
Applications of the Convexified Convolutional Neural Network:
Experiments on simulated and real data
Schaik, M.J.G. van

Citation
Schaik, M. J. G. van. (2018). Applications of the Convexified Convolutional Neural Network:
Experiments on simulated and real data.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3596245

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3596245

APPLICATIONS OF THE CONVEXIFIED
CONVOLUTIONAL NEURAL NETWORK

Experiments on simulated and real data

Maarten J.G. van Schaik (s1025325)

Thesis advisor: Dr. A.J. Schmidt-Hieber

master thesis

Specialization: Statistical Science

STATISTICAL SCIENCE
FOR THE LIFE AND BEHAVIOURAL

SCIENCES

Abstract

This thesis describes the model class of convexified convolutional neu-
ral networks (CCNNs), a type of deep learning model introduced by
Zhang, Liang & Wainwright [1]. First, steps towards the convex relax-
ation are described, as well as all the steps required to implement the
algorithm. To this end, the thesis describes the mathematical structure
of the shallow networks, how the function class can be relaxed to the con-
vex case, as well as the role of Reproducing Kernel Hilbert Spaces, the
Nystrom method, and projected gradient descent on the nuclear norm
ball. The main contribution of this work is the implementation and ap-
plication to a new data set. The problems considered are a simulation
study and an implementation on the classification problem of text data.
The results of the CCNN implementation show that it can be successfully
applied on text data through the use of vectorized word representations.
Advantages and drawbacks compared to more mainstream approaches are
discussed.

2

Contents

1 Introduction 5

2 General description of Artificial Neural Networks 6

3 The Shallow Neural Network 6
3.1 Shallow fully-connected neural networks 7
3.2 Shallow Convolutional Neural Networks 8
3.3 The fully-connected versus convolutional architecture 9

4 Finding the best network 10
4.1 Loss functions and Empirical Risk Minimizer 10
4.2 Nonconvex optimization using Gradient Descent 10
4.3 Convex relaxation based on the nuclear norm 11

5 Convexifying Shallow Neural Networks 12
5.1 Linear activation functions . 12

5.1.1 Collecting the parameters in a matrix 12
5.1.2 The parameter matrix has a low rank bound 14
5.1.3 Nuclear norm bounds . 15

5.2 Nonlinear activation functions . 16
5.2.1 Kernel functions and the RKHS 16
5.2.2 Representer theorem . 17

5.3 Function classes . 18
5.4 Choice of kernel and activation functions 19

6 Learning shallow CCNNs 20
6.1 Approximating the kernel matrix using the Nystrom method . . 20
6.2 Projected gradient descent on the nuclear norm ball 20

6.2.1 Projecting the singular values on the simplex 22
6.2.2 Projecting the singular values on the `1-ball 24

6.3 Algorithm . 25

7 Applications 26
7.1 Simulated data . 26

7.1.1 Implementation details . 26
7.1.2 Results . 27

7.2 Text classification . 27
7.2.1 Representing text data using tokens 28
7.2.2 Representing text data using word embeddings 28
7.2.3 Implementation details . 29
7.2.4 Results . 30

8 Conclusion and discussion 38

A Appendix 40
A.1 Theorems . 40
A.2 Minor proofs . 40
A.3 Definitions . 40
A.4 Python code: Network algorithms 42

3

A.4.1 CCNN Algorithm . 42
A.4.2 CNN Algorithm . 50
A.4.3 NN Algorithm . 52

A.5 Python code: data access . 53
A.5.1 Clickbait data . 53
A.5.2 Simulated data . 58

A.6 Python code: applications . 60
A.6.1 CCNN on Clickbait . 60
A.6.2 CNN on Clickbait . 63
A.6.3 Clickbait CNN classifier function 64
A.6.4 CCNN on simulated data 65
A.6.5 NN on simulated data . 68

4

1 Introduction

This thesis will cover the subject of Convexified Convolutional Neural Net-
works (CCNNs), a type of deep learning model introduced by Zhang, Liang &
Wainwright [1]. We will describe the motivation for these models, how they
are modeled, and how they perform when applied to simulated and real-world
text-based data sets.

The main contribution of this work is the implementation and application
to a new data set. The problems considered are a simulation study and an
implementation on the classification problem of text data. Because of the struc-
tural characteristics of the convolutional neural network (CNN), these models
(and by extension the Convexified CNN) have been developed for classification
tasks on image data. However, from a mathematical point of view, there is
no specific reason why it should be only image-specific data which can be an-
alyzed efficiently by these methods. In fact, using vector representation, text
data can be represented as points in some high-dimensional space not unlike the
representations given to image data. Therefore, after discussing what the CNN
and CCNN models are and how they work, performance will be evaluated on
text-based data sets and compared with more conventional methods.

In Section 2 we will cover the background for neural networks. We also
discuss how they function from a conceptual point of view. Intuitively we can
think of images as collections of features such as edges and angles, and the nodes
as feature detectors. In Section 3 we discuss the networks from a mathematical
point of view, where they are discussed as approximating functions stacked on
each other in a hierarchical manner, resulting in a prediction by a function of
the combined influence of all the parameters in the model. In particular, the
variant of the convolutional neural network will be covered.

In Section 4 it is discussed how, given the function class of networks defined in
the previous Section, a candidate network configuration is obtained by training
algorithms. In particular, we note that the optimization algorithm is nonconvex
and that no theoretical guarantees for the quality of the solution can be given.

In Section 5 the topic of convexification is introduced: how it is achieved
through the use of the Reproducing Kernel Hilbert Space, and how Zhang,
Liang & Wainwright [1] achieve this through particular kernel functions. The
choice for kernel and activation functions will be discussed, but not too much
expanded upon, since it falls outside the scope of this thesis.

Section 6 will introduce the topic of learning shallow (one hidden layer)
CCNNs in practice. This part is based on [1], where the main steps of the al-
gorithm are described. In this thesis, the algorithm will be described in some
more detail, such as the use of the Nystrom method, the use of kernels, and
projected gradient descent on the nuclear norm ball. This section will include
a short discussion on (projected) gradient descent and how to solve constrained
optimization problems using the method of Lagrange multipliers and KKT con-
ditions.

The main contribution of this work is the implementation of the CCNN
algorithm in Python, and the application to a new data set. Section 7 will
show several applications of the CCNN and compare them to the more common
nonconvex networks as well as SVM and logistic regression models. Several
comparisons were made on simulated data, and in particular, emphasis will be
placed on data of text format.

5

Finally, Section 8 will conclude the thesis and summarize the results.

2 General description of Artificial Neural Net-
works

An artificial neural network is based on the idea of a collection of highly intercon-
nected processing units. Each processing unit can be seen as a simplified model
of a biological neuron, and the artificial neurons are linked together, thus form-
ing a network. Information can be sent through this network, with each neuron
processing the information it receives using a simple function, and sending out
a corresponding output. The connections between the neurons are adaptable
in strength, with different configurations resulting in different network outputs.
Then, the process of training involves finding the connections and their weights
which are optimal for the assigned task. It turns out that the network as a
whole, when trained, can sometimes perform very complicated predictions or
calculations with impressive accuracy. Before the training, a network archi-
tecture must be chosen, and so far, many variants have been developed, such
as convolutional neural networks [2], autoencoders [3, 4], and Deep Boltzmann
Machines [5].

In recent years, network architectures have been developed which are capable
of many tasks, including optical character recognition, text2speech / speech2text
translation, robot arm control, face recognition, driving a car, and detecting
credit card fraud.

Figure 2: (source: [6]) Example of a fully-connected shallow neural network
of the form as in equation (3), with input layer, hidden layer, and a single
output node. In this case, the dimensions are d0 = 3, r = 2, d2 = 1. The
lines connecting the input to the hidden layer represent the weights w, the lines
connecting the hidden to the output layer represent the weights α.

3 The Shallow Neural Network

In this section, we give a detailed mathematical description of artificial neural
networks. In what follows, whenever we refer to a ’shallow’ network, we mean
a network with a single hidden layer. In practical applications, networks with

6

multiple hidden layers are commonly used to learn deeper underlying represen-
tations of the data. In this thesis we will restrict ourselves to shallow networks.
We define them as function classes for both the fully-connected and convolu-
tional versions. In what follows, we use the notation [n] to indicate the collection
{1, 2, . . . , n}, with n being a positive integer.

3.1 Shallow fully-connected neural networks

A shallow network is a function f : Rd0 7→ Rd2 that maps an input vector
x ∈ Rd0 to an output vector y ∈ Rd2 via a single hidden layer h(x) ∈ Rr. A
simple model architecture of such a shallow network is a fully connected model,
in which all the nodes in a layer are connected to all nodes in the previous
(if any) and the next (if any) layer. An example of such a network is shown in
Figure 2. After training, a feedforward pass through the network can be made to
compute its output. For the fully-connected shallow network, this is performed
as follows:

• First, the hidden layer activations are computed. Given some choice of
activation function σ : R→ R and a collection of weights {wj}rj=1 ∈ Rd0
the following functions are computed:

hj(x) := σ(wT
j x) (1)

where each function hj (for j ∈ [r]) is a node in the hidden layer of
the network. Each of these hidden nodes has its own weight vector wj

representing the importance of the inputs x1, . . . , xd0 for that node.

• Then the activation of the output layer is computed. First we are given
some choice of output activation function γ : R → R used by all output
nodes. Then, coefficients αk ∈ Rr define the contribution of the hidden
nodes to the k-th output node, such that the total output of the k-th
output node is calculated as:

fk(x) := γ
(r∑
j=1

αkjhj(x)
)

(2)

• In the last step, the complete output of the network is given by the con-
catenation over all output nodes:

f(x) =
(
f1(x), . . . , fk(x), . . . , fd2(x)

)
, (3)

Generally, there is no restriction on the size that the parameters may take.
However, for purposes later in this paper, it is convenient to introduce parameter
constraints of (arbitrary, but fixed values) radii B1 and B2. The function class
of these networks is the set/collection of all the functions of the following form:

N (B1, B2) :=

{
fw,α : max

j∈[r]
‖wj‖2 ≤ B1, max

k∈[d2]
‖αk‖2 ≤ B2

}
, (4)

where fw,α indicates that the functions f in the function class depend on
the collection of the parameter vectors w := {wj ∈ Rd0 : j ∈ [r]} and α :=
{αk ∈ Rr : k ∈ [d2]}.

7

3.2 Shallow Convolutional Neural Networks

The networks discussed up to this point form the basis for more elaborate exten-
sions of the deep learning methods. One of these extensions is the convolutional
neural network (CNN). CNNs have a use in a wide range of applications, but
are especially useful for detecting spatial or temporal relationships between the
input variables, where inputs near each other are more likely to be part of the
same feature. This is particularly useful for (but not limited to) data represent-
ing images. An example is shown in Figure 3.

Figure 3: (Adapted from [7]) Visualization of equation (7) applied to a 7 × 7
pixel image classification. a): Input vector x ∈ Rd0 . The red area is one patch
vector z(x) ∈ Rd1 . b): r weight vectors w ∈ Rd1 . c): h(z(x)) as green area.
d): output vector y ∈ Rd2 , with coefficients αkjp as black lines. Here, d0 = 49,
d1 = 10, d2 = 6, P = 25, r = 3.

As a function, a CNN is a map from an input vector x ∈ Rd0 to a d2-
dimensional output vector y. This is still the same as previously described for
the fully-connected network. However, as opposed to fully-connected networks,
convolutional networks make use of parameter sharing and convolutional layers.
Now, we will describe the feedforward pass through a shallow convolutional
network:

• First, from each input xi ∈ Rd0 patches are constructed which represent
local areas of the input. These patches zp(xi) ∈ Rd1 for p ∈ [P] may (and
in practice, typically will) consist of overlapping areas of xi.

• Then, the activation of each filter in the hidden layer is computed. Because
of the convolutional property, each filter hj is applied on all P patches zp
of the input x, given their respective filter weights wj ∈ Rd1 :

hj(z) := σ(w0j + wT
j z) for each patch z ∈ Rd1 . (5)

There are r of such filters in the hidden layer. Each filter is applied on
each patch, and the weights for each particular filter are shared among all
patches. This corresponds to the parameter sharing of a CNN.

• Then, given coefficients αkjp which govern the contribution of the p-th
patch to the k-th output via the j-th filter, the filters are used as contri-
butions to an output function fk(x):

8

fk(x) =

r∑
j=1

P∑
p=1

αkjphj(zp(x)) (6)

• In the last step, the output of the network is the vector

f(x) := (f1(x), · · · , fd2(x)). (7)

The parameters of this network are the filter vectors w := {wj ∈ Rd1 :
j ∈ [r]} and the coefficient vectors α := {αk,j ∈ RP , k ∈ [d2], j ∈ [r]}.

Note that the weights w now have d1 instead of d0 dimensions, because the
filters are applied on the patches z(x) ∈ Rd1 instead of the raw inputs x ∈ Rd0 .
Like in the fully connected network, there is generally no restriction on the
size that the parameters may take. Still, the introduction of radii B1 and B2

will help us later on in describing the convex relaxation. Furthermore, it is
assumed that the patch vectors zp(x) ∈ Rd1 are contained in the unit `2-ball.
We consider the function class of CNNs as the set/collection of all the functions
of the following form:

Fcnn(B1, B2) :=
{
f of the form (7) : max

j∈[r]
‖wj‖2 ≤ B1, max

j∈[r]
k∈[d2]

‖αk,j‖2 ≤ B2

}
.

(8)
Now we have defined our networks as the function classes as per equations
(4) and (8). In the next Section we describe how a candidate network can be
selected from the class.

3.3 The fully-connected versus convolutional architecture

Before continuing, we will note the main similarities and differences between
the two networks described in the previous sections, and how clarify how these
affects our choice of notation and terminlology. Both networks receive d0-
dimensional input and return d2-dimensional output, but they differ in their
hidden layer. In an attempt to keep notation consistent, we use r to indicate
the number of functions in the hidden layers of both the fully-connected and the
convolutional network. For a fully-connected layer, each function is a hidden
node. For a convolutional layer, r indicates the number of filter functions. Only
in the case of the convolutional network, P will be used to indicate the number
of patches extracted from each input, and then d1 will be used to indicate the
dimension of the patches and filters. The fully-connected network does not use
patches and parameter sharing and thus does not use the parameters P and d1.
Finally, we will indicate the parameters of the hidden layer w as ”weights” and
the parameters of the output layer α as ”coefficients”. From a mathematical
viewpoint there is no need to make this distinction, because they are treated
identically for the purposes of training. However, the distinction is useful for
ease of reading, and it also follows the choice of terminology used by Zhang et
al. [1] on which parts of this text are based.

9

4 Finding the best network

In the previous section, we described the shallow neural networks, for both
fully-connected and convolutional filters in the hidden layer. The collection of
all possible networks are the function classes given by equations (4) and (8). In
this section, we discuss the process of choosing a suitable network among the
candidates of these classes, that this means solving a nonconvex optimization
problem, and the consequences of this.

4.1 Loss functions and Empirical Risk Minimizer

The quality of a candidate solution is assessed by means of a loss function L(f):
a function measuring the cost associated with using f . This cost is a measure
of difference between the estimated and true values of the output of a training
sample. The choice of loss function depends on the type of problem the network
is trying to solve; for example, for categorical output cross-entropy can be used.
In this thesis we concern ourself with a two-class classification problem where
yi ∈ {0, 1}. Then the task of learning the function fA : X 7→ Y concerns itself
with the estimation of the class probabilities

P(Y = y|A, X = x).

For two classes, this results in the probabilities like used in logistic or softmax
regression:

PA(xi) =
1

1 + exp(−A>xi)
, (9)

and the loss function

L(A) = −

[
n∑
i=1

yi log PA(xi) + (1− yi) log(1− PA(xi))

]
. (10)

The goal of any fitting algorithm is then to find the parameters of the network
such that the loss function on a training dataset (or a validation datset) is
minimized. The question then arises whether it is possible to solve the problem
of finding the best fitting function. The collection of optimal parameters are
called the Empirical Risk Minimizer.

Definition 1 (Empirical Risk Minimizer). Given observations X, a target Y , a
function class N := {f : X → Y } and a loss function L, the candidate function
f∗ with the best fit is called the Empirical Risk Minimizer and is defined by

f∗ = inf
f∈F

EX,Y [L(f(X);Y)].

4.2 Nonconvex optimization using Gradient Descent

Traditionally, finding the minimum loss is done using some kind of algorithm
based on gradient descent. In these type of algorithms, the gradient of the loss
function is taken with respect to the function parameters:

10

∇AL(A) = −
n∑
i=1

[xi (1{yi = k} − P(yi = k|xi; A))]. (11)

In practical applications of neural networks, nearly all of the activation functions
commonly used result in a nonconvex optimization problem. For fitting neural
networks, gradient descent methods such as backpropagation must be used to
train the network. Backpropagation will return a candidate solution f̂ , but this
solution can only be considered the best fitting solution if we can prove that it
is globally optimal, that is,

L(f∗(X);Y) ≤ L(f(X);Y),

for every choice of f . When L and f are convex, standard theory of optimization
tell us that global optimality of candidate f∗ can be easily proven (if f∗ is convex
and the gradient ∇L(f∗) vanishes to zero, then the parameters of f∗ are the
global solution). However, when f is nonconvex, and backpropagation has to
be used for training, global optimality cannot be guaranteed.

4.3 Convex relaxation based on the nuclear norm

We have now reformulated the neural networks into a class of functions, which
linearly depend on a matrix which is subject to a rank constraint. Given an
affine subspace of matrices, we want to find the matrix adhering to the rank
constraint and simultaneously minimizing a loss function (see Section 4.1). The
problem with finding the optimal network subject to the rank constraint is that
it is NP-hard. Therefore, no polynomial time algorithm is known to solve the
problem. However, a nuclear norm constraint can be used to solve this problem
indirectly. We first state the definition of the nuclear norm:

Definition 2 (Nuclear norm). Let A be any m×n-dimensional matrix and let
the singular values of A be denoted by σ(A) ∈ Rmin(m,n). Then the nuclear
norm is defined by

‖A‖∗ = trace(
√

ATA) =

min(m,n)∑
i=1

σi(A).

In Section 5 we describe how the parameters of a shallow network can be
collected in a parameter matrix. Due to the architecture of the network, this
parameter matrix will be of a certain rank, and by the previously imposed
parameter constraints B1, B2 it will have a constraint on the nuclear norm. We
can use that matrix’ nuclear norm as a convex relaxation of the matrix’s rank
constraint, as the following claim states:

Claim 1 (Nuclear norm as a convex relaxation). (By [8]) A standard convex
relaxation of a rank constraint is based on the nuclear norm ‖A‖∗ corresponding
to the sum of the singular values of A.

Thus, the nuclear norm constraint provides a proxy by which the rank con-
straint problem can be solved. Since the nuclear norm is a convex function of
the network parameters, algorithms for solving convex problems can be used to

11

efficiently solve loss minimization problem. This approach was first introduced
in [9], and in [8] it was shown that if certain properties hold, the minimum
rank solution can be recovered by solving the minimization of the nuclear norm,
which is a convex optimization problem. We will discuss such a method in
Section 6. But first, the following Section describes the steps to achieve relax-
ation to a nuclear norm constraint for fully-connected and convolutional shallow
networks.

5 Convexifying Shallow Neural Networks

In this section, we describe how the model class of shallow neural networks
can be relaxed to a class of convexified shallow neural networks. We follow
the method which Zhang et al. [1] used for convolutional neural networks,
and apply them to the fully-connected neural network first. Also, we derive
statements for rank and nuclear norm constraints. The first step for convex
relaxation is to consider networks that use only the linear activation function,
such that the function class of these networks implies a rank constraint of a
parameter matrix. Then, we show that imposing bounds on the filter weights
and output coefficients implies a bound on the nuclear norm of the parameter
matrix.

Finally, we reconsider networks with certain nonlinear activation functions
and show that by using Reproducing Kernels, these networks can also be con-
vexified in the same manner. Which kernel and activation functions are suitable
for this task was described by [1] and shortly repeated here in Section 5.2 for
completeness.

5.1 Linear activation functions

5.1.1 Collecting the parameters in a matrix

The first step towards the convex relaxation of the class of network functions is
to collect all parameters in a parameter matrix. According to Lemma 1 below,
this can be achieved by restricting the network to linear activation functions.

Lemma 1 ((Based on [1]) In a shallow fully-connected neural network, linear
activation functions allow for parameter collection in a matrix). Consider a
shallow fully-connected network where the activation of each of the k output
nodes takes the form (2) such that the output of the entire network takes the
form (3). When using the linear activation functions σ(t) = γ(t) = t, the output
of the k-th node can be written as

fk(x) = xTak for a vector ak ∈ Rd0 (12)

such that the output of the whole network can be defined as

fA(x) := (xTa1, . . . ,x
Tad2) (13)

In particular, fA(x) depends linearly on the d0-by-d2-dimensional parameter
matrix A ∈ Rd0,d2 , which is the concatenation of the vectors ak, k ∈ [d2].

12

Proof. Each output of the network (2), with linear activation functions becomes
fk(x) =

∑r
j=1 αkj〈x,wj〉. We can then see that

fk(x) =

r∑
j=1

αkj〈x,wj〉

= xT
r∑
j=1

αkjwj

= xT
r∑
j=1

akj

= xTak

such that the k-th output depends linearly on the d0-dimensional parameter
vector ak ∈ Rd0 . Then, if we let A := (a1, . . .ad2) be the concatenation over
these parameter vectors across all d2 output nodes, we see that the network as
in equation (3) can be written in the form of (13).

In the same manner that can be used to collect the parameters in a shallow
fully-connected network, the convolutional neural network parameters can also
be collected. Here, we show the steps of how this is done.

Lemma 2 (In a CNN, linear activation functions allow parameter collection
in a matrix (as per [1])). Consider a CNN of the form (6 and 7), where the
linear activation function σ(t) = t is chosen and for each sample in the training
set, the patches are collected in the matrix Z(x). Then the k-th output of the
network can be written as

fk(x) = tr(Z(x)Ak) for a matrix Ak ∈ Rd1,P (14)

and the entire CNN output can be written as

fA(x) :=
(
tr(Z(x)A1), . . . , tr(Z(x)Ad2)

)
. (15)

Proof. The proof for this follows by the same logic as shown in Lemma (1).
This time, the input x ∈ Rd0 is first replaced by the patches zp(x) as described
in Section 3.2. For each of the samples, we collect these patches in a P -by-
d1-dimensional matrix Z(xi) ∈ RP,d1 . We also define the coefficient vectors
αkj ∈ RP as the collected patch coefficients αkjp for each of the k, j filter-
output combinations. The parameters of the k-th output node can be collected
in the d1-by-P -dimensional matrix Ak =

∑r
j=1 wjα

T
kj . The p-th column of

Ak is the d1-dimensional vector
∑r
j=1 wjαkjp ∈ Rd1 . Since the p-th row of

Z(xi) is the patch zp(x), the diagonal elements of the matrix Z(xi)Ak ∈ RP,P
are zp(xi)

T
∑r
j=1 wjαkjp, such that the trace over Z(xi)Ak gives the desired

output of the k-th node:

13

fk(xi) =

r∑
j=1

P∑
p=1

αkjp〈zp(xi)wj〉

=

P∑
p=1

zp(xi)
T

r∑
j=1

wjαkjp

= tr(Z(xi)Ak).

Thus, each fk depends linearly on the parameter matrix Ak. Combining
the matrices in the concatenation A results in the network parameter matrix
A := (A1, . . .Ad2), which is a matrix of dimension d1 by d2 × P .

5.1.2 The parameter matrix has a low rank bound

Now that we have collected the network’s parameters in a matrix, we can de-
scribe the implied function of the network by the rank of said matrix. Now we
show that there is a low rank bound on this matrix.

Lemma 3 (Low rank constraint in shallow NNs with linear activation functions
(based on [1])). Let A be as in Lemma 1. Then rank(A) ≤ min(d0, d2, r).

Proof. In Lemma 1, it was shown how the parameters of the shallow fully con-
nected network can be collected in a single matrix A. Another way to show
this, is to gather the collection of filter weights {wj} in a d0-by-r-dimensional
matrix W ∈ Rd0,r and to gather the output node coefficients {αkj} in a r-by-
d2-dimensional matrix V ∈ Rr,d2 . This way, the j-th column of W are the filter
weights of the r-th hidden node wj , and the j-th row of V is the concatenation
(α1j , . . . ,αd2j). Then A = WV. W is of dimension d0 by r and of full rank.
Similarly, V is of dimension r by d2 and of full rank. Hence,

rank(A) = rank(WV)

≤ min(rank(W), rank(V))

≤ min(d0, d2, r).

Lemma 4 (Low rank constraint in the shallow CNN (based on [1]).). When,
in a shallow CNN using linear activation functions, the parameters have been
collected in a matrix A as described in Lemma 2, this rank of this matrix is
bounded: rank(A) ≤ min(d1, Pd2, r).

Proof. As with the fully-connected network (Lemma 3), the parameter matrix
A in the shallow CNN can also be decomposed in the matrices W and V, where
W is the collection of the filter weights {wj}, such that the j-th column of W
is wj ∈ Rd1 , and the j-th row of V is the concatenation of the d2 P -dimensional
vectors αkj ∈ RP . W is of dimension d1 by r and of full rank. Similarly, V is
of dimension r by d2P and of full rank. Hence,

14

rank(A) = rank(WV)

≤ min(rank(W), rank(V))

≤ min(d1, d2P, r).

5.1.3 Nuclear norm bounds

As described in Section 4.3, the convexified CNN in [1] is motivated by the
fact that the nuclear norm of the parameter matrix A is a convex relaxation of
the rank constraint of A. We will first show that the nuclear norm is indeed
bounded.

Lemma 5 (Nuclear norm constraint (based on [1])). Take the class of shallow
fully-connected networks, in both cases with the network parameters collected in
the matrix A as shown in Lemma 1 and Lemma 2 by the use of linear activation
functions. Then, in both these types of networks, if the network weights and
coefficients are upper bounded, such that ‖wj‖2 ≤ B1 and ‖αkj‖2 ≤ B2 ∀j ∈ [r],
∀k ∈ [d2], then A must have a nuclear norm bounded as ‖A‖∗ ≤ d2rB1B2.

Proof.

‖A‖∗ := tr((ATA)1/2) (16)

= tr
((d2∑

k=1

AT
kAk

)1/2)
(17)

=

d2∑
k=1

tr((AT
kAk)1/2) (18)

=

d2∑
k=1

‖Ak‖∗ (19)

In the above, steps (16) and (19) follow from the definition of the nuclear
norm. Steps (17) and (18) follow from the fact that ATA is block matrix with
as (i, j)-th block element the matrix AT

i Aj , i, j ∈ [d2]. Because this matrix is
symmetric and positive semidefinite, the sum of its singular values is equal to
its trace. Because it is a block matrix, its trace is also equal to the sum of the
traces of the matrices AT

kAk, k ∈ [d2]. Hence, the sum of its singular values
(the nuclear norm) is equal to the sum of the nuclear norms of the matrices Ak

that lie on its diagonal. These nuclear norms can be found as follows:

15

‖Ak‖∗ = ‖
r∑
j=1

Akj‖∗ (20)

≤
r∑
j=1

‖Akj‖∗ (21)

=

r∑
j=1

tr((AT
kjAkj)

1/2) =

r∑
j=1

tr
(√

AT
kjAkj

)
(22)

=

r∑
j=1

tr
(√

(wjαT
kj)

T(wjαT
kj)
)

=

r∑
j=1

tr
(√

(αkjwT
j)(wjαT

kj)
)

=

r∑
j=1

tr
(√

αkj‖wj‖22αT
kj

)
=

r∑
j=1

‖wj‖2tr
(√

αkjαT
kj

)
=

r∑
j=1

‖wj‖2tr
(√

αT
kjαkj

)
(23)

=

r∑
j=1

‖wj‖2‖αkj‖2 (24)

= rB1B2.

In the above, steps (20) and (22) follow from the definition of the nuclear
norm and Ak. Step (21) is due to the sub-additive property of norms and step
(23) from the property that ‖M‖∗ = ‖MT‖∗ for any matrix M. Combining all
the above, we see that ‖A‖∗ ≤ d2rB1B2, completing the proof.

5.2 Nonlinear activation functions

In the previous section, we described how the class of neural networks can be re-
laxed to be convex when they are restricted to use the linear activation function.
However, in the field of deep learning linear activation functions are typically
not of interest. [1] describe how for certain nonlinear activation functions σ,
and properly chosen kernel functions k, the class of CNN filters can be relaxed
to a Reproducing Kernel Hilbert Space (RKHS), such that the problem can be
of the same form as the linear activation case described in Section 5.1.1. To
keep this thesis self-contained, we first give a brief overview of kernels and the
RKHS. This overview is based on work by [10].

5.2.1 Kernel functions and the RKHS

Kernel functions are commonly used in many statistical learning applications for
their ability to implicitly calculate similarities between data in a higher dimen-

16

sional space without exactly needing to know the representation in said high-
dimensional space. Kernel methods are commonly used in applications such as
the Support Vector Machine. Take any empirical data set (x1, y1), . . . , (xm, ym) ∈
X ×R. Kernel functions k can be thought of as generalized dot products, and
they are defined as

k : X × X → R, (x,x′) 7→ k(x,x′). (25)

The matrix of k being applied to all pairwise combinations of training data
(xi,xj), i, j ∈ [m] are collected in the m-by-m-dimensional kernel matrix K :=
(k(xi,xj))ij . If this matrix is positive semidefinite, that is,:

m∑
i=1

m∑
j=1

cicjKij ≥ 0 for all vectors (c1, . . . , cm) ∈ Rm, (26)

and where Kij := k(xi,xj), then k is referred to as a positive semidefinite
kernel function. Each kernel k is associated with a feature space using a function
which maps from X into the space of functions mapping X into R:

φ : X → RX , x 7→ k(·,x). (27)

The space of all functions that can be expressed as the linear combination
of kernel functions is denoted as the Reproducing Kernel Hilbert Space H. This
means that any f, g ∈ H take the form of a linear combination:

f, g ∈ H ⇒ f(·) =
∑
i

αik(·, ti)

g(·) =
∑
i

βik(·, t′i),

(where the sums can be taken over countably many elements), and the inner
product of the RKHS is defined by

〈f, g〉H =
∑
i,j

αik(ti, t
′
j)βj .

What gives the kernel its name of a reproducing kernel is that is has the property

〈f, k(·,x)〉 = f(x)

What this means in words is that the inner product between some function
f and some kernel function k which takes as its first argument f and as second
argument some vector x returns as outcome a scalar which is equal to the func-
tion f evaluated at vector x. The fact that this operation returns f(x) gives it
its name of a reproducing kernel.

5.2.2 Representer theorem

The representer theorem by [10] (See Theorem 1 in Appendix A.1) states that
optimization problems over a class of functions in an RKHS have solutions that

17

can be expressed as kernel expansions in terms of the training data. Further-
more, [10] describe how the representer theorem implies that for any training
example xj and any function f ∈ H, application of f to xj yields

f(xj) =

m∑
i=1

αi〈φ(xi), φ(xj)〉. (28)

The number of coefficients in functions of this form is determined by the sample
size and thus finite. We now describe the relevance of this to the convexified
network.

Lemma 6 (CCNN parametarization in terms of kernels). (By [1]). Consider a
CNN of the form (15) and a training set of patches S := {zp(xi) : p ∈ [P], i ∈
[n]}. Using certain nonlinear activation functions σ and a positive semidefinite
kernel function k : Rd1 × Rd1 → R, then for any patch zp(xi) ∈ S, the filter
values in Lemma (2) can be represented by

h(zp(xi)) =
∑

(i′,p′)∈[n]×[P]

ci′,p′k
(
zp(xi), zp′(xi′)

)
, (29)

for some coefficients {ci′,p′}(i′,p′)∈[n]×[P].

[1, section 3.2 and Appendix B] describe the implications of Lemma 6. Because
of the representer theorem, there exists some mapping φ such that k

(
zp(xi), zp′(xi′)

)
=

〈φ(zp(xi)), φ(zp′(xi′))〉. If the kernel matrix K ∈ RnP,nP were to be ap-
proximated such that K ≈ QQT where Q ∈ RnP,m, and we subsequently
set qp(xi) ∈ Rm as the m-dimensional feature vector of the training patch
zp(xi) ∈ Rd1 , then equation (29) can be rewritten as

h(zp(xi)) = 〈qp(xi), w̄〉 where w̄ :=
∑

(i′,p′)∈[n]×[P]

ci′,p′qp′(xi′). (30)

This means that from Lemma 6 we can see that in order to learn the filter h,
it suffices to learn the m-dimensional vector w̄. This is done by replacing the
patches Z(xi) ∈ RP,d1 by Q(xi) ∈ RP,m for each i ∈ [n]. Here, the p-th row of
Q(xi) is qp(xi). Using the same steps as in Section 5.1.1, the problem can be
solved exactly as in Lemma 2, with a parameter matrix A ∈ Rm,Pd2 . There,
each Ak is defined as Ak :=

∑r
j=1 QTcjα

T
k,j where cj ∈ RnP is a vector whose

(i, p)-th element is c(i,p) for the j-th filter.

5.3 Function classes

Our model class now corresponds to a collection of functions based on imposing
constraints on the underlying matrix A. In the case of multiple output nodes,
we can define the function class Nc, that is, the collection of functions based on
the fully-connected shallow network class described in equation (4), but with the
restriction that linear activation functions are used, such that a rank constraint
is induced. This function class is thus defined as

Nc(B1, B2) :=

{
fA of the form (13) : ‖A‖∗ ≤ d2B1B2r

}
(31)

18

for the convex relaxation of the shallow fully-connected neural network, and

F lccnn(B1, B2) :=
{
fA of the form (15) : ‖A‖∗ ≤ d2B1B2r

}
(32)

for the convex relaxation of the shallow convolutional neural network, when
using the linear activation function. When using nonlinear activation functions
as described in Section 5.2.2, there is a small change in the norm bound. As
described in [1, section 3.2 and Appendix B], this is due to use of the kernel
trick to handle the nonlinear activation functions. The CCNN function class
using nonlinear activation functions is defined as:

Fccnn(B1, B2) :=
{
fA of the form (15) : ‖A‖∗ ≤ d2Cσ(B1)B2r

}
, (33)

where Cσ is a monotonically increasing function which depends on the chosen
kernel (See [1, Lemma 1 and Lemma 2]). Furthermore, we are guaranteed that
Nc ⊇ N and Fccnn ⊇ Fcnn [1].

5.4 Choice of kernel and activation functions

There are a few remarks we must mention before continuing. Firstly, steps in
Section 5.2.2 hold only for certain activation functions and kernels. This section
briefly summarizes the points made by [1] on this matter. Secondly, the above
means that in practice we must calculate the matrix Q, a question which we
address in Section 6.

In Section 5.2 we stated that for the filters to be contained in the RKHS, that
is, for Lemma 6 to hold, the right kernel function k and a sufficiently smooth
activation function σ must be chosen. In [1] this point is expanded upon and
here we will summarize their reasoning without repeating their proofs.

The first ingredient for Lemma 6 is a positive semidefinite kernel function
k : Rd1 × Rd1 → R whose associated RKHS is ”large enough” to contain any
function of the form h : z 7→ σ(〈w, z〉) for particular activation functions σ (the
”richness” requirement). [1] show how this richness requirement can be satisfied
for the Inverse Polynomial kernel and the Gaussian RBF kernel.

Definition 3. The inverse polynomial kernel is defined as:

kIP(z, z′) :=
1

2− 〈z, z′〉
, ‖z‖2 ≤ 1, ‖z′‖2 ≤ 1. (34)

Definition 4. The Gaussian RBF kernel is defined as:

kRBF(z, z′) := exp(−γ‖z− z′‖22 ‖z‖2 = ‖z′‖2 = 1, γ > 0. (35)

They do this by (a) first verifying that these functions are indeed kernel func-
tions and (b) proving that the associated RKHS contains the class of nonlinear
filters. Verifying that the IP kernel and the Gaussian RBF functions are ker-
nels is done by showing that there exists a mapping φ : Rd1 7→ `2(N) such
that k(z, z′) = 〈φ(z), φ(z′)〉. They subsequently use polynomial expansions of
σ : σ(t) =

∑∞
j=0 ajt

j to show the second point.

19

The second ingredient for Lemma 2 is a sufficiently smooth activation func-
tion σ. In their work, [1] again define this criterion by using the polynomial
expansion of σ. The rate at which the coefficients {aj}∞j=0 of the polynomial ex-
pansion of σ converges to zero is used as a measure of smoothness. Specifically,
they mention:

1. arbitrary polynomial functions,

2. sinusoid activation functions σ(t) = sin(t),

3. erf function σerf := 2/
√
π
∫ t
0
ez

2

dz,

4. a smoothed hinge loss σsh :=
∫ t
∞

1
2 (σerf(z) + 1)dz.

They state that different activation functions pair differently with different
kernel functions. The main point they make is that the IP kernel captures all
of the four mentioned above in its associated RKHS, the Gaussian kernel only
the first two. Other activation functions which are popular in the field of deep
learning, specifically, the ReLU activation function, are not smooth enough for
either of those two kernels and as such cannot be used in the CCNN algorithm.

6 Learning shallow CCNNs

At this moment, we can describe an overview of the two-layer CCNN algorithm.
The algorithm consists of four main steps which describe the order of operations
between the input X and output Y . The goal is to learn the unknown function
f : X 7→ Y . The four steps are conceptually summarized in Algorithm 1. The
four steps in the algorithm imply two practical complications. The first is the
need to find a suitable approximation for the kernel matrix K ≈ QQT. The
second is the question of how to optimize the network under a nuclear norm
constraint. The following sections describe these issues in more detail.

6.1 Approximating the kernel matrix using the Nystrom
method

An approximation K ≈ QQT must be constructed for some choice of factor-
ization method and some choice of m. Then Q ∈ RnP,m. One such way is the
Nystrom method [11]. Using the Nystrom method, an approximation K̂ = QQT

is obtained by randomly sampling m rows/columns from the original K. In our
case, this means that the patch matrix of a data sample Z(xi) ∈ RP,d1 is rep-
resented by a approximate matrix Q(xi) ∈ RP,m, with Q resulting from the

approximation K̂. By [11] it is expected that good results can be obtained for
m� nP , but whether this holds in our case is yet to be seen.

6.2 Projected gradient descent on the nuclear norm ball

In the third step of Algorithm 1, we face the constrained optimization problem

Â = arg min
‖A‖∗≤R

n∑
i=1

L
(

tr(Q(xi)A1), . . . , tr(Q(xi)Ad2); yi

)
. (36)

20

input : Data {(xi,yi)}ni=1, kernel function k, regularization parameter
R > 0

1. Construct a kernel matrix K ∈ RnP,nP such that the entry at
column (i, p) and row (i′, p′) is equal to k(zp(xi), zp′(xi′)).
Compute a factorization K = QQT or an approximation
K ≈ QQT , where Q ∈ RnP,m.

2. For each xi, replace the patch matrix Z(xi) ∈ RP,d1 by
Q(xi) ∈ RP,m whose p-th row is the (i, p)-th row of Q.

3. Solve the following optimization problem to obtain a matrix
Â := (Â1, . . . , Âd2):

Â ∈ arg min
‖A‖∗≤R

L̃(A)

where

L̃(A) :=

n∑
i=1

L
((

tr(Q(xi)A1), . . . , tr(Q(xi)Ad2)
)
; yi

)
.

output: Return the predictor
f̂ccnn(x) :=

(
tr(Q(x)Â1), . . . , tr(Q(x)Âd2)

)
.

Algorithm 1: (Source: [1]) Learning two-layer CCNNs

21

Here and in the sections that follow, we choose to use R as a shorthand for
the nuclear norm bound, which in our case is Cσ(B1)B2rd2. Generally, op-
timization problems can be solved by gradient descent, an iterative method
where at each time point t, the coefficients at the next step are computed via
At+1 = At − ηOL(At), where η is the step size and OL(At) the gradient of
the loss function with respect to the parameters at time t. This step is then
repeated until convergence. For our constrained problem in equation (36) how-
ever, the problem is that this update might result in next-step parameters At+1

which do not adhere to the constraint ‖A‖∗ ≤ R, because the optimal solution
at that iteration may lie outside the constraint set.
One way to solve this issue is through the use of projected gradient descent, in
which the update step is replaced by

At+1 =
∏
R

(
At − ηOL(At)

)
, (37)

where
∏
R(A) denotes the Euclidean projection of A on the nuclear norm

ball with radius R. The necessary steps are described from a top-down perspec-
tive below, and is a combination of work by [12] and [13].

Lemma 7 (Projecting a matrix on the nuclear norm). (Source: [12, Section
3.3] and [13]). Let A be a matrix with a bounded nuclear norm ‖A‖∗ ≤ R and
let σ be the vector of the singular values of A, such that (σ)i = σi. Projecting

A on the nuclear norm ball with radius R, {Â : ‖Â‖∗ ≤ R} is equivalent to
solving the constrained optimization problem

min
β∈Rn

‖β − u‖22 s.t.

n∑
i=1

βi = R and βi ≥ 0, (38)

then setting σ∗i = sign(σi)βi, and then calculating

Â = UΣ∗AVT where Σ∗A = diag(σ∗A), (39)

with σ, U and V being the singular values, the left-singular vectors and
right-singular vectors of A, respectively, and where for each i, ui = |σi|.

The proof to Lemma (7) requires several steps which are, in order:

1. Projection of a vector on the simplex (see Section 6.2.1);

2. Projection of a vector on the `1-ball which can be re-written into the
simplex problem from step 1 (see Section 6.2.2);

3. Projection of a matrix on the nuclear norm ball, which can be solved
by projecting the singular values of said matrix on the `1-ball, and then
reconstructing the matrix using the projected singular values.

6.2.1 Projecting the singular values on the simplex

First, consider the problem of projecting the singular values on the simplex. As
adapted from [13], this can be written as the following constrained optimization
problem:

22

min
σ∗

1

2
‖σ∗ − σ‖22 s.t.

n∑
i=1

σ∗i = R, σ∗i ≥ 0, (40)

where σ denotes the vector of singular values that must be projected on the
simplex, σ∗ the vector of singular values on the simplex set.

Lemma 8 (Projecting singular values on the simplex). (Based on [13]). Sup-
pose we are given a vector of singular values σ that must be projected on the
simplex radius R. Then, solving optimization problems of the form (40) is equiv-
alent to calculating the elements of σ∗ as

σ∗i = max{σi − θ, 0}, (41)

where

θ =
1

ρ

(ρ∑
i=1

µi −R
)
, (42)

and

ρ(R,µ) = max

{
j ∈ [n] : µj −

1

j

(
j∑

m=1

µr −R

)
> 0

}
, (43)

where µ denotes the vector obtained by sorting σ in a descending order. In
equation (42) ρ is used as a shorthand for ρ(R,µ) from equation (43).

Proof. The proof for Lemma 8 uses Lemmas 9 and 10 below. First, we begin
the proof by re-writing (40) into the Lagrangian dual form:

L(σ∗,λ,θ) =
1

2

n∑
i=1

(
σ∗i − σi

)2
−

n∑
i=1

λiσ
∗
i + θ

(n∑
i=1

σ∗i −R
)

(44)

on the account that we can recognize the n inequality constraints gi(σ
∗) =

−σ∗i and the single equality constraint h(σ∗) =
∑n
i=1 σ

∗
i − R. Finding the

optimal values σ∗ involves taking the derivative of (44) w.r.t. σ∗i and setting to
zero. Thus

∂L(σ∗,λ,θ)

∂σ∗i
= σ∗i − σi − λi + θ = 0↔ σ∗i = σi + λi − θ. (45)

Since σ∗i ≥ 0 (because of the constraint in problem (40)) and the fourth KKT
condition (see Definition 5 in the Appendix), we know that if σ∗i > 0, then
λi = 0. Therefore it follows that

σ∗i = max{σi − θ, 0}. (46)

We now need to find the value of θ. If there would only be nonzero elements in
σ∗, we could simply find it via

θ =
1

n

(n∑
i=1

σi −R
)
, (47)

23

but the current issue is that there are nonzero elements in σ∗ and we do not
know the indices of the corresponding elements in σ. In order to know which
ones they are, we can use the following lemma:

Lemma 9. (Source: [12, Lemma 2], [13, Lemma 1]). Let σ∗ be the optimal
solution to a minimization problem of the form (40). Let s and j be two indices
such that σs > σj. If σ∗s = 0 then σ∗j must be zero as well.

From this lemma we know that
∑ρ
i=1 σ

∗
(i) =

∑ρ
i=1 σ(i) − θ and

∑n
i=ρ+1 σ

∗
(i) =∑n

i=ρ+1 σ(i) + λ(i) − θ = 0, where σ(i) refers to the i-th element of the vector
σ if its elements are sorted in descending order. We just need to know ρ, the
number of nonzero elements in σ∗. For this, we use the following lemma:

Lemma 10 (Finding ρ). (Source: [12, Lemma 3], [13, Lemma 2]). Let σ∗ be
the optimal solution to the minimization problem given in equation (40). Let
µ denote the vector obtained by sorting σ in a descending order. Then, the
number of strictly positive elements in σ∗ is

ρ(R,µ) = max

{
j ∈ [n] : µj −

1

j

(
j∑
r=1

µr −R

)
> 0

}
. (48)

We can now find ρ using equation (43) and then θ as follows:

θ =
1

ρ

(ρ∑
i=1

σ(i) −R
)

(49)

where ρ is the number of nonzero elements in σ∗, and σ(i) denotes the i-
th element in the vector σ if it is sorted in descending order. Then, we can
calculate the projection of σ on the simplex via equation (46).

6.2.2 Projecting the singular values on the `1-ball

Now that we can project singular values on the simplex, we can show that
projecting them on the `1-ball is but a small step away. We show how to turn
that problem into the simplex projection. If we define the projection on the
`1-ball as the following constrained optimization problem:

min
σ∗∈Rn

‖σ∗ − σ‖22 s.t. ‖σ∗‖1 ≤ R. (50)

we can use the following lemma to re-write the problem into the simplex
case (40).

Lemma 11. (Source: [13]). If σ∗ is an optimal solution to the problem in (50),
then, for all i, σ∗i σi ≥ 0.

Combining the above, we can now state the method to project a vector on the
`1-ball. When presented with a minimization problem of the form (40), define u
such that for each i, ui = |σi|. Then, solve the following problem by projecting
u on the simplex, as described in the previous section. The problem will take
this form:

min
β∈Rn

‖β − u‖22 s.t.

n∑
i=1

βi = R and βi ≥ 0, (51)

24

and once the solution to this problem is obtained, the problem of projecting
on the `1-ball (40) can be solved by setting σ∗i = sign(σi)βi. Now that we know
how to project a vector on the `1-ball, we can project a matrix on the nuclear
norm ball by projecting its singular value on the `1-ball; given a matrix A that
needs projecting on the nuclear norm ball, we can project its singular values
σA on the `1-ball as just described, and then reconstruct the projected matrix
as in equation (39). This means that we now know how to solve optimization
problems of the form (36).

6.3 Algorithm

Putting the steps described in the previous section together we can define an
algorithm to project a matrix A on the nuclear norm ball such that ‖A‖∗ ≤ R,
and then incorporate that into the gradient descent algorithm. At each timestep
t, the new parameters are projected on the nuclear norm ball. The steps are
shown in Algorithm 2 below.

input : A matrix A and a scalar R > 0
Compute the SVD: A = UΣAVT and let σ be the vector of singular
values;

Define u s.t. ui = |σi|;
Sort u into µ : µ1 ≥ µ2 ≥ · · · ≥ µp;

Find ρ(R,µ) = max

{
j ∈ [n] : µj − 1

j

(∑j
r=1 µr −R

)
> 0

}
;

Define θ = 1
ρ

(∑ρ
i=1 µi −R

)
;

Calculate β s.t. βi = max{ui − θ, 0};
Calculate σ∗ s.t. σ∗i = sign(σi)βi and construct from these the
diagonal matrix Σ∗A;

output: Â = UΣ∗AVT

Algorithm 2: Algorithm for projection of a matrix on the nuclear
norm ball.

input : Data {(xi,yi)}ni=1, kernel function k, regularization
parameter R > 0, number of filters r, stropping criterion ε

while L(At−1)− L(At) > ε do
not yet converged ;
Choose a stepsize; we will be using a constant stepsize η;
Calculate gradients using stochastic gradient descent (see also
Section 4.2);

Calculate indermediary update A′t+1 = At − ηtOL(At);
Update coefficient matrix At+1 =

∏
R(A′t+1) using Algorithm 2;

end

Algorithm 3: Projected gradient descent of a matrix on the nuclear
norm ball

25

7 Applications

In order to test the performance of the CCNN algorithms on relatively easy
datasets, data was generated according to a sum of sigmoids model and a radial
function model. Inspiration for this data generation mechanism was drawn from
[14]. For a more complicated data set, data in the form of text was chosen.

7.1 Simulated data

First, random predictor data was generated from a multivariate standard normal
distribution: X ∈ Rn,p ∼ N(0, Ip), where n indicates the number of samples
and p the dimension of the predictor data. Then, for the sum of sigmoids model,
observations ys were generated via the nonlinear function

ys = fs(X) =

m∑
i=1

σ(Xβi), where σ(t) =
1

1 + exp(−t)
. (52)

Here we chose to set m = 2, β1 = (3, 3)T , and β2 = (3,−3)T . For the radial
model, data was generated via the nonlinear function

yr = fr(X) =

p∏
j=1

ψ(X(·,j)), where ψ(t) =
(1

2π

)1/2
exp(−(tTt)/2). (53)

Since the CCNN algorithm puts heavy emphasis on classification, for both sets
of simulated data, a noisy binary version was constructed. First, for the sum
of sigmoid model and for the radial basis function model, errors εs and εr were
sampled from a normal distribution with a variance Var(ε) scaled such that the
ratio of the true and error variance was 4:

Var(E(y|X))

Var(y − E(y|X))
=

Var(f(X))

Var(ε)
= 4. (54)

Then, the observed (noisy) binary outcomes ỹs and ỹr were generated as follows:

ỹs =

{
1 if ys + εs ≥ ȳs

0 if ys + εs < ȳs
(55)

and

ỹr =

{
1 if yr + εr ≥ ȳr

0 if yr + εr < ȳr
(56)

that is to say, the observation ỹ = 1 if the real signal plus noise is higher than
the average of all real signals, and 0 otherwise. Figure 4 shows the simulated
data sets for the sum of sigmoids and radial models.

7.1.1 Implementation details

For both sets of generated data, baseline models of SVM, KNN, Logistic regres-
sion, and fully-connected neural networks were modeled in order to compare the
results with the best possible CCNN. Since in practice deep learning specialists

26

Figure 4: Visualizations of the simulated datasets in 2 dimensions. For the ra-
dial function, PCA was applied such that 2-dimensional visualization is possible.

fine-tune their models to achieve better results, a simple tuning mechanism was
applied by running models for different numbers of nodes in the hidden layer
of the network: 5, 25 and 100, respectively. For the CCNN implementation,
experiments were done with different Nystrom dimensions m ∈ {1, 2, 5, 25})
(see Section 6.1) and regularization parameter values for the nuclear norm con-
straint R ∈ {0.01, 0.1, 1, 10}). This was done because it is believed that these
parameters will influence the training and accuracy of the final CCNN model.

7.1.2 Results

The results of the fully-connected shallow neural network and CCNN models are
shown in Figures 6, 7, 8 and 9. The accuracies of all models are summarized in
Table 2. For both the sum of sigmoids and radial function generated datasets,
the best CCNN achieved accuracies comparable to the best alternatives, with
classification accuracies of 83.1% and 78.28% for the sum of sigmoids and radial
function sets, respectively.

7.2 Text classification

Now we describe the application of the CCNN model on a real data set consisting
of a text classification problem. Clickbait is a term for web-based content which
aims to convince users to click on said content and browse to the advertised
website. Clickbait is often used by websites which aim to generate revenue by
spreading these types of texts on social media. The clickbait headlines typically
aim to exploit the so-called ”curiosity gap” by including certain terms that
are psychologically stimulating the reader into desiring to know more. The
type of language used in clickbait headlines is markedly different from serious
headlines, but it can be difficult to concisely describe these differences of to

27

make a list of words which are typical for clickbait content. This provides us
with an interesting proposition: whether it is possible for a neural network
to distinguish between clickbait versus non-clickbait content by learning some
underlying function of the words used in the headlines.

In order to do this, it is necessary to have a dataset of clickbait and non-
clickbait content such that various models can be trained to classify among
the two categories. A dataset of 32,000 headlines was made available by [15],
who have used it in their paper [16] which shows how several models (SVM,
Decision Trees, Random Forest) can be used to reasonably good effect for the
classification task.

The clickbait corpus consists of article headlines from BuzzFeed, Upworthy,
ViralNova, Thatscoop, Scoopwhoop and ViralStories. The non-clickbait article
headlines are collected from WikiNews, New York Times, The Guardian, and
The Hindu.

7.2.1 Representing text data using tokens

Suppose we have data {ti, yi}ni=1 on n sequences of text. Here, each sequence
ti = (ti1, ti2, . . . , tiJ) is assumed to be padded to the same length of J tokens. A
token refers to a word, partial word or punctuation mark in the sequence. Be-
cause learning algorithms take numerical values as input, we must represent our
sequences using numbers. The simplest way is to number all the tokens appear-
ing in some given vocabulary. For example, the sequence wait for the video

and don’t rent it might be represented by (3532, 7, 3, 150, 8, 383, 4676, 44).
It is then padded on either side by a placeholder token such that it is of length
J .

yi represents some characteristic of the i-th sequence. For a continuous
yi ∈ R, this could be a measure of sentiment of the sample ti. When the
outcome is discrete, that is, yi ∈ {1, 2, . . . , G} it could be a classification for ti,
such as the type of text document among G categories.

7.2.2 Representing text data using word embeddings

When analyzing data of the form {ti, yi}ni=1 described above, we aim to learn
the function f : T 7→ Y . Learning algorithms typically do this by using some
sort of distance metric between the samples in a training data set. Given the
tokenized version of text data, it is not immediately straightforward how the
numerical representations for the tokens can be efficiently used for this. For this
to work, tokens representing similar sentiments, indicators for document class,
etc, should be assigned similar numerical values such that the distance between
them is small. Vector methods give us the tools of distances or angles between
pairs of words and pairs of sequences.

If each token in the vocabulary set would not be represented by a token
tij ∈ N but by some higher-dimensional representation tij ∈ Ru, such that each
sequence in a data set can be represented by a sequence of vectors:

Ti = (ti1, ti2, . . . , tiJ).

Then, the similarities and distances between words k1(tij , ti′j′) and sequences
k2(Ti,Ti′) can be computed for some suitably chosen distance function k1 :

28

U × U 7→ R and k2 : V × V 7→ R. Here, U would be the vector space of the
words, and V the matrix space of sequences.

In Figure 5 we can see that each of the tokens in the sequence wait for the

video and don’t rent it is represented by a vector, except don’t, which
is split into two vectors, do and n’t. This is done such that any learning
algorithm applied to such sequences may (hopefully) learn the distinct ’negative’
characteristic of the token n’t.

Figure 5: (Adapted from [17]) Visualization of equations (6) and (7) applied
to text document classification. Here, J refers to the sequence length (not to
be confused with lowercase j ∈ [r]). d1 is the word embedding dimension, r
the number of filters in the CNN, and d2 the number of output nodes. a):
Input matrix T ∈ RJ,d1 . The red and yellow areas are treated as patch vectors
z(x) ∈ Rd1 . b): h(z(x)) filter activations ∈ RJ resulting from r filters with
weights w ∈ Rd1 . c): output vector y ∈ Rd2 . Here, d2 = 4 which happens to be
equal to r in this particular example. The output layer uses coefficients αkjp to
learn the contribution of the p-th token through the j-th filter to the k-th output.

One problem with this approach is how to find appropriate vector repre-
sentations for the tokens. Ideally, each token in a vocabulary is assigned a
representation such that its distance with tokens of similar meanings is small,
and its distance with tokens if dissimilar meanings is high. Two methods to find
appropriate token representations (from now on referred to as word embeddings)
are Word2Vec [18] and Global Vectors (GloVe) [19]. The details of how they
work are outside the scope of this thesis. Here, we choose to use GloVe, which
provides pre-trained word embeddings for several different dimensions. In this
thesis, we have chosen for the u = 50-dimensional embeddings.

7.2.3 Implementation details

It is these vectorized representations of the Clickbait data set which were used as
input for the CNN and CCNN models. Each vectorized token in each headline
is treated as a patch for the (convexified) convolutional neural network. Thus,

29

Ti = Z(xi) and tip = zp(xi), when referring back to the notation used in Section
3.2.

As explained for the neural networks used on the simulated data, in prac-
tice the CNNs are finetuned with many hyperparameters and layers with extra
functions in order to improve performance. In order to get a more fair com-
parison, the CNNs discussed here only use a global max pooling layer after the
convolutional layer. The convolutional layer used 4, 16 and 64 filters, such that
three different CNNs could be compared. In all models the filters used ReLu ac-
tivation with a softmax activation in the output layer. The models were trained
using categorical cross-entropy loss and rmsprop optimizer.

The CCNN model was trained in 16 different configurations for all combi-
nations of four values for Nystrom dimension m and nuclear norm radius R.
The Nystrom dimensions (see Section 6.1) used were m ∈ {5, 25, 100, 200} and
the radii were R ∈ {0.1, 1, 5, 100}. The loss function used was softmax and
optimization was performed by projected stochastic gradient descent.

Alternative classification methods were also considered, with Logistic Re-
gression, SVM and K-nearest neighbors being applied on the vectorized clickbait
data.

All models were trained on 32,000 samples of which half were used for train-
ing and the other half reserved for validation.

7.2.4 Results

The results of the Clickbait data set analysis using the non-convex CNN models
is shown in Figure 10. The benefit of using pre-trained word embeddings is clear
from the high accuracy from the start, which only improves for the training
sample and stays the same for the validation sample. Best results are obtained
with 16 or 64 filters, where the validation accuracy reaches around 96%. While
the training accuracy still has room for growth, from the loss plots in Figure 10
it shows that this is due to overtraining, since the validation loss is increasing
after the 5th or so epoch, and the validation accuracy does not keep increasing.

The results of the CCNN models is shown in Figure 11. From these figures
the effects of different values for m and R are clearly visible. Regarding nuclear
norm radius, we can see in the loss plots that setting it to small values 0.1, 1
or 5 makes it difficult to update the model in terms of loss, which stays quite
high during the entire observed computational time. The effect of this is visible
in the right-hand side plots in Figure 11, showing the validation accuracy. For
these small values of R, the accuracy stays comparably bad (around the 65-
70% range). Only for a radius of 5 it is possible to catch up to the best model
when larger Nystrom dimensions m are used. Regarding the different values of
Nystrom dimension m, we can also see the phenomenon that generally, higher
values result in higher accuracy values on the validation set. Generally, using
a high-dimensional Nystrom approximation and allowing for a large value of R
result in a validation accuracy of close to 90%.

Finally, the SVM achieved a 92.57% accuracy, the KNN achieved 83.4% and
logistic regression 91.36%. The results are summarized in Table 2.

30

Table 1: Main results

Sum of sigmoids Radial function Clickbait
SVM 83.92% 79.49% 92.57%
KNN 81.79% 74.04% 83.40%
Logistic Regression 83.61% 78.49% 91.36%
NN-5 83.87% 78.09%
NN-25 83.05% 78.25%
NN-100 83.25% 78.17%
CCN-4 92.27%
CCN-16 95.66%
CCN-64 95.44%
Best CCNN 83.1% 78.28% 90.02%

Table 2: Classification accuracies of the models in this thesis. All data were
analysed using SVM, KNN and Logistic regression. The simulated data con-
tained no structure of hierarchical features and were thus assessed only using
fully-connected neural networks to compare with the CCNN. The Clickbait data
was analysed with CNNs and CCNNs.

31

Figure 6: Training results for the sum-of-sigmoids simulated data by three fully-
connected neural networks (non-convexified) with 1 hidden layer and either 5,
25 or 100 hidden nodes. For categorization, loss was binary cross-entropy and
accuracy the percentage correctly classified. Despite the fact that the data are
not linearly separable in lower dimensions (see Figure 4), a very simple neural
network achieves an 85% accuracy after 10 epochs.

32

Figure 7: Training results for the sum-of-sigmoids simulated data by shallow
convexified convolutional neural networks. 16 models were trained for the dif-
ferent combinations for Nystrom dimension m ∈ {1, 2, 5, 25} and nuclear norm

bound ‖Â‖∗ = R ∈ {.01, .1, 1, 10}. For categorization, loss was binary cross-
entropy and accuracy the percentage correctly classified.

33

Figure 8: Training results for the radial model simulated data by three fully-
connected neural networks with 1 hidden layer and either 5, 25 or 100 hidden
nodes. For categorization, loss was binary cross-entropy and accuracy the per-
centage correctly classified. Despite the fact that the data are not linearly sepa-
rable in lower dimensions (see Figure 4), a very simple neural network achieves
an 85% accuracy after 10 epochs.

34

Figure 9: Training results for the radial simulated data by shallow convexi-
fied convolutional neural networks. 16 models were trained for the different
combinations for Nystrom dimension m ∈ {1, 2, 5, 25} and nuclear norm bound

‖Â‖∗ = R ∈ {.01, .1, 1, 10}. For categorization, loss was binary cross-entropy
and accuracy the percentage correctly classified.

35

Figure 10: Model performance for the clickbait task using a convolutional neural
network with 1 hidden layer using r ∈ {4, 16, 64} filters. The model was run for
40 iterations. The benefit of using pre-trained word embeddings is clear from the
high accuracy from the start, which only improves for the training sample and
stays the same for the validation sample. Best results are obtained with 16 or 64
filters, where the validation accuracy reaches around 96%. While the training
accuracy still has room for growth, from the loss plots it shows that this is due
to overtraining.

36

Figure 11: Training results for the Clickbait data by shallow convexified con-
volutional neural networks. 16 models were trained for the different combina-
tions for Nystrom dimension m ∈ {5, 25, 100, 200} and nuclear norm bound

‖Â‖∗ = R ∈ {.01, .1, 1, 100}. For categorization, loss was binary cross-entropy
and accuracy the percentage correctly classified.

37

8 Conclusion and discussion

In this paper, we have introduced the concepts of neural networks. We then
introduced the concept of parameter sharing and how that leads to the convo-
lutional neural network, a model architecture typically applied to classification
tasks in image datasets. The learning algorithm implied by the neural network
architecture makes use of back-propagation, in which the model coefficients are
iteratively updated. This is a nonconvex optimization problem that is known to
be NP hard. In practice this results in models whose performance is determined
by the combination of a chosen model architecture, a set of hyperparameters
such as number of hidden nodes, and a chosen optimization algorithm. In [1],
a new model class known as convexified convolutional neural networks (CC-
NNs) was proposed. They show that training a CCNN corresponds to a convex
optimization problem which can be solved by a projected gradient descent al-
gorithm. They also show that their implementation of the CCNN algorithm on
several versions of the MNIST dataset and the CIFAR-10 dataset are able to
obtain results comparable to state-of-the-art models from the nonconvex class
of models.

In this thesis, we have explained the mathematical details for how the CCNN
model class is constructed and described the algorithm that can be used to
train such a model. The algorithm makes use of several steps. In one step
a kernel matrix is approximated to find new features via K ≈ QQ> with Q
being a representation of the original patches Z, and the features used for the
projected gradient descent in the CCNN algorithm. For this approximation step,
a Nystrom dimension m must be chosen which influences the accuracy of the
approximation step. In the next step of the algorithm, the coefficients of the
model are projected on the nuclear norm ball for some chosen regularization
parameter r. Much like in techniques such as ridge and lasso regression, the
size of this parameter indicates the ’size’ of the parameter space and therefore
influences the results.

The influence of these two hyperparameters are discussed at best marginally
in [1]. Furthermore, the CCNN algorithm was applied only on image data,
which is the traditional application for convolutional neural networks. In this
work, we have presented the application of the CCNN on two simulated datasets
to show the influence of the hyperparameters m and r. Furthermore, we have
shown that the CCNN also works on the task of classifying text data, where in
previous work [17] this has only been done by a CNN. Also, the implementation
of the CCNN by [1], while publicly available, is not ready for implementation on
datasets other than specifically those used in [1] and in specifically the manner
described by them. Their scripts were written specifically for the MNIST and
CIFAR-10 data sets with no easy way to change any variables to apply it to
other data. For this thesis, the entire algorithm has been written from the
ground up in a structurally organized manner so that hyperparameters for the
application of it to unstructured and text data can be more efficiently selected
and the training patterns more easily visualized.

The question of whether the CCNN algorithm can be successfully applied
on text data can be answered positively. The CCNN algorithm achieves an
acceptable performance of around 90% classification accuracy on the Clickbait
data set, which however is still lower than performance achieved by a simple
CNN.

38

The question of how the m and r hyperparameters influence the training
paths has also been answered. On the simulated data sets, we have shown that
generally, the loss function is easier to minimize for higher values of m and r,
although it takes some more iterations before the validation accuracy catches
up with the smaller models. In the clickbait data set, the results show that best
results are achieved for the bigger models, since the extra information from a
higher m and/or larger nuclear norm allowance r lets the model find the best
parameters.

Comparing the advantages and disadvantages of the CCNN and the CNN
models, we found that in general the simple CNNs implemented in this thesis
were able to achieve similar or better results than the CCNN. The CCNNs
however, were faster to train. This point is especially impressive considering the
fact that the CNNs were implemented using the TensorFlow/Keras libraries in
Python, which make the back-propagation calculations significantly faster by
allowing them to be computed on the computer’s Graphical Processing Unit.
The CCNN algorithm, which was coded using NumPy and numexpr, could
quickly achieve their optimal solution by comparison. Another point that would
count in favour of the CCNN in this regard is the fact that the CNN modules
have been extensively studied and optimized, while the CCNN algorithm is not
yet fully optimized.

The CCNN algorithm has an inherent drawback which could severely limit
its application. It is the need to compute and approximate the kernel matrix
K. For meaningful problems, this kernel matrix will be very large. In fact,
the applications by [1] required a 10GB and 50GB memory requirement for the
MNIST and CIFAR10 data sets respectively, which is well beyond the average
computer’s capabilities nowadays. CNNs modeling these data sets using the
aforementioned Tensorflow/Keras libraries are much more achievable by com-
parison. Another implication of the use of this kernel seems to be that it is
especially useful for data sets where the input and output are related to each
other in an unidirectional manner, as per a function f : X 7→ Y . It is not imme-
diately clear how other deep neural network architectures with a feedback loop
of information, such as an RNN or a LSTM, could be meaningfully convexified
in this manner.

The last point that can be made is that of whether convexity of the optimiza-
tion problem is important. There are certainly reasons to argue why it is not.
In many modern-day applications of deep learning models, the main point of
interest is to understand how the non-convex algorithms work and how to make
them perform better. When faced with a host of non-convex models that give
a great flexibility in how to approach a problem, it can be difficult to motivate
having to pay a price in numerical complexity for wanting to insist on convexity.
Modern machine learning tasks, such as vision-speech and language recognition
tasks are currently implemented with deep hierarchical models. It is precisely
because these problems are inherently non-linear that such a hierarchical rep-
resentation is necessary. In these cases, it can be argued that the problem that
we are trying to model is inherently non-convex. On the other hand, it could
also be argued that the convex methods to tackle these problems have simply
not been sufficiently developed yet. In any case, this work has shown some ap-
plications of shallow convexified convolutional neural networks, but any formal
study of convex relaxation of deep neural networks is still an open problem.

39

A Appendix

A.1 Theorems

Theorem 1 (Nonparametric Representer Theorem). (by [10]) Suppose we are
given a nonempty set X , a positive definite real-valued kernel k on X × X , a
training sample (x1, y1), . . . , (xn, yn) ∈ X ×R, a strictly monotonically increas-
ing real-valued function g on [0,∞], an arbitrary cost function c : (X ×R2)m →
R ∪ {∞}, and a class of functions

F
{
f ∈ RX

∣∣f(·) =

∞∑
i=1

βik(·,xi), βi ∈ R,xi ∈ X , ‖f‖ <∞
}
. (57)

Here, ‖ · ‖ is the norm in the RKHS Hk associated with k. Then any f ∈ F
minimizing the regularized risk functional

c((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + g(‖f‖) (58)

admits a representation of the form

f(·) =

n∑
i=1

αik(·,xi). (59)

Note how in Theorem 1 above, the functions f ∈ RX admit an infinite-
dimensional form, yet the function which minimizes the cost function is finite
dimensional, with m being the sample size.

A.2 Minor proofs

Lemma 12 (Trace of a concatenated matrix). When any number of matrices
Mi, i ∈ [k] are concatenated horizontally such that M = [M1, . . . ,Mk], then

tr(MTM) =

k∑
i

tr(MT
i Mi).

Proof. The matrix multiplication MTM will result in a square matrix that can
be partitioned into blocks such that (MTM)ij = MT

i Mj . Because MT
i Mj

will lie along the trace of (MTM) ∀i = j, we can see that the original claim
holds.

A.3 Definitions

Definition 5. (Karush–Kuhn–Tucker conditions). Given are a function f(w),
which needs to be minimized given some inequality constraint functions gi(w)
and equality constraint functions hj(w), and all are differentiable at point ŵ.
Then, if ŵ is a local optimum, then there exist constants λi and θi, such that

Of(ŵ) +

m∑
i=1

λiOgi(ŵ) +

l∑
j=1

θjOhj(ŵ) = 0,

as long as the following conditions hold:

40

1. gi(ŵ) ≤ 0,∀i,

2. hj(ŵ) = 0,∀j,

3. λi ≥ 0,∀i,

4. λigi(ŵ) = 0,∀i.

41

A.4 Python code: Network algorithms

A.4.1 CCNN Algorithm

””” This module will contains the functions required for:

1) Helper functions
2) Projecting a matrix on nuclear norm ball
3) Projected Gradient Descent of a matrix on the nuclear norm ball
4) train CCNN on radial data and store results on disk
5) cnstruct loss, accuracy plots for the CCNN on radial training
6) construct loss, accuracy plots for the CCNN on sigmoid training

”””

public libraries
import numpy as np
from numpy import linalg as LA
import sys
import numexpr as ne
from sklearn.preprocessing import label binarize
import time
import pickle as pkl

#######################################
1) Helper functions
#######################################
helper functions
def tprint(s):

””” Enhanced print function with time added to the output.
Source: Zhang et al.
”””
tm str = time.strftime(”%H:%M:%S”, time.gmtime(time.time()))
print(tm str + ”: ” + str(s))
sys.stdout.flush()

#######################################
2) ALGORITHM 2: project a matrix on nuclear norm ball
#######################################
””” Algorithm 2 in MSc. Thesis of Maarten van Schaik
The code for these three functions is heavily inspired by that of Zhang et al.
in their CCNN script.

The three functions below compute the steps for Algorithm 2.

Main function: project to trace norm, which requires the functions
euclidean proj simplex, euclidean proj l1ball
”””

def project to nuclear norm(A, R, P, nystrom dim, d2):
””” Main function for Algorithm 2
Dependencies: euclidean proj simplex, euclidean proj l1ball

Parameters
−−−−−−−−−−

42

A: numpy array,
matrix to be projected onto the nuclear norm ball

R: int,
upper bound of nuclear norm.

P: int,
number of patches (on clickbait: sequence length)

nystroem dim: int,
Nystroem dimension. In Thesis: m

d2: int,
Number of classes for the categorical classification

Returns
−−−−−−−
Ahat: numpy array,

Projection of A on the nuclear norm ||A|| {∗} = R
U, s, V: singular vectors and values of A
”””
A = A.reshape((d2−1)∗P, nystrom dim)
A = np.reshape(A, ((n classes−1)∗P, nystroem dim))
(U, s, V) = LA.svd(A, full matrices=False)
s = euclidean proj l1ball(s, s=R)
Ahat = np.reshape(np.dot(U, np.dot(np.diag(s), V)), ((d2−1), P∗nystrom dim))
return Ahat, U, s, V

def euclidean proj simplex(v, s=1):
””” Compute the Euclidean projection on a positive simplex
Solves the optimisation problem (using the algorithm from [1]):

$min w 0.5 ∗ || w − v || 2ˆ2 , s.t. \sum i w i = s, w i >= 0$
Parameters
−−−−−−−−−−
v: (n,) numpy array,

n−dimensional vector to project
s: int, optional, default: 1,

radius of the simplex
Returns
−−−−−−−
w: (n,) numpy array,

Euclidean projection of v on the simplex
Notes
−−−−−
The complexity of this algorithm is in O(n log(n)) as it involves sorting v.
Better alternatives exist for high−dimensional sparse vectors (cf. [1])
However, this implementation still easily scales to millions of dimensions.
References
−−−−−−−−−−
[1] Efficient Projections onto the .1−Ball for Learning in High Dimensions

John Duchi, Shai Shalev−Shwartz, Yoram Singer, and Tushar Chandra.
International Conference on Machine Learning (ICML 2008)
http://www.cs.berkeley.edu/˜jduchi/projects/DuchiSiShCh08.pdf

”””
assert s > 0, ”Radius s must be strictly positive (%d <= 0)” % s
n, = v.shape # will raise ValueError if v is not 1−D
check if we are already on the simplex
if v.sum() == s and np.alltrue(v >= 0):

43

best projection: itself!
return v

get the array of cumulative sums of a sorted (decreasing) copy of v
u = np.sort(v)[::−1]
cssv = np.cumsum(u)
get the number of > 0 components of the optimal solution
rho = np.nonzero(u ∗ np.arange(1, n+1) > (cssv − s))[0][−1]
compute the Lagrange multiplier associated to the simplex constraint
theta = (cssv[rho] − s) / (rho + 1.0)
compute the projection by thresholding v using theta
w = (v − theta).clip(min=0)
return w

def euclidean proj l1ball(v, s=1):
””” Compute the Euclidean projection on a L1−ball
Solves the optimisation problem (using the algorithm from [1]):

$min w 0.5 ∗ || w − v || 2ˆ2 , s.t. || w || 1 <= s$
Parameters
−−−−−−−−−−
v: (n,) numpy array,

n−dimensional vector to project
s: int, optional, default: 1,

radius of the L1−ball
Returns
−−−−−−−
w: (n,) numpy array,

Euclidean projection of v on the L1−ball of radius s
Notes
−−−−−
Solves the problem by a reduction to the positive simplex case
See also
−−−−−−−−
euclidean proj simplex
”””
assert s > 0, ”Radius s must be strictly positive (%d <= 0)” % s
n, = v.shape # will raise ValueError if v is not 1−D
compute the vector of absolute values
u = np.abs(v)
check if v is already a solution
if u.sum() <= s:

L1−norm is <= s
return v

v is not already a solution: optimum lies on the boundary (norm == s)
project ∗u∗ on the simplex
w = euclidean proj simplex(u, s=s)
compute the solution to the original problem on v
w ∗= np.sign(v)
return w

#######################################
3) ALGORITHM 3: Projected Gradient Descent of a matrix on the nuclear norm

↪→ ball
#######################################
def evaluate classifier(X train, X test, Y train, Y test, A, d2):

44

””” Evaluates quality of the classifier by computing the loss and the
classification error in the train and test set. The loss used is categorical
cross−entropy and the classification error is zero−one loss.
”””
n train = X train.shape[0]
n test = X test.shape[0]
eXAY = np.exp(np.sum((np.dot(X train, A.T)) ∗ Y train[:,0:(d2−1)],

axis=1))
eXA sum = np.sum(np.exp(np.dot(X train, A.T)), axis=1) + 1
loss = − np.average(np.log(eXAY/eXA sum))

predict train = np.concatenate((np.dot(X train, A.T), np.zeros((n train, 1),
dtype=np.float32)), axis=1)

predict test = np.concatenate((np.dot(X test, A.T), np.zeros((n test, 1),
dtype=np.float32)), axis=1)

error train = np.average(np.argmax(predict train, axis=1) != \
Y train.reshape(n train,))

error test = np.average(np.argmax(predict test, axis=1) != \
Y test.reshape(n test,))

return loss, error train, error test

def projected gradient descent(X train,
Y train,
X test,
Y test,
R,
n iter,
learning rate,
print iterations):

””” In order to solve optimization problem in Algorithm 1, projected
gradient descent is used. At iteration t, using a step size $\eta > 0$,
it forms the new matrix $Aˆ{t+1}$ based on the previous iterate $Aˆt$
according to:

$$Aˆ{t+1} = \Prod R(Aˆt − \eta \nabla A L(Aˆt)),$$

where $\nabla A L(Aˆt)$ denotes the gradient of the objective function
defined in Algorithm 1,, and $\Prod R$ denotes the Euclidean projection
onto the nuclear norm ball $\{A: \|A\| {∗} \leq R\}$.

−−−
↪→

This function takes as input Will return the learned
parameter matrix A \in Rˆ{m , P∗d 2}.

X train, X test: train and test data (X reduced[0:n train] etc) Respective
sizes decided by n train. Here is $Q \in Rˆ{n, P, m}$,
the low−dimensional feature representation of the
kernelized patches (as returned by the Nystrom transform)

Y train, Y test: train and test labels.

45

For clarification:
P: Number of patches. In the clickbait data, the 20−token sequences are

evaluated with stride=1, (so each token is its own patch), so P=20.

nystrom dim: Dimension of the Q matrix. In clickbait data, there is 1
channel and nystrom dim=m, such that nystrom dim=1∗m=m.

R: toplevel input by user for. It is the hyperparameter R: the radius of
the nuclear norm ball onto which the parameter matrix A is projected;

”””
d2 = len(np.unique(Y train))
n train, P, nystrom dim = X train.shape
n test = X test.shape[0]
X train = X train.reshape(n train, P∗nystrom dim)
X test = X test.reshape(n test, P∗nystrom dim)
A = np.random.randn((d2−1), P∗nystrom dim)
A sum = np.zeros(((d2−1), P∗nystrom dim), dtype=np.float32)

setup for objects to store performance during training
loss history = np.array(())
error train history = np.array(())
error test history = np.array(())

Projected Stochastic Gradient Descent
mini batch size = 50
nr of mini batches = 10
for t in range(n iter):

Non−projected Stochastic Gradient Descent
for i in range(0, nr of mini batches):

””” This double for loop is largely inspired by Zhang et al’s
version in their CCNN code.

For each batch in nr of mini batches, randomy select mini batch size
training samples inputs and labels. For this mini batch size samples,
calculate the steps for stochastic gradient descent such that:

$\nabla A{ k} L(A k) =
frac{1}{n}X(frac{exp(XA kˆT)}{\sum {k=1}ˆK exp(XA kˆT)}

↪→ − Y)$

where A k are the parameters for class K, X the mini batch of data,
Y the targets of the mini batch, and n the mini batch size. L(A k)
is the loss function for multiclass classification (softmax)

The update rule is then that $A {t+1} =
A {t} − \gamma \nabla {A k}L(A k)

↪→ $

After the update is applied, the new coefficients are projected on
the nuclear norm.
”””
randomly sample mini batch size (=50) patches
index = np.random.randint(0, n train, mini batch size)

46

X sample = X train[index] # dimensions: (50, P∗nystrom dim)
one column removed (because inferred from other columns):
Y sample = Y train[index, 0:(d2−1)]

stochastic gradient descent
XA = np.dot(X sample, A.T)
eXA = ne.evaluate(”exp(XA)”)
eXA sum = np.sum(eXA, axis=1).reshape((mini batch size, 1)) + 1
diff = ne.evaluate(”eXA/eXA sum − Y sample”)
grad A = np.dot(diff.T, X sample) / mini batch size
A −= learning rate ∗ grad A # average A after nr of mini batches

↪→ times

projection to nuclear norm
A, U, s, V = project to nuclear norm(A=A,

R=R,
P=P,
nystrom dim=nystrom dim,
d2=d2)

A sum += A
if (t+1) % print iterations == 0:

percentage of ’variance’ in top 25 singular values:
dim = np.sum(s[0:25]) / np.sum(s)
A avg = A sum / 250
loss, error train, error test = evaluate classifier(X train=X train,

X test=X test,
Y train=Y train,
Y test=Y test,
A=A avg,
d2=d2)

loss history = np.append(loss history, np.array(loss))
error train history = np.append(error train history,

np.array(error train))
error test history = np.append(error test history,

np.array(error test))

A sum = np.zeros(((d2−1), P∗nystrom dim), dtype=np.float32) # reset
↪→ A sum

tprint(”iter ” + str(t+1) +
”: loss=” + str(loss) +
”, train accuracy =” + str(error train) +
”, test accuracy =” + str(error test))

history = np.concatenate((loss history[:,np.newaxis],
error train history[:,np.newaxis],
error test history[:,np.newaxis]),

axis=1)

””” Once the final iterations have been made, the final trace−projected
coefficients are calculated and returned.
”””
A avg, U, s, V = project to nuclear norm(A=np.reshape(A avg, ((d2−1)∗P,

nystrom dim)),

47

R=R,
P=P,
nystrom dim=nystrom dim,
d2=d2)

dim = min(np.sum((s > 0).astype(int)), 25)
return A avg, V[0:dim], history

#######################################
ALGORITHM 1: LEARN A CCNN
#######################################
class ccnn:

””” Function class to compute Algorithm 1 from MSc. Thesis.

Functions:
init : initializes the ccnn class.

construct Q: From the input data, construct Q by approximating the
kernel matrix K.

train: Trains the CCNN on Q and Y.
”””
def init (self,

input file,
label file,
n train,
nystrom dim,
gamma,
R,
learning rate,
n iter,
print iterations):

””” Initializes the CCNN model with input from user.

Parameters
−−−−−−−−−−
input file, label file: path directories for X and Y.

X must be a (N, P, d1) array.
Y must be a (N,) array.

nystrom dim: Nystroem dimension used to approximate Q during
step 1 of Algorithm 1 in MSc. Thesis. In Thesis: ”m”.

gamma: hyperparameter for the RBF kernel.
R: Nuclear Norm radius to project A on: ||A|| {∗} = R
n iter: number of iterations for the Projected Stochastic Gradient Descent
print iterations: how often to print current loss and accuracy to

the console. 1 means it prints each iteration.
”””
tprint(”read from ” + input file)
Storing data
self.X raw = pkl.load(open(input file, ”rb”))
self.label = pkl.load(open(label file, ”rb”))[:, 0]
Storing data properties
self.d2 = np.unique(self.label).shape[0]
self.n = self.X raw.shape[0]
self.P = self.X raw.shape[1]
self.d1 = self.X raw.shape[2]
Storing hyperparameters

48

self.n train = n train
self.n test = self.n − self.n train
self.nystrom dim = nystrom dim # in Thesis: m
self.gamma = gamma
self.R = R
self.learning rate = learning rate
self.n iter = n iter
self.print iterations = print iterations

construct patches
This is an artifact from when X raw was not neccesarily supplied as a
3−dimensional array, and n, P, d1 were given as user input.
For sequence data it’s easy: just use .reshape
self.Z = self.X raw.reshape(self.n,

self.P,
self.d1)

tprint(”Data contains ” + str(self.n) + ” samples, with ” +
str(self.P) + ” patches of dimension ” + str(self.d1) + ”.”)

tprint(”Output contains ” + str(self.n) + ” samples, with ” +
str(self.d2) + ” classes.”)

def construct Q(self, feature normalization=True):
””” Step 1 and 2 in Algorithm 1 in MSc. Thesis.
Computes Q, such that QQˆT \approx K, where K is the RBF kernel

↪→ matrix.
Also applies normalization to the features by default. This is carried
over by example from the CCNN code of Zhang et. al

Input
Z train, Z test: (N,P,d1) arrays. Each Z[i,:,:] is one Z(x i).

Result from init .

Output
Q train, Q test: (N,P,m) arrays Each Q[i,:,:] is one Q(x i).

Used in train() function below.
”””
from sklearn.kernel approximation import Nystroem
import numpy as np
import math
tprint(”Using Scikitlearn Nystroem function”)
tprint(”Creating Q...”)
Z train = self.Z[0:self.n train].reshape((self.n train∗self.P, self.d1))
Z test = self.Z[self.n train:self.n].reshape((self.n test∗self.P, self.d1))
transformer = Nystroem(gamma=self.gamma, n components=self.

↪→ nystrom dim)
transformer = transformer.fit(X=Z train)
Q train = transformer.transform(Z train)
Q test = transformer.transform(Z test)
self.Q train = Q train.reshape((self.n train, self.P, self.nystrom dim))
self.Q test = Q test.reshape((self.n test, self.P, self.nystrom dim))

if feature normalization==True:
self.Q train = self.Q train.reshape((self.n train∗self.P,

self.nystrom dim))

49

self.Q train −= np.mean(self.Q train, axis=0)
self.Q train /= LA.norm(self.Q train) / math.sqrt(self.n train∗self.P)
self.Q train = self.Q train.reshape((self.n train,

self.P, self.nystrom dim))
self.Q test = self.Q test.reshape((self.n test∗self.P,

self.nystrom dim))
self.Q test −= np.mean(self.Q test, axis=0)
self.Q test /= LA.norm(self.Q test) / math.sqrt(self.n train∗self.P)
self.Q test = self.Q test.reshape((self.n test,

self.P, self.nystrom dim))
Training CCNN
def train(self):

””” Algorithm 1 from MSc. Thesis.
Trains the CCNN using Projected Stochastic Gradient Descent.

It solves the constrained optimization problem of step 3 in Algorithm 1.

Requires:
−−−−−
Q train, Q test: Output from construct Q function
Y train, Y test: User input on class level

Label binarize will create a one−hot encoding matrix with K−1 columns,
showing a 1 in each row only once to indicate which class the case
belongs to.

Parameters
−−−−−−−−−−
n iter: number of iterations for the Projected Stochastic Gradient Descent
print iterations: how often to print current loss and accuracy to

the console. 1 means it prints each iteration.
”””
tprint(”Training CCNN using projected stochastic gradient descent...”)
from sklearn.preprocessing import label binarize
binary label = label binarize(self.label, classes=range(0, self.d2))

self.Y train=binary label[0:self.n train]
self.Y test=binary label[self.n train:]

self.A, self.filter, self.train history = \
projected gradient descent(X train=self.Q train,

Y train=self.Y train,
X test=self.Q test,
Y test=self.Y test,
n iter=self.n iter,
print iterations=self.print iterations,
R=self.R,
learning rate=self.learning rate)

A.4.2 CNN Algorithm

""" This module contains functions to:

1) Set up a simple CNN network to be applied on the Clickbait dataset

50

"""

public libraries

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Embedding

from keras.layers import Conv1D, GlobalMaxPooling1D

import time, sys

#######################################

1) Set up a Fully-connected neural network (non-convexified!)

#######################################

class ConvNeuralNet_binary:

def __init__(self):

pass

""" Instantiates a CNN object in Python.

setup_model: Set up a simple 1D-convolutional neural network. It uses

↪→ the

embedded sentences as input then runs them through a

↪→ number of

filters, which are summarized using global max pooling. A

2-node and softmax layer combination is used to calculate

↪→ the

output.

fit_model: Starts training the neural network created using

↪→ setup_model.

"""

def setup_model(self,

embedding_matrix,

max_sequence_length,

n_filters,

k_size):

Save important parameters into the class

self.max_sequence_length = max_sequence_length

self.n_filters = n_filters

self.k_size = k_size

self.vocab_size, self.vocab_dim = embedding_matrix.shape

Set up the simple 1D-Convolutional Neural Network

tprint("Building a model...")

embedding_layer = Embedding(self.vocab_size,

self.vocab_dim,

weights=[embedding_matrix],

input_length=self.max_sequence_length,

trainable=False,

name="Embedding")

self.model = Sequential()

self.model.add(embedding_layer)

self.model.add(Conv1D(filters=self.n_filters,

kernel_size=self.k_size,

activation=’relu’,

strides=1,

padding=’valid’,

name="Conv1D"))

self.model.add(GlobalMaxPooling1D(name="Max_Pooling"))

51

self.model.add(Dense(2, activation=’softmax’, name="Dense_Softmax

↪→ "))

self.model.compile(loss=’categorical_crossentropy’,

optimizer=’rmsprop’,

metrics=[’accuracy’])

def fit_model(self,

X_train, X_test, Y_train, Y_test,

batch_size=10, epochs=128):

self.batch_size = batch_size

self.epochs = epochs

tprint("Fitting 1D-Convolutional Neural Net with "+str(self.

↪→ n_filters)+

" filters in the hidden layer, for "+str(self.epochs)+"

↪→ epochs...")

self.history = self.model.fit(X_train, Y_train,

epochs=self.epochs,

batch_size=self.batch_size,

validation_data=(X_test, Y_test),

verbose=1)

A.4.3 NN Algorithm

""" This module contains functions to:

1) Helper functions

2) Set up a fully connected neural network class

"""

public libraries

import numpy as np

from keras.models import Sequential

from keras.layers import Dense

#######################################

1) Helper functions

#######################################

def TestError(Y, Yhat):

""" Used in NEuralNet_binary.fit_model()

Calculates the prediction error

"""

pred_error = (Y - Yhat)**2

return(np.average(pred_error))

#######################################

2) Set up a Fully-connected neural network (non-convexified!)

#######################################

classes

class NeuralNet_binary:

"""

Set up to fit a very simple fully-connected neural network suited for

classification tasks. Because of the classification tasks it performs

↪→ , it

will train binary cross-entropy as loss function, measure accuracy by

↪→ zero-

52

one loss and optimize using adam.

"""

def __init__(self):

pass

def setup_model(self, nr_hidden, input_dim):

create model

self.nr_hidden = nr_hidden

self.model = Sequential()

self.model.add(Dense(self.nr_hidden,

input_dim=input_dim,

activation=’relu’))

self.model.add(Dense(1, activation=’sigmoid’))

self.model.summary()

Compile model

self.model.compile(loss=’binary_crossentropy’,

optimizer=’adam’,

metrics=[’accuracy’])

def fit_model(self,

X_train, X_test, Y_train, Y_test,

batch_size=10, epochs=128):

self.batch_size = batch_size

self.epochs = epochs

tprint("Fitting fully-connected Neural Net with "+str(self.

↪→ nr_hidden)+

" hidden nodes, for "+str(self.epochs)+"epochs...")

self.history = self.model.fit(X_train, Y_train,

epochs=self.epochs,

batch_size=self.batch_size,

validation_data=(X_test, Y_test),

verbose=1)

self.Yhat = self.model.predict(X_test)

self.test_error = TestError(Y=Y_test, Yhat=self.Yhat)

A.5 Python code: data access

A.5.1 Clickbait data

"""

This module specifies a number of functions related to loading the

↪→ clickbait

dataset and preparing it for use in (convexified and/or convolutional)

↪→ neural

networks.

load_data: Loads the clickbait dataset (input and labels) and splits into

train and test sets.

tokenize: Removes punctuation and tokenizes the rest of input data using

↪→ the

53

Keras tokenizer, then pads each input to the max length allowed

↪→ .

prepare_embedding: Will prepare a matrix containing the token embeddings

↪→ from

the GloVe dataset. The user can choose between

↪→ 50/100/200/300

dimensional token embeddings. Please note, you will

↪→ need

the (large) GloVe files on your disk.

vectorize_tokens: This will create vectorized dataset by taking the

↪→ tokenized

inputs and using the embedding matrix created by

prepare_embedding to fetch the required vectors.

"""

data_path = ’raw_clickbait_data/’

def load_data(TEST_SPLIT=0.2):

"""This function does the following:

Load the clickbait datasets

Select a holdout sample (input: HOLDOUT_SPLIT)

returns: x_train, y_train, x_test, y_test

"""

import numpy as np

Read in the raw data

f = open(data_path+’clickbait_data’, encoding="utf8")

baitlines = [line.rstrip().lower() for line in f if len(line.rstrip()

↪→) > 0]

f.close()

f = open(data_path+’non_clickbait_data’, encoding="utf8")

nobaitlines = [line.rstrip().lower() for line in f if len(line.

↪→ rstrip()) > 0]

f.close()

headlines = baitlines + nobaitlines

longest = len(max(headlines, key=len)) # longest headline length

print("Reading data files...")

print("Parsed %d bait headlines." % (len(baitlines)))

print("Parsed %d non bait headlines." % (len(nobaitlines)))

print("Parsed %d headlines in total." % (len(headlines)))

print("Longest headline is %d tokens before pre-processing" % longest

↪→)

print("(so including punctuation etc).")

labels = []

for i in np.arange(len(baitlines)):

labels.append(1)

for i in np.arange(len(nobaitlines)):

labels.append(0)

labels_index = {’clickbait’: 1, ’news’: 0}

54

get a test set

from random import shuffle

Given list1 and list2

headlines_shuf = []

labels_shuf = []

indices = np.arange(len(headlines))

shuffle(indices)

for i in indices:

headlines_shuf.append(headlines[i])

labels_shuf.append(labels[i])

nb_holdout_samples = int(TEST_SPLIT * len(headlines))

x_train = headlines_shuf[:-nb_holdout_samples]

y_train = labels_shuf[:-nb_holdout_samples]

x_test = headlines_shuf[-nb_holdout_samples:]

y_test = labels_shuf[-nb_holdout_samples:]

print("Creating a holdout sample...")

print("Took %d headlines as holdout sample." % nb_holdout_samples)

print("Remaining %d headlines will be used for training." % len(

↪→ x_train))

return(x_train, y_train, x_test, y_test)

def tokenize(x_train, y_train, x_test, y_test,

max_nb_words=400000,

max_sequence_length=26):

"""This function must accomplish the following:

Apply tokenization on headlines

Apply tokenization on holdout headlines

(input for both: MAX_NB_WORDS, MAX_SEQUENCE_LENGTH)

"""

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from keras.utils import np_utils

import numpy as np

print("Initializing Keras tokenizer, max. unique words allowed = %d"

↪→ % max_nb_words)

tokenizer = Tokenizer(num_words=max_nb_words)

tokenizer.filters = ’#$%&()*+,-./:;<=>@[\\]^_‘{|}~\t\n’

tokenizer.fit_on_texts(x_train)

print("Applying tokenizer on training corpus...")

x_train = tokenizer.texts_to_sequences(x_train)

word_index = tokenizer.word_index

print(’Found %s unique tokens.’ % len(word_index))

print(’Padding training sequences to max length %d’ %

↪→ max_sequence_length)

x_train = pad_sequences(x_train, maxlen=max_sequence_length)

y_train = np_utils.to_categorical(np.asarray(y_train))

print(’Shape of training x_train tensor:’, x_train.shape)

print(’Shape of training y_train tensor:’, y_train.shape)

55

"""

Here starts a section dedicated to testing new headlines on which the

↪→ model has

not been trained and which may also contain words that are not in the

↪→ vocabulary.

These words will be removed from the new headline and a prediction

↪→ will be made

on the sentence as if it does not contain those words.

"""

latest test

print("Applying tokenizer on holdout corpus...")

x_test = tokenizer.texts_to_sequences(x_test)

#word_index = tokenizer.word_index

#print(’Found %s unique tokens.’ % len(word_index))

print(’Padding holdout sequences to max length %d’ %

↪→ max_sequence_length)

x_test = pad_sequences(x_test, maxlen=max_sequence_length)

y_test = np_utils.to_categorical(np.asarray(y_test))

print(’Shape of holdout x_test tensor:’, x_test.shape)

print(’Shape of holdout y_test tensor:’, y_test.shape)

return(x_train, y_train, x_test, y_test, tokenizer)

def prepare_embedding(tokenizer, embedding_dim):

"""This function must accomplish the following:

set up an embedding_index from pre-trained words (input:

↪→ EMBEDDING_DIM)

Set up embedding_matrix for our data

"""

import numpy as np

"""

Preparing the embedding layer by setting up an embeddings_index. This

↪→ is a

dictionary of 400000 pre-trained word vectors from GLOVE. These come

↪→ in

either 50, 100, 200 or 300 dimensions, depending on how precise you

↪→ want to

be and how much memory you are willing to use.

"""

print("Initializing word vectors based on %d-dimensional GLOVE

↪→ dictionary..." % embedding_dim)

print("... (this could take a minute)")

word_index = tokenizer.word_index

embeddings_index = {}

if embedding_dim == 50: f = open(’raw_clickbait_data/glove.6B.50d.txt

↪→ ’, encoding="utf8")

if embedding_dim == 100: f = open(’raw_clickbait_data/glove.6B.100d.

↪→ txt’, encoding="utf8")

if embedding_dim == 200: f = open(’raw_clickbait_data/glove.6B.200d.

↪→ txt’, encoding="utf8")

56

if embedding_dim == 300: f = open(’raw_clickbait_data/glove.6B.300d.

↪→ txt’, encoding="utf8")

for line in f:

values = line.split()

word = values[0]

coefs = np.asarray(values[1:], dtype=’float32’)

embeddings_index[word] = coefs

f.close()

"""

At this point we can leverage our embedding_index dictionary and our

↪→ word_index

to compute our embedding matrix:

"""

count = 0

for word, i in word_index.items():

if word in embeddings_index:

count += 1

print("%d out of %d tokens present in GLOVE dictionary" % (count, len

↪→ (word_index)))

print("Words not found will be embedded as all-zeros.")

embedding_matrix = np.zeros((len(word_index) + 1, embedding_dim))

for word, i in word_index.items():

embedding_vector = embeddings_index.get(word)

if embedding_vector is not None:

words not found in embedding index will be all-zeros.

embedding_matrix[i] = embedding_vector

return(word_index, embedding_matrix)

def vectorize_tokens(data, embedding_matrix, embedding_dim=50,

↪→ max_sequence_length=26):

"""

This function will take as input tokenized data and return a

↪→ dataframe in

which the data has been vectorized.

data: tokenized data that you want to vectorize

embedding_matrix: matrix where the i’th row contains vector for token

↪→ ’i’

embedding_dim: dimension per token vector

max_sequence_length: max length of an individual input data

clickbait example: tokenized data is provided as an array of shape (N

↪→ , 26)

due to truncation after 26 tokens. the 50-dimensional GloVe vectors

↪→ are used

for the embedding matrix. The return is an array of shape (N, 50*26).

"""

import numpy as np

i = -1

57

n = len(data)

data_vec = np.zeros((n, embedding_dim*max_sequence_length))

for title in data:

i += 1

vec = np.zeros(EMBEDDING_DIM*MAX_SEQUENCE_LENGTH)

vec = np.array([])

for token in title:

token_vec = embedding_matrix[token]

vec = np.append(vec, token_vec)

data_vec[i] = vec

return(data_vec)

A.5.2 Simulated data

""" This module contains functions to:

1) Simulate sum-of-sigmoid model data

2) Simulate radial model data

"""

public libraries

import numpy as np

import pandas as pd

helper functions

def tprint(s):

"""

Enhanced print function with time added to the output.

"""

import time, sys

tm_str = time.strftime("%H:%M:%S", time.gmtime(time.time()))

print(tm_str + ": " + str(s))

sys.stdout.flush()

#######################################

1) Simulate sum-of-sigmoid model data

#######################################

project-specific functions

def create_sigmoidsum_data(N, train_split,

signal_noise_ratio=2,

seed=1234,

verbose=True):

"""

Simulates data using the sum-of-sigmoids structure, as described by

↪→ [1].

Sources:

[1] Friedman J, Hastie T, Tibshirani R. The elements of

↪→ statistical

learning. New York: Springer series in statistics; 2001.

"""

helper functions

def sigmoid(x):

return(1/(1+np.exp(-x)))

def sigmoid_y(X):

58

a1 = np.array((3,3)).reshape(2,1)

a2 = np.array((3,-3)).reshape(2,1)

s1 = sigmoid(np.dot(a1.T, X.T))

s2 = sigmoid(np.dot(a2.T, X.T))

return(s1+s2)

np.random.seed(seed=seed)

p=2 # 2 dimensions hardcoded for now

X = pd.DataFrame(np.random.rand(N, p))

Y = X.apply(sigmoid_y, axis=1).loc[:,0] # apply sigmoid_y on all

↪→ samples

signal-to-noise ratio:

error_sigma = np.sqrt(np.var(Y))/np.sqrt(signal_noise_ratio)

errors = np.random.randn(N) * error_sigma

Y_obs = Y + errors

Y_obs = np.array(Y_obs).reshape(N, 1)

X = np.array(X)

X_train = X[0:np.int(N*train_split), :]

X_test = X[np.int(N*train_split):N, :]

Y_train = Y_obs[0:np.int(N*train_split)]

Y_test = Y_obs[np.int(N*train_split):N]

truemean = np.mean(Y.reshape(N,1)[0:np.int(N*train_split)])

Y_train_bin = (Y_train > truemean)*1

Y_test_bin = (Y_test > truemean)*1

if verbose==True:

tprint("Simulated data: sum of sigmoids model")

tprint("Simulated "+str(N)+" datapoints, of which "+\

str(N*train_split)+" test points")

return(X_train, X_test, Y_train, Y_test, Y_train_bin, Y_test_bin)

#######################################

1) Simulate radial model data

#######################################

def create_radial_data(N, p, train_split,

signal_noise_ratio=4,

seed=1234, verbose=True):

"""

Simulates data using the radial function structure, as described by

↪→ [1].

Sources:

[1] Friedman J, Hastie T, Tibshirani R. The elements of

↪→ statistical

learning. New York: Springer series in statistics; 2001.

"""

def radial(x):

t = x**2

psi = np.sqrt((1/(2*np.pi))) * np.exp(-t/2)

return(psi)

def radial_y(X):

return(np.prod(radial(X)))

59

np.random.seed(seed)

X = pd.DataFrame(np.random.rand(N, p))

Y = X.apply(radial_y, axis=1)

signal-to-noise ratio:

error_sigma = np.sqrt(np.var(Y))/np.sqrt(signal_noise_ratio)

errors = np.random.randn(N) * error_sigma

Y_obs = Y + errors

Y_obs = Y_obs.reshape(N, 1)

X = np.array(X)

X_train = X[0:np.int(N*train_split), :]

X_test = X[np.int(N*train_split):N, :]

Y_train = Y_obs[0:np.int(N*train_split)]

Y_test = Y_obs[np.int(N*train_split):N]

truemean = np.mean(Y.reshape(N,1)[0:np.int(N*train_split)])

Y_train_bin = (Y_train > truemean)*1

Y_test_bin = (Y_test > truemean)*1

if verbose==True:

tprint("Simulated data: Radial function model")

tprint("Simulated "+str(N)+" datapoints, of which "+\

str(N*train_split)+" test points")

return(X_train, X_test, Y_train, Y_test, Y_train_bin, Y_test_bin)

A.6 Python code: applications

A.6.1 CCNN on Clickbait

""" This module contains the functions required to:

1) Load, tokenize and vectorize clickbait dataset and store on disk

2) Train a CCNN on the vectorized clickbait data and store loss, acc.

↪→ on disk

3) Make loss and accuracy plots (not included in report. See GitHub)

"""

project-specific modules

Public libraries

import pickle as pkl

import numpy as np

Load project-specific modules

import functions_vectorizeClickbait # used in 1)

import functions_CCNN # used in 2)

#######################################

1) LOAD, TOKENIZE AND VECTORIZE CLICKBAIT DATASET AND STORE ON DISK

#######################################

""" Uses functions from ’functions_vectorizeClickbait.py’.

We are restricting our vocabulary to the 40000 most observed tokens. Non-

observed tokens will be embedded as all zeroes. Each sequence is padded (

↪→ or

shortened) to a max length of 20. We are using 50-dimensional pre-trained

↪→ word

embeddings from GloVe. See functions_vectorizeClickbait.py for more

↪→ details.

60

"""

MAX_NB_WORDS=40000

MAX_SEQUENCE_LENGTH=20

EMBEDDING_DIM=50

Load the raw data:

X_train, Y_train, X_test, Y_test = functions_vectorizeClickbait.load_data

↪→ ()

Now tokenize the data and pad them to max length of 20 tokens. Also,

↪→ return

the tokenizer (a keras.proprocessing.text.Tokenizer object)

X_train, Y_train, X_test, Y_test, tokenizer = \

functions_vectorizeClickbait.tokenize(X_train,

Y_train,

X_test,

Y_test,

max_nb_words=MAX_NB_WORDS,

max_sequence_length=MAX_SEQUENCE_LENGTH)

construct an embedding matrix from the GloVe vectors and a word_index

↪→ dict.

word_index, embedding_matrix = \

functions_vectorizeClickbait.prepare_embedding(tokenizer=tokenizer,

embedding_dim=EMBEDDING_DIM)

Leverage the embedding matrix to vectorize our data

X_train = functions_vectorizeClickbait.vectorize_tokens(X_train,

embedding_matrix=embedding_matrix,

embedding_dim=EMBEDDING_DIM,

max_sequence_length=

↪→ MAX_SEQUENCE_LENGTH)

X_train = X_train.reshape(X_train.shape[0], MAX_SEQUENCE_LENGTH,

↪→ EMBEDDING_DIM)

X_test = functions_vectorizeClickbait.vectorize_tokens(X_test,

embedding_matrix=embedding_matrix,

embedding_dim=EMBEDDING_DIM,

max_sequence_length=

↪→ MAX_SEQUENCE_LENGTH)

X_test = X_test.reshape(X_test.shape[0], MAX_SEQUENCE_LENGTH,

↪→ EMBEDDING_DIM)

Save our vectorized data as a pkl object so we don’t have to re-run

↪→ code above

INPUT_FILE = ’data/clickbait_data.pkl’

LABEL_FILE = "data/clickbait_labels.pkl"

pkl.dump(np.vstack((X_test, X_train)), open(INPUT_FILE, "wb"))

pkl.dump(np.vstack((Y_test, Y_train)), open(LABEL_FILE, "wb"))

#######################################

2) TRAIN CCNN ON CLICKBAIT DATA AND STORE RESULTS TO DISK

61

#######################################

""" Uses functions from ’functions_CCNN.py’.

We are training 16 CCNNs on the clickbait data (which is constructed in

↪→ step 1).

We train for the combinations for Nystroem dimensions (5, 25, 100, 200)

↪→ and

nuclear norm bound for the parameter matrix ||A||_{*} = (.1, 1, 5, 100).

We use 750 training iterations for the Projected Stochastic Gradient

↪→ Descent

step and half of the data (16000) is used for training. We use a learning

↪→ rate

(eta) of 0.1 at each step and print results to console at each iteration.

"""

N_ITER = 750

N_TRAIN = 16000 # half of the total set

LEARNING_RATE = 0.1

PRINT_ITERATIONS = 1

INPUT_FILE = ’data/clickbait_data.pkl’

LABEL_FILE = "data/clickbait_labels.pkl"

loss_df = {}

train_acc = {}

test_acc = {}

for m in np.array((200, 100, 25, 5)):

for r in np.array((100, 5, 1, 0.1)):

model = functions_CCNN.ccnn(input_file=INPUT_FILE,

label_file=LABEL_FILE,

n_iter=N_ITER,

n_train=N_TRAIN,

learning_rate=LEARNING_RATE,

nystrom_dim=m,

R=r,

print_iterations=PRINT_ITERATIONS)

model.construct_Q()

model.train()

params = "m"+str(m)+"r"+str(r)

loss_df[params] = model.train_history[:,0]

train_acc[params] = model.train_history[:,1]

test_acc[params] = model.train_history[:,2]

Phew, that took a while!

Print validation accuracies for each combination

for key in test_acc:

print(key, np.max(test_acc[key]))

Save results for clickbait data

import pickle as pkl

pkl.dump(loss_df, open("results/clickbait_ccnn_loss.pkl", "wb"))

pkl.dump(train_acc, open("results/clickbait_ccnn_trainacc.pkl", "wb"))

62

pkl.dump(test_acc, open("results/clickbait_ccnn_testacc.pkl", "wb"))

A.6.2 CNN on Clickbait

""" This module contains functions to:

1) Load clickbait data and create word embeddings

2) Train CNN models on clickbait data

For code to plot figures, see GitHub page

Notes:

We are using the module ’functions_vectorizeClickbait.py’ to create the

↪→ word-

embedding-version of the raw clickbait strings. See that script for more

details.

"""

project-specific modules

import functions_vectorizeClickbait

import functions_CNN_clickbait

MAX_NB_WORDS=40000 # max nr of unique tokens in vocabulary

MAX_SEQUENCE_LENGTH=20 # Nr of tokens. In thesis: P

EMBEDDING_DIM=50 # GloVE embedding dimension.

#######################################

1) Load clickbait data and create word embeddings

#######################################

Load the raw data:

X_train, Y_train, X_test, Y_test = \

functions_vectorizeClickbait.load_data(TEST_SPLIT=0.5)

Now tokenize the data and pad them to max length of 20 tokens. Also,

↪→ return

the tokenizer (a keras.proprocessing.text.Tokenizer object)

X_train, Y_train, X_test, Y_test, tokenizer = \

functions_vectorizeClickbait.tokenize(X_train,

Y_train,

X_test,

Y_test,

max_nb_words=MAX_NB_WORDS,

max_sequence_length=MAX_SEQUENCE_LENGTH)

construct an embedding matrix from the GloVe vectors and a word_index

↪→ dict.

word_index, embedding_matrix = \

functions_vectorizeClickbait.prepare_embedding(tokenizer=tokenizer,

embedding_dim=EMBEDDING_DIM)

#######################################

2) Train CNN models and save loss, accuracy plots to disk

#######################################

K_SIZE=1

N_ITERATIONS=40

63

for N_FILTERS in ((4, 16, 64)):

model = functions_CNN_clickbait.ConvNeuralNet_binary()

model.setup_model(embedding_matrix=embedding_matrix,

max_sequence_length=MAX_SEQUENCE_LENGTH,

n_filters=N_FILTERS,

k_size=K_SIZE)

model.model.summary()

history = model.fit_model(X_train, X_test,

Y_train, Y_test,

batch_size=10, epochs=N_ITERATIONS)

A.6.3 Clickbait CNN classifier function

def classify(line, model, tokenizer):

""" Classify new examples into either clickbait or non-clickbait and

↪→ return

a verbose result.

Line: a string

model: a trained CNN model

tokenizer: a tokenizer object created during step 1 in ’

↪→ clickbait_train_CNN.py’

Examples

http://www.bbc.co.uk/bbcthree/article/2b2f79e8-c253-4d1b-9a87

↪→ -44fe460e5b16

classify(line="Confession booth: what your bikini waxer is really

↪→ thinking",

model=model,

tokenizer=tokenizer)

https://www.bbc.co.uk/news/business-45055861

classify(line="Carney: No-deal Brexit risk ’uncomfortably high’",

model=model,

tokenizer=tokenizer)

https://www.bbc.co.uk/news/business-45053528

classify(line="Amazon tax bill falls despite profits leap",

model=model,

tokenizer=tokenizer)

"""

import keras

from keras.preprocessing.sequence import pad_sequences

import numpy as np

max_sequence_length = model.model.layers[0].input_length

print("Analysing:", line)

ex = line.lower()

ex_words_seperated = keras.preprocessing.text.text_to_word_sequence(

↪→ ex)

64

ex_tokenized = np.array(tokenizer.texts_to_sequences(

↪→ ex_words_seperated)).T

#There is a hidden error when the word is not present in word_index.

↪→ Therefore,

#need to remove unknown words from new input headlines...

if len(min(ex_tokenized)) == 0:

removed = \

np.asarray(ex_words_seperated)[np.where(np.logical_not(

↪→ ex_tokenized).astype(int))]

ex_tokenized = [sum(ex_tokenized, [])]

print("Had to remove unknown word(s): %s" % removed)

ex_input = pad_sequences(ex_tokenized, maxlen=max_sequence_length)

pred = model.model.predict(ex_input)

pred = np.argmax(pred) # 1 = clickbait, 0 = news

if pred == 1:

print("This line is clickbait!" ’\n’)

if pred == 0:

print("This isn’t clickbait." ’\n’)

A.6.4 CCNN on simulated data

""" This module will contains the functions required for:

1) simulate sum of sigmoids data and store to disk

2) simulate radial model data and store to disk

3) train CCNN on sigmoid data and store results to disk

4) train CCNN on radial data and store results on disk

For the code used to make the figures, see GitHub.

"""

#######################################

1) SIMULATE SUM OF SIGMOIDS DATA AND STORE ON DISK

#######################################

project-specific modules

import functions_simulate_data

import pickle as pkl

import numpy as np

import matplotlib.pyplot as plt

""" SUM OF SIGMOIDS DATA"""

Simulate data

N, TRAIN_SPLIT, SIGNAL_NOISE_RATIO = (10000, 0.5, 2)

(X_train, X_test,

Y_train, Y_test,

Y_train_bin, Y_test_bin) = functions_simulate_data.

↪→ create_sigmoidsum_data(N=N,

train_split=

↪→ TRAIN_SPLIT,

signal_noise_ratio=

↪→ SIGNAL_NOISE_RATIO

↪→ ,

seed=1234)

65

X_train = np.expand_dims(X_train, axis=3)

X_test = np.expand_dims(X_test, axis=3)

X_total = np.vstack((X_train, X_test))

Y_total = np.vstack((Y_train_bin, Y_test_bin))

INPUT_FILE = ’data/SoS_X.pkl’

OUTPUT_FILE = "data/SoS.features"

LABEL_FILE = "data/SoS_Y_bin.pkl"

pkl.dump(X_total, open(INPUT_FILE, ’wb’))

pkl.dump(Y_total, open(LABEL_FILE, "wb"))

#######################################

2) SIMULATE RADIAL DATA AND STORE ON DISK

#######################################

import functions_simulate_data

import pickle as pkl

import numpy as np

""" SUM OF SIGMOIDS DATA"""

Simulate data

N, TRAIN_SPLIT, SIGNAL_NOISE_RATIO = (10000, 0.5, 2)

(X_train, X_test,

Y_train, Y_test,

Y_train_bin, Y_test_bin) = functions_simulate_data.create_radial_data(N=

↪→ N,

p=10,

train_split=

↪→ TRAIN_SPLIT,

signal_noise_ratio=

↪→ SIGNAL_NOISE_RATIO

↪→ ,

seed=1234)

X_train = np.expand_dims(X_train, axis=3)

X_test = np.expand_dims(X_test, axis=3)

X_total = np.vstack((X_train, X_test))

Y_total = np.vstack((Y_train_bin, Y_test_bin))

INPUT_FILE = ’data/radial_X.pkl’

OUTPUT_FILE = "data/radial.features"

LABEL_FILE = "data/radial_Y_bin.pkl"

pkl.dump(X_total, open(INPUT_FILE, ’wb’))

pkl.dump(Y_total, open(LABEL_FILE, "wb"))

#######################################

TRAIN CCNN ON SIMULATED DATA AND STORE RESULTS TO DISK

#######################################

import functions_CCNN

import pickle as pkl

import numpy as np

#######################################

3) SUMS OF SIGMOID

66

#######################################

N_ITER = 200

N_TRAIN = 5000

LEARNING_RATE = 0.1

PRINT_ITERATIONS = 1

INPUT_FILE = ’data/SoS_X.pkl’

OUTPUT_FILE = "data/SoS.features"

LABEL_FILE = "data/SoS_Y_bin.pkl"

loss_df = {}

train_acc = {}

test_acc = {}

for m in np.array((25, 5, 2, 1)):

for r in np.array((10, 1, 0.1, 0.01)):

model = functions_CCNN.ccnn(input_file=INPUT_FILE,

output_file=OUTPUT_FILE,

label_file=LABEL_FILE,

n_iter=N_ITER,

n_train=N_TRAIN,

learning_rate=LEARNING_RATE,

nystrom_dim=m,

R=r,

print_iterations=PRINT_ITERATIONS)

model.construct_Q()

model.train()

params = "m"+str(m)+"r"+str(r)

loss_df[params] = model.train_history[:,0]

train_acc[params] = model.train_history[:,1]

test_acc[params] = model.train_history[:,2]

Print validation accuracies for each combination

for key in test_acc:

print(key, np.max(test_acc[key]))

Save results for the radial data:

import pickle as pkl

pkl.dump(loss_df, open("results/SoS_ccnn_loss.pkl", "wb"))

pkl.dump(train_acc, open("results/SoS_ccnn_trainacc.pkl", "wb"))

pkl.dump(test_acc, open("results/SoS_ccnn_testacc.pkl", "wb"))

#######################################

TRAIN CCNN ON SIMULATED DATA AND STORE RESULTS TO DISK

#######################################

#######################################

4) RADIAL

#######################################

import functions_CCNN

import pickle as pkl

import numpy as np

INPUT_FILE = ’data/radial_X.pkl’

OUTPUT_FILE = "data/radial.features"

LABEL_FILE = "data/radial_Y_bin.pkl"

67

N_ITER = 200

N_TRAIN = 5000

LEARNING_RATE = 0.1

PRINT_ITERATIONS = 1

loss_df = {}

train_acc = {}

test_acc = {}

for m in np.array((25, 5, 2, 1)):

for r in np.array((10, 1, 0.1, 0.01)):

model = functions_CCNN.ccnn(input_file=INPUT_FILE,

output_file=OUTPUT_FILE,

label_file=LABEL_FILE,

n_iter=N_ITER,

n_train=N_TRAIN,

learning_rate=LEARNING_RATE,

nystrom_dim=m,

R=r,

print_iterations=PRINT_ITERATIONS)

model.construct_Q()

model.train()

params = "m"+str(m)+"r"+str(r)

loss_df[params] = model.train_history[:,0]

train_acc[params] = model.train_history[:,1]

test_acc[params] = model.train_history[:,2]

Print validation accuracies for each combination

for key in test_acc:

print(key, np.max(test_acc[key]))

Save results for the radial data:

import pickle as pkl

pkl.dump(loss_df, open("results/radial_ccnn_loss.pkl", "wb"))

pkl.dump(train_acc, open("results/radial_ccnn_trainacc.pkl", "wb"))

pkl.dump(test_acc, open("results/radial_ccnn_testacc.pkl", "wb"))

A.6.5 NN on simulated data

""" This module contains functions to:

1) Simulate Sum of sigmoids data and store scatterplots

2) Fit fully-connected neural network to sum of sigmoid and store

↪→ loss,

accuracy

3) Simulate Radial data and store scatterplot

4) Fit fully-connected neural network to radial and store loss,

↪→ accuracy

"""

project-specific modules

import functions_simulate_data

import functions_NN_simulations

import matplotlib.pyplot as plt

68

import numpy as np

import pickle as pkl

N = 10000

TRAIN_SPLIT = 0.5

SIGNAL_NOISE_RATIO = 2 # Used to determine variance of noise epsilon

P = 10 # dimension for radial basis function

N_SUBSET = 500 # number of data points to plot in scatterplots

#######################################

1) SUMS OF SIGMOID simulate data

#######################################

""" SUM OF SIGMOIDS MODEL"""

Simulate data

(X_train, X_test,

Y_train, Y_test,

Y_train_bin, Y_test_bin) = \

functions_simulate_data.create_sigmoidsum_data(N=N,

train_split=TRAIN_SPLIT,

signal_noise_ratio=

↪→ SIGNAL_NOISE_RATIO,

seed = 1234)

#######################################

2) SUMS OF SIGMOID run neural nets and plot results

#######################################

""" SUM OF SIGMOIDS MODEL: BINARY, FITTING NEURAL NETWORK """

EPOCHS = 30

for NR_HIDDEN in ((5, 25, 100)):

shallow fully-connected neural network classifier on binary sum of

↪→ sigmoids data

baseline = functions_NN_simulations.NeuralNet_binary()

baseline.setup_model(input_dim = X_train.shape[1], nr_hidden=

↪→ NR_HIDDEN)

baseline.fit_model(X_train=X_train, X_test=X_test,

Y_train=Y_train_bin, Y_test=Y_test_bin,

epochs=EPOCHS)

#######################################

3) radial model simulate data

#######################################

""" RADIAL FUNCTION MODEL"""

simulate data

(X_train, X_test,

Y_train, Y_test,

Y_train_bin, Y_test_bin) = functions_simulate_data.create_radial_data(N=

↪→ N,

p=P,

train_split=TRAIN_SPLIT,

signal_noise_ratio=SIGNAL_NOISE_RATIO,

seed=1234)

#######################################

4) radial data run neural nets and store results

#######################################

EPOCHS = 60

69

""" RADIAL MODEL: BINARY, FITTING NEURAL NETWORK """

for NR_HIDDEN in ((5, 25, 100)):

Binary classification version

baseline = functions_NN_simulations.NeuralNet_binary()

baseline.setup_model(input_dim = X_train.shape[1], nr_hidden=

↪→ NR_HIDDEN)

baseline.fit_model(X_train=X_train, X_test=X_test,

Y_train=Y_train_bin, Y_test=Y_test_bin,

epochs=EPOCHS)

70

References

[1] Y. Zhang, P. Liang, and M. J. Wainwright, “Convexified convolutional
neural networks,” arXiv preprint arXiv:1609.01000, 2016.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[3] C. Poultney, S. Chopra, Y. L. Cun et al., “Efficient learning of sparse repre-
sentations with an energy-based model,” in Advances in neural information
processing systems, 2007, pp. 1137–1144.

[4] Y. Bengio et al., “Learning deep architectures for ai,” Foundations and
trends in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[5] R. Salakhutdinov and G. Hinton, “Deep boltzmann machines,” in Artificial
Intelligence and Statistics, 2009, pp. 448–455.

[6] ML4A, “Neural networks,” website source. [Online]. Available: https:
//ml4a.github.io/ml4a/neural networks/

[7] P. Veličković, “Deep learning for complete beginners: con-
volutional neural networks with keras,” website source.
[Online]. Available: https://cambridgespark.com/content/tutorials/
convolutional-neural-networks-with-keras/index.html

[8] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization,” SIAM review,
vol. 52, no. 3, pp. 471–501, 2010.

[9] M. Fazel, “Matrix rank minimization with applications,” Ph.D. disserta-
tion, PhD thesis, Stanford University, 2002.

[10] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer
theorem,” in International conference on computational learning theory.
Springer, 2001, pp. 416–426.

[11] C. K. Williams and M. Seeger, “Using the nyström method to speed up
kernel machines,” in Advances in neural information processing systems,
2001, pp. 682–688.

[12] S. Shalev-Shwartz and Y. Singer, “Efficient learning of label ranking by
soft projections onto polyhedra,” Journal of Machine Learning Research,
vol. 7, no. Jul, pp. 1567–1599, 2006.

[13] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient projec-
tions onto the `1-ball for learning in high dimensions,” pp. 272–279, 2008.

[14] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learn-
ing. Springer series in statistics New York, 2001, vol. 1.

[15] B. Paranjape, “Stop clickbait: Github dataset,” supplement to
Chakraborty et al. (2016) - Stop Clickbait. [Online]. Available:
https://github.com/bhargaviparanjape/clickbait/tree/master/dataset

71

https://ml4a.github.io/ml4a/neural_networks/
https://ml4a.github.io/ml4a/neural_networks/
https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html
https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html
https://github.com/bhargaviparanjape/clickbait/tree/master/dataset

[16] A. Chakraborty, B. Paranjape, S. Kakarla, and N. Ganguly, “Stop clickbait:
Detecting and preventing clickbaits in online news media,” in Advances
in Social Networks Analysis and Mining (ASONAM), 2016 IEEE/ACM
International Conference on. IEEE, 2016, pp. 9–16.

[17] Y. Kim, “Convolutional neural networks for sentence classification,” arXiv
preprint arXiv:1408.5882, 2014.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[19] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global
vectors for word representation,” in Empirical Methods in Natural
Language Processing (EMNLP), 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

72

http://www.aclweb.org/anthology/D14-1162

	Introduction
	General description of Artificial Neural Networks
	The Shallow Neural Network
	Shallow fully-connected neural networks
	Shallow Convolutional Neural Networks
	The fully-connected versus convolutional architecture

	Finding the best network
	Loss functions and Empirical Risk Minimizer
	Nonconvex optimization using Gradient Descent
	Convex relaxation based on the nuclear norm

	Convexifying Shallow Neural Networks
	Linear activation functions
	Collecting the parameters in a matrix
	The parameter matrix has a low rank bound
	Nuclear norm bounds

	Nonlinear activation functions
	Kernel functions and the RKHS
	Representer theorem

	Function classes
	Choice of kernel and activation functions

	Learning shallow CCNNs
	Approximating the kernel matrix using the Nystrom method
	Projected gradient descent on the nuclear norm ball
	Projecting the singular values on the simplex
	Projecting the singular values on the 1-ball

	Algorithm

	Applications
	Simulated data
	Implementation details
	Results

	Text classification
	Representing text data using tokens
	Representing text data using word embeddings
	Implementation details
	Results

	Conclusion and discussion
	Appendix
	Theorems
	Minor proofs
	Definitions
	Python code: Network algorithms
	CCNN Algorithm
	CNN Algorithm
	NN Algorithm

	Python code: data access
	Clickbait data
	Simulated data

	Python code: applications
	CCNN on Clickbait
	CNN on Clickbait
	Clickbait CNN classifier function
	CCNN on simulated data
	NN on simulated data

