dimer, and VWF. On the other hand, the following clinical predictors
were additionally predictive for recurrence for model C: plaster cast, location VT, cardiovascular
disease and hospitalization. Furthermore, one extra genetic factors was also predictive for a
recurrent event i.e. blood-type.
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Table 5.4: Overview of the selected variables by lasso with their corresponding regression coeffi-
cients across models A and C

Model A Model C
Clinical factors hazard ratios (HR) 95% CI hazard ratios (HR) 95% CI
Surgery 0.7919 - 0.5147 -
Hormone use 0.7376 - 0.5375 -
Sex (male) 1.7980 - 1.8359 -
Type of 1st VT(DVT,PE,PE+DVT):
PE 0.8540 - 0.9324 -
PE+DVT 1.5829 - 1.4040 -
Plaster cast - - 0.6206 -
Pregnant 0.9981 - 0.3291 -
Location of DVT (Prox vs Dist DVT):
Distal DVT - - 1.4784 -
Cardiovascular disease - - 0.7653 -
Posthrombotic syndrome 1 - - 0.8443 -
Posthrombotic syndrome 2 1.2988 - 1.4210 -
Immobilization - - 0.9622 -
Genetic factors hazard ratios (HR) 95% CI hazard ratios (HR) 95% CI
Factor V Leiden 1.2820 - 1.3634 -
Blood type - - 1.1614 -
Laboratory factors hazard ratios (HR) 95% CI hazard ratios (HR) 95% CI
Factor VIII∗ 1.8200 - - -
D-dimer ∗ 1.0635 - - -
VWF ∗ 1.2159 - - -

* log transformed factors.

5.3.5 Check of the Proportional Hazards Assumption

In order to check the validity of PH assumption, we have performed a statistical test using the
cox.zph() function from R package. The cox.zph() function from R is not applicable for a glment
nor for a coxnet objects, and in order to circumvent this problem, we extracted the selected
covariate by lasso from model A as well as model C, subsequently we built a multivariate Cox
regression model for each one (unpenalized models). The results of such a statistical test are
displayed in the tables 5.5 and 5.6. Neither the covariates nor the global test is statistically
significant (p > 0.05) for both models. This is an indication of no violation evidence for the
(PH) assumption. We conclude that the PH assumptions are not violated for these models.

58



rho chisq p
Surgery -0.00 0.00 0.98
Pregnant -0.04 0.00 1.00
Hormone -0.03 0.13 0.71
Gender -0.10 1.26 0.26
TypeVT2 -0.07 0.70 0.40
TypeVT3 0.17 3.72 0.05
PTS J1 -0.11 1.55 0.21
PTS J2 -0.02 0.03 0.85
Leiden V 0.05 0.38 0.54
factor VIII 0.07 0.39 0.53
VWF 0.05 0.24 0.62
D-dimer -0.15 3.53 0.06
GLOBAL 13.02 0.37

Table 5.5: PH assumption test, model A

rho chisq p
Surgery 0.06 0.75 0.39
Plaster cast -0.01 0.05 0.82
Hospitalization -0.03 0.23 0.63
Pregnant -0.05 0.73 0.39
Hormone -0.03 0.23 0.63
Cardio-disease -0.04 0.34 0.56
Location VT -0.07 1.24 0.27
Gender -0.03 0.27 0.60
TypeVT2 -0.06 0.90 0.34
TypeVT3 0.11 3.12 0.08
PTS J1 -0.02 0.12 0.73
PTS J2 0.02 0.12 0.73
Blood-type -0.04 0.46 0.50
Leiden V 0.02 0.15 0.70
GLOBAL 8.22 0.88

Table 5.6: PH assumption test, model C

5.4 Closed testing

In the current section, we will present the results of the closed testing procedure as was discussed
in more detail in section 4.5. Since model A has more than 30 variables, the closed testing proce-
dure will be computationally intensive. Therefore we will restrict the application of closed testing
procedure in this thesis only to model C . Further, two important concepts from the closed test-
ing section are reintroduced here. Remember that the defining set is defined as a collection
of sets of hypotheses with the property that for each set in the collection we can be
confident that it contains at least one true discovery i.e β 6= 0 [17]. Furthermore, these
sets of variables are the smaller sets for which the same statement holds [20].
In addition, remember that The shortlist is defined as a collection of sets of hypotheses
with the property that at least one of the sets in the collection contains only true
discoveries i.e. β 6= 0. Further, with shortlist we aim to identify a collection with the smallest
possible number of variables that exhibit a significant effect on the outcome variable. In other
words, we aim to identify the smallest models that can fit as good as the full model.

The results of defining set are summarized in table 5.7. As can be seen, there is no singleton
hypothesis. This implies that none of the variables are indispensable. On the other hand, large
number is observed of set of the hypothesis (25) containing 2 variables, 12 sets containing 3
variables, 2 sets containing 4 variables and 4 sets containing 5 variables. This could be explained
by the fact that the amount of evidence for a single variable is not sufficient in our data, due to
multicollinearity among variables or more individual predictors are close to significant and thus
collectively form overall significant model.

Furthermore, a heat-map correlation among these covariates is displayed in figure 5.3. By
inspecting the correlation among these covariates, a higher correlation coefficient is observed
between hormone and gender (-0.63), since the hormone is only used by women. Further, a
high positive correlation was observed between hospitalization and surgery (0.54). This might
be explained by having a surgery could lead to hospital stay. An intermediate correlation (-0.26)
is observed between location VT and type of the first VT, as location VT (distal vs proximal)
indicates the physical position of VT, that might correspond with type of first VT i.e. deep vein
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thrombosis and pulmonary embolism.
Lastly, a moderate correlation (0.23) is noted between pregnancy and hospitalization, which can
be attributed to the fact that pregnancy might lead to frequent hospital stays. For the remaining
covariates, the observed correlation coefficients were very low between variables.

Figure 5.3: Correlation matrix for the defining set variables
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Table 5.7: Defining rejection set results

Defining sets Number of variables
Surgery, Plaster cast 2
Surgery, Hospitalization 2
Surgery, Pregnant 2
Surgery, Hormone 2
Plaster cast, hormone 2
Pregnant, Hormone 2
Surgery, Cradio disease 2
Surgery, Location 2
Pregnant, Location 2
Hormone, Location 2
Surgery, Gender 2
Plaster cast, Gender 2
Pregnant, Gender 2
Hormone, Gender 2
Location, Gender 2
Surgery, Type VT 2
Hormone, Type VT 2
Location,Type VT 2
Gender, Type VT 2
Hormone, Post thromboti syndrome 2
Gender , blood type 2
Surgery, Leiden V 2
Pregnant,Leiden V 2
Hormone, Leiden V 2
Gender, Leiden V 2
Plaster cast, Pregnant, cardio disease 3
Plaster cast,Pregnant, Type VT 3
Pregnant, Cardio disease, Type VT 3
Plaster cast,Pregnant, PTS 3
Gender,Cardio disease, PTS 3
Pregnant,Type VT, PTS 3
Plaster cast, Pregnant,Blood type 3
Hormone,Cardio disease, Blood type 3
Pregnant,Type VT,blood type 3
Surgery, PTS,blood group 3
Plaster cast,Location, Leiden V 3
Location,PTS,Leiden V 3
Pregnant, Cardio disease,PTS, blood type 4
Cardio disease, location,blood type, Leiden V 4
Plaster cast,Cardio disease, Location,PTS,blood type 5
Plaster cast,cardio disease, Type VT, PTS, Leiden V 5
Plaster cast, cardio disease,Type VT, Blood type, Leiden V 5
Plaster cast,Type VT, PTS,blood type, Leiden V 5

The closed testing procedure in this thesis was applied by means of close() function from
the cherry package in R [17], with a P-value = 0.1. Among 17 variables contained in model C
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(i.e model with clinical and genetic factors), the shortlist has resulted in a collection of 23 sets of
variables i.e. 23 possible minimal models that can fit as good as the full model. This collection
contains : 3 models with 6 variables , 7 models with 7 variables, 5 models with 8 variables, 6
models with 9 variables , and as for last 2 models with 10 variables. This collection of models
was displayed through figure 5.4 to 5.6.

The models from the shortlist collection are sorted by the order of number of variables in
such way each histogram will represent one category of this collection. In order to display such
histograms, we have abbreviated our covariates names as follows : Sur= surgery, Prg=pregnant,
Hor=hormone, Loc= location first VT, Sx =gender, PC= plaster cast, Typ =type of first VT,
VLeid = factor V Leiden, Disc = cardiovascular disease, Blt= blood-type, PTS= post-thrombotic
syndrome, Hosp = hospitalization.

For instance, figure 5.4 (a) displays an intersection of 6 hypotheses i.e a model with 6 vari-
ables, the first bar from the left to the right contains the following variables: surgery, pregnant,
hormone, Location VT, gender and plaster cast variables. Note that each bar of the histogram
represents an intersection hypotheses of 6 variables (i.e each bar forms a model with 6 variables)
and that each one contains likely at least 4 variables that were declared to be true discoveries
(true variables β 6= 0) and at most 2 variables are false discoveries (noise β = 0 ).

(a) All possible models with 6 variables resuted by shortlist (b) All possible models with 7 variables resuted by shortlist

Figure 5.4: Shortlist results: all possible models with 6 and 7 variables and their number of true
discoveries (i.e true variables β 6= 0 )

In figure 5.4 (b), a set of bars are displayed, each one contains 7 variables that together
form a model that fit as good as the full model. Furthermore, each model contains likely at
least 4 true covariates and at most 3 false discoveries (noise). Further, in figure 5.5 (a) each bar
contains a model with 8 variables, with at least 4 true discoveries (true variables i.e β 6= 0) and
4 false discoveries (noise). In addition, figure 5.5(b) is an illustration of all sets of models with
9 variables contained in shortlist collection, each models contains at least 4 or 5 true discoveries
and at most 4 or 5 false discoveries.
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(a) All possible models with 8 variables resuted by shortlist (b) All possible models with 9 variables resuted by shortlist

Figure 5.5: Shortlist results: all possible models with 8 and 9 variables and their number of true
discoveries (i.e true variables β 6= 0 )

The last figure 5.6, each bar constructs a model of 10 variables, in which at least 5 are true
discoveries and at most 5 are false discoveries.

Figure 5.6: Shortlist results: all possible models with 10 variables and their number of true
discoveries (i.e true variables β 6= 0 )

Now let us choose one set of variables i.e a model displayed in the shortlist results, and
compare it with other shortlist sets figure 5.4 to 5.6. Note that any shortlist set is the smallest
models that can fit as good as the full model. The researcher may consider one set of variables
from the shortlist as his main model, and further compare it with the remaining sets. In our
example, we have chosen the left one model of figure 5.4 as our main model with the variables
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: surgery, plaster cast, pregnant, hormone use, location of the first VT and gender, this was
denoted as modelC6. This model was displayed in green color in the center of all figures through
5.7 to 5.11.

For instance, if a researcher had chosen this model to be used as a prediction model for the
recurrence of thrombosis, he can be 90% confident that his model is containing at least 4 true
discoveries (TD) and at most 2 false discoveries (FD). The main distinction of the closed testing
procedure from the other discussed methods in this thesis is manifested in the fact that this
procedure provides the researcher with a broad view to all possible alternative models that can
perform as good as the full model. In addition, this method will give the researcher also the
possibility to change or substitute some covariates.

Figures 5.7 to 5.11 display all possible model alternatives to the main model (modelC6).
For instance, in figure 5.7 the alternative 1 model is a model that is roughly the same as the
modelC6, with the only difference is that modelC6 contains plaster cast as a covariate whereas
in the alternative 1 model the plaster cast covariate is substituted by Type of first VT. Further,
the alternative 2 model is a model that contains the same variables as the modelC6, with the
only difference is that modelC6 contains plaster cast as a covariate whereas in the alternative 2
model the plaster cast covariate is substituted by factor V Leiden. This can further explained
in the context of missing variable information. Suppose for in stance now the plaster cast co-
variate, patient plaster cast information for the last 3 months before VT, is often missing in
practice. In this case, the researcher can choose to substitute the plaster cast covariate by using
one of the next covariates: Type of first VT or factor V Leiden. In this case, an alternative model
(alternative 1 or 2) will have the same characteristics as modelC6 i.e. these alternatives are mod-
els that contain at least 4 true discoveries (true covariates ) and at most 2 false discoveries (noise).

In addition, the researcher will have the ability to replace the plaster cast variable with a
joint variables. So for example, he can choose to substitute plaster cast by a joint variables PTS
and cardiovascular disease figure 5.7 (alternative 3). Another alternative is to replace plaster
cast covariate with joint variables blood-type and PTS (alternative 4) or with blood type and
cardiovascular disease covariates (alternative 5). When one of these last alternative models (al-
ternative 3, 4 or 5 figure 5.7) is chosen, the researcher can be 90% confident that his model will
contain at least 4 true discoveries (TD) and 3 at most false discoveries (FD). To clarify more
what is said, consider for instance the alternative 3, this model contains the same variables as
modelC6, the only difference is that plaster cast in the main model (modelC6) is now replaced
in alternative 3 by the joint variables PTS and Cardiovascular disease.

Let us right now proceed to figure 5.8. This figure is a summary of all possible alternative
models for location VT and location VT and plaster cast together. To explain this further, con-
sider the model modelC6 to be the main chosen model by the researcher. Suppose for instance
that patient information for location VT (Proximal vs. distal DVT) is missing. In this case,
the researcher can choose to replace the location VT covariate by a joint variable (alternative
4) i.e. factor V Leiden and Type of the first VT (i.e. PE or PE&DVT). In this case, the model
alternative 4, is a model containing at least 4 true discoveries and at most 3 false discoveries.
Furthermore, this model (alternative 4) is a model containing the same variables as modelC6,
with the only difference is that modelC6 contains location VT as a covariate, whereas in the
alternative 4 the location VT covariate is substituted by factor V Leiden and Type the first VT
covariates together.
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We remain our focus in figure 5.8 and let us move to investigate the triple substitution. i.e.
evaluating the possibility to replace the location VT covariate with the triple covariates: Type
VT, PTS and cardiovascular disease (alternative 5) or by using blood-type, PTS and type of the
first VT covariates (alternative 6). In this case, the researcher can be 90% confident to have an
alternative model (5 or 6) that contains at least 4 true discoveries and at most 4 false discoveries.
Note also that model alternative 5 is a model containing the same variables as the main model
modelC6, with the only difference is that modelC6 contains location VT as a covariate whereas
in the alternative 5 this covariate is replaced by a triple covariates type of the first VT, PTS,
and cardiovascular disease.

Similarly, alternative 6 is a model containing the same variables as modelC6, with the only
difference is that modelC6 contains location VT as a covariate, whereas in the alternative 6
the location VT covariate is substituted by a triple covariates blood-type, PTS and type of the
first VT. Hence we move from a model with 6 covariates (4 TD and 2 FD) toward a model
containing 8 variables (4 TD and 4 FD). One extra observation is noted for these alternatives
i.e. they do only differ in one covariate. In alternative 5 the researcher will have to use car-
diovascular disease covariate while this covariate is substituted by blood-type in the alternative 6.

Last but not least, let us consider the replacement of the joint covariates i.e. plaster cast
and location VT figure 5.8. In case the researcher is missing information on both covariates i.e.
plaster cast and location VT he may consider three alternative models 1, 2 or 3 . Suppose he/she
had chosen to use model alternative 1, therefore he/she can be 90% confident to have an alterna-
tive model that contains at least 4 true discoveries and at most 3 false discoveries. For the model
alternative 1, the joint covariates plaster cast and location VT are substituted together by the
triple covariates Type VT, factor Leiden V and Cardiovascular disease. In addition, alternative
2, is a model where the joint covariates plaster cast and location VT are replaced together by
the triple covariates type of the first VT, factor V Leiden and blood-type.
Similarly, for the model alternative 3, the joint covariates plaster cast and location VT are sub-
stituted together by the triple type of the first VT, factor V Leiden, and PTS. Note also in these
three alternatives (1,2 and 3) covariates type of the first VT, factor V Leiden are common among
all three alternatives.

Analogously, figures 5.9 through 5.11, display all possible model alternatives that a researcher
might consider to substitute the single covariates pregnant (within 3 months before VT), gender
(male), hormone use (at the time of VT, including: hormone replacement therapy and hormonal
contraceptive) and Surgery (within 3 months before VT) as well as for the joint covariates
pregnant & plaster cast together (joint replacement). If we considered the last figure 5.11, that
displays two alternative models in case of the surgery information is missing. The investigator
will have two possible model alternatives to consider. Each model alternative has at least 5
true discoveries and at most 5 false discoveries. In each model alternative, the surgery covariate
is replaced by 5 different covariates. Thus for alternative 1, besides that this contains 4 main
covariates of the model modelC6: plaster cast, pregnant, hormone use, location VT, and gender.
This model will replace the surgery by type of the first VT, factor V Leiden, cardiovascular
disease, PTS, and hospitalization (immobility in bed in hospital, within 3 months before VT).
Hence moving from a model with 6 covariates (modelC6 with 4 TD and 2 FD ) to a model
with 10 covariates (alternative 1 with 5 TD and 5 FD). Furthermore, we have noticed that
these alternatives (1 and 2) have 4 covariates in common, these were colored in the same color:
Type VT, factor Leiden V, Cardiovascular disease and Hospitalization. On the contrary, these
alternatives (1 and 2) differ only in one covariate PTS (alternative 1) vs. blood type (alternative
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Figure 5.7: A graphical illustration to illustrate different minimal models. In the center, the
model we started with (modelC6 main model), and the colored nodes are the alternative models.
In the leaves of the colored nodes, plaster cast (in green) from the main model is replaced by the
colored variables in the alternative model. With TD we mean true discoveries (true covariates)
and FD stand for false discoveries (noise).
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Figure 5.8: A graphical illustration to illustrate different minimal models. In the center, the
model we started with (modelC6 main model), and the colored nodes are the alternative models.
In the leaves of the colored nodes, location VT or location & plaster cast (in green) from the
main model is replaced by the colored variables in the alternative model. With TD we mean
true discoveries (true covariates) and FD stand for false discoveries.
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Figure 5.9: A graphical illustration to illustrate different minimal models. In the center, the
model we started with modelC6 (main model), and the colored nodes are the alternative models.
In the leaves of the colored nodes, pregnant or pregnant & plaster cast (in green) from the main
model is replaced by the colored variables in the alternative model. With TD we mean true
discoveries (true covariates) and FD stand for false discoveries.
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Figure 5.10: A graphical illustration to illustrate different minimal models. In the center, the
model we started with (modelC6, main model), and the colored nodes are the alternative models.
In the leaves of the colored nodes, hormone use or gender (in green) from the main model is
replaced by the colored variables in the alternative model. With TD we mean true discoveries
(true covariates) and FD stand for false discoveries.70



Surgery
Plaster-cast
Pregnant
Hormone
Location
Gender

TD ≥ 4, FD≤ 2

Alternative 1
TD ≥ 5,
FD ≤ 5

Type VT

Leiden V
Cardio-
disease

PTS

Hospitali-
zation

Surgery

Alternative 2
TD ≥ 5,
FD ≤ 5

Type VT

Leiden V

Cardio-
disease

Blood-type

Hospitali-
zation

Surgery

Figure 5.11: A graphical illustration to illustrate different minimal models. In the center, the
model we started with (modelC6, main model), and the colored nodes are the alternative models.
In the leaves of the colored nodes, surgery (in green) from the main model is replaced by the
colored variables in the alternative model. With TD we mean true discoveries (true covariates)
and FD stand for false discoveries.

71



5.4.1 Selected models

In this section, we will describe the results of the Cox regression models obtained by the closed
testing procedure. In table 5.8 we provide an overview of some of the Cox regression models
from the shortlist. From each of the shortlist models with the same number of variables, we
selected one model, therefore we do not expect a significant difference in terms of discrimination
power among models of the same size. Of note, that all models in the shortlist do not differ
significantly from the full model. The choice of the presented models in table 5.8 was based on
a balance between the number of missing values and the optimal ease of use of the model in
clinical practice (i.e. clinical variables only). Based on these criteria, we will present here only
one model from each set category of the shortlist collection (figure 5.4 to 5.6).

5.4.2 Predictors of recurrent thromboembolism models

In the following subsections, I will describe in more details the results of two models (Model C6

and Model C9 ) displayed in the table 5.8.

Model C6:

A strong positive effect is observed for some predictors i.e. patients with one of these factors
will have a lower risk of recurrence of thrombosis. The most important predictors with a strong
positive effect are pregnancy with a HR=0.12 and 95%CI(0.01, 0.87), surgery with HR= 0.41 and
95%CI (0.25, 0.67), followed by plaster cast HR= 0.43 and 95%CI (0.18, 1.06), and hormone use
HR= 0.49 and 95%CI (0.31, 0.79). In addition, a strong negative effect was observed among the
following predictors: gender with an HR=1.92 and a 95%CI of (1.35, 2.75) followed by location
VT (Distal DVT) with an HR=1.82 and a 95%CI of ( 1.37,2.42).

Model C9:

A strong positive effect is observed for the same predictors as model C6. i.e. pregnancy, surgery
and plaster cast. Additionally, model C9, has some unique predictors with strong positive effect:
cardiovascular disease with a HR= 0.67 and a 95%CI of (0.35,1.26), PTS 1 HR= 0.7 and a 95%CI
of (0.41,1.18), and a slightly positive effect was observed for type of the first VT (PE) with HR=
0.9 and a 95%CI of (0.65,1.23). Furthermore, a strong negative effect is observed among the
following unique predictors for model C9: PTS2 with a HR=1.5 and a 95%CI of (0.78,2.9), type
of the first VT (PE & DVT) with a HR=1.45 with a 95%CI of (0.96,2.18), factor V Leiden with
a HR=1.4 and 95%CI of (1.02,1.9).
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Table 5.8: Variables and their corresponding HR across closed testing selected models

Variables model C6 model C7 model C8 model C9 model C10

Clinical factors HR & (95% CI) HR & (95% CI) HR & (95% CI) HR & (95% CI) HR & (95% CI)
Surgery 0.41 (0.25, 0.67) 0.41 (0.25, 0.76) 0.43 (0.26, 0.71) 0.45 (0.27, 0.73) -
Hormone use 0.49 (0.31,0.79) 0.48 (0.30,0.77) 0.46 (0.29,0.74) - 0.46 (0.29, 0.73)
Gender (male) 1.92 (1.35,2.75) 1.9 (1.32,2.71) 1.87 (1.30,2.68) 2.8 (2.11,3.7) 1.78 (1.24, 2.56)
Type of 1st VT
PE - - 0.7 (0.53,0.94) 0.90 (0.65, 1.23) 0.88 (0.64, 1.21)
PE+DVT - - 1.44 (0.96,2.17) 1.45 (0.96, 2.18) 1.50 (1.003, 2.27)
Plaster cast 0.43 (0.18,1.06) - 0.43 (0.17,1.05) 0.47 (0.19,1.16) 0.45 (0.18, 1.11)
Pregnant 0.12 (0.01,0.87) 0.12 (0.01,0.88) 0.13 (0.01,1,006) 0.17 (0.02,1.27) 0.13(0.01, 0.98)
Location of DVT:
Distal DVT 1.82 (1.37,2.42) 1.8(1.34,2.41) - 1.53 (1.10,2.13) 1.53 (1.10, 2.14)
Cardio-disease - 0.6 (0.31,1.13) 0.62 (0.33,1.18) 0.67 (0.35,1.26) 0.60 (0.32, 1.14)
PTS
PTS1 - 0.74 (0.44,1.24) 0.70 (0.41,1.19) 0.7 (0.41, 1.18) 0.71 (0.42,1.20)
PTS2 - 1.77 (0.92,3.4) 0.62 (0.96,3.53) 1.5 (0.78, 2.9) 1.48 (0.77, 2.85)
Hospitalization - - - - 0.64 (0.42, 0.99)
Genetic factors HR & (95% CI) HR & (95% CI) HR & (95% CI) HR & (95% CI) HR & (95% CI)
Factor V Leiden - - - 1.4 (1.02,1.90) 1.44 (1.06, 1.97)
Blood type - - - - -

5.4.3 Predictive value of the different models

Figure 5.12 illustrates the Kaplan-Meier curves for quintiles of the prognostic score for closed
testing models: model C6 and model C9. The remaining models (model C7, model C8 and model
C10) are given in the supplementary 7.3.3. In order to examine the model ability of discrimination
between risk of recurrence among patients, inverse Kaplan Meier plots for the observed risk of
recurrence in quintiles of the prognostic scores were generated (figure 5.12). The prognostic score
for each patient was calculated by discretizing the linear predictor : β1X1 + β2X2 + ...+ βpXp,
of the model into 5 risk groups of patients, using the 20, 40, 60 and 80% quintiles of the linear
predictors estimate.

Increasing quintiles of the prognostic score in figure 5.12 corresponded in an increased ob-
served risk of recurrence. Patients in risk group 1 (figure 5.12 a and b) display a low recurrence
risk, whereas patients in the 5th risk group show a high risk. In general, we see a good discrimina-
tion between the 5 risk groups, which is also supported by a small log-rank p-value (p< 0.0001).
Importantly, we observe an increase in model ability to distinguish between 5 risk groups when
moving form a model encompassing 6 variables to a model with 9 variables. Furthermore, it is
also noticeable that risk groups 1 and 2 are barely distinguishable for the first 4 years after the
first VT for model C6.
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(a) model C6 (b) model C9

Figure 5.12: Probability of recurrence stratified by quintiles of prognostic scores of the closed
testing models

5.4.4 Check of the Proportional Hazards Assumption

In this paragraph we perform a test to check whether the PH assumption holds or not and pos-
sibly to what degree. The results of PH assumption test are displayed in table 5.9 and 5.10.
Covariates are not statistically significant (p>0.05). Additionally, the global test is not statisti-
cally significant for the model (modelC6) nor for model (modelC9). This is an indication of no
violation evidence for the (PH) assumption.
In supplementary, we have included the PH assumption test results for the remaining models (7,
8 and 10), also no indication of violation of PH assumptions was observed. We conclude that
the PH assumptions are not violated for these models.

rho chisq p
Surgery 0.04 0.33 0.57

Plaster-cast -0.02 0.07 0.79
Pregnant -0.06 0.89 0.34
Hormone -0.02 0.12 0.73

Location VT -0.03 0.16 0.69
Gender VT -0.02 0.14 0.71

GLOBAL 1.58 0.95

Table 5.9: PH assumption numerical test for
model C6

rho chisq p
Surgery 0.05 0.68 0.41

Plaster-cast -0.02 0.07 0.79
Pregnant -0.05 0.69 0.41
Hormone -0.01 0.03 0.86

Cardio-disease -0.03 0.26 0.61
Location VT -0.07 1.23 0.27

TypeVT2(PE) -0.06 0.83 0.36
TypeVT3(PE+DVT) 0.11 3.00 0.08

Blood-type -0.04 0.48 0.49
Leiden V 0.03 0.16 0.69

GLOBAL 7.35 0.69

Table 5.10: PH assumption test for model C9
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5.5 Predictive performance of the models

In order to evaluate model performance, we used an internal validation procedure based on the
bootstrap method. The corrected for optimism Harrell C statistic was calculated using 200 boot-
strap samples. Each sample was drawn with replacement from the original dataset including 1241
(model A) or 1881 patients (model C), then the model was refitted in the bootstrap sample and
original sample. The detailed description of bootstrap internal validation is given in section 4.6.

Table 5.11 displays a summary of the models performance in terms of C statistic. The analysis
results indicate that model A selected by lasso had the highest predictive performance with a
corrected Harrell C-statistics of 0.703. The discriminative performance was somewhat lower in
the model A selected by backward selection with a corrected C-statistics of 0.697. On the other
hand, models selected from original model C, closed testing procedure had the highest predictive
performance with a corrected Harrell C-statistic values ranging between 0.689 (model C6) and
0.683 (model C10). The discriminative performance was barely lower in the model selected by
lasso with a corrected C-statistic of 0.688 (model with 12 variables ), followed by model selected
by backward elimination with a corrected C-statistic of 0.682 (model with 8 variables).

Table 5.11: Predictive performance of the selected models by backward selection, lasso and closed
testing

Model A Model C
Methods Harrell C and 95%CI Corrected C ∗∗ Harrell C and 95%CI Corrected C∗∗

Backward selection 0.748 (0.730,0.812) 0.697 0.701 (0.680, 0.741 ) 0.682
LASSO 0.737 0.703 0.708 0.688

Closed testing :
Model C6

∗ ∗ 0.692 (0.665, 0.722) 0.689
Model C7

∗ ∗ 0.695 (0.668,0.733) 0.689
Model C8

∗ ∗ 0.698 (0.671,0.734) 0.687
Model C9

∗ ∗ 0.693 (0.665,0.728) 0.684
Model C10

∗ ∗ 0.697 (0.697,0.733) 0.684

* Closed testing was applied only to model C
** Harrell C statistic corrected for optimism

5.6 Models Summary

Table 5.12 provides a summary of the selected variables by the backward selection, lasso and
closed testing methods. The following predictors were found to be common among all methods
through all selected models (model A and model C): surgery, hormone use, gender and type the
first VT (PE and PE & DVT). Furthermore, the following predictors were commonly predictive
for recurrence event for model C among all methods: pregnant, plaster cast, location VT and
factor V Leiden. Additionally, the following predictors were found to be common for model
A selected by backward selection and lasso: D-dimer and factor VIII. Lastly, the predictors
cardiovascular disease, PTS 2, hospitalization and blood type were additionally present in model
C selected by lasso and closed testing.
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Table 5.12: A summary of the selected candidate variables across the investigated methods. For
closed testing methods all the three suggested models with 6 variables are included in the table
under the names C6A, C6B and C6C . Furthermore, by Calt we mean that the variable is selected
in at least one of the possible models from the shortlist collection.

Selected variables by
backward selection

Selected variables by
lasso

Selected variables by
closed testing

Clinical factors Class model A model C model A model C C6A C6B C6C Calt
Gender Categorical 2�
Pregnant Categorical - 2�
Cardiovascular disease Categorical - - - - - 2�
Type of the first VT:
PE Categorical - - 2�
PE & DVT Categorical - - 2�
Hormone use Categorical 2�
Surgery Categorical 2�
Plaster cast Categorical - - - - 2�
PTS 1 (mild) Categorical - - - - - - 2�
PTS 2 (severe) Categorical - - - - - 2�
Location VT(proximal vs distal) Categorical 2�
Hospitalization Categorical - - - - - - 2�
Genetic factors Class
factor V Leiden Categorical - - - 2�
Blood type Categorical - - - - - - 2�
Laboratory factors Class
D-dimer ∗ Continuous - -
Factor II Continuous
Factor V Continuous
Factor VII Continuous
Factor VIII ∗ Continuous - -
Factor IX Continuous
Factor X Continuous -
Factor XI Continuous -
Von Willebrand factor∗ (VWF) Continuous - - -
Protein C Continuous -
Fibrinogen Continuous -
APC ratio ∗ Continuous -

* A log-transformation was decided upon after a visual check of the distribution curve and a non-normal
distribution was found.

5.6.1 Nomogram for risk of recurrent VT

In this section, we will show how model C6 can be used to develop a nomogram (figure 5.13),
that can be used to compute risk scores and expected probability of recurrent VT from the
individual’s values for the following predictors: pregnant, surgery, hormone use, location of VT,
plaster cast and gender. The nomogram’s points can be calculated as follow [38], [60]: In order
to determine how many points an individual will obtain for the predictors pregnant, surgery,
hormone use, the location of VT, plaster cast and gender, we should draw a straight line upward
to the points line. Then we sum the points obtained for each predictor which are located on the
total point axis. Subsequently, drawing a straight line downward, the individual’s cumulative
recurrence rate after 2 and 5 years is found.

Note that we can easily find other cumulative recurrence rates too, a complete R code is
provided in the supplement (8). To make this more clear we provide one example, suppose a
patient is a female (0 points), without surgery (42 points), without plaster cast (39 points),
not pregnant (100 points), without hormone use (33 points) and no location VT (0 points) (i.e.
proximal DVT) will have a total score of 214 points that correspond to a probability of recurrent
VT 0.96 and 0.90 for 2 years and 5 years respectively.
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Figure 5.13: Nomogram predicting 2 years and 5 years probability of recurrent VT , for an
individual with a first VT using values of pregnant, surgery, hormone use, location of VT,
plaster cast and gender.
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Chapter 6

Discussion

In this thesis we aimed at building a model to predict the recurrence of thrombosis by comparing
three statistical methods for variable selection: backward selection, lasso in conjunction with
percentile lasso and closed testing procedure as was developed by Goeman and Solari [20]. We
examined the association between 38 candidate variables model A (n=1222) as well as 17 vari-
ables model C (n=1898) with recurrent VT (outcome variable). Different sets of predictors were
selected by three different statistical methods. The obtained results from our study, show that
there is strong evidence of an association between recurrent VT and some candidate variables
investigated in this study.

Four covariates were found to be common among all of the three investigated statistical meth-
ods: surgery, hormone use, gender and type of the first VT (PE and PE & DVT). This important
finding is in agreement with the three currently most used prediction models for recurrent VT
i.e. the DASH score model, Vienna model, and Rodger model. Moreover, these four predictors
were also common among other investigated models [50], [6],[31],[25]. Additionally, each method
had a set of own specific covariates selected to be associated with the recurrent VT table (5.12).

Backward elimination method is considered as one of the most widely used model selection
methods. In our study, this method was investigated with a stopping rule of p = 0.10, that has
led us to select a model with 11 predictors (model A) and 8 predictors (model C). The selected
models by backward selection had almost a comparable performance in terms of corrected C-
statistics with lasso and closed testing. However, the size of the backward selected model A was
larger than the model A selected by lasso, suggesting that some included covariates by backward
selection might be irrelevant variables of the recurrent VT.

The performance of backward elimination depend probably also on the choice of removal
criterion. In this thesis, we only considered the P=0.1 as the stopping rule. However, a small
p-value and other stopping rules such as AIC or BIC should be considered too, that could re-
sult in a more parsimonious model with better predictive performance. Additionally, we did not
consider backward elimination followed by post- selection shrinkage in the current study. This ap-
proach was proven to give a better results than the lasso in a study by van Houwelingen et.al [55].

In addition to backward elimination, penalized regression method lasso was considered in this
thesis. Through cross-validating the strength of the penalty value (λmin and λ1se), lasso provides
the researcher with a flexible model selection tool to control the model size. The important ad-
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vantage of lasso over the traditional model selection methods is mostly manifested in cases when
the number of observations is smaller than or close to a number of candidate variables (n<<p),
or in presence of high multicollinearity among variables.

In this thesis, we faced one of the most common problems of the lasso method: model insta-
bility due to fold assignment during the cross validation. Further, we noted in our study that
ordinary lasso was very sensitive to the way the variables were coded, so a small change in the
variables code in R (i.e. type of the first VT as factor instead dividing type of the first VT into
2 variables), lasso selected a very different models (Supplement 7.1.1).
Further, in this thesis, we did not provide the 95% CI of the estimation and the corresponding
standard errors for lasso. This is considered as a theoretical challenge for lasso and its extensions,
which is still a topic of heated debate among statisticians. We therefore suggest this as a topic
for further study. One last limitation of importance here is that lasso, as backward elimination,
tends to select randomly just one variable from a set of highly correlated variables.

A powerful approach, percentile lasso, to handle this problem was discussed in this thesis.
Percentile lasso, in a nutshell, estimates the percentile θ of a set M (i.e. M=100) of optimal

tuning parameter λ̂’s that were generated by ordinary lasso. Then the percentile lasso solution

λ̂ ˆ(θ) is considered further as lasso tuning parameter value.
One small experiment was conducted in this thesis to verify if percentile lasso can help to achieve

model stability. Undoubtedly, the provided percentile lasso solution λ̂min ˆ(θ) across the 345 rep-
etitions resulted in a more stable model, i.e. only two models were selected by percentile lasso,
whereas the selected models by ordinary lasso were more variable. This can be justified by the
fact that the percentile lasso tends to select large values of λ̂min than ordinary lasso.

Lasso in conjunction with percentile lasso resulted in a model of 10 predictors selected from
38 variables model A (n=1241 observations), outperforming backward selection in terms of model
parsimony and discrimination power (table 5.11). For model C, fitting lasso with the percentile λ
resulted in a model with 12 variables selected from 17 candidate variables (n=1881 observations).
On the other hand, the discriminative power of the model resulted by lasso was barely different
from the other selected models by closed testing and backward selection table 5.11.
Additionally, in terms of model parsimony, lasso had the worst performance than the other inves-
tigated methods, suggesting that lasso at percentile λmin might encompass more noise variables
that can be found to have a spurious association with the recurrent VT. Moreover, this might
also be attributed to the fact that a large number of candidate variables had some explanatory
power, or to the fact that the cross-validation deviance prefers larger models when the number
of observation is much larger than the number of variables. Therefore, we propose a further
simulation study to investigate these differences.

In addition, allowing for more shrinkage by using 1-SE rule could eliminate the suspected
noise variables. With the 1-SE penalty, lasso selected a model with 6 variables (model C) out-
performing backward selection in terms of model parsimony (Supplement 7.5.1), whereas the
discriminative power of the model was just 1% below the other selected models by backward se-
lection and closed testing (table 7.2). If model parsimony is desirable, using a stronger penalty,
like the 1-SE rule, is advisable. However, we are aware that the 1-SE penalty can introduce more
bias in the regression coefficients estimates and corresponding standard errors. Moreover, the
model performance could be improved without losing model parsimony, if we could correct for
the extra shrinkage involved by the 1-SE rule.
Last but not least, we noted that analyzing our data with percentile lasso was quite computa-
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tionally demanding, as we had to run M times K folds cross-validation for the lasso, obtaining,
therefore, M optimal tuning parameters which can be used to estimate the percentile θ.

Lastly, we investigated the closed testing procedure as was proposed by Goeman and Solari.
Besides, it is considered to be a powerful procedure for controlling FWER. The closed testing
as was implemented in this thesis, has the ability to provide the researcher with more insights
in the model selection process in contrast to lasso and backward selection. This was manifested
clearly in its ability to produce a collection of minimal models that can fit as good as the full
model. Hence the researcher will have several minimal models from which he/she can choose a
model that can be more suitable to answer his/her research question.
In addition, the Closed testing quantifies the uncertainty of the selected models by providing
the confidence set for each selected model i.e. the researcher will be able to display the (1− α)
boundary for the number of true and false finding for each selected model. Furthermore, closed
testing is a flexible testing procedure i.e. it works with any choice of a local test. On the grounds
of these advantages of closed testing over the lasso and backward selection methods, we would
like to propose this new method for further application to build predictive models.

In our thesis, applying the closed testing to model C, resulted in a collection of multiple
minimal models with 6 to 10 variables, which we called Shortlist. Remember that the shortlist
is defined as a collection of models with the property that each model encompass the smallest
possible number of variables that exhibit a significant effect on the outcome variable as the full
model. Moreover, the shortlist models from closed testing outperforms the other methods, lasso
and backward selection, in terms of model parsimony and model performance measured by cor-
rected Harrell C statistics. This result might be explained by the fact that the closed testing
tries at least to select the important variables, therefore generating all possible minimal models
that still have a significant association with the recurrent VT.

There are some theoretical and computational challenges that should be addressed for fur-
ther study. The closed testing procedure in its standard form has the disadvantage of performing
an O(2m) intersection hypotheses. Therefore, even for moderately large number of candidates
variables m, say m around 20-30, the standard form of closed testing will result in unfeasible
computation.
Avoiding testing all hypothesis in the closure C, by using more efficient local test may reduce the
computational time of this procedure, mainly when some hypothesis in the hierarchical structure
appears to be non-significant. One additional point that should be mentioned here is the power of
this procedure. To the best of our knowledge [19] the power property of this procedure depends
essentially on the local test which makes it very sensitive to the implemented local tests, therefore
the researcher should find a balance between the pros (computational) and cons (power) of the
implemented local test.
Last note, when comparing lasso, backward and closed testing coefficients estimate, we noted
that closed testing has the largest estimate (figure 7.7). Therefore we suggest further study to
investigate the effect of shrinkage of the estimate coefficients under closed testing.

In this study, missing values was an important issue. The great part of missing values was
a consequence of the change in the measuring mechanism i.e. after 2002 no blood samples were
gathered, instead, DNA buccal swabs were collected. Our analysis was based only on the ob-
served data, the so-called Complete Case. Important to note by this approach is that the sample
size is reduced, which may lead to imprecise estimates. In some situations using complete cases
may yield biased results. In our study we think that this is not so much the case. An alternative
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approach is to use Multiple Imputation methods, that have the ability to preserve sample size,
and often performs better than complete case approach.

Many approaches have been proposed for variable selection with multiply imputed data.
There is plenty of research done for the conventional (e.g. backward elimination) selection meth-
ods with multiply imputed data. However, how to apply lasso variable selection methods to the
data with missing values is an important yet unresolved problem. To the best of our knowledge,
several approaches to combine the lasso method with multiple imputation techniques have been
proposed [5],[46]. Not using multiple imputation methods was one limitation of this study. For
this reason, we propose a comparison between backward selection, lasso and closed testing with
multiple imputation as topic for a further study.

6.1 Choice of model and conclusion

In this thesis, we investigated three methods in order to build a model for the prediction of
recurrent VT. We are getting to the stage where we can make a choice among the proposed
models.
Our choice of the presented models was based on a balance between the number of missing values,
maximal discriminative performance and the optimal ease of use of the model in clinical practice.
Model A, developed by lasso shows the best discriminative performance with 10 variables, this
performance was somehow low for model C selected under closed testing and backward selection.
On the other hand, model A requires three laboratory factors (factor VIII, D-dimer and VWF)
for which stopping the anticoagulant treatment is needed for a correct interpretation of the val-
ues. In addition, the laboratory factors had the highest percentage of missing values. At the
other end of the spectrum is model C6 selected by closed testing, has the desired parsimonious
character with a diminutive difference in terms of corrected C statistics, and moreover requires
no laboratory measurements. Importantly, any model C chosen by closed testing can be used as
an alternative to model C6.
Further, note that some alternative models for C contains genetic factors i.e. blood type and
factor V Leiden, but these are not that hard to measure, even from a buccal swab. Therefore, we
would propose to choose model C6 selected under closed testing method, which has slightly lower
corrected C-statistic but its added value over model A is mostly that its parsimony character
and clinical utility.

One last essential suggestion before models are introduced into clinical practice and one that
is of the utmost importance is that their predictive performance be externally validated i.e. that
the model performance should be evaluated based on data that were not used to develop the
model. This completely was a clear limitation of our study. Therefore, in order to help assess
the generalizability of our model, we suggest the performance of external validation.
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Chapter 7

Supplement

7.1 Lasso instability

7.1.1 Ordinary lasso and percentile lasso

Here is an illustration (figures :7.1 and 7.2 ) depicting the sensitivity of the ordinary lasso to
the changes we made in the R code of our analysis. Of note, percentile lasso is still selecting
two models 7.2, whereas ordinary lasso 7.1 has a λmin varying between 0.0046 and 0.0153, and
on the meantime, the corresponding size of the selected model by ordinary lasso ranges from 9
to 24. This figure depicts clearly the high variability among selected models using the ordinary
lasso .

Figure 7.1: Analysis on our data set. The left side of figure illustrate the frequency of selected
models, and the right side are values of optimal tuning parameter λ̂min of non-zero coefficient
estimates obtained from the lasso, over 345 random fold assignments
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Figure 7.2: The left side of figure illustrate the frequency of selected models, and the right side
are values of optimal tuning parameter λ̂ of non-zero coefficient estimates obtained from the
percentile-lasso, over 345 repetition at λ̂ = λ̂(min(θ̂)). With min(θ̂) we mean the percentile of
Λ(100) at minimal deviance for each single repetition of 345.

7.2 Extra notes on the closed testing procedure

7.2.1 Exploratory vs. Confirmatory research

Statistical data analysis often falls into two main phases: exploratory and confirmatory. The
exploratory data analysis (EDA) is the first part of your data analysis process, As the name
suggests, one is exploring: looking for clues, the EDA can help you in figuring out what to
make of the data, generating and formulating a hypothesis. This first phase of analysis can be
compared to detective work in the sense of one is gathering evidence. This first essential step
is commonly followed by Confirmatory Data Analysis. Confirmatory Data Analysis (CDA) is
the phase where you evaluate your evidence ”quantifies the extent to which these discrepancies
[deviations from a model] could be expected to occur by chance” (Gelman; 2004) [14]. In CDA
the traditional statistical tools of inference, significance, and confidence can be used to evaluating
evidence. Exploratory analysis and confirmatory analysis ”can—and should—proceed side by
side” (Tukey; 1977).

7.2.2 Mild, flexible and post-hoc

By a mild inferential procedure we mean that one can expect occurrence of a number of false
discoveries among the selected hypotheses and these can be removed in the validation phase.
Furthermore an inferential procedure is flexible if it does not dictate to the user the rejections,
but it provides the researcher with a complete freedom to choose which hypotheses to select
or not to select. This freedom of “picking” and “choosing” is not possible in the confirmatory
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research setting, here the collection of hypotheses has been done prior to the experiment. Lastly,
a post hoc inferential procedure allows the user to review the consequences of any choice of
rejected hypotheses made after seeing the data [20].

7.2.3 Hypothesis testing

Hypothesis testing is a statistical method that is performed in making statistical decisions by
using some experimental data. The aim in hypothesis testing is to evaluate whether or not
some pre-specified hypothesis, called the null-hypothesis, can be rejected based on evidence that
is present in the data. A hypothesis test evaluates two mutually exclusive statements (null
hypothesis vs. alternative hypothesis) in order to determine which statement is most likely
supported by data. That is, if one is true, the other must be false. Even though the alternative
hypothesis does not have to be explicitly specified.
Null and alternative hypothesis are two types of statistical hypotheses. The null hypothesis,
denoted by H0, is the commonly accepted fact, this assumes that the observation is due to a
chance factor. So, with respect to our data under study, we can formulate the null as:H0 : βj = 0
∀ j in (1, .., p) this is the same as saying: there are no variables associated with second thrombosis.
The alternative hypothesis, denoted byH1 orHa, states the opposite and is usually the hypothesis
you are trying to prove. For H1 : βj 6= 0 ∃ j in (1, .., p) in words this mean there is at least one
variable associated with second thrombosis.
When we say that a finding is statistically significant this is equivalent to say a null hypothesis
is rejected, this tells us that there is at least one variable X from the variables set X1. . . .Xp that
is in fact associated with the outcome Y. In order to conclude whether a null-hypothesis can be
rejected, a statistical test is needed.
If our statistical test is significance (suppose p ≤ 0.05), we reject the null hypothesis and accept
the alternative hypothesis. Alternatively if statistical test is not significance (suppose p > 0.05),
we fail to reject the null hypothesis and cannot accept the alternative hypothesis. One should
note that you cannot accept the null hypothesis, but only find evidence against it. We make here
a distinction between “fail to reject” and “acceptance”, because “fail to reject” implies that the
data are not sufficiently supporting the alternative hypothesis over the null hypothesis. whereas
“acceptance” implies that the null hypothesis is true. Note that we are not trying to prove that
the null hypothesis is true, because the null hypothesis is assumed to be a true statement until
the contrary is proven.

7.3 Schoenfeld residuals and numerical test for PH as-
sumption

7.3.1 Diagnostics for the Cox model: Schoenfeld residuals

In the figures we see two dashed lines forming a band range of a +/- 2-standard-error around
the middle solid line which is a smoothing spline fit to the plot. A systematic departure from a
horizontal line are indication that proportional hazards assumption are violated, i.e if that line
is fairly flat and straight, then PH assumption is supported.. The assumption of proportional
hazards appears to be supported for all covariates of our model, which is in agreement with the
test presented in (Results 5, figure 5.2 and figure 5.3) .
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(a) factor 10 (b) factor 11

(c) Protein C (d) Fibrinogen

(e) PE (f) PE+DVT
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(a) Hormone (b) Surgery

(c) APC ratio (d) Ddimer

(e) Factor 8 (f) Sex

Figure 7.3: the scaled Schoenfeld residuals for model A by backward selection
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7.3.2 PH assumptions test: closed testing models

In this subsection we present a numerical test as an indication of whether the proportional
hazards (PH) assumption holds or not, and possibly to what degree. Here we have chosen
to check the validity of (PH) assumption by using a statistical test (Grambsch and Therneau
(1994)) implemented in cox.zph(.) function from the survival R package. The output from
the displayed test results in figure 7.4 are non-significant for model 7, model 8 and model 10,
indicating no violation evidence for the (PH) assumption.

(a) model 10 (b) model 8

(c) model 7

Figure 7.4: Test results for PH assumption for models selected by closed testing

7.3.3 Quintiles of the prognostic score closed testing

Figure 7.5 illustrates the Kaplan-Meier curves for quintiles of the prognostic score for the selected
models by closed testing method. In order to examine the model ability of discrimination between
risk of recurrence among patients, inverse Kaplan Meier plots for the observed risk of recurrence
in quintiles of the prognostic scores were generated for each model.
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(a) model C7 (b) model C8

(c) model C10

Figure 7.5: Probability of recurrence stratified by quintiles of prognostic scores of the selected
models by closed testing procedure

7.4 Cross-validation in linear regression

The tuning parameter λ in our equation (4.3) is an important key to determine the number of

non-zero coefficients, thus an estimator f̂λ that has a large predictive power. But how is the λ
chosen such that the predictive accuracy of our estimator f̂λ is optimal? One way to achieve this
aim is by applying Cross Validation. The most common approach is K-fold cross validation, the
basic idea is simple:

1. The training data T is partitioned into K separate sets of equal size: T = (T1, T2, ..., TK),
commonly chosen K’s are K = 5 and K = 10

2. Fit the modelf̂λ−k to the training set for each k = 1, 2, . . . , K, excluding the kth-fold Tk.
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3. Compute the fitted values for the observations in Tk, based on the training data that
excluded this fold.

4. for each k fold compute the cross-validation (CV) error:

CV (λ)
errork

=
1

|Tk|
∑

(x,y)∈Tk

(y − f̂(x)
(λ)
k )

5. Compute the overall model cross-validation error:

CV (λ)
error =

1

|K|

K∑
k=1

(CV (λ)
errork

)

6. Find λmin as the one with minimum CV
(λ)
error .

λ̂min = argmin
λ∈(λ1,λ2,....λm)

CV (λ)
error

7. Apply f̂ (λmin)(x) to the test set to assess test error

when K = 1, This is called leave-one-out cross validation (LOOCV).
form the experimenters point of view this choice (λmin) is very conservative, i.e not eliminating
sufficiently many predictors from the model. One other alternative choice was suggested by
Tibshirani.

Figure 7.6: K fold cross validation method for linear model
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7.5 Results of the 1-SE rule for lasso

7.5.1 Model C: 1-SE rule

Table 7.1: Variables and their corresponding HR for model C under lasso method

Variables Hazard Ratios (HR)
Surgery 0.88
Hormone use 0.97
Location VT (Distal DVT vs Proximal) 1.16
Gender (male) 1.98
Type VT (PE & DVT) 1.01
Factor V Leiden 1.05

7.5.2 Model C: performance at 1-SE rule

Table 7.2: Predictive performance of the selected model C across lasso in conjunction with
percentile lasso, backward selection and closed testing

Methods Harrell C Corrected C Number of variables
Lasso λmin 0.708 0.688 12
Lasso λ1−SE 0.683 0.672 6
Backward selection 0.701 (0.680, 0.741 ) 0.682 8
Closed testing :
Model C6 0.692 (0.665, 0.722) 0.689 6
Model C7 0.695 (0.668,0.733) 0.689 7
Model C8 0.698 (0.671,0.734) 0.687 8
Model C9 0.693 (0.665,0.728) 0.684 9
Model C10 0.697 (0.697,0.733) 0.684 10
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7.5.3 lasso in conjunction with percentile lasso, backward selection and
closed testing procedure coefficients estimates

Figure 7.7: Regression coefficients estimates for model C, under lasso, backward selection and
closed testing.
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Figure 7.8: Regression coefficients estimates for model A. A comparison between lasso and
backward selection
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Chapter 8

R-code syntax

8.1 Data preprocessing

1 #i n s t a l l . packages (” haven ”)

3 #−−−−−−−−−−−−−−−−−−−−−−−−−#
# MEGA Data p r e p r o c e s s i n g #

5 #−−−−−−−−−−−−−−−−−−−−−−−−−#

7 l i b r a r y ( haven )

9 dat <− read dta ( ” . . . data source . . . ” )

11 # remove the next v a r i a b l e s v a r i a b l e s : because they were r ep laced by new v a r i a b l e s
:

# d i s c h r J −> d i s c h r S
13 # provokedov −> provokedov S

# l o c a t i e 1 v a r −> l o c a t i e 1 v a r S
15 # PTS1var −> PTS J

# id <− i s not needed
17

19 dat <− subset ( dat , s e l e c t = −c ( d i s c h r J , provokedov , l o c a t i e 1 v a r , PTS1var , id ) )

21 # Some data v a r i a b l e s were changed to f a c t o r s ;

23 dat$PTS J <− as . f a c t o r ( dat$PTS J )

25 dat$TypeVT <− as . f a c t o r ( dat$TypeVT)
# note that TypeVT has 3 c a t e g o r i e i . e : DVT=1,PE=2 and DVT+PE=3;

27

dat$ l o c a t i e 1 v a r I I <− i f e l s e ( dat $ l o c a t i e 1 v a r S==2 ,1 ,0)
29 # t h i s w i l l r e s u l t in Proximal=0 vs D i s t a l=1

31 # we remove SNPscore , because i t has so many miss ing v a r i a b l e s : 70%
dat <− subset ( dat , s e l e c t = −c ( SNPscore , l o c a t i e 1 v a r S) )

33

# note that some v a r i a b l e s are a l r eady coded as 0/ 1 , thus
35 # there ’ s no need to code them as f a c t o r

37

# P e r e d i c t o r s :
39
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c l i n i c a l . f <− c ( ” l f t ” , ”oper3mnd” , ”gips3mnd” , ”bedzk3mnd” , ”zwan3mnd” , ”hormoon” ,
41 ” d i s c a r d i o ” , ” d i s c e r e b r o ” , ”bmi” , ” l o c a t i e 1 v a r I I ” , ” sex J” , ”provokedov S” ,

”TypeVT” , ” d i s c h r S” , ”PTS J” )
43

g e n e t i c s . f <− c ( ” blgroup ” , ” f v l e i d e n J” )
45

l abo ra to ry . f <− c ( ” f i b ” , ”AT3” , ”PCC” , ”F7C” , ” f9aggem” , ” f 2 c ” , ”F10C” , ”F11” , ” lognAPCsr
” ,

47 ” factorV ” , ”TFPI” , ”Hgb” , ”nETPLT” , ” logf8aggem ” , ” logvwf ” , ” l o g p s f r e e ” ,
” logddimer ” , ”logWBC” , ” logmoperc ” , ” logrdw ” , ”logHsCRP” )

49

51 A. var . org <− c ( c l i n i c a l . f , g e n e t i c s . f , l abo ra to ry . f )# model A v a r i a b l e s ;
C. var . org <− c ( c l i n i c a l . f , g e n e t i c s . f )# model C v a r i a b l e s ;

53

55

# Surv iva l a n a l y s i s time and indecator ,
57

# r e c i d i e f t i m e −> time to event
59 # r e c i d i e f u n p r o v −> event

61 dat$ time <− dat$ r e c i d i e f t i m e
dat$ s t a t u s <− dat$ r e c i d i e f u n p r o v

63

# remove the redundant v a r i a b l e s from the data ,
65 dat <− subset ( dat , s e l e c t = −c ( r e c i d i e f t i m e , r e c i d i e f u n p r o v ) )
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8.2 Descriptive statistics

1

#−−−−−−−−−−−−−−−−−−−−−−#
3 # miss ing va lue s p l o t #

#−−−−−−−−−−−−−−−−−−−−−−#
5

7 # change columnames to e n g l i s h :

9 j <− c ( ”age ” , ” surgery ” , ” p l a s t e r ca s t ” , ” h o s p i t a l i z a t i o n ” , ” pregnant ” , ”hormone” , ”
card io−d i s e a s e ” , ” cerebro−d i s e a s e ” ,

”BMI” , ” l o c a t i o n VT” , ” gender ” , ”provoked” , ” type VT” , ” d i s ea s e−addiona l ” , ”PTS” , ”blood−
type ” , ” Leiden V” , ” f i b ronegen ” ,

11 ” ant i t rombine ” , ” p ro t e in C” , ” f a c t o r VII” , ” f a c t o r IX” , ” f a c t o r I I ” , ” f a c t o r X” , ”
f a c t o r XI” , ”APC r a t i o ” ,

” f a c t o r V” , ”TFPI” , ” hemoglobin ” , ”ETP” , ” f a c t o r VIII ” , ”VWF” , ” pro t e in S” , ”D−dimer” , ”
white−blood ” ,

13 ”monocyte−perce tage ” , ” red−c e l l ” , ”CRP” )
data frame . j <− dat [ ,− c (41 ,42) ]# remove time and s t a t u t s columns

15 colnames ( data frame . j )<− j

17

l i b r a r y ( Amelia )
19 missmap ( data frame . j , c o l = c ( ”maroon” , ” green ” ) , y . l a b e l s = NULL, y . at = NULL,

main = ” Miss ingness Map o f MEGA Dataset ” )
21

23 #−−−−−−−−−−−−−−−−#
# C o r r e l a t i o n s #

25 #−−−−−−−−−−−−−−−−#

27 l i b r a r y ( ” g g c o r r p l o t ” )
l i b r a r y ( ”Hmisc” )

29

# change columnames to e n g l i s h :
31

j <− c ( ”age ” , ” surgery ” , ” p l a s t e r ca s t ” , ” h o s p i t a l i z a t i o n ” , ” pregnant ” , ”hormone” , ”
card io−d i s e a s e ” , ” cerebro−d i s e a s e ” ,

33 ”BMI” , ” l o c a t i o n VT” , ” gender ” , ”provoked” , ” type VT” , ” d i s ea s e−addiona l ” , ”PTS” , ”blood−
type ” , ” Leiden V” , ” f i b ronegen ” ,

” ant i t rombine ” , ” p ro t e in C” , ” f a c t o r VII” , ” f a c t o r IX” , ” f a c t o r I I ” , ” f a c t o r X” , ”
f a c t o r XI” , ”APC r a t i o ” ,

35 ” f a c t o r V” , ”TFPI” , ” hemoglobin ” , ”ETP” , ” f a c t o r VIII ” , ”VWF” , ” pro t e in S” , ”D−dimer” , ”
white−blood ” ,

”monocyte−perce tage ” , ” red−c e l l ” , ”CRP” )
37 data frame <− na . omit ( dat [ ,− c (39 ,40) ] )#

colnames ( data frame )<− j
39 co r r <− as . data . frame ( r c o r r ( as . matrix ( data frame ) , type = ” pearson ” ) $ r )

g g c o r r p l o t ( corr , hc . order = TRUE, type = ” lower ” )
41

43

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
45 # Functions to produce b a s e l i n e #

# c h a r a c t e r i s t i c s #
47 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

49 # This func t i on w i l l c a l c u l a t e : the median , min and max o f the
# requ i r ed v a r i a b l e s ;

51
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fun . 1 <− f unc t i on ( x ) {
53 num. na <− sum( i s . na ( x ) )

percent <− round (num. na /nrow ( dt ) ,3 )
55 p <− l i s t ( median= median (x , na . rm=TRUE) ,

minimum=min(x , na . rm=TRUE) ,
57 maximum=max(x , na . rm=TRUE) ,

NA numb = num. na ,
59 NA per = percent

)
61 r e turn (p)

63 }

65 # This func t i on w i l l c a l c u l a t e : the sum and the percentage
# of v a r i a b l e s o f i n t e r e s t ,

67

sp <− f unc t i on ( x ) {
69 sm <− sum(x , na . rm=TRUE)

pr <− sum(x , na . rm=TRUE) /nrow ( dt )
71 num. na <− sum( i s . na ( x ) )

percent <− round (num. na /nrow ( dt ) ,3 )
73

r e turn ( l i s t (sum = sm , percentage = pr ,
75 num NA= num. na , NA per = percent ) )
}

77

attach ( dat )
79

81

# These are some c h a r a c t e r i s t i c s o f the chosen p r e d i c t o r s .
83

#−−−−−−−−−−−−−−−−−−−−−−−−#
85 # 1− c l i n i c a l f a c t o r s #

#−−−−−−−−−−−−−−−−−−−−−−−−#
87

#l f t : Age
89 fun . 1 ( l f t )

91 # bmi : BMI
fun . 1 ( bmi )

93

# sex J : gender ( male )
95 sp ( sex J )

97 # zwan3mnd : pregnant
sp (zwan3mnd)

99

# d i s c a r d i o : c a r d i o v a s c u l a r d i s e a s e
101 sp ( d i s c a r d i o )

103 # provokedov S : provoked a d d i t i o n a l f a c t o r s
sp ( provokedov S)

105

# typeVT : Type o f the f i r s t event ,
107

#DVT: Deep Vein Thrombosis :
109 sp (TypeVT==1)

111 # PE: polmunary embolism
sp (TypeVT==2)

113
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# DVT + PE
115 sp (TypeVT==3)

117 # hormoon : hormone use
sp ( hormoon )

119

# oper3mnd : surgery
121 sp ( oper3mnd )

123 # gips3mnd : P l a s t e r ca s t
sp ( gips3mnd )

125

# bedzk3mnd : H o s p i t a t l i z a t i o n
127 sp ( bedzk3mnd )

129 #PTS J : Posthrombotic syndrome , mild or s eve r e .
#PTS J : Posthrombotic syndrome , mild or s eve r e .

131

sp (PTS J==1)# milde
133 sp (PTS J==2)# seve r e

135

# l o c a t i e 1 v a r : l o c a t i o n VT
137 sp ( l o c a t i e 1 v a r I I )

139 # d i s c e r e b r o : Cerebrovascu lar d i s e a s e
sp ( d i s c e r e b r o )

141

# d i s c h r S : d i s e a s e a d d i t i o n a l c o m o r b i d i t i e s
143 sp ( d i s c h r S)

145 #−−−−−−−−−−−−−−−−−−−#
# Geni t i c f a c t o r s #

147 #−−−−−−−−−−−−−−−−−−−#

149 #f v l e i d e n J : f a c t o r V Leiden
sp ( f v l e i d e n J )

151

# blgroup : blood group
153 sp ( blgroup )

155

#−−−−−−−−−−−−−−−−−−−−−−−−#
157 # Laboratory f a c t o r s #

#−−−−−−−−−−−−−−−−−−−−−−−−#
159

#logddimer
161 fun . 1 ( logddimer )

163 #f2c −> Factor I I / prothrombin
fun . 1 ( f 2 c )

165

#factorV
167 fun . 1 ( factorV )

169 #F7C : f a c t o r VII
fun . 1 ( F7C)

171

#logf8aggem : f a c t o r VIII
173 fun . 1 ( logf8aggem )

175 #f9aggem : f a c t o r IX
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fun . 1 ( f9aggem )
177

#F10C : f a c t o r X
179 fun . 1 ( F10C)

181 #F11 : f a c t o r XI
fun . 1 ( F11 )

183

#logvwf :VWF
185 fun . 1 ( logvwf )

187 #PCC −> Prote in C
fun . 1 (PCC)

189

#f i b −> Fibr inogeen
191 fun . 1 ( f i b )

193 #AT3: Antithrombine
fun . 1 (AT3)

195

#TFPI : TFPI
197 fun . 1 ( TFPI)

199 #logHsCRP :CRP
fun . 1 ( logHsCRP )

201

#nETPLT:
203 fun . 1 (nETPLT)

205 # lognAPCsr −> APC r a t i o
fun . 1 ( lognAPCsr )

207

# Hgb −> Hemoglobin
209 fun . 1 ( Hgb)

211 # l o g p s f r e e −> pro t e in S
fun . 1 ( l o g p s f r e e )

213

#logWBC −>White boold c e l l
215 fun . 1 ( logWBC)

217 # logmoperc −> monocyte perce tage
fun . 1 ( logmoperc )

219

#logrdw −> red c e l l D i s t r i b u t i o n width
221 fun . 1 ( logrdw )
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8.3 Backward elimination

1

# These are the r equ i r ed R packages to perform our backward e l i m i n a t i o n ana ly s e s .
3

Packages <− c ( ”MASS” , ” pec” , ”survcomp” , ”survAUC” , ”Hmisc” ) # load mul t ip l e
packages

5 l app ly ( Packages , r equ i r e , cha rac t e r . only = TRUE)

7

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
9 # Functions to perform backward s e l e c t i o n a n a l y s i s #

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
11

13 # This func t i on w i l l f i r s t s e l e c t v a r i a b l e s in the Cox r e g r e s s i o n model
# us ing fastbw ( ) func t i on from the rms package , subsequent ly w i l l r e turn

15 # a f i t t e d Cox r e g r e s s i o n model with the s e l e c t e d v a r i a b l e s .
# backward s e l e c t i o n in our a n a l y s i s i s used with p =0.1 value .

17 # Of note , t h i s f unc t i on i s 99% s i m i l a r to the func t i on se l ec tCox ( ) from rms
package ;

19 se lCox my <− f unc t i on ( formula , data , r u l e = ”p” )
{

21 f i t <− rms : : cph ( formula , data , surv = TRUE, x=TRUE, y=TRUE)
bwf i t <− rms : : fastbw ( f i t , r u l e = ru le , type=” i n d i v i d u a l ” , s l s =0.1)

23 i f ( l ength ( bwf i t $names . kept ) == 0) {
newform <− update ( formula , ” . ˜1” )

25 newf i t <− prodl im : : prodl im ( newform , data = data )
}

27 e l s e {
newform <− update ( formula , paste ( ” . ˜” , paste ( bwf i t $names . kept ,

29 c o l l a p s e = ”+” ) ) )
newf i t <− rms : : cph ( newform , data , surv = TRUE , x=TRUE, y=TRUE)

31 }
out <− l i s t ( f i t = newf i t , In = bwf i t $names . kept )

33 out$ c a l l <− match . c a l l ( )
c l a s s ( out ) <− ” se l ec tCox ”

35 out
}

37

39 # This func t i on w i l l use our s e l e c t e d model by selCox my( ) func t i on ;
# to make i n t e r n a l va l i da t i on , and produce the H a r r e l l C s t a t i s t i c s ;

41

43

Boot .H <− f unc t i on (B,X, df ) {
45

# Arguments :
47 # X: cova r i a t e s ,

# B: number o f bootsrap ,
49 # df : data frame

# return : backward model ,C cor rec ted ,C apparent and 95% C c i .
51

dt <− as . data . frame ( df )
53 Xs <− paste (X, c o l l a p s e=” + ” )

form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,
55 paste (Xs , c o l l a p s e=”+” ) ) )

57 # Fit the model in the o r i g i n a l data ;
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back . df <− se lCox my( form , r u l e = ”p” , data=dt )
59 f i t <− back . df $ f i t

61 # Calcu la te the apparent Harre l C s t a t i s t i c s ;
t t t <− q u a n t i l e ( dt$ time )

63 k <− predictSurvProb ( f i t , newdata=dt , t imes=t t t )
harre lC1 <− r c o r r . cens ( k [ , 3 ] , with ( dt , Surv ( time , s t a t u s ) ) )

65 C indx app <− harre lC1 [ 1 ]

67

# Empty matrix to s t o r e boots t rap r e s u l t s ;
69 M <− matrix ( nrow = B, nco l = 3 ,

dimnames = l i s t ( paste ( ’ Sample ’ , 1 :B) ,
71 c ( ”C o r i g ” , ”C boot ” , ”Optimism” ) ) )

73 n = nrow ( dt )
s e t . seed (701)

75

f o r ( i in 1 :B) {
77

# Draw a random sample from our data :
79 obs . boot <− sample ( x = 1 : n , s i z e = n , r e p l a c e = T)

data . boot <− dt [ obs . boot , ]
81

# Fit the model on boots t rap sample :
83 back . cx <− se lCox my( form , r u l e = ”p” , data=data . boot )

a <− back . cx$ f i t
85

# Apply model to o r i g i n a l data :
87 t t t <− q u a n t i l e ( dt$ time )

k <− predictSurvProb (a , newdata=dt , t imes=t t t )
89 harre lC1 <− r c o r r . cens ( k [ , 3 ] , with ( dt , Surv ( time , s t a t u s ) ) )

M[ i , 1 ] <− harre lC1 [ 1 ]
91

# Apply model to boots t rap data
93 t t <− q u a n t i l e ( data . boot $ time )

k1 <− predictSurvProb (a , newdata=data . boot , t imes=t t )
95 harre lC2 <− r c o r r . cens ( k1 [ , 3 ] , with ( data . boot , Surv ( time , s t a t u s ) ) )

M[ i , 2 ] <− harre lC2 [ 1 ]
97

# Optimism :
99 M[ i , 3 ] <− M[ i , 2]− M[ i , 1 ]

101 }
C indx <− C indx app − mean(M[ , 3 ] )

103 K <− data . frame (M)

105 # Confidence i n t e r v a l f o r C s t a t i s t i c s by P e r c e n t i l e Method ;
c . boo <− s o r t (K$C boot )

107 up <− q u a n t i l e ( c . boo , . 9 7 5 )
down <− q u a n t i l e ( c . boo , . 0 2 5 )

109

r e turn ( l i s t ( backward model=f i t ,C index c o r r e c t e d=C indx ,
111 C app= C indx app , c i 95 Cindx=c (down , up) ) )
}

113

115

117 # This func t i on w i l l c l a c u l a t e the 95% CI f o r the HR’ s from the cox
# r e g r e s s i o n model ;

119
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CI c o e f <− f unc t i on ( obj bw) {
121

# Arguments ;
123 # obj .bw : backward s e l e c t i o n ob j e c t from Boot .H funct ion ,

# Returns : 95% CI o f the HR’ s ,
125

m <− obj bw$backward model
127 Beta sd <− s q r t ( diag (m$ var ) )

Beta <− round (m$ c o e f f i c i e n t s , 4 )
129

up <−down <− numeric ( l ength ( Beta ) )
131 f o r ( i in 1 : l ength ( Beta ) ) {

M <− exp ( Beta [ i ] + c (−1 ,1) ∗ 1 .96 ∗ Beta sd [ i ] )
133 down [ i ] <− round (M[ 1 ] , 3 )

up [ i ] <− round (M[ 2 ] , 3 )
135 }

HR<− exp ( Beta )
137 M <− data . frame (HR, down , up )

re turn (M)
139 }
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8.4 Performing backward selection

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
2 # Performing backward s e l e c t i o n #

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
4

# Model A a n a l y s i s ;
6

dat . a <− na . omit ( dat )# Remove miss ing va lue s ;
8 A.bw <− Boot .H(200 ,A. var . org , dat . a )

CI c o e f (A.bw) # HR’ s and t h e i r 95% CI
10

12 # Cox PH assumptions ; model A
t e s t . ph .A <− cox . zph (A.bw$backward model )

14 p lo t ( t e s t . ph .A)# s c h o e n e f e l d r e s i d u a l s
ph .A <− data . frame ( t e s t . ph .A$ ta b l e )

16

# R to l a t e x
18 pr in t ( x tab l e (ph .A, type = ” l a t e x ” , tabu la r . environment=” l o n g t a b l e ” ) , f i l e = ”PH

bwa . tex ” )

20

# prognos t i c s c o r e s :
22

24 # Model A;

26 cox back <− A.bw$backward model
obj . pred <− p r e d i c t ( cox back , type = ” lp ” )

28

30 # The p r o g n i s t i c s c o r e s diveded in to q u a n t i l e s ;
groups <− f a c t o r ( cut ( obj . pred , c(− In f ,

32 q u a n t i l e ( obj . pred , 0 . 2 0 ) ,
q u a n t i l e ( obj . pred , 0 . 4 0 ) ,

34 q u a n t i l e ( obj . pred , 0 . 6 0 ) ,
q u a n t i l e ( obj . pred , 0 . 8 0 ) ,

36 I n f ) ) ,
l a b e l s =c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) )

38

f i t <− s u r v f i t ( Surv ( time , s t a t u s ) ˜ groups , data =dat . a )
40

l i b r a r y ( ” survminer ” )
42 ggsurvp lo t (

f i t ,
44 s i z e = 0 .5 , # change l i n e s i z e

p a l e t t e = ” j co ” , #
46 #conf . i n t = TRUE , # Add con f idence i n t e r v a l

r i s k . t a b l e = TRUE , # Add r i s k t ab l e
48 censor = FALSE ,

pval = TRUE ,
50 #r i s k . t ab l e . c o l = ” s t r a t a ” , # Risk ta b l e c o l o r by groups

xlab = ” Time in years s i n c e 1 VT ” ,
52 ylab = ” Pr o b ab i l i t y o f r e cu r r ence ” ,

break . time . by = 1 ,
54 l egend . l ab s = c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) ,

r i s k . t a b l e . he ight = 0.35 ,
56 surv . median . l i n e = ”hv” ,

fun = ” event ” ,
58 ggtheme = theme c l a s s i c ( ) # Change ggp lot2 theme
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)
60

62

#−−−−−−−−−−−#
64 # Model C #

#−−−−−−−−−−−#
66

68 C.bw <− Boot .H(200 ,C. var . org , dat . c )
CI c o e f (C.bw) # 95%CI

70

72

## Data summary f o r backward ;
74

df .B <− data . frame ( rbind (A.bw$C app ,C.bw$C app ) ,
76 rbind (A.bw$C index cor rec ted ,C.bw$C index c o r r e c t e d ) )

78 colnames ( df .B) <− c ( ”C indx app” , ”C indx c o r r e c t e d ” )
rownames ( df .B)<− c ( ” Fu l l model A” , ” Model C” )

80

82 # fo l l ow−up time ,
mySurvival <− with ( dat , Surv ( time , s t a t u s ) )

84 summary( mySurvival )

86

88 # Cox PH assumptions ; model C
t e s t . ph .C <− cox . zph (C.bw$backward model )

90 ph .C <− data . frame ( t e s t . ph .C$ t ab l e )
p r i n t ( x tab l e (ph .C, type = ” l a t e x ” , tabu la r . environment=” l o n g t a b l e ” ) , f i l e = ”PH

bwc . tex ” )
92

94 rm( l i s t = c ( ’ groups ’ , ’ f i t ’ , ’ obj . pred ’ , ’ cox back ’ ) ) # remove the data

96 cox back <− C.bw$backward model
obj . pred <− p r e d i c t ( cox back , type = ” lp ” )

98

100 # The p r o g n i s t i c s c o r e s diveded in to q u a n t i l e s ;
groups <− f a c t o r ( cut ( obj . pred , c(− In f ,

102 q u a n t i l e ( obj . pred , 0 . 2 0 ) ,
q u a n t i l e ( obj . pred , 0 . 4 0 ) ,

104 q u a n t i l e ( obj . pred , 0 . 6 0 ) ,
q u a n t i l e ( obj . pred , 0 . 8 0 ) ,

106 I n f ) ) ,
l a b e l s =c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) )

108

f i t <− s u r v f i t ( Surv ( time , s t a t u s ) ˜ groups , data =dat . c )
110

ggsurvp lo t (
112 f i t ,

s i z e = 0 .5 , # change l i n e s i z e
114 p a l e t t e = ” j co ” , #

#conf . i n t = TRUE , # Add con f idence i n t e r v a l
116 r i s k . t a b l e = TRUE , # Add r i s k t ab l e

censor = FALSE ,
118 pval = TRUE ,

#r i s k . t ab l e . c o l = ” s t r a t a ” , # Risk ta b l e c o l o r by groups
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120 xlab = ” Time in years s i n c e 1 VT ” ,
ylab = ” Pr o b ab i l i t y o f r e cu r r ence ” ,

122 break . time . by = 1 ,
legend . l ab s = c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) ,

124 r i s k . t a b l e . he ight = 0.35 ,
surv . median . l i n e = ”hv” ,

126 fun = ” event ” ,
ggtheme = theme c l a s s i c ( ) # Change ggp lot2 theme

128 )
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8.5 Percentile lasso

1

# These are the r equ i r ed R packages to perfom our ana ly s e s .
3 Packages <− c ( ”MASS” , ” pec” , ”survcomp” , ”survAUC” , ”glmnet” ) # load mul t ip l e

packages
l app ly ( Packages , r equ i r e , cha rac t e r . only = TRUE)

5

# Function to c a l c u l a t e the C− s t a t i s t i c s
7

C s t a t <− f unc t i on ( df ) {
9 # Arguments :

# df : the data frame ,
11 # Return : H a r r e l l C s t a t i s t i c s ,

13 time <− df $ time
s t a t u s <− df $ s t a t u s

15 x <− df $ lp
n <− l ength ( time )

17 r <− order ( time , −s t a t u s )
time <− time [ r ]

19 s t a t u s <− s t a t u s [ r ]
x <− x [ r ]

21

a <− which ( s t a t u s == 1)
23 b <− 0

cr <− 0
25

f o r ( i in a ) {
27 f o r ( j in ( ( i + 1) : n ) ) {

i f ( time [ j ] > time [ i ] ) {
29 b <− b + 1

31 i f ( x [ j ] < x [ i ] )
c r <− cr + 1 # i f j has sma l l e r PI than i we add 1

33 i f ( x [ j ] == x [ i ] )
c r <− cr + 0 .5 # i f the p a i r s have same PI we add 0 .5

35 }
}

37 }
r e turn ( round ( cr /b , d i g i t s = 4) )

39 }

41

43

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
45 # The next func t i on : Per .CV. Err ( ) and Per . Lasso ( ) #

# were developed by S . Roberts and G. Nowak . #
47 # Neverthe l e s s , we have introduced some changes to them.#

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
49

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
51 # Per .CV. Err ( ) func t i on c a l c u l a t e s the unpena l i zed CV #

# p r e d i c t i o n e r r o r f o r a sequence o f lambda va lue s . #
53 # These va lue s are s p e c i f i e d by a cv . glmmnet ob j e c t and #

# a corre spond ing vec to r o f i n d i c e s f o r the lambdas . Uses #
55 # cross−v a l i d a t i o n v ia the glmnet package to es t imate #

# the p r e d i c t i o n e r r o r . This v e r s i o n o f the func t i on i s to#
57 # be used with Per . Lasso . #

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
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59

61 Per .CV. Err <− f unc t i on (x , y ,K, cv . glmn , lam . idcs , fam , alpha , cv . rep ) {
# Arguments :

63 # x − Matrix o f v a r i a b l e s that are pena l i z ed .
# y − The response vec to r .

65 # K − The number o f f o l d s .
# cv . glmn − The o r i g i n a l cv . glmmnet ob j e c t on the complete data .

67 # lam . i d c s − The i n d i c e s o f the lambdas ( that were used in cv . glmn ) f o r
# which to c a l c u l a t e the unpena l i zed CV e r r o r .

69 # fam − The fami ly used in the o r i g i n a l cv . glmnet ob j e c t .
# alpha − The alpha value in the glmnet func t i on f o r the e l a s t i c net .

71 # cv . rep − The number o f r e p e t i t i o n s f o r c a l c u l a t i n g the CV e r r o r .
#

73 # Returns :
# A vecto r o f average CV e r r o r s the same length as lam . i d c s .

75

77 ## The betas .
betas <− cv . glmn$glmnet . f i t $ beta

79

## The lambdas .
81 lams <− cv . glmn$lambda

83 ## Number o f ob s e rva t i on s .
n <− l ength ( y )

85

## The matrix o f CV e r r o r s .
87 r e s . cvms <− matrix (NA, cv . rep , l ength ( lam . i d c s ) )

89 f o r ( j in 1 : cv . rep ) {

91 ## New s e t o f f o l d IDs .
cur . f l d . i d s <− sample ( rep ( 1 :K, l ength . out=n) )

93

## Going through each lambda index .
95 f o r ( i in 1 : l ength ( lam . i d c s ) ) {

97 cur . ind <− lam . i d c s [ i ] ; cur . beta <− betas [ , cur . ind ]

99 # I f a l l betas are zero .
# t h i s i s the s tep where we Re−es t imate the parameters

101 # of the s e l e c t e d model ( i . e . from the l a s s o f i t t e d with lambda= lambda ( theta ) )
# us ing ord inary ( no pena l ty ) , based on two ca s e s ;

103

105 i f ( a l l ( cur . beta==0)) {

107 ## R e f i t cv . glmnet to complete data .
cur . cv . glmn <− cv . glmnet (x , y , lambda=lams , f o l d i d= cur . f l d . ids ,

109 alpha=alpha , fami ly=fam )

111 ## Set t ing CV e r r o r to the cor re spond ing e r r o r from
## cv . glmnet f i t t e d above .

113 r e s . cvms [ j , i ] <− cur . cv . glmn$cvm [ cur . ind ]

115 } e l s e {
## Subset t ing x f o r only non−zero betas .

117 x . nz <− x [ , cur . beta !=0 , drop=F]

119 i f ( dim ( x . nz ) [2 ]>1) {
# because , in some cases , 1−SE r u l e w i l l choose only one v a r i a b l e s ,
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121 # t h i s w i l l make a problem f o r cv . glment , because x w i l l not be seen as a matr ic
o f 2 column .

123

# t h i s i s the s tep where we Re−es t imate the parameters
125 # of the s e l e c t e d model ( i . e . from the l a s s o f i t t e d with lambda = lambda ( theta ) )

# us ing ord inary l e a s t squares ( no p e n a l i t y ) :
127

129 ## Running cv . glmnet without pena l ty to get CV e r r o r .
npen . lam <− c ( 0 . 0 1 , 0 ) # me : no pena l ty

131 npen . cv <− cv . glmnet ( x . nz , y , f o l d i d=cur . f l d . ids , alpha=alpha ,
lambda=npen . lam , fami ly=fam )# me : re−est imated model

133 ## CV e r r o r .
# in t h i s s tep :

135 # Compute the cros s−v a l i d a t i o n e r r o r o f the re−est imated model
r e s . cvms [ j , i ] <− npen . cv$cvm [ npen . lam==0]

137

} e l s e {
139 r e s . cvms [ j , i ] <− I n f
}

141 }

143 }

145 }

147 r e turn ( colMeans ( r e s . cvms ) )

149 }

151

153 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
# Per . Lasso : This func t i on implements the P e r c e n t i l e Lasso . #

155 # It ’ s based on repea t ed ly f i t t i n g the l a s s o on a d i f f e r e n t #
# assignment o f c ros s−v a l i d a t i o n f o l d s . #

157 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

159

Per . Lasso <− f unc t i on (x , y ,K=10, alpha =1,M=100 , per , fam=”cox” , cv . rep ) {
161 # Arguments :

# x − Matrix o f v a r i a b l e s that are pena l i z ed .
163 # y − Response vec to r .

# K − The number o f f o l d s .
165 # alpha − The alpha value in the glmnet func t i on f o r the e l a s t i c net .

# M − The number o f t imes to repeat f o l d ass ignments , thus optimal lambdas
167 # per − The p r o b a b i l i t i e s cor re spond ing to the p e r c e n t i l e s o f lambda .

# fam − The fami ly used in the cv . glmnet func t i on .
169 # cv . rep − The number o f r e p e t i t i o n s f o r c a l c u l a t i n g the CV e r r o r . t h i s

# r e p i t i t i o n are needed f o r the new model to compute the CV Deviance
171 #

# Returns ( a l i s t c o n s i s t i n g o f ) :
173 # glmn . f i t − The o r i g i n a l glmnet model f i t t e d to get the sequence o f

# lambdas .
175 # r e s . sum − A summary o f r e s u l t s that s t a t e s the average unpena l i zed CV

# p r e d i c t i o n e r r o r and the number o f non−zero v a r i a b l e s f o r
177 # each type o f optimal lambda ( e . g . , minimum or a given

# p e r c e n t i l e ) .
179 # betas − A matrix o f beta e s t imate s where each column c o n s i s t s o f the

# es t imate s f o r a p a r t i c u l a r type o f optimal lambda .
181
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183 ##############################################
## I n i t i a l parameters and run o f cv . glmnet . ##

185 ##############################################

187 ## Some parameters .
p <− nco l ( as . matrix ( x ) ) ; n <− l ength ( y )

189

## Set t ing up the f o l d s .
191 f l d . i d s <− sample ( rep ( 1 :K, l ength . out=n) )

193 ## Running cv . glmnet .
cv . glmn <− cv . glmnet (x , y , f o l d i d=f l d . ids , alpha=alpha ,

195 f ami ly=fam )
lams <− cv . glmn$lambda

197 lam . min <− cv . glmn$lambda . min ; lam . 1 se <− cv . glmn$lambda . 1 se
mod . glmn <− cv . glmn$glmnet . f i t

199 betas . glmn <− mod . glmn$ beta

201 ## Result i n d i c e s and names .
r e s . i d c s <− c ( which ( lams==lam . min ) , which ( lams==lam . 1 se ) )

203 r e s . names <− c ( ”min” , ”1 se ” )

205 #########################################
## Running glmnet over repeated f o l d s . ##

207 #########################################
# step 2 and step3 :

209 #Let Lambda(M) = ( lambda 1 , . . . , lambda M) denote the M va lues o f lambda m (
optimal lambdas ) .

211 ## Minimum and 1−se lambda f o r each f o l d .
f l d . min . lams <− f l d . 1 se . lams <− rep (NA,M)

213

f o r ( i in 1 :M) {
215

## Re−choos ing f o l d s .
217 new . f l d . i d s <− sample ( f l d . i d s )

219 ## Running cv . glmnet .
f l d . cv . glmn <− cv . glmnet (x , y , lambda=lams , f o l d i d=new . f l d . ids ,

221 alpha=alpha , fami ly=fam )

223 ## Minimum and 1 se lambdas and e r r o r s .
f l d . min . lams [ i ] <−

225 lams [ which ( f l d . cv . glmn$lambda==f l d . cv . glmn$lambda . min ) ]
f l d . 1 se . lams [ i ] <−

227 lams [ which ( f l d . cv . glmn$lambda==f l d . cv . glmn$lambda . 1 se ) ]

229 }

231 ##################################################################
## P e r c e n t i l e s o f the minimum and 1 se lambdas from the repeated ##

233 ## f o l d s and p e r c e n t i l e with s m a l l e s t l e a s t squares CV e r r o r . ##
##################################################################

235

## Choosing appropr ia t e p e r c e n t i l e s o f minimum and 1 se lambdas and
237 ## t h e i r cor re spond ing i n d i c e s .

# step 4 : Compute lambda ( theta ) , the theta−p e r c e n t i l e o f Lambda(M) .
239

per . min . lams <− q u a n t i l e ( f l d . min . lams , probs=per , type=1)
241 per . min . i d c s <− match ( per . min . lams , lams )

per . 1 se . lams <− q u a n t i l e ( f l d . 1 se . lams , probs=per , type=1)
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243 per . 1 se . i d c s <− match ( per . 1 se . lams , lams )

245 ## CV e r r o r s f o r the p e r c e n t i l e s .
cvms . min <− Per .CV. Err (x , y ,K, cv . glmn , per . min . idcs , fam , alpha , cv . rep )

247 cvms . 1 se <− Per .CV. Err (x , y ,K, cv . glmn , per . 1 se . idcs , fam , alpha , cv . rep )

249

## I n d i c e s o f p e r c e n t i l e ( lambda ) with s m a l l e s t l e a s t squares CV e r r o r .
251 cvm . min . idc <− which ( lams==per . min . lams [ which . min ( cvms . min ) ] )

cvm . 1 se . idc <− which ( lams==per . 1 se . lams [ which . min ( cvms . 1 se ) ] )
253

## Tacking on to r e s u l t i n d i c e s and names .
255 r e s . i d c s <− c ( r e s . idcs , per . min . idcs , per . 1 se . idcs , cvm . min . idc ,

cvm . 1 se . idc )
257 r e s . names <− c ( r e s . names , paste ( ”min” , per ) , paste ( ”1 se ” , per ) , ”min−cvm” ,

”1 se−cvm” )
259

##############
261 ## Resu l t s . ##

##############
263

## Model s i z e s and lambdas chosen by each optimal va lue o f lambda .
265 r e s . cvms <− Per .CV. Err (x , y ,K, cv . glmn , r e s . idcs , fam , alpha , cv . rep )

r e s . sum <− data . frame ( ”opt . lams”=lams [ r e s . i d c s ] , ”cvm”=r e s . cvms ,
267 ”n . var ”=mod . glmn$ df [ r e s . i d c s ] ,

row . names=r e s . names )
269

## Matrix o f betas cor re spond ing to the optimal lambdas .
271 r e s . betas <− as . matrix ( betas . glmn [ , r e s . i d c s ] )

colnames ( r e s . betas ) <− r e s . names
273

## Returning r e s u l t s .
275 r e turn ( l i s t ( ”glmnet . f i t ”=mod . glmn , ” r e s . sum”=r e s . sum , ” betas ”=r e s . betas ) )

277 }

279

# Having found the optimal lambda , by the prev ious funct i ons ,
281 # now l a s s o app ( ) func t i on i s app l i ed to found the apparent C s t a t i s t i c s

# and other va luab l e o b j e c t s .
283

285 l a s s o app <− f unc t i on (X, df , lambda ) {
# Arguments :

287 # X: cova r i a t e s ,
# df : data frame ,

289 # lambda : the optimal lambda ,
# Returns :

291 # model , apparnet C index , p r ed i c t ed va lue s and model f i t

293

Xs <− paste (X, c o l l a p s e=” + ” )
295 form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

paste (Xs , c o l l a p s e=”+” ) ) )
297

# Fit the model in the o r i g i n a l data ,
299

x . org <− model . matrix ( form , df )
301 y . org <− Surv ( df $ time , df $ s t a t u s )

303 f i t <− suppressWarnings ( glmnet ( x . org , y . org , fami ly=”cox” , alpha =1,lambda = lambda
,
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i n t e r c e p t=FALSE) )
305

# c a l c u l a t i o n o f C index :
307 pr <− p r e d i c t ( f i t , newx = x . org , type = ” l i n k ” )

df . l a <− data . frame ( time= df $time , s t a t u s= df $ status ,
309 lp= as . numeric ( pr ) ) # needed f o r C index c a l c u l a t i o n

C. id <− C s t a t ( df . l a ) # t h i s i s a func t i on
311 C indx app <− round (C. id , 3 )# t h i s i s the apparent c index

c o e f . min = c o e f ( f i t , s = lambda )
313 k <− c o e f . min [ which ( c o e f . min != 0) , ]

k <− as . matrix ( k )
315 colnames ( k ) <− ” c o e f f i c i e n t s ”

317 r e turn ( l i s t ( model= k ,C ind apparent = C indx app , p r ed i c t ed = pr , f i t . model = f i t )
)

319 }

321

# The l a s s o . boot func t i on : t h i s f unc t i on w i l l apply bootsrap to f i n d
323 # the c o r r e c t e d C index .

325

l a s s o . boot <− f unc t i on (B,X, df ,C indx app , lambda ) {
327 # Arguments :

# B: bootsrap number : H a r r e l l e t a l suggest100 −200 t imes ;
329 # X: c o v a r i a t e s ;

# df : data frame ;
331 # C index app : C index apparent ;

# l . min . b : minimal lambda
333 # return : c o r r e c t e d C index ;

335

Xs <− paste (X, c o l l a p s e=” + ” )
337 form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

paste (Xs , c o l l a p s e=”+” ) ) )
339 # empty Rx2 matrix f o r boots t rap r e s u l t s

x . org <− model . matrix ( form , df )
341 y . org <− Surv ( df $ time , df $ s t a t u s )

343 M <− matrix (0 , nrow = B, nco l = 3 ,
dimnames = l i s t ( paste ( ’ Sample ’ , 1 :B) ,

345 c ( ”C o r i g ” , ”C boot ” , ”Optimism” ) ) )

347 n = nrow ( df )
s e t . seed (701)

349

f o r ( i in 1 :B) {
351

# draw a random sample
353 obs . boot <− sample ( x = 1 : n , s i z e = n , r e p l a c e = T)

data . boot <− df [ obs . boot , ]
355

# f i t the model on boots t rap sample
357

x . boot <− model . matrix ( form , data . boot )
359 y . boot <− Surv ( data . boot $time , data . boot $ s t a t u s )

361 f i t . boot <− suppressWarnings ( glmnet ( x . boot , y . boot , f ami ly=”cox” , alpha =1,
lambda = lambda , i n t e r c e p t=FALSE) )

363

# apply model to o r i g i n a l data
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365

pr . or <− p r e d i c t ( f i t . boot , newx = x . org , type = ” l i n k ” )
367 df . l a . or <− data . frame ( time= df $time , s t a t u s= df $ status ,

lp= as . numeric ( pr . or ) )# needed f o r C index c a l c u l a t i o n
369

M[ i , 1 ] <− C s t a t ( df . l a . or ) # C−index o r i g i n e l sample
371

# apply model to boots t rap data
373 pr . boot <− p r e d i c t ( f i t . boot , newx = x . boot , type = ” l i n k ” )

df . l a . bo <− data . frame ( time= data . boot $time , s t a t u s= data . boot $ status ,
375 lp= as . numeric ( pr . boot ) )# needed f o r C index c a l c u l a t i o n

M[ i , 2 ] <− C s t a t ( df . l a . bo ) # C−index boots t rap sample
377

# Optimism :
379 M[ i , 3 ] <− M[ i , 2]− M[ i , 1 ]

381 }
C indx <− round (C indx app − mean(M[ , 3 ] ) , 3 )# c o r r e c t e d C−index

383

# K <− head (M, 1 0 ) # i f you want to d i s p l a y everyt ime the boot . sample s t a t i s t i c s
385 # return ( l i s t (K,C index c o r r e c t e d=C indx ) )

re turn (C indx )
387 }

2 #−−−−−−−−−−−−−−−−−−−−−−−−−−−#
# l a s s o p r o g n i s t i c s s c o r e s #

4 #−−−−−−−−−−−−−−−−−−−−−−−−−−−#

6 # model A;

8 rm( l i s t = c ( ’ groups ’ , ’ f i t ’ , ’ obj . pred ’ , ’ cox back ’ ) ) # remove the data

10 obj . pred <− app mod$ pred i c t ed

12

# The p r o g n i s t i c s c o r e s diveded in to q u a n t i l e s ;
14

groups <− f a c t o r ( cut ( obj . pred , c(− In f ,
16 q u a n t i l e ( obj . pred , 0 . 2 0 ) ,

q u a n t i l e ( obj . pred , 0 . 4 0 ) ,
18 q u a n t i l e ( obj . pred , 0 . 6 0 ) ,

q u a n t i l e ( obj . pred , 0 . 8 0 ) ,
20 I n f ) ) ,

l a b e l s =c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) )
22

f i t <− s u r v f i t ( Surv ( time , s t a t u s ) ˜ groups , data =dat . a )
24

ggsurvp lo t (
26 f i t ,

s i z e = 0 .5 , # change l i n e s i z e
28 p a l e t t e = ” j co ” , #

#conf . i n t = TRUE , # Add con f idence i n t e r v a l
30 r i s k . t a b l e = TRUE , # Add r i s k t ab l e

censor = FALSE ,
32 pval = TRUE ,

#r i s k . t ab l e . c o l = ” s t r a t a ” , # Risk ta b l e c o l o r by groups
34 xlab = ” Time in years s i n c e 1 VT ” ,
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ylab = ” Pr o b ab i l i t y o f r e cu r r ence ” ,
36 break . time . by = 1 ,

legend . l ab s = c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) ,
38 r i s k . t a b l e . he ight = 0.35 ,

surv . median . l i n e = ”hv” ,
40 fun = ” event ” ,

ggtheme = theme c l a s s i c ( ) # Change ggp lot2 theme
42 )

44 # model C;

46 rm( l i s t = c ( ’ groups ’ , ’ f i t ’ , ’ obj . pred ’ , ’ cox back ’ ) ) # remove the data

48 obj . pred <− app mod . c$ pred i c t ed

50 # The p r o g n i s t i c s c o r e s diveded in to q u a n t i l e s ;
groups <− f a c t o r ( cut ( obj . pred , c(− In f ,

52 q u a n t i l e ( obj . pred , 0 . 2 0 ) ,
q u a n t i l e ( obj . pred , 0 . 4 0 ) ,

54 q u a n t i l e ( obj . pred , 0 . 6 0 ) ,
q u a n t i l e ( obj . pred , 0 . 8 0 ) ,

56 I n f ) ) ,
l a b e l s =c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) )

58

f i t <− s u r v f i t ( Surv ( time , s t a t u s ) ˜ groups , data =dat . c )
60

ggsurvp lo t (
62 f i t ,

s i z e = 0 .5 , # change l i n e s i z e
64 p a l e t t e = ” j co ” , #

#conf . i n t = TRUE , # Add con f idence i n t e r v a l
66 r i s k . t a b l e = TRUE , # Add r i s k t ab l e

censor = FALSE ,
68 pval = TRUE ,

#r i s k . t ab l e . c o l = ” s t r a t a ” , # Risk ta b l e c o l o r by groups
70 xlab = ” Time in years s i n c e 1 VT ” ,

ylab = ” Pr o b ab i l i t y o f r e cu r r ence ” ,
72 break . time . by = 1 ,

legend . l ab s = c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) ,
74 r i s k . t a b l e . he ight = 0.35 ,

surv . median . l i n e = ”hv” ,
76 fun = ” event ” ,

ggtheme = theme c l a s s i c ( ) # Change ggp lot2 theme
78 )
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8.6 Performing lasso analyses in conjunction with percentile
lasso

1

3 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
# l a s s o and p e r c e n t i l e l a s s o #

5 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

7 ###############
# Model A #

9 ###############

11 # Remove miss ing va lue s ;
dat . a <− na . omit ( dat )

13

X <− A. var . org # v a r i a b l e s
15 df <− dat . a

17 # o b j e c t s f o r p e r c e n t i l e l a s s o ;
Xs <− paste (X, c o l l a p s e=” + ” )

19 form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,
paste (Xs , c o l l a p s e=”+” ) ) )

21

x <− model . matrix ( form , df )
23 y <− Surv ( df $ time , df $ s t a t u s )

25 l i b r a r y ( ggp lot2 )

27 A <− l i s t ( )
f o r ( i in 1 : 345 ) {

29 A [ [ l ength (A) +1] ] <− Per . Lasso (x , y ,K=10, per=c ( 0 . 7 5 , 0 . 8 , 0 . 8 5 , 0 . 9 , 0 . 9 5 ) , cv . rep = 10) $
r e s . sum

31 }

33 h <− matrix (0 , l ength (A) ,4 )
f o r ( i in 1 : l ength (A) ) {

35 k <− A [ [ i ] ]
h [ i , 1 ] <− k [ 1 , 3 ] # v a r i a b l e s by l a s s o

37 h [ i , 2 ] <− k [ 7 , 3 ] # v a r i a b l e s by p e r c e n t i l e
h [ i , 3 ] <− round ( k [ 1 , 1 ] , 4 ) # e x t r a c t the lambdas min

39 h [ i , 4 ] <− round ( k [ 7 , 1 ] , 4 ) # e x t r a c t the lambdas at cvm
colnames (h) <− c ( ” stand ” , ” per ” , ”lam . min” , ”lam . cvm” )

41

}
43

H <− data . frame (h)
45

# Lambdas
47 lam . min <− t ab l e (H$lam . min )

stand . l . min <− data . frame ( lam . min )
49

#−−−−−−−−#
51 # plo t #

#−−−−−−−−#
53

l i b r a r y ( ggp lot2 )
55

ggp lot ( stand . l . min , aes ( x = Var1 , y = Freq ) ) +

118



57 geom bar ( s t a t = ” i d e n t i t y ” , f i l l = ” ye l low ” ) +
geom text ( aes ( l a b e l = Freq ) , v ju s t = −0.3 , c o l o r =” red ” ) + ###

59 l ab s ( y = ” Frequenc ie s ” , x=expr e s s i on ( hat ( lambda ) ) ,
t i t l e = ” Al l p o s s i b l e tuning parameter by ord inary l a s s o ” )+

61 theme bw( )+
theme ( p l o t . t i t l e = element text ( h ju s t = 0 . 5 , s i z e = r e l ( 1 . 5 ) ) ,

63 a x i s . t ex t = element text ( s i z e = r e l ( 1 . 1 ) , c o l o r = ” black ” ) ,
a x i s . t i t l e . y = element text ( s i z e = r e l ( 1 . 3 ) ) ,

65 a x i s . t i t l e . x = element text ( s i z e = r e l ( 1 . 3 ) ) ,
a x i s . t ex t . x = element text ( ang le = 45 , h ju s t = 1) )

67

69 # non−zero c o e f f i e c i e n t s

71 V <− t ab l e (H$ stand )
V. df <− data . frame (V)

73

ggp lot (V. df , aes ( x = Var1 , y = Freq ) , h ju s t = −0.2) +
75 geom bar ( s t a t = ” i d e n t i t y ” , f i l l = ” skyblue ” , width = 0 . 7 ) +

geom text ( aes ( l a b e l = Freq ) , h ju s t = −0.2 , c o l o r =” red ” ) + ###
77 coord f l i p ( )+

labs ( x = ”Non−zero c o e f f i e c i e n t s ” , y = ” Frequenc ie s ” ,
79 t i t l e = ” Al l p o s s i b l e s e l e c t e d model by ord inary l a s s o ” )+

theme bw( )+
81 theme ( p l o t . t i t l e = element text ( h ju s t = 0 . 5 , s i z e = r e l ( 1 . 5 ) ) ,

a x i s . t ex t = element text ( s i z e = r e l ( 1 . 1 ) , c o l o r = ” black ” ) ,
83 a x i s . t i t l e . y = element text ( s i z e = r e l ( 1 . 3 ) ) ,

a x i s . t i t l e . x = element text ( s i z e = r e l ( 1 . 3 ) ) )
85

87

#−−−−−−−−−−−−−−−−−−−−−−−−−#
89 # plo t p e r c e n t i l e l a s s o #

#−−−−−−−−−−−−−−−−−−−−−−−−−#
91

# Lambdas :
93 lam . p <− t ab l e (H$lam . cvm)

lam . per <− data . frame ( lam . p)
95

#p l o t s :
97 ggp lot ( lam . per , aes ( x = Var1 , y = Freq ) ) +

geom bar ( s t a t = ” i d e n t i t y ” , f i l l = ” green ” , width = 0 . 6 ) +
99 geom text ( aes ( l a b e l = Freq ) , v ju s t = −0.3 , c o l o r =” red ” ) + ###

labs ( y = ” Frequenc ie s ” , x=expr e s s i on ( hat ( lambda ) ) ,
101 t i t l e = ” Al l p o s s i b l e tuning parameter by p e r c e n t i l e−l a s s o ” )+

theme bw( )+
103 theme ( p l o t . t i t l e = element text ( h ju s t = 0 . 5 , s i z e = r e l ( 1 . 5 ) ) ,

a x i s . t ex t = element text ( s i z e = r e l ( 1 . 1 ) , c o l o r = ” black ” ) ,
105 a x i s . t i t l e . y = element text ( s i z e = r e l ( 1 . 3 ) ) ,

a x i s . t i t l e . x = element text ( s i z e = r e l ( 1 . 3 ) ) ,
107 a x i s . t ex t . x = element text ( ang le = 45 , h ju s t = 1) )

109

# non−zero c o e f f i e c i e n t s p l o t s
111 P <− t ab l e (H$ per )

per . l <− data . frame (P)
113

115 ggp lot ( per . l , aes ( x = Var1 , y = Freq ) ) +
geom bar ( s t a t = ” i d e n t i t y ” , f i l l = ” red ” , width = 0 . 7 ) +

117 geom text ( aes ( l a b e l = Freq ) , v ju s t = −0.2 , c o l o r =” blue ” ) + ###
labs ( x = ”Non−zero c o e f f i e c i e n t s ” , y = ” Frequenc ie s ” ,
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119 t i t l e = ” Al l p o s s i b l e s e l e c t e d model by p e r c e n t i l e−l a s s o ” )+
theme bw( )+

121 theme ( p l o t . t i t l e = element text ( h ju s t = 0 . 5 , s i z e = r e l ( 1 . 5 ) ) ,
a x i s . t ex t = element text ( s i z e = r e l ( 1 . 1 ) , c o l o r = ” black ” ) ,

123 a x i s . t i t l e . y = element text ( s i z e = r e l ( 1 . 3 ) ) ,
a x i s . t i t l e . x = element text ( s i z e = r e l ( 1 . 3 ) ) )

125

127 # lambdas : 0 .013985781 −−> 11 v a r i a b l e s
# lambdas : 0 .011611241 −−> 14 v a r i a b l e s

129

# Model A: r e s u l t s
131

per . lam <− 0.01398578 # optimal p e r c e n t i l e lambda ;
133 app mod <− l a s s o app (A. var . org , dat . a , per . lam )

C indx .A <− l a s s o . boot (200 ,A. var . org , dat . a , app mod$C ind apparent , per . lam )
135

137 # at the 1 SE r u l e f o r A
pr . 1 se . a <− 0.03545905 # only 3 v a r i a b l e s were chosen

139 app mod. 1 se . a <− l a s s o app (A. var . org , dat . a , pr . 1 se . a )
C indx . 1 se . a <− l a s s o . boot (200 ,A. var . org , dat . a , app mod. 1 se . a$C ind apparent , pr . 1

se . a )
141

143

# Transform c o e f f i e c i e n t s to HR;
145 HR.A <− exp ( app mod$model )

147

# Test ing the PH assumptions f o r l a s s o model A:
149

c o e f . min <− c o e f ( app mod$ f i t . model , s = ”lambda . min” )
151 k <− c o e f . min [ which ( c o e f . min != 0) , ]

L <− names ( k )
153 L [ 5 ] <− ”TypeVT”

L [ 7 ] <− ”PTS J”
155 M <− L[−6]# remove the TypeVT3

157 Xs <− paste (M, c o l l a p s e=” + ” )
form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

159 paste (Xs , c o l l a p s e=”+” ) ) )

161 cox . obj . a <− coxph ( form , data = dat . a , x=TRUE)
D <− cox . zph ( cox . obj . a )

163

f <− data . frame (D$ ta b l e )# change the name to e n g l i s h f o r t h e s i s
165 rownames ( f )<− c ( ” Surgery ” , ”Pregnant” , ”Hormone” , ”Gender” , ”TypeVT2” , ”TypeVT3” , ”PTS

J1” , ”PTS J2” , ” Leiden V” ,
” f a c t o r VIII ” , ”VWF” , ”D−dimer” , ”GLOBAL” )

167 f <− round ( f , 4 )

169 # R outpt to l a t e x :

171 l i b r a r y ( xtab l e )
p r i n t ( x tab l e ( f , type = ” l a t e x ” , tabu la r . environment=” l o n g t a b l e ” ) , f i l e = ”PH. tex ” )

173

175

#−−−−−−−−−−−−−#
177 # Model C #

#−−−−−−−−−−−−−#
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179

# Remove the l abo ra to ry v a r i a b l e s ;
181 dat .C <− subset ( dat , s e l e c t = −c ( f i b ,AT3,PCC, F7C, f9aggem , f2c , F10C , F11 , lognAPCsr ,

factorV , TFPI , Hgb ,nETPLT, logf8aggem , logvwf , l o g p s f r e e ,
183 logddimer , logWBC, logmoperc , logrdw , logHsCRP) )

185 dat . c <− na . omit ( dat .C)# remove messing va lue s ;

187

X <− C. var . org
189 df <− dat . c

191 Xs <− paste (X, c o l l a p s e=” + ” )
form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

193 paste (Xs , c o l l a p s e=”+” ) ) )

195 x <− model . matrix ( form , df )
y <− Surv ( df $ time , df $ s t a t u s )

197

199 ## Which p e r c e n t i l e to choose :

201 # we w i l l r epeat (345 t imes ) per . l a s s o to check f o r i t s s t a b i l i t y ; thus to choose
one model .

# note that p e r c e n t i l e l a s s o w i l l o f t en prov ide you two models ,
203 # models ar rang ing between 11 and 14 v a r i a b l e s . choose one model .

# we note that the re i s almost no d i f f e r e n c e in model performence ( apparent c−indx
) ,

205 # t h e r f o r e we w i l l choose model with 11 v a r i a b l e s .−−> s e e the next code ;

207 C <− l i s t ( )
f o r ( i in 1 : 345 ) {

209 C [ [ l ength (C) +1] ] <− Per . Lasso (x , y ,K=10, per=c ( 0 . 7 5 , 0 . 8 , 0 . 8 5 , 0 . 9 , 0 . 9 5 ) , cv . rep = 10) $
r e s . sum

211 }

213 # lambdas : 0 .004330508 −−> 14 v a r i a b l e s ( only )

215 # Model C: r e s u l t s

217 per . lam . c <− 0.004330508 # optimal p e r c e n t i l e lambda ;
app mod . c <− l a s s o app (C. var . org , dat . c , per . lam . c )

219 C indx . c <− l a s s o . boot (200 ,C. var . org , dat . c , app mod . c$C ind apparent , per . lam . c )

221 # at the 1 SE−r u l e f o r C

223 pr . 1 se <− 0.025363873
app mod. 1 se <− l a s s o app (C. var . org , dat . c , pr . 1 se )

225 C indx . 1 se <− l a s s o . boot (200 ,C. var . org , dat . c , app mod. 1 se $C ind apparent , pr . 1 se )

227

# Transform c o e f f i e c i e n t s to HR;
229

HR. c <− exp ( app mod . c$model )
231

exp ( app mod. 1 se $model )
233

# Test ing the PH assumptions f o r l a s s o model C:
235

c o e f . min <− c o e f ( app mod . c$ f i t . model , s = ”lambda . min” )
237 k <− c o e f . min [ which ( c o e f . min != 0) , ]
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L <− names ( k )
239 L [ 9 ] <− ”TypeVT”

L [ 1 1 ] <− ”PTS J”
241 M <− L[−c (10 ,12) ]# remove the TypeVT3 and PTS J2

243 Xs <− paste (M, c o l l a p s e=” + ” )
form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

245 paste (Xs , c o l l a p s e=”+” ) ) )

247 cox . obj . c <− coxph ( form , data = dat . c , x=TRUE)

249 D <− cox . zph ( cox . obj . c )
f <− data . frame (D$ ta b l e )

251

# change the names .
253 rownames ( f )<− c ( ” Surgery ” , ” P l a s t e r ca s t ” , ” H o s p i t a l i z a t i o n ” , ”Pregnant” , ”Hormone” , ”

Cardio−d i s e a s e ” , ” Locat ion VT” ,
”Gender” , ”TypeVT2” , ”TypeVT3” , ”PTS J1” , ”PTS J2” , ”Blood−type ” , ” Leiden V” , ”GLOBAL” )

255

f <− round ( f , 4 )
257 pr in t ( x tab l e ( f , type = ” l a t e x ” , tabu la r . environment=” l o n g t a b l e ” ) , f i l e = ”PH c . tex

” )

259

261 #−−−−−−−−−−−−−−−−−−−−−−−−−−−#
# f i g u r e s l a s s o chapter #

263 #−−−−−−−−−−−−−−−−−−−−−−−−−−−#

265 # Figures f o r l a s s o : lambda and p a r t i a l l i k e l i h o o d

267 l i b r a r y ( glmnet )

269

# Model A:
271

# Remove miss ing va lue s ;
273 dat . a <− na . omit ( dat )#

X <− A. var . org
275 df <− dat . a

277 # o b j e c t s f o r p e r c e n t i l e l a s s o ;
Xs <− paste (X, c o l l a p s e=” + ” )

279 form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,
paste (Xs , c o l l a p s e=”+” ) ) )

281

x <− model . matrix ( form , df )
283 y <− Surv ( df $ time , df $ s t a t u s )

285

## Running cv . glmnet .
287 c v f i t <− cv . glmnet (x , y , fami ly = ”cox” )

p l o t ( c v f i t )
289

c o e f . min = c o e f ( c v f i t , s = ”lambda . 1 se ” )
291 a c t i v e . min = which ( c o e f . min != 0)

index . min = c o e f . min [ a c t i v e . min ]
293

# Plot the path :
295 f i t = glmnet (x , y , fami ly = ”cox” )

p l o t ( f i t , xvar = ”lambda” , l a b e l = TRUE)
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8.7 Closed testing analyses

#−−−−−−−−−−−−−−−−−−−−−−−−−−−#
2 # Closed t e s t i n g a n a l y s i s #

#−−−−−−−−−−−−−−−−−−−−−−−−−−−#
4

# load mul t ip l e packages
6 Packages <− c ( ”MASS” , ” pec” , ”survcomp” , ”survAUC” , ”Hmisc” , ” cherry ” )

l app ly ( Packages , r equ i r e , cha rac t e r . only = TRUE)
8

10 ## Model C: Closed t e s t i n g i s app l i ed only to model , c

12 # f i t the f u l l model
f u l l f i t <− coxph ( Surv ( time , s t a t u s ) ˜ . , data = dat . c )

14

# The t e s t func t i on :
16 # This func t i on i s used as our l o c a l t e s t f o r in c l o s e d t e s t i n g procedure

18 mytest <− f unc t i on (H I ) {
# Arguments :

20 # H I : the i n t e r s e c t i o n hypothes i s o f i n t e r e s t ,
# Return : p value : are the r e g r e s s i o n c o e f f i c i e n t 0 or not ?

22

# f i t the f u l l model
24 othe r s <− s e t d i f f (C. var . org , H I )

a <− 1
26 othe r s <− get ( i f e l s e ( l ength ( o the r s )==0,”a” , ” o the r s ” ) )

Xs <− paste ( others , c o l l a p s e=” + ” )
28 form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

paste (Xs , c o l l a p s e=”+” ) ) )
30 cx <− coxph ( form , data = dat . c , x=TRUE)

anov <− anova ( cx , f u l l f i t , t e s t=’LRT ’ )
32 pvalue <−anov$P [ 2 ]

r e turn ( pvalue )
34 }

36 # perfoming c l o s e d t e s t i n g :

38 ct <− c l o s e d ( mytest ,C. var . org , alpha = 0 . 1 )
de f <− d e f i n i n g ( ct )

40 a <− s h o r t l i s t ( c t )

42 # check the number o f TD ( True Discovery ) and FD ( Fal se Discovery )
p ick ( ct , a [ [ 2 2 ] ] )

44

# to f i n d out the the number o f a l l f a l s e hypotheses ;
46

ct1 <− numeric ( l ength ( a ) )
48 d <− numeric ( l ength ( a ) )

f o r ( i in 1 : l ength ( a ) ) {
50 m <− s h o r t l i s t ( c t ) [ [ i ] ]

d [ i ] <− l ength ( s h o r t l i s t ( c t ) [ [ i ] ] )
52 ct1 [ i ] <− pick ( ct ,m )

#p r i n t ( ct1 )
54 }

56 # c r e a t e a data frame conta in ing the number hypothes i s
# and t h e i r number o f f a l s e hypotheses .

58

CT <− data . frame (Hyp=d , f a l s = ct1 )
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60

62

#−−−−−−−−−−−−−−−−−−−−−−−−−−−#
64 # Barplots o f s h o r t l i s t s #

#−−−−−−−−−−−−−−−−−−−−−−−−−−−#
66

# We c r e a t e a barp lo t f o r each s h o r t l i s t model .
68 # these are the v a r i a b l e s names o f the chosen models o f 6 ,7 ,8 ,9 and 10 v a r i a b l e s :

70 nm6 <− c ( ”Sur \n Prg \n Hor \n Loc \n Sx \n PC” , ”Sur \n Prg \n Hor \n Loc \n Sx \n
Typ ” ,

”Sur \n Prg \n Hor \n Loc \n Sx \n VLei” )
72

nm7 <− c ( ”Sur \n Prg \n Hor \n Sx \n Typ \n PC \n VLei” , ”Sur \n Prg \n Hor \n
Sx \n Typ \n Disc \n VLei ” ,

74 ”Sur \n Prg \n Hor \n Sx \n Typ \n Blt \n VLei ” , ”Sur \n Prg \n Hor \n Sx \n
Typ \n PTS \n VLei ” ,

”Sur \n Prg \n Hor \n Sx \n Loc \n Disc \n PTS” , ”Sur \n Prg \n Hor \n Sx \n Loc \
n Disc \n Blt ” ,

76 ”Sur \n Prg \n Hor \n Sx \n Loc \n PTS \n Blt ” )

78

80 nm8 <− c ( ”Sur \n PC \n Hor \n Sx \n Typ \n Loc \n Disc \n VLei ” , ”Sur \n PC \n
Hor \n Sx \n Typ \n Loc \n Blt \n VLei” ,

”Sur \n PC \n Hor \n Sx \n Typ \n Loc \n PTS \n VLei” , ”Sur \n PC \n Hor \n Sx \n
Typ \n Prg \n PTS \n Disc ” ,

82 ”Sur \n PC \n Hor \n Sx \n Typ \n Prg \n PTS \n Blt ” )

84 nm9 <− c ( ”Sur \n Loc \n VLei \n Blt \n PC \n Hor \n Sx \n Disc \n PTS ” , ”Sur \n
Loc \n VLei \n Blt \n PC \n Hor \n Prg \n Typ \n Disc ” ,

”Sur \n Loc \n VLei \n Blt \n PC \n Prg \n Sx \n Typ \n PTS ” , ”Sur \n Loc \n VLei
\n Blt \n PC \n Hor \n Prg \n Typ \n PTS ” ,

86 ”Sur \n Loc \n VLei \n Blt \n Disc \n Hor \n Sx \n Typ \n PTS ” , ”Sur \n Loc \n
VLei \n Prg \n PC \n Disc \n Sx \n Typ \n PTS” )

88

90 nm10 <− c ( ”PC \n Hosp \n Preg \n Hor \n Disc \n Loc \n Sx \n Typ \n VLei\n PTS ”
,

”PC \n Hosp \n Preg \n Hor \n Disc \n Loc \n Sx \n Typ \n VLei \n Blt ” )
92

94 m6 <− which (CT$Hyp==6)# hypo o f 6 v a r i a b l e s
m7 <− which (CT$Hyp==7)# hypo o f 7 v a r i a b l e s

96 m8 <− which (CT$Hyp==8)# hypo o f 8 v a r i a b l e s
m9 <− which (CT$Hyp==9)# hypo o f 9 v a r i a b l e s

98 m10 <− which (CT$Hyp==10)# hypo o f 10 v a r i a b l e s

100

102 # these are the chosen models .
# m6 : 8

104 # m7 : 20
# m8 : 7

106 # m9 : 5
# m10 : 1

108

# Barplot o f model with 6 v a r i a b l e s .
110 bp6 <− barp lo t (CT$Hyp [m6] ,

#main=” S h o r t l i s t models o f 6 v a r i a b l e s ” ,
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112 axes=FALSE, c o l=” ye l low ” ,
xlab=”Number o f t rue d i s c o v e r i e s ” )

114 t ex t ( bp6 , 1 . 5 ,nm6, cex =1.5 , pos=3 )
a x i s (2 , seq (0 , 10 , 1 ) , l i n e =−0.5 , cex . a x i s=1 )

116 a x i s (1 , at=bp6 , l a b e l s=CT$ f a l s [m6] , t i c k=FALSE, l i n e =−0.5 , cex . a x i s =1)

118

# Barplot o f model with 7 v a r i a b l e s .
120 bp7 <− barp lo t (CT$Hyp [m7] ,

#main=” S h o r t l i s t models o f 7 v a r i a b l e s ” ,
122 axes=FALSE, c o l=” red1 ” ,

xlab=”Number o f t rue d i s c o v e r i e s ” )
124 t ex t ( bp7 , 1 ,nm7, cex =1.5 , pos=3 )

a x i s (2 , seq (0 , 10 , 1 ) , l i n e =−0.5 , cex . a x i s=1 )
126 a x i s (1 , at=bp7 , l a b e l s=CT$ f a l s [m7] , t i c k=FALSE, l i n e =−0.5 , cex . a x i s =1)

128

# Barplot o f model with 8 v a r i a b l e s .
130 bp8 <− barp lo t (CT$Hyp [m8] ,

#main=” S h o r t l i s t models o f 8 v a r i a b l e s ” ,
132 axes=FALSE, c o l=” tan3 ” ,

xlab=”Number o f t rue d i s c o v e r i e s ” )
134 t ex t ( bp8 , 1 ,nm8, cex =1.5 , pos=3 )

a x i s (2 , seq (0 , 10 , 1 ) , l i n e =−0.5 , cex . a x i s=1 )
136 a x i s (1 , at=bp8 , l a b e l s=CT$ f a l s [m8] , t i c k=FALSE, l i n e =−0.5 , cex . a x i s =1)

138 # Barplot o f model with 9 v a r i a b l e s .
bp9 <− barp lo t (CT$Hyp [m9] ,

140 #main=” S h o r t l i s t models o f 9 v a r i a b l e s ” ,
axes=FALSE, c o l=” cha r t r eu s e ” ,

142 xlab=”Number o f t rue d i s c o v e r i e s ” )
t ex t ( bp9 , 1 ,nm9, cex =1.5 , pos=3)

144 a x i s (2 , seq (0 , 10 , 1 ) , l i n e =−0.5 , cex . a x i s=1 )
a x i s (1 , at=bp9 , l a b e l s=CT$ f a l s [m9] , t i c k=FALSE, l i n e =−0.5 , cex . a x i s =1)

146

148 # Barplot o f model with 10 v a r i a b l e s .
bp10 <− barp lo t (CT$Hyp [ m10 ] , #main=” S h o r t l i s t models o f 10 v a r i a b l e s ” ,

150 axes=FALSE, c o l=”#009999” ,
xlab=”Number o f t rue d i s c o v e r i e s ” )

152 t ex t ( bp10 , 0 . 25 ,nm10 , cex =1.5 , pos=3 )
a x i s (2 , seq (0 , 11 , 1 ) , l i n e =−0.5 , cex . a x i s=1 )

154 a x i s (1 , at=bp10 , l a b e l s=CT$ f a l s [ m10 ] , t i c k=FALSE, l i n e =−0.5 , cex . a x i s =1)

156

158 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
# c o r r e l a t i o n s f o r d e f i n i n g s e t s #

160 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

162 l i b r a r y ( g g c o r r p l o t )
l i b r a r y ( Hmisc )

164 vr <− c ( ”oper3mnd” , ”gips3mnd” , ”bedzk3mnd” , ”zwan3mnd” , ”hormoon” , ” d i s c a r d i o ” , ”
l o c a t i e 1 v a r I I ” , ” sex J” , ”TypeVT” , ”PTS J” ,

” blgroup ” , ” f v l e i d e n J” , ” time ” , ” s t a t u s ” )
166

data frame <− dat . c [ , vr ]
168 # change columnames to e n g l i s h :

k <− c ( ” Surgery ” , ” P l a s t e r ca s t ” , ” H o s p i t a l i z a t i o n ” , ”Pregnant” , ”Hormone” , ”Cardio−
d i s e a s e ” , ” Locat ion VT” , ”Gender” , ”TypeVT” , ”PTS” ,

170 ”Blood−type ” , ” Leiden V” , ” time ” , ” s t a t u s ” )
colnames ( data frame )<− k
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172 co r r <− as . data . frame ( r c o r r ( as . matrix ( data frame ) , type = ” pearson ” ) $ r )
g g c o r r p l o t ( corr , hc . order = TRUE, type = ” lower ” , lab = TRUE)

174

176 #−−−−−−−−−−−−−−−−−−−−−−−#
# Appl i ca t ion : subset #

178 #−−−−−−−−−−−−−−−−−−−−−−−#

180

#The f u l l model .
182 hypotheses <− c ( ” l o c a t i e 1 v a r I I ” , ” sex J” , ”oper3mnd” , ”bmi” )

184 Xs <− paste ( hypotheses , c o l l a p s e=” + ” )
form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

186 paste (Xs , c o l l a p s e=”+” ) ) )

188 # Ful l model f o r the subset .
f u l l f i t sub <− coxph ( form , data = dat . c )

190

192 #The t e s t func t i on ;

194 t e s t <− f unc t i on (H I ) {
# Arguments :

196 # H I : the i n t e r s e c t i o n hypothes i s o f i n t e r e s t ,
# Return : p value : are the r e g r e s s i o n c o e f f i c i e n t 0 or not ?

198 # f i t the f u l l model
o the r s <− s e t d i f f ( hypotheses , H I )

200 a <− 1
othe r s <− get ( i f e l s e ( l ength ( o the r s )==0,”a” , ” o the r s ” ) )

202 Xs <− paste ( others , c o l l a p s e=” + ” )
form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

204 paste (Xs , c o l l a p s e=”+” ) ) )
cx <− coxph ( form , data = dat . c , x=TRUE)

206 anov <− anova ( cx , f u l l f i t sub , t e s t=’LRT ’ )
pvalue <−anov$P [ 2 ]

208 r e turn ( pvalue )
}

210

212

ct . sub <− c l o s e d ( t e s t , hypotheses )
214

# check the number o f t rue and f a l s e d i s c o v e r i e s .
216 pick ( ct . sub , c ( ” l o c a t i e 1 v a r I I ” , ” sex J” ) )

p ick ( ct . sub , c ( ”oper3mnd” , ”bmi” ) )
218

220

# The d e f i n i n g and the s h o r t l i s t f o r the example ;
222 d e f i n i n g ( ct . sub )

s h o r t l i s t ( c t . sub )
224

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
226 # Bootsrap f o r c l o s e d t e s t i n g #

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
228

l i b r a r y ( ” r i s k R e g r e s s i o n ” )
230

# This func t i on to perform bootsrap i n t e r n a l v a l i d a t i o n f o r c l o s e d t e s t i n g .
232

Boot .H.CT <− f unc t i on (B,X) {
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234 # Arguments :
# X: cova r i a t e s ,

236 # B: number o f bootsrap ,
# return : backward model ,C cor rec ted ,C apparent and 95% C c i .

238

Xs <− paste (X, c o l l a p s e=” + ” )
240 form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

paste (Xs , c o l l a p s e=”+” ) ) )
242

# Fit the model in the o r i g i n a l data : the apparten c index
244 cox1 <− coxph ( form , data = dat . c , x=TRUE)

v <− summary( cox1 )
246

# This i s the apparent c index
248 v <− summary( cox1 )

C indx app <−v$ concordance
250

252 # Empty matrix to s t o r e the boots t rap r e s u l t s ,
M <− matrix ( nrow = B, nco l = 3 ,

254 dimnames = l i s t ( paste ( ’ Sample ’ , 1 :B) ,
c ( ”C o r i g ” , ”C boot ” , ”Optimism” ) ) )

256

n = nrow ( dat . c )
258 s e t . seed (1 )

f o r ( i in 1 :B) {
260

# draw a random sample
262 obs . boot <− sample ( x = 1 : n , s i z e = n , r e p l a c e = T)

data . boot <− dat . c [ obs . boot , ]
264

# f i t the model on boots t rap sample
266 cox . bo <− coxph ( form , data=data . boot , x=TRUE)

268

270 # apply model to o r i g i n a l data
t t t <− q u a n t i l e ( dat . c$ time )

272 k <− predictSurvProb ( cox . bo , newdata=dat . c , t imes=t t t )
harre lC1 <− r c o r r . cens ( k [ , 3 ] , with ( dat . c , Surv ( time , s t a t u s ) ) )

274 M[ i , 1 ] <− harre lC1 [ 1 ]

276 # apply model to boots t rap data
t t <− q u a n t i l e ( data . boot $ time )

278 k1 <− predictSurvProb ( cox . bo , newdata=data . boot , t imes=t t )
harre lC2 <− r c o r r . cens ( k1 [ , 3 ] , with ( data . boot , Surv ( time , s t a t u s ) ) )

280 M[ i , 2 ] <− harre lC2 [ 1 ]

282 # optimism
M[ i , 3 ] <− M[ i , 2]− M[ i , 1 ]

284

}
286 C indx <− C indx app − mean(M[ , 3 ] )

K <− data . frame (M)
288

# con f idence i n t e r v a l f o r C s t a t i s t i c s : by P e r c e n t i l e Method
290 c . boo <− s o r t (K$C boot )

up <− q u a n t i l e ( c . boo , . 9 7 5 )
292 down <− q u a n t i l e ( c . boo , . 0 2 5 )

294 r e turn ( l i s t ( model=cox1 ,C index c o r r e c t e d=C indx ,
C app= C indx app , c i 95 Cindx=c (down , up) ) )
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296 }

298

300

# Cox model summary f o r a l l s h o r t l i s t chosen models ;
302

# model 6 :
304 X6 <− paste ( a [ [ 8 ] ] , c o l l a p s e=” + ” )

form6 <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,
306 paste (X6 , c o l l a p s e=”+” ) ) )

308 cox6 <− coxph ( form6 , data = dat . c , x=TRUE)
summary( cox6 )

310

# model 7 :
312 X7 <− paste ( a [ [ 2 0 ] ] , c o l l a p s e=” + ” )

form7 <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,
314 paste (X7 , c o l l a p s e=”+” ) ) )

316 cox7 <− coxph ( form7 , data = dat . c , x=TRUE)
summary( cox7 )

318

320 # model 8 :
X8 <− paste ( a [ [ 7 ] ] , c o l l a p s e=” + ” )

322 form8 <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,
paste (X8 , c o l l a p s e=”+” ) ) )

324

cox8 <− coxph ( form8 , data = dat . c , x=TRUE)
326 summary( cox8 )

328 # model 9 :
X9 <− paste ( a [ [ 5 ] ] , c o l l a p s e=” + ” )

330 form9 <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,
paste (X9 , c o l l a p s e=”+” ) ) )

332

cox9 <− coxph ( form9 , data = dat . c , x=TRUE)
334 summary( cox9 )

336 # model 10 :
X10 <− paste ( a [ [ 1 ] ] , c o l l a p s e=” + ” )

338 form10 <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,
paste (X10 , c o l l a p s e=”+” ) ) )

340

cox10 <− coxph ( form10 , data = dat . c , x=TRUE)
342 summary( cox10 )

344 # This func t i on w i l l f i n d the 95% CI f o r the
# HR from the cox r e g r e s s i o n model .

346

CI c o e f <− f unc t i on ( cx ) {
348 # Arguments ;

# cx : cox model ob j e c t ;
350 # Returns : 95% CI o f the c o e f f i e c i e n t s ;

Beta sd <− s q r t ( diag ( cx$ var ) )
352 Beta <− round ( cx$ c o e f f i c i e n t s , 4 )

354 up <−down <− numeric ( l ength ( Beta ) )
f o r ( i in 1 : l ength ( Beta ) ) {

356 M <− exp ( Beta [ i ] + c (−1 ,1) ∗ 1 .96 ∗ Beta sd [ i ] )
down [ i ] <− round (M[ 1 ] , 3 )
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358 up [ i ] <− round (M[ 2 ] , 3 )
}

360 HR<− round ( exp ( Beta ) ,3 )
M <− data . frame (HR, down , up )

362 r e turn (M)
}

364

CI c o e f ( cox6 )
366 CI c o e f ( cox7 )

CI c o e f ( cox8 )
368 CI c o e f ( cox9 )

CI c o e f ( cox10 )
370

372 # perfomance and p r e d i c t o r e s f o r the chosen models :
# the c index

374

Boot .H.CT(200 , a [ [ 1 ] ] )
376 Boot .H.CT(200 , a [ [ 5 ] ] )

Boot .H.CT(200 , a [ [ 7 ] ] )
378 Boot .H.CT(200 , a [ [ 2 0 ] ] )

Boot .H.CT(200 , a [ [ 8 ] ] )
380

382 # Function to check the Assumption cox :

384

PH <− f unc t i on ( i ) {
386 # Argument :

# i : model
388 # return :

390 Xs <− paste ( a [ [ i ] ] , c o l l a p s e=” + ” )
form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

392 paste (Xs , c o l l a p s e=”+” ) ) )

394 cox1 <− coxph ( form , data = dat . c , x=TRUE)
return ( cox . zph ( cox1 ) )

396

}
398

# Check the PH assumtion f o r the chosen models
400

# model 6 :
402 ph6 <− data . frame (PH(8) $ t ab l e )

p r i n t ( x tab l e ( ph6 , type = ” l a t e x ” , tabu la r . environment=” l o n g t a b l e ” ) , f i l e = ”PH 6 .
tex ” )

404

# model 9 :
406 ph9 <− data . frame (PH(9) $ t ab l e )

p r i n t ( x tab l e ( ph9 , type = ” l a t e x ” , tabu la r . environment=” l o n g t a b l e ” ) , f i l e = ”PH 9 .
tex ” )

408

410 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
# P r o g n i s t i c p l o t s : q u a n t i l e s p l o t #

412 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

414 ## MODEL 6 :

416 l i b r a r y ( ” survminer ” )
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418 Xs <− paste ( a [ [ 8 ] ] , c o l l a p s e=” + ” )
form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

420 paste (Xs , c o l l a p s e=”+” ) ) )

422 cox1 <− coxph ( form , data = dat . c , x=TRUE)
obj . pred <− p r e d i c t ( cox1 , type = ” lp ” )

424

426 # The p r o g n i s t i c s c o r e s diveded in to q u a n t i l e s ;
groups <− f a c t o r ( cut ( obj . pred , c(− In f ,

428 q u a n t i l e ( obj . pred , 0 . 2 0 ) ,
q u a n t i l e ( obj . pred , 0 . 4 0 ) ,

430 q u a n t i l e ( obj . pred , 0 . 6 0 ) ,
q u a n t i l e ( obj . pred , 0 . 8 0 ) ,

432 I n f ) ) ,
l a b e l s =c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) )

434

f i t <− s u r v f i t ( Surv ( time , s t a t u s ) ˜ groups , data =dat . c )
436

ggsurvp lo t (
438 f i t ,

s i z e = 1 , # change l i n e s i z e
440 p a l e t t e = c ( ” red ” , ” blue ” , ”#009999” , ” ye l low ” , ” orange ” ) ,#

#conf . i n t = TRUE , # Add con f idence i n t e r v a l
442 r i s k . t a b l e = TRUE , # Add r i s k t ab l e

censor = FALSE ,
444 pval = FALSE ,

#r i s k . t ab l e . c o l = ” s t r a t a ” , # Risk ta b l e c o l o r by groups
446 xlab = ” Time in years s i n c e 1 VT ” ,

ylab = ” Pr o b ab i l i t y o f r e cu r r ence ” ,
448 break . time . by = 2 ,

legend . l ab s = c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) ,
450 r i s k . t a b l e . he ight = 0.35 ,

surv . median . l i n e = ”hv” ,
452 fun = ” event ” ,

ggtheme = theme c l a s s i c ( ) # Change ggp lot2 theme
454 )

456

458 ## MODEL 7

460 Xs <− paste ( a [ [ 1 4 ] ] , c o l l a p s e=” + ” )
form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

462 paste (Xs , c o l l a p s e=”+” ) ) )

464 cox1 <− coxph ( form , data = dat . c , x=TRUE)
obj . pred <− p r e d i c t ( cox1 , type = ” lp ” )

466

468 # The p r o g n i s t i c s c o r e s diveded in to q u a n t i l e s ;
groups <− f a c t o r ( cut ( obj . pred , c(− In f ,

470 q u a n t i l e ( obj . pred , 0 . 2 0 ) ,
q u a n t i l e ( obj . pred , 0 . 4 0 ) ,

472 q u a n t i l e ( obj . pred , 0 . 6 0 ) ,
q u a n t i l e ( obj . pred , 0 . 8 0 ) ,

474 I n f ) ) ,
l a b e l s =c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) )

476

f i t <− s u r v f i t ( Surv ( time , s t a t u s ) ˜ groups , data =dat . c )
478

ggsurvp lo t (
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480 f i t ,
s i z e = 1 , # change l i n e s i z e

482 p a l e t t e = ” j co ” , #
#conf . i n t = TRUE , # Add con f idence i n t e r v a l

484 r i s k . t a b l e = TRUE , # Add r i s k t ab l e
censor = FALSE ,

486 pval = FALSE ,
#r i s k . t ab l e . c o l = ” s t r a t a ” , # Risk ta b l e c o l o r by groups

488 xlab = ” Time in years s i n c e 1 VT ” ,
ylab = ” P ro b a b i l i t y o f r e cu r r ence ” ,

490 break . time . by = 2 ,
legend . l ab s = c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) ,

492 r i s k . t a b l e . he ight = 0.35 ,
surv . median . l i n e = ”hv” ,

494 fun = ” event ” ,
ggtheme = theme c l a s s i c ( ) # Change ggp lot2 theme

496 )

498 ## MODEL 8

500 Xs <− paste ( a [ [ 7 ] ] , c o l l a p s e=” + ” )
form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

502 paste (Xs , c o l l a p s e=”+” ) ) )

504 cox1 <− coxph ( form , data = dat . c , x=TRUE)
obj . pred <− p r e d i c t ( cox1 , type = ” lp ” )

506

508 # The p r o g n i s t i c s c o r e s diveded in to q u a n t i l e s ;
groups <− f a c t o r ( cut ( obj . pred , c(− In f ,

510 q u a n t i l e ( obj . pred , 0 . 2 0 ) ,
q u a n t i l e ( obj . pred , 0 . 4 0 ) ,

512 q u a n t i l e ( obj . pred , 0 . 6 0 ) ,
q u a n t i l e ( obj . pred , 0 . 8 0 ) ,

514 I n f ) ) ,
l a b e l s =c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) )

516

f i t <− s u r v f i t ( Surv ( time , s t a t u s ) ˜ groups , data =dat . c )
518

ggsurvp lo t (
520 f i t ,

s i z e = 1 , # change l i n e s i z e
522 p a l e t t e = ” j co ” , #

#conf . i n t = TRUE , # Add con f idence i n t e r v a l
524 r i s k . t a b l e = TRUE , # Add r i s k t ab l e

censor = FALSE ,
526 pval = FALSE ,

#r i s k . t ab l e . c o l = ” s t r a t a ” , # Risk ta b l e c o l o r by groups
528 xlab = ” Time in years s i n c e 1 VT ” ,

ylab = ” P ro b a b i l i t y o f r e cu r r ence ” ,
530 break . time . by = 2 ,

legend . l ab s = c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) ,
532 r i s k . t a b l e . he ight = 0.35 ,

surv . median . l i n e = ”hv” ,
534 fun = ” event ” ,

ggtheme = theme c l a s s i c ( ) # Change ggp lot2 theme
536 )

538

540 ## Model 9 :
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542 Xs <− paste ( a [ [ 6 ] ] , c o l l a p s e=” + ” )
form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

544 paste (Xs , c o l l a p s e=”+” ) ) )

546 cox1 <− coxph ( form , data = dat . c , x=TRUE)
obj . pred <− p r e d i c t ( cox1 , type = ” lp ” )

548

550 # The p r o g n i s t i c s c o r e s diveded in to q u a n t i l e s ;
groups <− f a c t o r ( cut ( obj . pred , c(− In f ,

552 q u a n t i l e ( obj . pred , 0 . 2 0 ) ,
q u a n t i l e ( obj . pred , 0 . 4 0 ) ,

554 q u a n t i l e ( obj . pred , 0 . 6 0 ) ,
q u a n t i l e ( obj . pred , 0 . 8 0 ) ,

556 I n f ) ) ,
l a b e l s =c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) )

558

f i t <− s u r v f i t ( Surv ( time , s t a t u s ) ˜ groups , data =dat . c )
560

ggsurvp lo t (
562 f i t ,

s i z e = 1 , # change l i n e s i z e
564 p a l e t t e = ” j co ” , #

#conf . i n t = TRUE , # Add con f idence i n t e r v a l
566 r i s k . t a b l e = TRUE , # Add r i s k t ab l e

censor = FALSE ,
568 pval = FALSE ,

#r i s k . t ab l e . c o l = ” s t r a t a ” , # Risk ta b l e c o l o r by groups
570 xlab = ” Time in years s i n c e 1 VT ” ,

ylab = ” Pr o b ab i l i t y o f r e cu r r ence ” ,
572 break . time . by = 2 ,

legend . l ab s = c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) ,
574 r i s k . t a b l e . he ight = 0.35 ,

surv . median . l i n e = ”hv” ,
576 fun = ” event ” ,

ggtheme = theme c l a s s i c ( ) # Change ggp lot2 theme
578 )

580

## model 10 :
582

Xs <− paste ( a [ [ 1 ] ] , c o l l a p s e=” + ” )
584 form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

paste (Xs , c o l l a p s e=”+” ) ) )
586

cox1 <− coxph ( form , data = dat . c , x=TRUE)
588 obj . pred <− p r e d i c t ( cox1 , type = ” lp ” )

590

# The p r o g n i s t i c s c o r e s diveded in to q u a n t i l e s ;
592 groups <− f a c t o r ( cut ( obj . pred , c(− In f ,

q u a n t i l e ( obj . pred , 0 . 2 0 ) ,
594 q u a n t i l e ( obj . pred , 0 . 4 0 ) ,

q u a n t i l e ( obj . pred , 0 . 6 0 ) ,
596 q u a n t i l e ( obj . pred , 0 . 8 0 ) ,

I n f ) ) ,
598 l a b e l s =c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) )

600 f i t <− s u r v f i t ( Surv ( time , s t a t u s ) ˜ groups , data =dat . c )

602 ggsurvp lo t (
f i t ,
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604 s i z e = 1 , # change l i n e s i z e
p a l e t t e = ” j co ” , #

606 #conf . i n t = TRUE , # Add con f idence i n t e r v a l
r i s k . t a b l e = TRUE , # Add r i s k t ab l e

608 censor = FALSE ,
#r i s k . t ab l e . c o l = ” s t r a t a ” , # Risk ta b l e c o l o r by groups

610 xlab = ” Time in years s i n c e 1 VT ” ,
ylab = ” P ro b a b i l i t y o f r e cu r r ence ” ,

612 break . time . by = 2 ,
legend . l ab s = c ( ”Q1” , ” Q2” , ”Q3” , ”Q4” , ”Q5” ) ,

614 r i s k . t a b l e . he ight = 0.35 ,
surv . median . l i n e = ”hv” ,

616 fun = ” event ” ,
ggtheme = theme c l a s s i c ( ) # Change ggp lot2 theme

618 )

134



8.8 Nomograms for survival analysis

2

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
4 # Nomogram p lo t by H a r r e l l #

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
6

l i b r a r y ( rms )
8 l i b r a r y ( s u r v i v a l )

10 # data fopr model C:
# model c 6 had the next p r e d i c t o r s

12

K <− dat . c [ , c ( ”oper3mnd” , ”gips3mnd” , ”hormoon” , ”zwan3mnd” , ” l o c a t i e 1 v a r I I ” , ” sex J” , ”
time ” , ” s t a t u s ” ) ]

14 dat .K <− data . frame (K)

16 # change the columnnames to e n g l i s h names ;
colnames ( dat .K) <− c ( ” Surgery ” , ” P l a s t e r ca s t ” , ”Hormone use ” , ”Pregnant” , ” Locat ion

VT” , ”Gender” , ” time ” , ” s t a t u s ” )
18

dat .K[ , c ( 1 : 6 ) ] <− l app ly ( dat .K[ , c ( 1 : 6 ) ] , f a c t o r )# make the columns as f a c t o r s
20

# change 0 to no and 1 to yes , and gender code ing too ;
22 dat .K$Gender <− f a c t o r ( dat .K$Gender , l a b e l s=c ( ’ female ’ , ’ male ’ ) )

dat .K$ P l a s t e r ca s t <− i f e l s e ( dat .K$ P l a s t e r ca s t ==1,” yes ” , ”no” )
24 dat .K$ Surgery <− i f e l s e ( dat .K$ Surgery==1,” yes ” , ”no” )

dat .K$Hormone use <− i f e l s e ( dat .K$Hormone use==1,” yes ” , ”no” )
26 dat .K$Pregnant <− i f e l s e ( dat .K$Pregnant==1,” yes ” , ”no” )

dat .K$ Locat ion VT <− i f e l s e ( dat .K$ Locat ion VT==1,” proximal ” , ” d i s t a l ” )
28

# f i t the model ,
30 X<− c ( ” Surgery ” , ” P l a s t e r ca s t ” , ”Hormone use ” , ”Pregnant” , ” Locat ion VT” , ”Gender” )

Xs <− paste (X, c o l l a p s e=” + ” )
32 form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

paste (Xs , c o l l a p s e=”+” ) ) )
34 cox . obj <− cph ( form , data = dat .K , surv=TRUE)

36 # using the H a r r e l l code to generate nomograms ,
dd i s t <− datad i s t ( dat .K)

38 opt ions ( da tad i s t=’ dd i s t ’ )
surv . cox <− Surv iva l ( cox . obj )

40

nom. cox <− nomogram( cox . obj , fun=l i s t ( func t i on ( x )
42 surv . cox (2 , x ) , f unc t i on ( x ) surv . cox (5 , x ) ) ,

f u n l a b e l=c ( ”2−Year Sur . Prob . ” , ”5−Year Sur . Prob . ” ) , lp=F)
44

p lo t (nom. cox )
46

# generate ang le number : we need to change some p r o b a b i l i t i e s
48 # because they were not v i s i b l e on the p l o t .

50 l a b e l s <− seq ( 0 . 8 , 0 . 9 8 , 0 . 0 2 )
mp <− barp lo t ( 1 : 1 2 , axes = FALSE, axisnames = FALSE)

52 t ex t (mp, par ( ” usr ” ) [ 3 ] , l a b e l s = l a b e l s , s r t = 70 , adj = c ( 1 . 1 , 1 . 1 ) , xpd = TRUE,
cex =.9)

a x i s (2 )
54

56 #−−−−−−−−−−−−−−−−−−−−−#
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# nomogram v e r s i on I I #
58 #−−−−−−−−−−−−−−−−−−−−−#

60 #i n s t a l l . packages (” r e g p l o t ”)

62

source ( ”D: / Locker /D documents/ s t u d i e / master / Thes i s / data / data prep f a c t o r s .R” )
64

l i b r a r y ( s u r v i v a l )
66 l i b r a r y ( r e g p l o t )

68 # data :

70 dat .C <− subset ( dat , s e l e c t = −c ( f i b ,AT3,PCC, F7C, f9aggem , f2c , F10C , F11 , lognAPCsr ,
factorV , TFPI , Hgb ,nETPLT, logf8aggem , logvwf , l o g p s f r e e ,

72 logddimer , logWBC, logmoperc , logrdw , logHsCRP) )

74 dat . c <− na . omit ( dat .C)# remove messing va lue s ;

76 K <− dat . c [ , c ( ”oper3mnd” , ”gips3mnd” , ”hormoon” , ”zwan3mnd” , ” l o c a t i e 1 v a r I I ” , ” sex J” , ”
time ” , ” s t a t u s ” ) ]

dat .K <− data . frame (K)
78 colnames ( dat .K) <− c ( ” Surgery ” , ” P l a s t e r ca s t ” , ”Hormone use ” , ”Pregnant” , ” Locat ion

VT” , ”Gender” , ” time ” , ” s t a t u s ” )

80

K$ surgery <− i f e l s e ( dat .K$oper3mnd==1,” yes ” , ”no” )
82 K$ p l a s t e r ca s t <− i f e l s e (K$gips3mnd==1,” yes ” , ”no” )

K$oper3mnd <− as . f a c t o r (K$oper3mnd )
84 K$gips3mnd <− as . f a c t o r (K$gips3mnd )

86

dat .K[ , c ( 1 : 6 ) ] <− l app ly ( dat .K[ , c ( 1 : 6 ) ] , f a c t o r )
88 dat .K$Gender <− f a c t o r ( dat .K$Gender , l a b e l s=c ( ’ female ’ , ’ male ’ ) )

90

X<− c ( ” Surgery ” , ” P l a s t e r ca s t ” , ”Hormone use ” , ”Pregnant” , ” Locat ion VT” , ”Gender” )
92 Xs <− paste (X, c o l l a p s e=” + ” )

form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,
94 paste (Xs , c o l l a p s e=”+” ) ) )

96 cx . obj <− coxph ( form , data = dat .K )
r e g p l o t ( cx . obj , dummies = FALSE, obse rvat i on= dat .K[ 1 0 , ] , po in t s = TRUE, f a i l t i m e =

c (1 , 5) , p r f a i l = TRUE,
98 showP=FALSE)
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8.9 Coefficients plots

2 l i b r a r y ( ”arm” )

4

varNames <− c ( ” age ” , ” surgery ” , ” p l a s t e r−ca s t ” , ” h o s p i t a l ” , ” pregnant ” , ”hormone” , ”
Cardio−d i s e ” , ” cerebro−d i s e ” ,

6 ”BMI” , ” Locat ion VT” , ” gender ” , ”provokedov” , ” d i s c h r J” , ”PTS1” , ”PTS2” ,
”blood−type ” , ” Leiden V” , ”TypeVT2” , ”TypeVT3” , ” f a c t o r IX” , ” f a c t o r I I ” , ” f a c t o r X” , ”

f a c t o r XI” , ”APC−r a t i o ” ,
8 ” f i b r i n o g e n ” , ” ant i t rombine ” , ” p ro t e in C” , ” f a c t o r VII” , ” f a c t o r V” , ”TFPI” , ”Hemoglobin

” ,
”ETP−low−TF” , ” f a c t o r VIII ” , ”VWF” , ” p ro t e in S” , ”D−dimer” , ”white−blood ” , ”monocyte” , ”

red−c e l l ” , ”HsCRP” )
10 varNames<− varNames [ order ( varNames ) ]

12

#−−−−−−−−−−−−−−−−−−−−−#
14 # backward s e l e c t i o n #

#−−−−−−−−−−−−−−−−−−−−−#
16

18 # Model A

20 B. a <− as . matrix (A.bw$backward model$ c o e f f i c i e n t s )

22 # change names :
rownames (B. a ) <− c ( ” surgery ” , ”hormone” , ” gender ” , ”TypeVT2” , ”TypeVT3” , ” f i b r i n o g e n ” ,

” p ro t e in C” , ” f a c t o r X” ,
24 ” f a c t o r XI” , ”APC−r a t i o ” , ” f a c t o r VIII ” , ”D−dimer” )

x <− rownames (B. a )
26

28 ad . a <− varNames [ ! varNames %in% x ]
mat . a <− matrix (0 , l ength ( ad . a ) ,1 )

30 rownames (mat . a ) <− ad . a
mat . a <− rbind (B. a , mat . a )

32 mat .A <− as . matrix (mat . a [ order ( rownames (mat . a ) ) , ] )
A. mat <− as . vec to r (mat .A)

34

36 # Model C

38 rm( l i s t = c ( ”x” , ” s ” ) )

40

C.B <− as . matrix (C.bw$backward model$ c o e f f i c i e n t s )
42

# change names :
44 rownames (C.B)<− c ( ” surgery ” , ” p l a s t e r−ca s t ” , ” pregnant ” , ”hormone” , ” Locat ion VT” , ”

gender ” , ”TypeVT2” , ”TypeVT3” , ” Leiden V” )
x <− rownames (C.B)

46

adc <− varNames [ ! varNames %in% x ]
48 matc <− matrix (0 , l ength ( adc ) ,1 )

rownames ( matc ) <− adc
50 matc <− rbind (C.B, matc )

matC <− as . matrix ( matc [ order ( rownames ( matc ) ) , ] )
52 v . matC <− as . vec to r (matC)

137



54 #−−−−−−−−−−−−−−−−−−−−−−#
# P e r c e n t i l e and l a s s o #

56 #−−−−−−−−−−−−−−−−−−−−−−#

58 # Model A

60 l .A <− as . matrix ( app mod$model )
# change names :

62 rownames ( l .A)<− c ( ” surgery ” , ” pregnant ” , ”hormone” , ” gender ” , ”TypeVT2” , ”TypeVT3” ,
”PTS2” , ” Leiden V” , ” f a c t o r VIII ” , ”VWF” , ”D−dimer” )

64 s <− rownames ( l .A)

66 ads <− varNames [ ! varNames %in% s ]
mats <− matrix (0 , l ength ( ads ) ,1 )

68 rownames ( mats ) <− ads
mats <− rbind ( l .A, mats )

70 mat1 <− as . matrix ( mats [ order ( rownames ( mats ) ) , ] )
A. L <− as . vec to r ( mat1 )

72

# Plots f o r model A:
74

# Graph the r e g r e s s i o n c o e f f i c i e n t s
76 c o e f p l o t (A. mat , sd = rep (0 , 40) , CI=0, xlim=c ( −1 .5 ,1 .5 ) , pch=8, cex . pts = 1 ,

main = ”Cox c o e f f i c i e n t e s t imate s ” , varnames = varNames , c o l=” red ” )
78

80 c o e f p l o t (A. L , sd = rep (0 , 40) , pch=16, add = TRUE, c o l . pts = ” blue ” )
legend ( ” bottomright ” , c ( ”Backward” , ”LASSO” ) , c o l = c ( ” red ” , ” blue ” ) , pch = c (8 ,

16) , bty = ”o” )
82

84 # Model C

86 l .C <− as . matrix ( app mod . c$model )

88 # change names :
rownames ( l .C) <− c ( ” surgery ” , ” p l a s t e r−ca s t ” , ” h o s p i t a l ” , ” pregnant ” , ”hormone” , ”

Cardio−d i s e ” , ” Locat ion VT” , ” gender ” ,
90 ”TypeVT2” , ”TypeVT3” , ”PTS1” , ”PTS2” , ”blood−type ” , ” Leiden V” )

sC <− rownames ( l .C)
92 adC <− varNames [ ! varNames %in% sC ]

matt <− matrix (0 , l ength (adC) ,1 )
94 rownames ( matt ) <− adC

matt <− rbind ( l .C, matt )
96 mat1c <− as . matrix ( matt [ order ( rownames ( matt ) ) , ] )

v .LC <− as . vec to r ( mat1c )
98

#−−−−−−−−−−−−−−−−#
100 # c l o s e d t e s t i n g #

#−−−−−−−−−−−−−−−−#
102

# Model C6 :
104

Xs <− paste ( a [ [ 8 ] ] , c o l l a p s e=” + ” )
106 form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,

paste (Xs , c o l l a p s e=”+” ) ) )
108

cox1 <− coxph ( form , data = dat . c , x=TRUE)
110

112 modl <− cox1$ c o e f f i c i e n t s
ct .C <− as . matrix ( modl )

138



114

# change names :
116 rownames ( ct .C) <− c ( ” surgery ” , ” p l a s t e r−ca s t ” , ” pregnant ” , ”hormone” , ” Locat ion VT” ,

” gender ” )
ct <− rownames ( ct .C)

118

ad . c t <− varNames [ ! varNames %in% ct ]
120 mat . c t <− matrix (0 , l ength ( ad . c t ) , 1 )

rownames (mat . c t ) <− ad . ct
122 mat . c t <− rbind ( ct .C, mat . c t )

mat . c t . c <− as . matrix (mat . c t [ order ( rownames (mat . c t ) ) , ] )
124 ct . vC <− as . vec to r (mat . c t . c )

126 # p l o t s f o r model C6

128 # Graph the r e g r e s s i o n c o e f f i c i e n t s
c o e f p l o t ( v . matC , sd = rep (0 , 40) , CI=0, xlim=c ( −1 .5 ,1 .5 ) , pch=8, cex . pts = 1 , cex .

var =0.8 ,
130 main = ”Cox c o e f f i c i e n t e s t imate s ” , varnames = varNames , c o l=” red ” )

132 c o e f p l o t ( v .LC, sd = rep (0 , 40) , pch=16, add = TRUE, c o l . pts = ” blue ” )
legend ( ” bottomright ” , c ( ”Backward” , ”LASSO” ) , c o l = c ( ” red ” , ” blue ” ) , pch = c (8 ,

16) , bty = ”o” )
134

c o e f p l o t ( c t . vC , sd = rep (0 , 40) , pch=10, add = TRUE, c o l . pts = ” green ” )
136 l egend ( ” bottomright ” , c ( ”Backward” , ”LASSO” , ” Closed Test ing ” ) , c o l = c ( ” red ” , ”

blue ” , ” green ” ) , pch = c (8 , 16 ,10) , bty = ”o” )

138

#−−−−−−−−−−−−−−−#
140 # One SE l a s s o #

#−−−−−−−−−−−−−−−#
142

l .BC <− as . matrix ( app mod. 1 se $model )
144

# change names :
146 rownames ( l .BC) <− c ( ” surgery ” , ”hormone” , ” Locat ion VT” , ” gender ” , ”TypeVT=3” , ”

Leiden V” )
sC <− rownames ( l .BC)

148 adC <− varNames [ ! varNames %in% sC ]
matt <− matrix (0 , l ength (adC) ,1 )

150 rownames ( matt ) <− adC
matt <− rbind ( l .BC, matt )

152 mat1c <− as . matrix ( matt [ order ( rownames ( matt ) ) , ] )
v .LC <− as . vec to r ( mat1c )

154

c o e f p l o t ( v .LC, sd = rep (0 , 40) , pch=16, add = TRUE, c o l . pts = ” blue ” )
156 l egend ( ” bottomright ” , c ( ”Backward” , ”LASSO” ) , c o l = c ( ” red ” , ” blue ” ) , pch = c (8 ,

16) , bty = ”o” )

158

cbind ( mat1c , matC)
160 cbind ( mat1c , mat)
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8.10 Sensitivity of lasso to data changes

1

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
3 # The prev ious data preparat i on #

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
5

# This was the o r i g i n a l data preparat ion proce s s .
7 # Lasso r e s u l t e d in d i f f e r e n t models , whereas p e r c e n t i l e l a s s o

# was very s t a b l e . This shows how l a s s o was very s e n s i t i v e
9 # to smal l changes in data R coding .

11

l i b r a r y ( haven )
13 dat <− read dta ( ” . . . . Data source . . . . ” )

15 # remove the next v a r i a b l e s v a r i a b l e s : because they were r ep laced by new v a r i a b l e s
:

# d i s c h r J −> d i s c h r S
17 # provokedov −> provokedov S

# l o c a t i e 1 v a r −> l o c a t i e 1 v a r S
19 # PTS1var −> PTS J

21 dat <− subset ( dat , s e l e c t = −c ( d i s c h r J , provokedov , l o c a t i e 1 v a r , PTS1var ) )

23 # Some data v a r i a b l e s to be changed ;

25 dat$DVT <− i f e l s e ( dat $TypeVT==1 | dat$TypeVT==3 ,1 ,0)
dat$PE <− i f e l s e ( dat $TypeVT==2 | dat$TypeVT==3 ,1 ,0)

27 dat$ l o c a t i e 1 v a r I I <− i f e l s e ( dat $ l o c a t i e 1 v a r S==2 ,1 ,0)
dat$PTS J <− as . f a c t o r ( dat$PTS J )

29

# note that TypeVT has 3 c a t e g o r i e i . e : DVT=1,PE=2 and DVT+PE=3;
31 # l e t us use t h i s only f o r s t a t i s t i c a l model l ing ,

# and f o r the data d e s c r i t i o n we use the exact in fo rmat ion .
33

35 # remove TypeVT and l o c a t i e 1 v a r . due to redundancy .
# we remove SNPscore , because i t has so many miss ing v a r i a b l e s : 70%

37 dat <− subset ( dat , s e l e c t = −c (TypeVT, l o c a t i e 1 v a r S , SNPscore ) )

39 # note that some v a r i a b l e s are a l r eady coded as 0/ 1 , thus
# there ’ s no need to make them as f a c t o r in R.

41

43 # P e r e d i c t o r s :

45 c l i n i c a l . f <− c ( ” l f t ” , ”oper3mnd” , ”gips3mnd” , ”bedzk3mnd” , ”zwan3mnd” , ”hormoon” ,
” d i s c a r d i o ” , ” d i s c e r e b r o ” , ”bmi” , ” l o c a t i e 1 v a r I I ” , ” sex J” , ”provokedov S” ,

47 ”DVT” , ” d i s c h r S” , ”PTS J” , ”PE” )

49 g e n e t i c s . f <− c ( ” blgroup ” , ” f v l e i d e n J” )

51 l abo ra to ry . f <− c ( ” f i b ” , ”AT3” , ”PCC” , ”F7C” , ” f9aggem” , ” f 2 c ” , ”F10C” , ”F11” , ” lognAPCsr
” ,

” factorV ” , ”TFPI” , ”Hgb” , ”nETPLT” , ” logf8aggem ” , ” logvwf ” , ” l o g p s f r e e ” ,
53 ” logddimer ” , ”logWBC” , ” logmoperc ” , ” logrdw ” , ”logHsCRP” )

55

57 A. var . org <− c ( c l i n i c a l . f , g e n e t i c s . f , l abo ra to ry . f )
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C. var . org <− c ( c l i n i c a l . f , g e n e t i c s . f )
59

61

# Surv iva l a n a l y s i s time and indeca to r
63

# r e c i d i e f t i m e −> time to event
65 # r e c i d i e f u n p r o v −> event

67 dat$ time <− dat$ r e c i d i e f t i m e
dat$ s t a t u s <− dat$ r e c i d i e f u n p r o v

69

# remove the redundant v a r i a b l e s
71 dat <− subset ( dat , s e l e c t = −c ( r e c i d i e f t i m e , r e c i d i e f u n p r o v ) )

73

75 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
# l a s s o and p e r c e n t i l e l a s s o I I #

77 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

79 # Model A:

81 # Remove miss ing va lue s ;
dat . a <− na . omit ( dat )#

83 X <− A. var . org
df <− dat . a

85

# o b j e c t s f o r p e r c e n t i l e l a s s o ;
87 Xs <− paste (X, c o l l a p s e=” + ” )

form <− as . formula ( paste ( ”Surv ( time , s t a t u s ) ˜” ,
89 paste (Xs , c o l l a p s e=”+” ) ) )

91 x <− model . matrix ( form , df )
y <− Surv ( df $ time , df $ s t a t u s )

93

# Which p e r c e n t i l e to choose :
95

# we w i l l r epeat (345 t imes ) per . l a s s o to check f o r i t s s t a b i l i t y ; thus to choose
one model .

97 # note that p e r c e n t i l e l a s s o w i l l o f t en prov ide you two models ,
# models ar rang ing between 11 and 14 v a r i a b l e s . choose one model .

99 # we note that the re i s almost no d i f f e r e n c e in model performence ( apparent c−indx
) ,

# t h e r f o r e we w i l l choose model with 11 v a r i a b l e s C=0.703485 , and C=0.704815 f o r 14
v a r i a b l e s .−−> s ee the next code ;

101

A <− l i s t ( )
103 f o r ( i in 1 : 345 ) {

A [ [ l ength (A) +1] ] <− Per . Lasso (x , y ,K=10, per=c ( 0 . 7 5 , 0 . 8 , 0 . 8 5 , 0 . 9 , 0 . 9 5 ) , cv . rep = 10) $
r e s . sum

105

}
107

# lambdas : 0 .013985781 −−> 11 v a r i a b l e s
109 # lambdas : 0 .011611241 −−> 14 v a r i a b l e s

111 # Model A: r e s u l t s
per . lam <− 0.01398578 # optimal p e r c e n t i l e lambda ;

113 app mod <− l a s s o app (A. var . org , dat . a , per . lam )
C indx .A <− l a s s o . boot (200 ,A. var . org , dat . a , app mod$C ind apparent , per . lam )

115
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117 A <− l i s t ( )
f o r ( i in 1 : 345 ) {

119 A [ [ l ength (A) +1] ] <− Per . Lasso (x , y ,K=10, per=c ( 0 . 7 5 , 0 . 8 , 0 . 8 5 , 0 . 9 , 0 . 9 5 ) , cv . rep = 10) $
r e s . sum

121 }

123 h <− matrix (0 , l ength (A) ,4 )
f o r ( i in 1 : l ength (A) ) {

125 k <− A [ [ i ] ]
h [ i , 1 ] <− k [ 1 , 3 ] # v a r i a b l e s by l a s s o

127 h [ i , 2 ] <− k [ 7 , 3 ] # v a r i a b l e s by p e r c e n t i l e
h [ i , 3 ] <− round ( k [ 1 , 1 ] , 4 ) # e x t r a c t the lambdas min

129 h [ i , 4 ] <− round ( k [ 7 , 1 ] , 4 ) # e x t r a c t the lambdas at cvm
colnames (h) <− c ( ” stand ” , ” per ” , ”lam . min” , ”lam . cvm” )

131

}
133

H <− data . frame (h)
135

# Lambdas
137 lam . min <− t ab l e (H$lam . min )

stand . l . min <− data . frame ( lam . min )
139

#−−−−−−−−#
141 # plo t #

#−−−−−−−−#
143

l i b r a r y ( ggp lot2 )
145

ggp lot ( stand . l . min , aes ( x = Var1 , y = Freq ) ) +
147 geom bar ( s t a t = ” i d e n t i t y ” , f i l l = ” ye l low ” ) +

geom text ( aes ( l a b e l = Freq ) , v ju s t = −0.3 , c o l o r =” red ” ) + ###
149 l ab s ( y = ” Frequenc ie s ” , x=expr e s s i on ( hat ( lambda ) ) ,

t i t l e = ” Al l p o s s i b l e tuning parameter by ord inary l a s s o ” )+
151 theme bw( )+

theme ( p l o t . t i t l e = element text ( h ju s t = 0 . 5 , s i z e = r e l ( 1 . 5 ) ) ,
153 a x i s . t ex t = element text ( s i z e = r e l ( 1 . 1 ) , c o l o r = ” black ” ) ,

a x i s . t i t l e . y = element text ( s i z e = r e l ( 1 . 3 ) ) ,
155 a x i s . t i t l e . x = element text ( s i z e = r e l ( 1 . 3 ) ) ,

a x i s . t ex t . x = element text ( ang le = 45 , h ju s t = 1) )
157

159 # non−zero c o e f f i e c i e n t s

161 V <− t ab l e (H$ stand )
V. df <− data . frame (V)

163

ggp lot (V. df , aes ( x = Var1 , y = Freq ) , h ju s t = −0.2) +
165 geom bar ( s t a t = ” i d e n t i t y ” , f i l l = ” skyblue ” , width = 0 . 7 ) +

geom text ( aes ( l a b e l = Freq ) , h ju s t = −0.2 , c o l o r =” red ” ) + ###
167 coord f l i p ( )+

labs ( x = ”Non−zero c o e f f i e c i e n t s ” , y = ” Frequenc ie s ” ,
169 t i t l e = ” Al l p o s s i b l e s e l e c t e d model by ord inary l a s s o ” )+

theme bw( )+
171 theme ( p l o t . t i t l e = element text ( h ju s t = 0 . 5 , s i z e = r e l ( 1 . 5 ) ) ,

a x i s . t ex t = element text ( s i z e = r e l ( 1 . 1 ) , c o l o r = ” black ” ) ,
173 a x i s . t i t l e . y = element text ( s i z e = r e l ( 1 . 3 ) ) ,

a x i s . t i t l e . x = element text ( s i z e = r e l ( 1 . 3 ) ) )
175
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177

#−−−−−−−−−−−−−−−−−−−−−−−−−#
179 # plo t p e r c e n t i l e l a s s o #

#−−−−−−−−−−−−−−−−−−−−−−−−−#
181

# Lambdas :
183 lam . p <− t ab l e (H$lam . cvm)

lam . per <− data . frame ( lam . p)
185

#p l o t s :
187

ggp lot ( lam . per , aes ( x = Var1 , y = Freq ) ) +
189 geom bar ( s t a t = ” i d e n t i t y ” , f i l l = ” green ” , width = 0 . 6 ) +

geom text ( aes ( l a b e l = Freq ) , v ju s t = −0.3 , c o l o r =” red ” ) + ###
191 l ab s ( y = ” Frequenc ie s ” , x=expr e s s i on ( hat ( lambda ) ) ,

t i t l e = ” Al l p o s s i b l e tuning parameter by p e r c e n t i l e−l a s s o ” )+
193 theme bw( )+

theme ( p l o t . t i t l e = element text ( h ju s t = 0 . 5 , s i z e = r e l ( 1 . 5 ) ) ,
195 a x i s . t ex t = element text ( s i z e = r e l ( 1 . 1 ) , c o l o r = ” black ” ) ,

a x i s . t i t l e . y = element text ( s i z e = r e l ( 1 . 3 ) ) ,
197 a x i s . t i t l e . x = element text ( s i z e = r e l ( 1 . 3 ) ) ,

a x i s . t ex t . x = element text ( ang le = 45 , h ju s t = 1) )
199

201 # non−zero c o e f f i e c i e n t s p l o t s
P <− t ab l e (H$ per )

203 per . l <− data . frame (P)

205

ggp lot ( per . l , aes ( x = Var1 , y = Freq ) ) +
207 geom bar ( s t a t = ” i d e n t i t y ” , f i l l = ” red ” , width = 0 . 7 ) +

geom text ( aes ( l a b e l = Freq ) , v ju s t = −0.2 , c o l o r =” blue ” ) + ###
209 l ab s ( x = ”Non−zero c o e f f i e c i e n t s ” , y = ” Frequenc ie s ” ,

t i t l e = ” Al l p o s s i b l e s e l e c t e d model by p e r c e n t i l e−l a s s o ” )+
211 theme bw( )+

theme ( p l o t . t i t l e = element text ( h ju s t = 0 . 5 , s i z e = r e l ( 1 . 5 ) ) ,
213 a x i s . t ex t = element text ( s i z e = r e l ( 1 . 1 ) , c o l o r = ” black ” ) ,

a x i s . t i t l e . y = element text ( s i z e = r e l ( 1 . 3 ) ) ,
215 a x i s . t i t l e . x = element text ( s i z e = r e l ( 1 . 3 ) ) )
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