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Abstract
Aerosols are tiny particles of various kinds and compositions suspended in the atmosphere, some
of which have a critical, adverse impact on public health. Hence, modelling the prevalence and
distribution of these separate types is vital for giving shape to informed policy on air quality.
In this work, methods are described to identify clusters of similar aerosol type mixtures in the
Earth’s atmosphere on a global scale, on the basis of microphysical data from the space-borne
remote sensing instrument POLDER-3. We report an unsupervised learning approach using
the Self-Organizing Map (SOM) and k-means clustering, which allows for clustering without a
priori assumptions on existing aerosol types, nature or prevalence. Two methods are introduced
to stabilize these clustering algorithms over multiple equal runs to manage their local optima
convergence property: the k-means nstart option is extended to the SOM and a set-up is given
for a new method, Expectation-Maximization-centered Mahalanobis clustering (EMcMc). A
(repeated) v-fold cross-validation framework is presented to find the optimal number of clusters k
in the data by means of cluster validation measures, currently including Prediction Strength and
validated variants of the Silhouette Width. Using a separate test set, the method can be used to
optimize a generic k, countering overfitting. A novel validation index is developed which extends
the Silhouette Width to data sets with many observations (large N): the Gridded Silhouette
Width. All described methods are implemented in the statistical software package R and shown to
work for simulated examples, originating from scaled Gaussian distributions with varying degrees
of overlap. Analysis of the POLDER-3 data indicated that using only four variables, 8 clusters can
be found in a stable and reproducable fashion. The Silhouette indices did not appear to perform
well for data so widely dispersed as here. The found clusters were characterized based on their
variable distributions and geographical occurence, which proved to be feasible and meaningful for
real-life interpretations. The proposed aerosol types were dust, marine, urban-industrial, smoke
and mixtures thereof.

Keywords: aerosol typing; unsupervised learning; self-organizing map; k-means clustering;
cluster validation measures; cross-validation; gridded silhouette.
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1 Introduction
Atmospheric aerosols are short-lived, small solid or liquid particulate matter (PM) suspended in
the Earth’s atmosphere. They influence the Earth’s energy budget by scattering and absorbing
sunlight, thereby cooling and warming the planet, respectively. As aerosols vary greatly in
chemical composition and radiative properties and can have both cooling and warming effects,
their exact contribution to climate change has been difficult to establish. Therefore, they remain
one of the largest uncertainties in models describing climate change, as also reported by the
Intergovernmental Panel on Climate Change (IPCC) [1].

Aerosols are furthermore a prime threat to public health as a major constituent of air
pollution. In this field, particulate matter is often categorized by size, where coarse particles
have a diameter less than 10 µm (PM10), fine particles less than 2.5 µm (PM2.5) and ultrafine
particles less than 0.1 µm (PM0.1). Aerosols with a diameter less than 10 µm are not effectively
filtered out by the nose and the upper airways when inhaled and especially finer particles have a
high probability of being deposited deeper in the conducting airways and alveoli. Exposure to
particulate air pollution has been associated with elevated morbidity and mortality levels and
with a wide variety of adverse health effects, including cardiovascular and respiratory diseases
and lung cancer [2, reviewed extensively by 3, 4, 5].

These critical global issues make identifying aerosol presence and measuring aerosol properties
in the atmosphere vitally important to establish informed policies based on accurate atmospheric
models. There are various ways in which this can be achieved. In situ filter measurements are
mostly accepted as standard, but provide local information only and rely on the filters for particle
discrimination. Ground-based remote sensing instruments, such as the sun photometers from the
Aerosol Robotic Network (AERONET), can take the whole atmospheric column into account, but
are still spatially limited to the site they are stationed at. In contrast, aircraft- and satellite-borne
instruments allow covering regions and the latter even the complete globe. Several space-borne
remote sensing instruments have already provided information on aerosols, including Multiangle
Imaging Spectroradiometer (MISR) [6], Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) [7], Moderate Resolution Imaging Spectroradiometer (MODIS) [8] and
Polarization and Directionality of Earth’s Reflectances (POLDER) [9, 10].

The POLDER-3 instrument on the PARASOL spacecraft is dedicated to measuring aerosol
microphysical parameters from sunlight scattered by the atmosphere, via spectral, polarimetric
and scattering angle dependencies of the observed radiance. These microphysical parameters are
the starting point for aerosol classification and therefore a POLDER-3 dataset is suitable for this
objective.

Nonetheless, identification of different aerosol types remains a difficult task. This is however
of particular importance for the issue concerning public health. It is unlikely that all types of
aerosols pose an immediate risk to human health; sea salt is presumably less hazardous than soot.
Notwithstanding, it might be challenging to pinpoint principal damaging agents among aerosol
classes [11, 12]. Multiple approaches already exist to identify and characterize aerosol types on
the basis of microphysical parameters. In general, they make use of ground-based data in one
way or another, sometimes in combination with space-borne data [e.g. 7, 13, 14, 15, 16, 17, 18,
19]. These are, however, always based on using pre-defined aerosol type labels and therewith on
assumptions on the number, nature and prevalence of these aerosol types. Moreover, the remote
sensing data involved is measured on massive atmospheric columns, in which it is unlikely that
solely one type of aerosol is present. So, every observation represents a weighted average for
each measured microphysical variable, depending on the aerosols that were present in the column
corresponding to that observation.

Taylor et al. [20] present a clever way to deal with the fact that observations actually consist of
aerosol mixtures. They applied NASA’s GOCART algorithm to classify aerosols and consecutively
used the k-means clustering algorithm to find commonly occuring mixes of these classes. GOCART
does not use microphysical parameters as input data, but rather meteorological data [21]. Using
AERONET data, the found mixtures are characterized with respect to their average microphysical
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parameters. However, this still requires the definition of a set number of ‘pure’ aerosol types
beforehand, in the first GOCART classification step.

Here, we propose to apply unsupervised learning methods as well (like k-means), but directly
on space-borne data. The rationale behind this approach is that one would attempt to establish
how many discernable clusters exist in the data, instead of fixing this number beforehand. The
resulting clusters are then assigned a (mixed) aerosol type label afterwards, based on geographical
prevalence and distributions of microphysical parameters within the clusters. In brief: we wish to
classify clusters, instead of clustering classes as Taylor et al. [20] did.

To this end, an exploratory study has been carried out before, involving the application of a
Self-Organizing Map (SOM) [22] as clustering method on POLDER-3 data of the year 2006 by
Visser [23]. The data points represent atmospheric columns on a certain day in several dimensions
(microphysical parameters) and were clustered into 9 groups by a single run of a SOM algorithm.
Visser simply looked for a larger number of clusters (9) than he would expect to be able to
distinguish in the data, reasoning he could always merge similar clusters in hindsight. Data within
clusters should be comparable in their microphysical parameters and thus the corresponding
atmospheric columns should be comparable in their aerosol contents. Finally, aerosol type labels
were assigned to the clusters, based on their geographical occurences and the within-cluster
variable distributions.

In this thesis, work is presented that elaborates on that study. We aimed to expand upon
the same idea, creating a more standardized methodological framework around it, thereby adding
to the scientific rigour. Practical implementation of the proposed and developed methods in the
statistical software package R [24] enabled us to examine the workings and performance of this
use of unsupervised learning methods for the specified goal of aerosol typing.

This extension of the work of Visser [23] hinged on three main pilars: (1) use of alternative
clustering algorithms, (2) application of clustering stabilization techniques and (3) cluster number
validation. Firstly, we aimed to develop a generic framework, which is not dependent on the use
of SOM as clustering algorithm, but allows for the use of other ones as well. Here, we analyzed
the outcomes for the k-means clustering algorithm too, which is much simpler than the more
complex SOM. It is arguably the most popular clustering algorithm available and is well described
and studied; therefore it can be regarded as a benchmark method [e.g. reviews by 25, 26].

Secondly, it is well known that clustering algorithms generally converge to local optima,
meaning they yield different results every time they are invoked – even if all settings and data
are kept the same [e.g. 27]. We describe and include two techniques to stabilize clusterings over
multiple equal runs.

Lastly, and most crucial, our framework offers a way to take on what is arguably the most
profound issue in unsupervised learning: to determine the number of clusters naturally occuring
in the data. To this day, this topic is subject to discussion and development of new perspectives
and approaches. There is an abundance of validation measures for cluster numbers at present and
they can be based on different principles, as cluster stability or cluster cohesion and separation
[28]. The framework developed here uses cross-validation to optimize the cluster number k, by
means of (variants of) two of such measures: Prediction Strength [29] and Silhouette Width [30].
Solutions are presented to circumvent the computational problems that arise for both validation
measures when the number of observations N in the data is large, which is typical for the specific
case study at hand. In the case of the Silhouette Width, this has led to a novel approximation
method, the Gridded Silhouette Width, which is presented in this work too.

Summarizing, I have developed an extensive methodological framework to determine the
number of discernable clusters in a given data set using various clustering algorithms and validation
indices by means of cross-validation. The described functionalities can be used for both exploratory
and prediction purposes; in the latter case the cross-validation scheme also provides a means
to avoid overfitting. Practical use of the methods is straightforward and additionally allows for
stratified fold splitting. The codes are constructed in such a way that extension to other clustering
algorithms and validation measures should be easy to accomplish.

The workings and performance of the proposed methods are demonstrated in both simulation
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studies and on real-life data: the POLDER-3 data of the year 2006. The ultimate goal was
to derive stable clusters from the microphysical variables and label the thus found clusters as
(mixtures of) aerosol types. This can grant insight in the spatial and temporal occurence of
aerosol types, which has especially important implications for public health. The thesis is set-up
as follows: section 2 contains the theory behind and descriptions of the statistical methodology;
in section 3 the results of the application of the presented methods to simulated and POLDER-3
data are outlined; this is followed by an overall conclusion and extensive discussion on the methods
and outcomes in section 4, including some final remarks and future outlooks.
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2 Theory and Methodology
For all practical purposes and implementation of the methods, the statistical software R (version
3.4.3) was employed [24]. Additional software packages and used functions will be named when
they appear throughout the thesis. The main user-defined functions developed for this thesis will
be described in order of appearance in this section and a list including documentation is provided
in Appendix C.

2.1 Data
The full POLDER-3 data of the year 2006 was provided by the Netherlands Institute for Space
Research (SRON) in one netCDF file per month. Each observation corresponded to a one-by-one
latitude-longitude degree grid box on the surface of the Earth, measured on a daily basis. Only
observations were used for which all variables were measured; so-called “complete cases”. In some
areas, measurements were not successful, or not on all days, e.g. towards the poles and above
part of the Amazone rainforest. These missing values were discarded, leaving N = 1, 131, 324
observations.

The full set of 55 variables is included in Appendix B. Some of the variables that represent
microphysical properties were measured at several wavelengths. In this work, only four parameters
were used:
(1) Single Scattering Albedo;
(2) Real Refractive Index;
(3) Sphericity;
(4) Angstrom Exponent,

of which the interpretation is explained to a larger extent below. The corresponding feature space
data plots are shown in Figure 2. These four were selected on grounds of previous experience and
expert knowledge present at SRON. Since the goal here was to work out the scheme for aerosol
typing with unsupervised learning and to provide more of a proof of concept, only this subset of
variables used. Once the scheme is shown to work, one might consider shifting towards a more
intense machine learning approach, in which all data is used as input. However, such an objective
lied beyond the scope of this thesis.

2.1.1 Data Extraction to R

A wrapper function, extract.nc(), was constructed to read the data files into R. The wrapper
calls to the existing nc_open() function of the ncdf4 package [31]. It allows the user to select
variables and specify time periods for which the data is to be loaded into R. The function then puts
the data from the different months (thus files) together and returns an object of the data.frame
or array class. Some extra functionalities are available, as setting upper and lower limits for
certain relevant parameters and finding fill values above a specified threshold. If the user opted
for a data frame to be returned, the data will be accompanied by latitude and longitude degrees
of each observation, their day, month and season of measurement and a pixel ID number for every
unique latitude by longitude degree grid box. Moreover, the function calculates the Angstrom
Exponent from the Aerosol Optical Thickness variables, if desired. The next subsection will cover
how this is done, along with a more detailed description per variable, supplemented with plots
depicting their seasonal means on world maps.

2.1.2 Variable Description

The Single Scattering Albedo ω0(λ) (SSA) is the ratio between the quantity of sunlight scattered in
an atmospheric column and the total extinction of sunlight in that column at a certain wavelength
λ:
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Figure 2: The raw POLDER-3 data of 2006 in feature space. Colour indicates density of
observations. Only complete cases are depicted, N = 1, 131, 324.
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SSA = Scattering

Scattering +Absorption
;

the extinction consists of scattering and absorption together, i.e. the sunlight that does not reach
the surface of the Earth. Therefore, lower SSA values indicate that the aerosols in that column
are more absorbing, such as soot, or smoke in general.

Here, the SSA is measured at 490 nm, in line with the original study, on which this work
is based [23]. The variable has an upper bound of 1 (as it is a fraction) and is cut at a lower
bound of 0.6 (Figure 2), which is the typical range reported for this parameter [14]. Indeed,
studies that use (reference clusters based on) AERONET measurements ordinarily do not reveal
lower SSA values even for the absorbing clusters [e.g. 18, 19, 32] and the same cut-off value was
used by Visser [23]. Note however, that the extract.nc() function does allow for other lower
bound cut-off values, if desired. Figure 3 depicts per grid cell the mean SSA values for each
season (northern hemisphere). Low values can mainly be observed over areas known for wildfires,
e.g. south of the Sahara desert in Africa, Australia and the Iberian peninsula [33, 34], although
the average SSA values over the Amazone rainforest appear markedly high.

The Real Refractive Index mr (RRI) is informative on the propagation of light through the
atmosphere: higher values indicate the light is bent, or refracted, to a larger degree, which is
dependent on the composition of the medium it travels through (here: the aerosol-containing
atmosphere). Some microphysical variables, like RRI, typically follow a bimodal distribution
with one peak for finer particles, and another for more coarse particles. For this reason, there
are two RRI data products: one for the fine mode fraction and one for the coarse mode fraction.
Although the collaborators at SRON indicated either of the two variables could be used, they
advised to start with the fine mode fraction, which we did for this thesis project. The RRI is
considered to be spectrally neutral in the retrieval, therefore no specific wavelength is reported.
The RRI of water is known to be 1.33 - 1.34 for wavelengths between 350 nm and 1000 nm [35].
Indeed, higher values are associated with a decrease in water content [36]. As can be seen in
Figure 2, RRI values are bound between 1.3 and 1.7, with the bulk of the data approximately
between 1.35 and 1.45. The seasonal means of RRI are shown in Figure 4 and seemingly tend to
be higher over land masses.

The sphericity parameter captures the fraction of aerosols present that are spherical in shape;
the variable is thus bound between 0 and 1. Again, there is a fine mode fraction and coarse mode
fraction variable. The latter was used in this study, initially to resemble the original work of
Visser [23]. Presumably, the sphericity variable is particularly useful to identify dust aerosols, as
these are highly non-spherical [e.g. 19]. Indeed, low sphericity values appear over desert regions,
as the Sahara Desert and Arabian Desert (Figure 5). A zone that stands out for its extremely
low mean sphericity, is the Taklamakan desert in the west of China: it is isolated from seas and
presumably holds predominantly dust.

The last parameter included in this work, is the Angstrom Exponent α (AE). The AE reports
on aerosol particle size and is calculated using the Aerosol Optical Thickness τ (AOT) at two
different wavelengths:

α = −
log( τ(λ1)

τ(λ2) )
log(λ1

λ2
)
,

where λ1 is smaller than λ2. The AOT is a measure of aerosol abundance in the atmosperic
column. Since the AOT decreases faster with wavelength for smaller particles, the presence of
more fine particles makes the numerator grow (τ(λ2) decreases faster than τ(λ1) in that case).
This inflates α, as the denomenator is always negative. Therefore, low AE values represent the
presence of larger particles (coarse), and high AE reveal the presence of more smaller particles
(fine). Used AOT wavelengths in this study are λ1 = 490 nm and λ2 = 670 nm [as in 23], but
others can be specified in the extract.nc() function as well. Only AOT (490 nm) values of 0.1
and higher were used, because lower values have been shown to be less reliable in the midvisible
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spectrum [6]. Additionally, AE values were cut at a lower bound of 0 for reasons of reliability
too, on advice of SRON experts. Low values can on average be observed over deserts and oceans
(Figure 6). Indeed, sea salt and dust are relatively coarse aerosols. Strikingly, the most coarse
particles appear to be over the Atlantic ocean west of the Sahara, which might correspond to
dust transport.
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2.2 Clustering Methods
The core objective here essentially boils down to grouping the N observations of a p-dimensional
data set X into a set number of k clusters based on some ground of similarity. This is a form
of unsupervised learning, or “learning without a teacher”. Opposed to supervised learning, we
have no information on the “correct” class for the observations: we have no “teacher” to tell us
whether we are doing well or not, by some measure.

Suppose that, besides the data X, we do also have such a response variable y, containing
the correct class label yi for each ith observation of X. Instead of clustering (unsupervised),
we would be able to perform classification (supervised): finding the optimal function f(X) for
predicting y given the input values X. Since we know what the answer should be, at least for
the given values of X, we can use some measure of how good or how bad a candidate function
f is doing. Such a measure of “badness-of-fit” is called a loss function L(y, f(X)) (e.g. squared
error in regression: (y − f(X))2). We can then define the risk of the candidate function f by
taking the expected loss of f (e.g. the mean squared error), in which case a smaller risk is better.
Equivalently, we could state that we wish to find the function f , for which the expected prediction
error (EPE) is minimal: a process called empirical risk minimization. In a prediction setting, the
found function f could be used to assign classes to new observations, thereby labelling them.

In our case, we wish to assign aerosol type labels (y) to our observations (X). However, since
we avoid making assumptions on the labels beforehand, y is not known and therefore application
of supervised learning techniques is impossible here. Alternatively, the only available information
is X, and so the goal shifts to finding clusters of observations therein which are more similar in the
p parameters to each other than to other clusters of observations. Since we are currently dealing
with exclusively continuous numeric variables, we have chosen to define this similarity as distances
in feature space. The clustering algorithms applied here thus attempt to identify clusters of data
that are close to each other in feature space, representing these clusters, or feature space regions,
by prototypes, or centroids. Such prototype-based clustering algorithms generally minimize some
measure of within-cluster dispersion as loss function. This minimum then represents the “best”
solution, optimally describing the structure in X alone and labelling the observations in the same
cluster by their centroids.

The two clustering algorithms used in this work were k-means clustering and the Self-
Organizing Map, which are described in the next subsections. Prior to clustering with any
algorithm, the data were scaled with feature scaling:

x∗ = x−min(x)
max(x)−min(x) ,

where x∗ is the rescaled vector of x. Feature (back)scaling functions were made in R, the
application of which over all observations per variable standardizes them to the [0, 1] interval.

2.2.1 k-means Clustering

Arguably the simplest and most widely used clustering algorithm is the k-means algorithm and
it is therefore regarded as a benchmark algorithm in this work. The method has been reviewed
extensively, e.g. by Steinley [25] and Jain [26]. The fundamentals of the clustering procedure were
first published independently under various names, starting about 60 years ago [37, 38, 39, 40,
41]. Later, other versions of k-means algorithms have been developed, as the computationally
more efficient one by Hartigan and Wong [42], which is the default for the standard R kmeans()
function.

Given a p-dimensional data set X of size N , k-means attempts to divide X into a pre-defined
k number of optimal clusters C so that the overall within-cluster sum of squared errors (WCSS)
is minimized:
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arg min
C

k∑
j=1

n∑
i=1
‖xij − x̄j‖2,

where xij is a vector of length p representing the ith observation in cluster j of size n with mean
x̄j as vector of equal length and where Euclidean (L2) distances are used. The found means serve
as cluster centroids, or protoypes, dividing the feature space in Voronoi cells.

This is an iterative algorithm, at its core consisting of two steps:
(1) Given a set of centroids, assign each observation to its closest centroid, thus creating clusters

of observations;
(2) Given the assignments of the observations to the clusters, update the cluster centroids to

become the means of their clusters.
When the assignments in step (1) no longer change more than a certain, very small threshold,

the algorithm has converged. Nonetheless, k-means algorithms commonly have an option to
specifiy the maximum number of iterations (e.g. 10 in the standard kmeans() function in R, as
suggested by the algorithm developers Hartigan and Wong [42]). Initialization of the method is
usually achieved by randomly picking k observations from X to use as first centroids.

2.2.2 Self-Organizing Map

The Self-Organizing Map (SOM), or Self-Organizing Feature Map (SOFM) is a type of artifical
neural network (aNN) that is used for unsupervised learning tasks [22]. Even though multiple
questions regarding the mathematical properties of the SOM remain to be answered [43], the
method has been effectively applied in a wide range of fields and various variants of the SOM
have been developed [reviewed in 44]. Practical implementation in R is possible by means of the
som and kohonen software packages [45, 46], the latter of which is used in this work. Essentially,
SOMs are employed for two purposes: to cluster data and to visualize high-dimensional data in
two-dimensional space. The latter is also possible due to a particular characteristic of the SOM:
it preserves the topology of the centroids on a 2D grid.

As in k-means clustering, the SOM approach aims to assign each datum to a representative,
i.e. a centroid – also known as a protoype, or in the jargon of the SOM a node, neuron or even
a model [44]. Again, the number of centroids k the algorithm looks for in the given data has
to be defined a priori. Unlike k-means, however, these centroids are fixed on a grid, whereas
their weight vectors, also called codebook vectors, move iteratively through the feature space.
So, every centroid 1 ≤ j ≤ k has grid coordinates mj and a weight vector wj , the latter of
which has the same dimensionality as the data (and is in fact what we would call the centroid in
k-means clustering). This idea is depicted schematically in Figure 7, in which you can see that
the centroids are arranged on a grid (middle panel), which is square here, and have corresponding
weight vectors in feature space (left and right panels). The other details shown in the figure will
be explained later in this section. Whereas the grid coordinates of each centroid remain the same
throughout the complete clustering process, their weight vectors change, virtually moving through
the parameter space looking for dense masses of data and fitting to them.

Generally, these grids have either a rectangular or hexagonal shape, albeit other designs
have been examined [47]. Toroidal grids are possible as well, connecting opposite edges of the
grid (i.e. creating a donut shape). The aforementioned preservation of topology entails the fact
that the SOM algorithm trains centroids in such a manner that those closer to each other on
the grid will become more similar among themselves in their weight vectors than to centroids
located farther away. In other words: the centroids become spatially, globally ordered, as put by
the discoverer himself [44]. This ultimately yields the two-dimensional map (namely, the grid) on
which the data is projected and which allows for relatively easy interpretation of thus clustered
higher-dimensional data.
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The original algorithm follows a recursive, step-wise procedure: all data points are presented
to the centroids (or more specifically: to their weight vectors) one by one, mostly in a random
order, updating the centroids consecutively. The whole process is then repeated a set number
of cycles, or epochs, T , so that every datum has been used an equal number of times. The
default number of epochs in the kohonen package is 100. Let again X be a p-dimensional data
set containing N observations, which we wish to divide into k clusters. Hence, each jth cluster
centroid on the grid mj has a weight vector wj of length p as well. For each observation xi of
the data, the closest centroid, indexed by c, is determined, typically in Euclidean distance: the
“winner”, or the Best Matching Unit (BMU). Observe, thus, that this clustering algorithm is also
based on measuring similarity in terms of distances. Now the BMU mc for the ith observation of
X is found by:

c(i) = arg min
1≤j≤k

‖xi −wj‖.

This winner mc is subsequently updated to better match the input vector xi; i.e. wc is
moved towards the datum. In addition, centroids within the spatial neighbourhood of the BMU
on the grid are also updated; this principle of the SOM algorithm ascertains topology preservation.
Although the initial neighbourhood size itself is simply set by a user-specified radius, a SOM is
characterized by the fact that the neighbourhood size diminishes as a function of time, along
the progression through the epochs. The neighbourhood radius σ for epoch t ∈ T is for instance
commonly expressed in the form of an exponential decay function:

σ(t) = σt−1 e
− t
λ ,

where λ is a time constant determining the decay speed. Nevertheless, the SOM algorithm in the
kohonen package shrinks σ linearly.

Accordingly, whether a centroid weight wj is conformed to a datum xi in a certain epoch t
depends on its proximity on the grid mj to the BMU mc. This is expressed in the form of the
neighbourhood function hjc(t), the simplest version of which is the bubble function:

hbubblejc (t) =
{

1, if ‖mj −mc‖ ≤ σ(t);
0, if ‖mj −mc‖ > σ(t),

where every m has the same dimensions as the grid (mostly two). With the bubble function,
only the centroids within the radius of the given epoch from the BMU corresponding to that
observation get the full weight update. Naturally, this includes the BMU itself as well, as in that
case ‖mj −mc‖ = 0. A more elegant neighbourhood function is a Gaussian, which allows the
algorithm to gradually decrease the update intensity of the centroids with their distance from the
BMU on the grid:

hGaussianjc (t) = exp
[
− ‖mj −mc‖2

2σ2(t)

]
.

From the equation above, it can be observed that the neighbourhood function increases the
closer a centroid mj is to the BMU mc of a certain input vector xi, with a maximum value (and
therewith update intensity) of 1 when mj = mc. One final example of a neighbourhood function
is a triangular function:

htrianglejc (t) =
{

1− ‖mj−mc‖
σ(t) , if ‖mj −mc‖ ≤ σ(t).

0, if ‖mj −mc‖ > σ(t).

The triangle function refines the bubble function: it also assigns no update to centroids
outside the BMU its neighbourhood radius, but appoints linearly increasing update intensities
with BMU nearness to those centroids within this radius. The neighbourhood functions presented
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here are illustrated in Figure 8. In the R kohonen package, only the bubble function and the
Gaussian function are available for use.

The shrinkage of the radius through the epochs leads to fewer (bubble function), mitigated
(Gaussian function) or both (triangle function) updates through time for non-BMU centroids in
every iteration. It also ascertains that from some epoch onwards, only BMUs are updated. The
shrinkage of σ furthermore endorses local ordering of the centroids in downstream epochs, after
an initial rough ordering phase with a wide radius in the earlier epochs.

The weight update intensity is also controlled by the learning rate, α, besides by the
neighbourhood function. Analogous to the radius, the learning rate decays with t as well and
the exact same exponential decay function can be applied, replacing σ with α. Again, the
kohonen package employs a linear decay function. The shrinking learning rate contributes to
the convergence of the algorithm through reduction of overall weight update intensities in later
epochs.

Taken together, the weight vector wj of a given centroid mj gets updated as observations
from X are presented to the grid through the epochs t ∈ T by the following formula:

wj(t+ 1) = wj(t) + hjc(t)α(t)(xi −wj(t)),

where i indexes the observations. A much simplified schematic illustration hereof is shown in
Figure 7. The formula shows that each centroid weight is equal to its weight in the previous
iteration, plus a fraction of its distance to the observation it is presented with, moving it a little in
that direction. The size of that fraction corresponds to the extent to which the centroid weight is
pulled towards the observation. It has both spatial and temporal influences: the former, because
the aforementioned fraction decreases with distance on the grid of the given centroid to the BMU
of that observation; the latter, because both the neighbourhood radius and the learning rate
shrink as the epochs go by.

0.00

0.25

0.50

0.75

1.00

−2 0 2

d(j, c)

h j
c(d

)

Function

Bubble

Gaussian

Triangle

σ(t) = 1

Figure 8: The described neighbourhood functions that can be used in the Self-
Organizing Map (SOM) algorithm. The function of choice determines in part the weight
update of any centroid when presented with the ith observation of the data in a SOM training
process. The distance on the grid between the jth centroid and the one closest to xi in feature
space (the Best Matching Unit or BMU, indexed with c) is denoted by d(j, c). When the centroid
in question is the BMU itself, d = 0 and the weight update fraction accounted for by the neigh-
bourhood function hjc(d) is maximum: 1. The radius σ, which shrinks through the epochs t ∈ T ,
is in this illustration set to 1.
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Unless stated otherwise, we used the default settings of the kohonen package in this work.
The form of the grid may play a role in the SOM training process: it can determine the distances
between centroids on the grid. This in turn determines to what extent centroids other than the
BMU get updated. Imagine the grid in Figure 7 to be 8-by-2, for instance, instead of 4-by-4: the
depicted BMU would have less neighbours within the shown radius. Here, we do not want to
make assumptions on grid topology, as we do not want to make assumptions on the number or
nature of the clusters. Therefore, we aimed to keep the grid as square as possible, given a certain
k. To that end, we created a simple function grid.dim(), which gives the two integers that are
closest to

√
k whose product is k.

2.2.2.1 Comparison of k-means and SOM Clustering
The recursive, step-wise SOM algorithm described above is strikingly similar to an online

k-means clustering algorithm. Indeed, if we take the bubble function and set σ for all epochs
to 0, and if we additionally define α to be equal to 1 for all epochs, then the centroid weights
will move one-by-one through the feature space without any spatial correlation to each other.
The here described k-means algorithm operates in batch mode, however, presenting all data to
the centroids at once, for every epoch. A batch version of the SOM algorithm exists [48], also
both preserves ordering and converges [49], and has even been claimed to be both faster and safer
than the original procedure [44]. In this regard, this Batch Map could be viewed as a spatially
constrained form of k-means clustering. Nonetheless, the spatial constraint bolsters the global
ordering of the centroids on a two-dimensional grid, which is not possible in k-means clustering.

2.3 Clustering Stabilization
The discussed clustering algorithms have one trait in common: they converge typically to local
optima [e.g. for k-means 27, 50]. Since they are usually initialized with random starting points, this
in turn means that they may yield different results every time; even with the exact same settings
for the exact same data. Here, two means of stabilizing clustering algorithms are considered.
They both rely on iteratively running the algorithms.

2.3.1 Picking One of Iterated Runs

The standard k-means implementation in R includes a stabilization option called nstart. The
argument can be any integer and will match the number of starting point sets the function
will randomly pick when invoked. For every one of these sets of initial centroids, the selected
k-means procedure is run. Subsequently, only the “best” of the nstart solutions is chosen and
returned. Here, the “best” is measured in terms of the smallest ultimate overall within-cluster
sum of squared errors (WCSS), which is the loss function that the k-means algorithm attempts to
minimize.

As no such stabilization scheme existed for the SOM yet, a wrapper function nstart.som()
was created to implement the same procedure as for k-means. The rationale was to enhance
simultaneously stability of the clustering algorithms and their comparability, as this stability
would be achieved in the same manner for both (by picking the solution with the smallest WCSS).

2.3.2 Centralization of Iterated Runs

It is expected that if k is chosen correctly, the centroids found by multiple, equal runs of the same
clustering algorithm may still differ, but will be similar at least. That is, in such a case these
iteratively found centroids will be grouped together in regions in feature space, as independent
runs should give approximately the same results. Then, it may be desirable to not pick one set of
(“best”) centroids and discard the others, but rather to average the centroids per region. This
would involve the identification of clusters of centroids: which centroids are likely to represent
the same solution in separate iterations? Since centroid names are completely arbitrary, it is not
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possible to classify groups of iterated centroids as such. Instead, a clustering algorithm would be
required to group them, after which they could be centered.

Assuming that k is indeed defined as the true value and that iteratively found centroids
are distributed normally per cluster, one could centralize these clusters of centroids by means
of the Expectation-Maximization (EM) algorithm [51]. EM can be used to identify mixtures
of Gaussians in a given data set. For a slightly more detailed explanation of its workings, see
Appendix A. Its implementation in R is facilitated by e.g. the mclust software package [52, 53],
which was used for this thesis. EM can cluster centroids together and return their means (centers)
and variance-covariance (vcv) matrices. Consecutively, each data point could be assigned to its
nearest EM-centered (EMc) centroid.

Which centroid is nearest can be measured in Euclidean distances. However, note that the
EM algorithm also estimates the vcv matrix for each EMc centroid. This additional information
can be used if nearness of centroids is measured in Mahalanobis distances. In fact, the Mahalanobis
distance normalizes Euclidean distances with respect to covariance [54]:

DM =
√

(x− µ)TΣ−1(x− µ),

where x is an observation, µ a centroid mean and Σ the variance-covariance matrix of the centroid.
Altogether, this clustering stabilization technique would come down to EM-centered Ma-

halanobis clustering (EMcMc). The concept is briefly explored in practice at the end of this
thesis. The method requires the iterated clusterings to be more or less stable, since otherwise
clustering the centroids will not yield informative results. Hence, an accurate k has to be chosen
that generates such stable results, but for other values of k, and thus for optimization of that
parameter, EMcMc stabilization can not be used. How to pick an adequate value for k is the
topic of the next section.

2.4 Cluster Number Validation
Arguably the most challenging issue in cluster analysis is the estimation of the “true” number of
clusters k̂ in the data. The difficulty obviously has its roots in the unsupervised nature of the task:
there is no way of telling what is factually the correct class for even a part of the data. Evaluating
clustering quality is not trivial and a multitude of measures have been proposed throughout the
years to address the question of assessing whether one clustering can be objectively considered
“better” than another [28, 55].

Such an examination requires validation measures that can value the goodness-of-fit of a
clustering given a certain k. Canonical measures follow the intuitive reasoning that data points
close to each other in feature space should be placed in the same cluster. They focus on concepts
as cohesion / compactness (within-cluster distances) and separation / isolation (between-cluster
distances), where smaller and larger values indicate a better fit, respectively. Another concept
that has gained popularity in the field of cluster analysis is that of clustering stability. Surely, if
for a given k the same clusters appear in different subsets of the data, this suggests that those
clusters are meaningful and structurally present. Both the use of stability and distance-similarity
indices for cluster number estimation are briefly explored here, as of both approaches a variant
is put to the test in this work. Other validation techniques for finding k̂ are e.g. the use of
the Bayesian Information Criterion (BIC) [56] in model-based clustering through EM [57] and
countless options for fuzzy clustering solutions [reviewed in 58].

2.4.1 Cohesion and Separation as Validity Criteria

Classic strategies to tackle the issue of true cluster number estimation concentrate mainly on the
WCSS (sometimes called Wk, denoting the dispersion or distortion within cluster k). The overall
WCSS always decreases with increasing k, because the more clusters you allow, the smaller the
average distance of any data instance to its nearest centroid will be. Nonetheless, the WCSS
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decrease typically flattens considerably from some k onwards. The value of k at this elbow is
often taken to be the optimal number of clusters distinguishably present in the data. As this is
a rather subjective solution, a number of methods have elaborated on this elbow phenomenon,
formalizing the approach with some statistic.

The Gap statistic basically compares the observed elbow curve with an expected curve: a
null reference [59]. The objective then is to maximize the Gap statistic, which is the difference
between the observed and expected WCSS. By drawing a sequence of Monte Carlo samples
from the reference distribution, a mean Gap value can be computed for each candidate k, along
with a standard error s. The authors proposed to then define k̂ as the smallest k such that
Gap(k) ≥ Gap(k + 1)− sk+1. This virtually implies moving sequentially from smaller to larger k,
accepting the larger value in each step only if its Gap value is higher than or lies within the range
of one standard error of that of the smaller k. Notice that in a sense, this appears to advocate a
form of successive hypothesis testing where in each step the null hypothesis may be rejected in
favour of an alternative if some test statistic exceeds a certain critical value.

The elbow curve was reported earlier under the name distortion curve, terming the elbow
a “kink” in the curve [60]. This concept was later refined by Sugar and James to what became
the Jump method [61]. Essentially, k̂ is defined as the k that follows the sharpest “jump” in
transformed distortion, where the power of the transformation depends on the dimensionality
of the data. The underlying motivation is that small jumps mark within-cluster splits, whereas
sharp jumps signify between-cluster partitions.

The two measures mentioned thus far focus on the distances within clusters, i.e. they attempt
to find the k for which compactness of the clusters is optimized. The Calinksi-Harabasz statistic
also takes the between-cluster sum of squares (BCSS) into account [62]. The averaged BCSS
and WCSS are calculated for a clustering with a given k and their fraction, CH(k), is computed.
Maximization of this value yields k̂. Note that, as the Gap statistic, this inherently bolsters
an hypothesis testing principle, where the CH statistic has the form of an ANOVA F statistic
checking for the presence of disparate clusters.

Other popular measures that include both cohesion and separation are, for instance, Dunn’s
Index (DI) [63] and the Davies-Bouldin Index (DBI) [64]. DI divides the smallest inter-cluster
distance by the greatest intra-cluster distance. Although the former can be defined in multiple
ways, the latter is set to be the greatest distance between any two members of the same cluster.
This makes the method sensitive to outliers, which brought about some DI generalizations by
Bezdek and Pal [65] and Pal and Biswas [66]. As the between-cluster distance should be large
and the within-cluster distance small, the chosen k̂ is a best worst-case scenario, in accordance
with a Minimax perspective. The same accounts for DBI, where the separation is quantified
between centroids in any metric and the cohesion can be expressed as any within-cluster dispersion
function. Similar to CH, DI and DBI, the Silhouette Width described hereafter also incorporates
the principle of cluster separation, on top of cluster cohesion.

2.4.1.1 Silhouette Width
The Silhouette Width is a distance-based measure of how well a certain datum fits within its

cluster [30]. It compares cohesion with separation, i.e. how well a point suits its current cluster
versus other clusters. Let a(i) be the average distance of an observation xi to the other data
within its cluster and b(i) the average distance of the datum to the data in the nearest other
cluster. Then the silhouette s of that observation i is:

s(i) = b(i)− a(i)
max {a(i), b(i)} .

It can be deduced from the equation above that −1 ≤ s(i) ≤ 1. Since we desire low values
for a and high values for b, greater silhouettes imply better fits. Averaged over observations per
cluster, one could obtain k mean goodness-of-fit values per clustering. An overall silhouette index
for complete clusterings could then be computed e.g. by either taking the average or minimum of
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these k silhouettes. The former was proposed by the author in the original paper; the latter may
grant comparable information, albeit from a worst-case scenario (Minimax) point of view: the
cluster that fits least well would determine the goodness-of-fit of the total clustering for that k.
The cluster package provides an excellent implementation of the Silhouette Width in R [67].

Cohesion and separation can be gauged in several ways. Gap, Jump and CH statistics use
protoype-based distance-similarities: WCSS and BCSS are computed with observation-to-centroid
distances. However, DI calculates cohesion from one observation to another, for instance. The
Silhouette Width assesses cohesion and separation on grounds of all pairwise distances of the
data themselves: a graph-based approach. For smaller data sets, this does not pose problems.
However, the number of distances that have to be computed grows quadratically with sample size
N of the data in a graph-based setting (namely with

(
N
2
)
). This will give rise to computational

issues for very large N , as the working memory needed to store the resulting distance matrices
will become impossibly vast. The POLDER-3 data analyzed in this study has N = 1, 131, 324
observations, which is simply too many for normal Silhouette Width computations. In the next
section, a workaround is presented which we call the Gridded Silhouette Width; it allows for an
approximation of the actual Silhouette Width for data sets with many observations.

2.4.1.2 Gridded Silhouette Width for Large Data Sets
Recently, adaptations of Dunn’s Index and Silhouette Width for big data were reported,

designated BD-Dunn and BD-Silhouette, respectively [68, 69]. These new validation indices
were inspired by the original ones, but in effect brought back to a prototype-based level as to
circumvent the calculation of all pairwise data distances. Basically, only two types of distances are
considered: that of a data instance xi to its cluster centroid Ck and that of a centroid to a global
centroid C0 (i.e. the centroid of the centroids). Both measures return one value informing on the
quality of the entire clustering as a whole. BD-Dunn divides the minimum Ck-to-C0 distance by
the maximum xi-to-Ck distance over all clusters. BD-Silhouette is computed as the fraction of
the average Ck-to-C0 distance (inter-cluster) minus the average xi-to-Ck distance over all clusters
(intra-cluster) on the one hand, and the maximum of the two on the other hand. Although the
similarity with the original methods is evident, the nature of at least the BD-Silhouette procedure
is fundamentally different from its predecessor: the graph-based character is fully abolished.

The goal here was to device an adjusted Silhouette Width algorithm that is applicable to a
data set such as the one at hand (large N), while maintaining the graph-based character. We
reasoned that we needed to reduce the number of distances calculated, but without resorting to
the use of centroids as representatives of complete clusters. In brief: we had to summarize data
over more local regions within clusters, using such local summaries for the distance computations.

Hence, the first step is to divide the feature space into equally sized sub-regions or boxes,
which we call grid cells. The grid cells have the same dimensionality p as the data. So, taking
c cells per dimension yields cp grid cells in total. Generally, not all grid cells will contain data
and the higher the dimensionality of the data, the greater the number of empty grid cells will
probably be. Empty grid cells are non-informative and therefore discarded. Subsequently, all
pairwise distances between the centers of remaining the grid cells g are calculated. Compared to
using all pairwise observation distances, the number of required computations can be severely
diminished in this fashion.

Now, a Gridded Silhouette Width gsj(i) will be calculated for every grid cell center gi within
every cluster set Sj , where 1 ≤ j ≤ k for a clustering of data in k partitions. Note that data
points within one grid cell may be assigned to different clusters. For that reason, the Gridded
Silhouette is calculated per cluster Sj . Let i′ index every grid cell center other than gi in set
Sj . Likewise, j′ indexes every set S other than Sj . Distances are depicted as d(x, y), giving the
distance between x and y. In principle any distance metric could be used; in this work we use
Euclidean distances.

The average distance of a grid cell center gi to all other grid cell centers gi′ in its own cluster
Sj is calculated, weighted to the number of observations of Sj in the target grid cell ngi′ . This
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value is called gaj(i), and is the gridded equivalent of a(i) in the real Silhouette Width:

gaj(i) = 1
(nj − ngi)

∑
gi′ 6=gi∈Sj

(
ngi′ · d(gi,gi′)

)
,

where n stands for the number of observations of whatever it is indexed by. Observe that nj −ngi
here equals the sum of all ngi′ for a specified gi ∈ Sj .

In a similar fashion, gbj(i) corresponds to b(i) of the original Silhouette Width. It thus
represents the smallest of average weighted distances of grid cell gi ∈ Sj to the grid cells gi′ of
every other cluster Sj′ :

gbj(i) = min
1≤j′≤k
j′ 6=j

[
1
nj′

∑
gi′∈Sj′

(
ngi′ · d(gi,gi′)

)]
.

Please appreciate that gi′ is defined differently in gbj(i) than in gaj(i): it marks grid cells
from set Sj′ and Sj , respectively. Making use of these two quantities, we can define a Gridded
Silhouette Width per grid cell per cluster:

gsj(i) = gbj(i)− gaj(i)
max{gaj(i), gbj(i)}

.

In order to retrieve the subsequent Silhouette Width approximation per cluster, we average
the Gridded Silhouette Widths over grid cells per cluster, weighted to the number of data instances
assigned to that cluster in each grid cell:

gsc(j) = 1
nj

∑
gi∈Sj

(ngi · gsj(i)),

of which the accuracy naturally depends on the specified number of grid cells per dimension c.
Identically to the real Silhouette Width, a measure of goodness-of-fit of an entire clustering

would finally be obtained by either taking the average or minimum over the individual cluster
silhouettes. The validity index has also been implemented in R in this work in the function
silh.grid(). This new function returns an object of the class list with length k, of which every
element is a data frame containing the gsj(i) values for one cluster Sj .

One could argue that this approach is a hybrid between a graph- and prototype-oriented
method. We do not measure (dis)similarity by means of centroids, but rather through localized
regions: the grid cells. In some sense, one could view the centers of these grid cells as local,
within-cluster centroids. The index is then based on all weighted pairwise distances of these local
“centroids”. These weights are based on the data densities per cluster in the grid cells: how well
such a local “centroid” represents its region (or cell) for a given cluster.

The Gridded Silhouette Width is intuitively an approximation of the actual Silhouette Width:
as the grid casted over the feature space becomes infinitely fine by letting the number of cells
per dimension c grow to infinity, every observation gets its own grid cell. Moreover, the grid cell
centers will get closer to the observations for finer grids, making the approximation complete.
However, this also points towards a limitation of this novel validity index: it works well for large
N , but not so much for large dimensionality p of a data set. The reason lies in the exponential
growth of the number of grid cells c with dimensionality: cp. Although only grid cells containing
data are considered for distance computations, the algorithm still has to determine for each grid
cell whether it holds data or not. In other words: all grid cells nonetheless have to be analyzed in
some sense, creating a curse of dimensionality-like issue.

As can be seen in the Results section, a simulation study offers experimental evidence that
indeed the Gridded Silhouette approximates the original version. Following a clustering in k
partitions, gridded and real values are calculated per cluster for a few situations, after which the
Mean Squared Error (MSE) is calculated between them for a range of candidate c:
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MSEk(c) = 1
k

k∑
j=1

(
(s(j)− gsc(j))2

)
.

Plotting the MSE as a function of c could grant insight into another question that arises with
Gridded Silhouette application: which value of c is adequate for a proper approximation? The
answer will obviously heavily depend on the situation: cluster compactness is clearly a key player,
for instance. Essentially, it poses just another parameter to optimize: enlarging c improves the
approximation, but is met with computational cost. Thus the question may be reformulated to
finding the smallest c that still produces adequate approximations. With real-life data, possibly a
pre-train set could be used for the optimization process, using similar MSE plots for a range of
potential values of c.

A possibility would be to split this pre-train set into a number of equally sized parts and
to cluster them independently with the algorithm(s) of choice for the set of k that is also to be
studied on the train set. For each of these clusterings, the real and Gridded Silhouette Widths
can be determined per cluster. This process is then repeated for a range of c, producing an MSE
plot as described above with mean MSE values and standard errors of the Silhouette Width
approximation for every c and every k. One could subsequently adopt a “1-se-rule”, defining ĉ as
the smallest value of c for which the MSE lies within one standard error of the c with the overall
minimum MSE.

In this work however, only a proof of concept is given. In depth testing of c optimization was
beyond the scope of this work and a practical solution was adopted here: the largest value of c
was elected for which the MSE by eye appeared close to 0 and which the working computer these
analyses were ran on could handle without crashing. This value was found to be around c = 10
for this data set and this computer. The pre-train set used to construct the MSE curve contained
10% of the total train set observations and it was split randomly into 5 parts, stratified by the
month the data were observed in. This meant that every one of these pre-train data folds held
about 16, 000 data instances; a number for which the computation of the Silhouette Width was
still feasable.

2.4.2 Stability as Validity Criterion

The concept of this type of cluster validation revolves around the intuition that a good clustering
is one that is reproducable on variants of the data. Such variants can include e.g. subsamples,
bootstrap samples or jittered samples. The idea here is of course that the data come from an
underlying k number of distributions. Clustering different samples from these distributions should
generally yield the same result. Forcing an algorithm to look for too many clusters may lead to
arbitrary splits that are specific for the sample, instead of the distribution. Likewise, hunting
for too few would lead to arbitrary mixing of clusters. Both settings would be unstable over
multiple samples from the same distributions, since different clusters would be split or merged in
the different samples.

The principle of clusters having to manifest stably in subsets of the data was used by the
resampling method of Levine and Domany [70]. They proposed to perform a clustering on the full
data with N observations, using a set of algorithm parameters V (e.g. k in k-means). An N -by-N
connectivity matrix T then represents whether each two data instances reside in the same cluster
(1) or not (0). Next, m resamples of the data are taken and each of these subsamples is clustered
in the same fashion as the complete data set it is derived from (using the same V ). This in turn
yields m connectivity matrices, indexed by µ. For each of these matrices T (µ), a comparison is
made with the original, full data connectivity matrix, only considering the data points in common
to both data sets. For each pair of points ij that were originally clustered together and also occur
in the subsample, their co-membership in T (µ) is checked as well and marked either the same (1)
or not (0): δTij ,T (µ)

ij

. Finally, the ultimate measure is given by averaging over these values for ij
and subsequently over all m subsamples: M(V ) = 〈〈δTij ,T (µ)

ij

〉〉m. If this index lies closer to 1, it
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indicates robustness of the clustering to resampling and therewith stability. Hence, the V that
produces the highest figure is picked as V̂ .

A similar albeit slightly different approach was proposed in the Model Explorer Algorithm
by Ben-Hur, Elisseeff, and Guyon [71]. Instead of comparing the clustering of a subsample with
that of the full data set, pairs of subsamples are compared with each other. Similarity of their
clustering solutions are expressed by extraction of the data instances they share and computing
e.g. a Jaccard coefficient. The whole chain of operations can then be repeated for a set number of
times for a range of k. The estimation of k̂ is chosen to be the largest k for which the distribution
of similarity values is concentrated close to 1, representing the boundary of a transition from
stable to unstable clustering.

The Clest procedure of Dudoit and Fridlyand [72], published shortly after the Model Explorer
Algorithm, also splits the original data set in two parts, but operates from a more supervised
learning perspective. As in the previous method, both subsamples are clustered in an identical
manner. However, one subsample is dubbed the train set and a classifier is constructed that
optimally desribes the cluster labels based on the data in that subsample. The performance
of this classifier in predicting the cluster labels of the second subsample, the test set, is then
assessed in the form of some similarity statistic. This part of the scheme appears comparable
to the use of 2-fold cross-validation in supervised learning, regarding the cluster labels of the
test set to be the true labels of the response variable y. The rest of the procedure takes on an
hypothesis testing-like point of view. From a suitable null distribution, a number of simulated
data sets are generated. On each of these sets, the same computations are carried out, generating
similarity values for a reference situation. The median similarity statistics of both situations
are compared and if the difference dk exceeds some user-defined threshold, the k used for the
clustering is favoured over the null (which states that there is not more than one cluster). The
full process is repeated for a range of k, after which k̂ is taken to be the k of the significant ones
for which dk is largest. This validation technique requires many parameters to be specified by
the user on top of the typical ones, among which the type of classification algorithm to use, the
similarity statistic and the reference null distribution to sample from.

Lange et al. [73, 74] start with the same outset: split the data into two parts, cluster both
in the same manner, train a classifier on the one and use it to predict the cluster labels of the
other. To judge the prediction quality, they wish to apply the normalized Hamming distance,
which essentially returns a 1 if the labels match and a 0 otherwise and subsequently takes the
average of these zero’s and one’s. In short, this is the misclassification rate. However, the label
names themselves are arbitrary in cluster analysis: two separate clusterings of the same data with
k = 2 may produce the exact same clustering with exact opposite labelling. That would result
in a maximum misclassification error of 1, as all labels are different. Therefore, they take the
error to be the minimum normalized Hamming distance for all permutations of the prediction
class labels. They continue to define their stability index as the average adjusted misclassification
error; a smaller value indicates a higher degree of stability of the clusterings over the two disjoint
splits of the data. Lastly, they normalize their stability measure for its dependence on the k used
in the clusterings. A simple example illustrates the issue: the chance of guessing the correct label
for a data instance for k = 2 is 50%, whereas it is 1% for k = 100; random guessing gives lower
error rates for lower k. The normalization is achieved by dividing the found stability index value
by an empirically found one from randomly sampling k labels a number of times and averaging
over these simulations. The index can then be calculated for repeated splits and a range of k,
defining k̂ as the one for which the validation measure is minimal.

Hennig [75, 76] noted that all these indices attempt to estimate the stability of an entire
clustering, over all clusters. He argues that some individual clusters within a clustering that
appears on average unstable may in fact be robust and meaningful. Hennig therefore proposed
cluster-wise examination of a clustering [76]. Stability of each cluster can for example be assessed
by means of a comparison with their most similar cluster resulting from a resampling technique.
Following that line, he explored multiple variants using bootstrapping, subsetting and jittering
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and used the Jaccard coefficient for cluster comparison [75]. This cluster-centered perspective
was shared by Bertrand and Mufti [77], who compare cluster solutions of a number of subsamples.
The latter method aims to decompose a clustering stability to grant insight into what is stable
in a certain data partition and what is less so: separate clusters, their isolation and cohesion.
In addition, the authors provide a means to retrieve p-values for each of these components in a
hypothesis-like setting.

As described earlier, identical cluster analyses on the same data set generally yield different
results, due to the convergence of most clustering algorithms to local optima and the use of random
starting points. It has been suggested to make use of this trait to estimate k̂ as well. Steinley
[78] proposed to analyze the stability of a clustering solution over a number of initiation point
sets, for a range of candidate k. He introduced a new validation index for this purpose, analogous
to the aforementioned CH statistic. Subsequently, one could do the same for a simulated data
set, sampled from a uniform distribution with the same limits for every variable as the original
set. The optimal k is then picked to be the one for which the difference between the real and
simulated index is maximum. In case the difference is less than zero for all k, this would indicate
no structure: k̂ is 1.

A more recent paper also proposed to exploit the local optima property of clustering algorithms
by averaging over the repeated solutions generated by using separate sets of random starting
points [79]. The author sets out to use existing validity indices, as the Silhouette Width and CH
statistic, to define stability scores over these indices for individual data instances. The scores
depend on the quality of the total data partitioning, expressed by a user-chosen index, and how
often two observations are clustered together. Furthermore, the method applies a correction for
each two observations to be co-clustered by mere chance, instead of due to underlying structure
in the data set. Averaging over data points within clusters and over clusters can produce stability
validation indices for clusters or the entire clustering, respectively.

Wang [80] described the distance between two clusterings on the same data as the probability
that they do not put the observations in the same cluster. The two clusterings are trained on two
independent samples and then both projected on a third sample, thereby generating two partitions
on the same, third subset. The instability thereof is subsequently determined by averaging the
between-clustering distance: the estimated probabilities that data instances in the third set are
clustered together for both clusterings. As can be observed from this description, the Wang
method requires three subsets: two to separately train the clusterings and a third to cluster, using
the trained models. This is why the author described a cross-validation scheme, partioning the
data in three random folds. In every iteration, one of the three folds serves as validation fold. The
final instabilities can, for each of a range of k, then be averaged over the validation fold solutions.
Clearly, the estimated instability should be minimized: k̂ is the k for which that is true. Instead
of a cross-validation set-up, the method was extended to a bootstrap setting too [81].

A theoretical examination of stability-based cluster validation led to the surprising implication
that there might be situations in which such indices may yield poor results [82, 83]. Due to
asymmetries in the “natural” clusters of the data, a too small k may generally merge the same
clusters and a too large one may on average split the same clusters over different data variants.
The clustering would be stable, even if k was chosen incorrectly. Although caution is needed when
using stability indices, Von Luxburg [84] has pointed out that the posed issues are unlikely to
play a major role in realistic situations, opposed to idealized ones. The author concludes that
stability as validation measure breaks down when the usage of center-based clustering algorithms
(like k-means) breaks down, which depends on the data and its underlying distribution. However,
it has become clear that the theoretical background of stability-based cluster number validation
is in need of further elaboration and elucidation.

An important validation method not discussed thus far is that of Prediction Strength [29, 85].
It is worked out to a larger extent in the next subsection, as it is one of the indices implemented,
tested and used in practice here.
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2.4.2.1 Prediction Strength
As Clest [72] and the method of Lange et al. [73, 74], the Prediction Strength measure

follows a supervised learning-oriented concept: train clusterings on two subsets, and try to predict
the clustering of the one using the other [29, 85]. Low prediction errors imply stable clustering
patterns over subsamples of the data for the used input parameters. One subset is dubbed the
train set Xtr and the other the validation set Xval (in the original articles the latter is called the
test set; however, in this thesis we wish to reserve that name for later use).

So, for every candidate k, Xtr and Xval are clustered independently in an identical fashion.
Denote these operations by C(Xtr, k) and C(Xval, k). They both partition the feature space into
k distinct regions. The Prediction Strength method assesses whether any combination of two
data points from the validation set that fall into the same region for C(Xval, k) also do so for
C(Xtr, k). Now whether or not two observations i and i′ are clustered together in the same region
can be marked by a zero (“no”) or a one (“yes”), as is done in Levine and Domany’s resampling
method [70]. Here, the n-by-n matrix containing these co-membership values of all n observations
in a clustered data set is designated D. This matrix is fully symmetric and its diagonal always
consists exclusively of 1’s, since every observation is always in a cluster with itself.

The method measures to what extent the centroids found in the train set can predict co-
memberships in the validation set. Thus, Prediction Strength is examined per cluster as generated
by C(Xval, k), in a sense in consonance with the cluster-wise validation concept of Hennig [76].
Denote these clusters as Ak, indexed by j, with nkj corresponding observations. For each of these
clusters, ∑

i6=i′∈Akj

D[C(Xtr, k),Xval]ii′

returns twice (as the matrix is symmetric) the number of validation set observation pairs that end
up clustered together when these data are assigned to their closest train set centroids. Since we
count the off-diagonal elements of D, the actual fraction of correctly predicted co-memberships in
the validation set per cluster is given by

1
nkj(nkj − 1)

∑
i6=i′∈Akj

D[C(Xtr, k),Xval]ii′ .

The Prediction Strength is subsequently defined as the minimum of these fractions over all
clusters within a clustering for a certain k:

ps(k) = min
1≤j≤k

1
nkj(nkj − 1)

∑
i 6=i′∈Akj

D[C(Xtr, k),Xval]ii′ .

Note, that this approach circumvents the issue of arbitrary cluster labels, without having the
need to explore all possible label permutations as in the procedure described by Lange et al. [73,
74]. After all, Prediction Strength just considers whether pairs of data instances stably reside
together in a cluster, regardless of the cluster name.

Prediction Strength is considered in a repeated v-fold cross-validation setting. That is, the
data are split randomly into v equally sized folds, of which one becomes the validation set and
the other v − 1 folds collectively form the train set. The Prediction Strength is calculated using
these settings and this is done in an iterative manner using every fold as validation fold once. The
final value is the average over the v folds and optionally a standard error can be calculated as
well. An additional option is to perform this whole procedure an M number of times, over several
independent random splits, to avoid any potential structure coincidentally introduced in the data
folds by the random splitting. Means and standard errors over M can be reported and used to
select k̂.

When k = 1, all data will always by definition be in the same cluster, resulting in a Prediction
Strength of 1. So, ps(1) = 1. Therefore, k̂ is not found by merely maximizing Prediction Strength,
as the maximum is generally found at k = 1. Instead, k̂ is rather estimated to be the largest k
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for which the Prediction Strength is reasonably high. Hence, this index gives an indication of
the largest number of clusters k that can be reliably predicted in the data set. Although the
threshold for what is “reasonably high” is somewhat arbitrary, the authors claimed that a lower
boundary of 0.8− 0.9 appeared to work well in practice [29, 85].

This validation index is available for use in the R package fpc [86]. However, the implemen-
tation is limited in a number of ways. Firstly, it works with a selection of clustering algorithms,
excluding the Self-Organizing Map. Secondly, the data is always split into two folds, i.e. v is
fixed at v = 2. Although the authors of the original papers found no evidence that larger v
produce better results (and therefore stuck to v = 2), excluding the option altogether makes
the cross-validation scheme incomplete [29, 85]. In addition, it thereby also prohibits potential
further studies of the effect of different v in various situations. Lastly, the data splitting process is
invariably set to be completely random. While this is in principle a desired trait, the addition of
stratified random sampling is in practice valuable. In the POLDER-3 data case here, for instance,
all folds preferably contain approximately equal numbers of observations per month. Whereas
the data assignment to a fold is in fact still random (as it should be), the stratifying constraint
should enhance the folds’ representability of the full data set.

These limitations led to the construction of new functions in the R environment in which
the mentioned parameters can be specified. We set out to create an overarching cross-validation
function, cv.clust(), which can take in multiple clustering algorithms, cross-validation options
and cluster validation measures as input. It subsequently calls to the corresponding, smaller
goodness-of-fit functions, which are thus sort of building blocks that can optionally be specified or
not. The Prediction Strength function constructed here, ps(), is one of these building blocks. So,
its input arguments are restricted: only the labels assigned to the validation set by the train and
validation centroids are required and only the Prediction Strength that belongs to those labelings
is returned. This working plan is different from that of the fpc package, which performs the full
cross-validation procedure in its prediction.strength() function as well.

Direct implementation of Prediction Strength as presented in the papers will work well for
small data sets. However, for larger sets, a tremendous amount of working memory is required.
For example, we found that using the approximately 800, 000 observations of the POLDER-3
data would have required over 500 Gb of RAM. The underlying reason can be traced back to two
computationally intensive processes:
(1) Calculation of the distance matrices of all validation set data to the train centroids;
(2) Calculation of the co-membership matrices D, making all pairwise observation label com-

parisons.
The first issue is brought about by the computation of the full distance matrix of all

observations to all centroids in order to assign each observation to the centroid for which this
distance is smallest. This matrix is overly large for validation set clusters with many observations.
Therefore, our ps() function refrains from the full matrix computation, but rather performs this
labelling step in an observation-wise fashion: for each datum, all distances are determined and
only the cluster label for which it is smallest is stored, discarding the distances before moving
to the next observation. Naturally, this approach is more time-consuming and thus represents a
remedy in the form of a RAM-computation time trade-off.

The problem of the second point in question lies in the fact that the D-matrices become
quadratically larger with the number of observations nkj in a given validation set cluster Akj . For
instance, in a cluster with 200, 000 data points, which is a very sensible scenario considering the
over 800, 000 data instances in our POLDER-3 train set, the total number of just unique pairwise
label comparisons would be

(200,000
2
)

= 19, 999, 900, 000. Clearly, this is too much to expect from
any computer deemed “normal”. Now the fundamental idea underpinning the solution to this
issue is that all these separate pairwise comparisons – and indeed the sheer computation of D
– are redudant. Factually, we are merely interested in the number of 1’s in just one triangle of
D; either the upper or lower one. To this end, we only need to calculate the number of possible
pairwise combinations per unique label within every validation cluster Akj . Recall that these
within-validation set cluster labels were assigned by the closest train centroid for each validation
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set observation. Taking this consideration into account, the Prediction Strength equation can be
re-written to:

ps(k) = min
1≤j≤k

2
nkj(nkj − 1)

∑
i∈Akj

(
ni
2

)
,

where ni is the number of observations that have the ith label within validation cluster Akj . The
sum is muliplied by 2, since it only yields the total number of 1’s in one triangle of D, whereas the
denominator nkj(nkj − 1) gives the combined number of elements in D of both triangles (minus
the diagonal).

Concealed in the fpc Prediction Strength function code, we found that a similar solution
had been applied. Essentially, the prediction.strength() function uses the following formula:

ps(k) = min
1≤j≤k

1
nkj(nkj − 1)

∑
i∈Akj

n2
i − ni,

which boils down to the same solution, as 2
(
n
2
)

= n2 − n.

2.4.3 A Cross-Validation Framework for Optimization of k

Abridged, the main statistical challenge comes down to optimization of k, the number of clusters
to look for in the data set. This can be viewed as a model selection issue: we wish to estimate
the k̂ that represents the optimal balance between model complexity and data fitting. Clearly,
the model fit would be optimal for k = N , as the WCSS would be minimal: 0. This is obviously
not what we are after; we wish to fit a more parsimonious model that captures the general trends
in the data. For too small k, the model is not complex enough and probably misses patterns in
the data by merging clusters that should be separated. In contrast, too large k will cause the
algorithm to fit the data too tightly, undesirably splitting clusters. The resulting trade-off is
weighed by the validation indices reported above, each in their own described way.

In a supervised learning context, the optimal model is commonly determined by means of
empirical risk minimization, choosing the parameter value that minimizes the expected prediction
error of the model. However, steps should be taken to ensure the results generalize to another,
independent data set. This is done in order to prevent overfitting: fitting a model that describes
the data it is trained on too well, modelling all its peculiarities that are specific for that set thus
rendering it non-generic. Such a model is said to have high variance, since the solutions yielded
by an overfitting model on different data sets will vary largely. The opposite is called underfitting:
an overly simple model will miss the important trends and has high bias. This bias-variance
trade-off is a well-studied phenomenon, as it is generally impossible to minimize both sources
of prediction error simultaneously. Arguably the most elegant and widely used tool to find an
optimal compromise, is cross-validation.

The cross-validation scheme is thus meant to find the model (parameter value) that optimizes
predictive competence. Yet, prediction is not always the objective in unsupervised learning. Often,
methods in this area are employed with the sole purpose of data exploration: no inference, or
extension to other, independent data sets is desired in such cases. Bear in mind, however, that
in this work we actually do aim to find patterns in the data that generalize to potential other
sets. The clusters sought after in the POLDER-3 data are hoped to represent (mixtures of)
aerosol types that are common and reside in the atmosphere in general; not just in the year
2006. Therefore, the k we are looking for should be optimized for the generic case, similar to the
supervised learning scenario sketched above. To that end, we explored the usage of cross-validation
methods for the unsupervised learning case. The goal was to create a framework, both in theory
and in practice through code construction, which allows the user to optimize a generic parameter
k using cross-validation.

The canonical strategy is to first split the data set X in a train set Xtr and a test set Xte.
The test set is put aside and will only be used at the very end, when the model parameter is
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optimized. In this way, the data used for parameter optimization, i.e. the train set, are not used
to assess the quality of the final model: it provides a way of examining the performance of this
final model on an independent data set. Here, we reserved 30% of the data as Xte. The data split
is performed in a random fashion, but stratified on the months the observations were measured.
This generates a train and test set in which the 30 : 70 ratio is present per month, to preserve the
extent to which the two sets are representative of the full data set. Subsequently, k was optimized
on Xtr by means of v-fold cross-validation.

Usually, this approach is called k-fold cross-validation. Obviously, using the symbol k here
would cause confusion, as it is already used to indicate the number of clusters. This is why in the
field of unsupervised learning the method is oftenwise referred to as v-fold cross-validation. As
already briefly explained in the Prediction Strength section, the idea is to split Xtr in v folds with
approximately equal numbers of observations. Again, these fold assignments of data are carried
out in a random manner, in our application stratifying on month. Now one of the folds becomes
the validation fold and the other v − 1 folds together make up the train fold. A model is trained
on the train fold and its predictive capacity is evaluated on the validation fold in the form of a
prediction error. This process is repeated v times with the exact same model parameters, each
iteration taking another fold as validation fold. The cross-validation estimation of the prediction
error for those parameters is then defined to be the average found prediction error over the v
iterations. Repeating the whole set of operations for a range of values for a model parameter
can then grant insight into what could be a proper value: the one is picked for which the thus
computed expected prediction error is minimal.

The question as to what an adequate value for v is, has been subject to discussion in
the literature. In the special case where v = N , the models are being trained on all but one
observation of the train data. This procedure is named leave-one-out cross-validation (LOOCV).
It is computationally intensive, as it requires N iterations. Large values of v will reduce the bias of
the model: since the train set is bigger, the model will be more likely to fit to the regularities and
patterns present in the data. However, this reduction in bias is met by an increase in variance: the
more tightly the model fits to the train data, the higher the degree of overfitting. This additional
bias-variance trade-off thus leads to a compromise for the choice of v. Typical settings are v = 5
or v = 10, to balance between higher bias (lower v) and higher variance (higher v), besides taking
into account the computational cost for very high v as in LOOCV [87, 88, 89, 90].

Cross-validation techniques have been applied in several stability-based cluster validation
indices for unsupervised learning methods, as described earlier in this thesis. Both Dudoit and
Fridlyand [72] and Lange et al. [73, 74] essentially apply repeated 2-fold cross-validation and Wang
[80] reported an adapted form of 3-fold cross-validation for his approach. Prediction Strength can
in principle be performed with v-fold cross-validation [29, 85]. Hence, in a sense these indices
attempt to find a k that is generic, uncovering clusters that have meaning beyond the given data
set. This supervised learning-like set-up could in theory be extended to validation measures other
than those judging stability. The objective then becomes to estimate k̂ to cluster in such a fashion
that it is meaningful for other, new data as well.

The model selection criterion in our cross-validation is not prediction error, as in the
supervised case. Instead, the selection part is handled by the validation indices, e.g. Prediction
Strength selects on the basis of stability over the cross-validation folds. Not everyone might
always wish to assess cluster quality by stability in every case, however. Moreover, it might be
desirable to examine the same clusterings using multiple validation measures, using different
criteria. This was a major motivation to also implement a distance-based index, in addition to
the stability-based Prediction Strength. The Silhouette Width is a popular validation tool [55,
91] and by implementing it, we could combine it with the development of our new extension of it
to large data sets: the Gridded Silhouette Width. In the cross-validation framework, the thus
acquired Validated Silhouette variants assess how well a trained model can partition another data
set into compact and separable clusters: it is computed on the clustering created by assigning
validation fold data to train fold centroids. Taking the average or minimum of these cluster-wise
Validated Silhouette Widths gives our validation measures.
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For this purpose, we constructed the cv.clust() function in R (schematically depicted
in Figure 9). It splits data randomly into a specified v number of folds, with the option of
stratification by a given variable in the data. For a defined M number of times, a v-fold cross-
validation procedure is carried out. Every time, the train fold is clustered by means of a provided
algorithm, on top of the validation fold for stability-based validation measures. The method
should in principle work with any prototype-based clustering algorithm, possibly with only minor
adaptations to the code. The validation fold data are then assigned the label of their closest train
centroid in Euclidean distance. Finally, the desired validation measures are computed using the
labels of the validation fold data supplied by the train centroids and, in case of a stability-based
validation index, those given by the validation centroids too. Averages and standard errors
can be calculated over either the v folds (if M = 1), or the global cross-validation repeats (if
M > 1). Setting M to a larger value than 1 could serve to reduce the influence of any structure
coincidentally introduced in the folds by random sampling, since the fold assignments are repeated
over the cross-validation operations in that case. This is therefore presumably useful for smaller
data sets. When this cross-validation framework is employed for k optimization, it can simply be
repeated for a range of k. This yields validation measure values with standard errors for all given
values of k, of which a plot can be generated that will allow for generic k̂ estimation.

Validation measures that are included in the current version of cv.clust() are the Prediction
Strength (PS), the Average Validated Silhouette (AVS), the Minimum Validated Silhouette (MVS),
the Average Validated Gridded Silhouette (AVGS) and the Minimum Validated Gridded Silhouette
(MVGS). In case the Gridded Silhouette is applied, the number of grid cells per dimension
parameter c needs to be provided as well. Any other argument for clustering algorithm functions
will be passed to them by cv.clust(), e.g. k, but also choice of neighbourhood function for a
Self-Organizing Map.
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Centroids

Cluster(k) Cluster(k)
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Random (stratified) split

PS

AVS

MVS

AVGS

MVGS
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Figure 9: Schematic illustration of the cv.clust() procedure. The train set Xtrain is
randomly, possibly stratified, split into v folds, here 5. Each of these folds is in one of v iterations
the validation fold VAL, the others form together the train fold TR. The train fold data is
clustered by a specified prototype-based algorithm and the validation fold data are assigned
to their nearest train fold centroid, producing the train labels Labelstr of the validation fold
data. Using these labels, Average or Minimum Validated (Gridded) Silhouettes (A/MV(G)S) are
computed. In case of Prediction Strength (PS) calculations, the validation fold data are clustered
as well, generating the validation fold labels Labelsval. The two sets of validation fold data labels
are subsequently used to compute PS. For a set number of clusters k, the means and standard
errors can be calculated over either the v folds (if M = 1), or over the total cross-validation
repeats M (if M > 1). Applying this scheme over a range of candidate k returns the requested
validation indices, which can be plotted as a function of k and thereby aid in its optimization.
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3 Practical Application and Results
The aforementioned preceding exploratory study of Visser [23] was taken as a starting point for
this work. Hence, an attempt to reproduce that research and its results was made at first. This
raised a number of questions concerning the methodology, which led to the development of the
methods described in the previous section. These methods were practically examined by means
of several simulation studies, followed by application to the real-life POLDER-3 data set. The
set-up of this section is accordingly, presenting the outcomes of those analyses.

3.1 Reproduction of Previous Work
Visser [23] trained a SOM on half of the POLDER-3 data set: the odd months (January, March,
May, July, September, November). Next, the data of the full year were mapped to their nearest
final neuron of the model, thus labelling all the data available. The motivation for this approach
was to reduce computation time by training on only half of the data. For sake of simplicity and
as a proof of concept, only three variables were used in the clustering process, namely SSA, AE
and Sphericity. The SOM was set to find k = 9 clusters, in line with the assumption that there
would not be more than 9 ‘natural’ clusters present and the rationale that similar clusters could
always be merged in hindsight. The detected clusters were characterized and, indeed, partly
merged, generating 6 final clusters. Labels (aerosol types) were subsequently assigned to the
clusters matching these characterizations, after which the labelled data were projected on a world
map, per season.

For this reproduction effort, the SOM input parameters were kept the same as in the previous
study as well as possible: an initial neighbourhood radius σ0 of 3, initial learning rate α0 of 0.1,
a decay speed for both of λ = 150, a number of epochs T of 300 and a square grid of 3 by 3
centroids. Nonetheless, it was not possible to keep all parameters equal. The study of Visser [23]
was carried out using the Python software package PyBrain [92], which has different options than
kohonen. Exponential decay functions are not available in the software used in this project and
thus linear decays were applied over T for both σ and α. Moreover, it remains unclear which
neighbourhood function was used by Visser [23]. Personal correspondence with SRON, the site
of that project, revealed that neither of the neighbourhood functions implemented in kohonen
(Gaussian and bubble) were employed, but presumably a triangle function instead. Hence, in
this comparitive reproduction effort both the Gaussian and bubble neighbourhood functions were
applied separately, as it was the best we could do given the software at hand.

Visser [23] documented only one SOM run with the specified parameters. However, a SOM
converges to a local optimum and the outcome might thus be unstable. As we studied its
reproducability, we ran each analysis repeatedly: 500 and 1000 times for the bubble and Gaussian
neighbourhood function settings, respectively. The final centroids of both inquiries are depicted
in Figure 10, with the ones of Visser superimposed. The figure is set in feature space, where the
dimension of the third variable is colour-coded. Thus, every point in the plots portrays one of
nine centroids generated by one of the SOMs; i.e. the data is not shown here. As can be seen, the
bubble function returnes strikingly stable results, since the centroids are consistently found in
virtually the same regions in feature space. Application of a Gaussian function appears less stable,
although groups of centroids can be spotted here as well over iterated runs. There are similarities
between centroids found here and those of Visser; however, the abberations are more noticable.
Since the same data was used in both studies, this might be due to the differences in algorithm
parameter settings. Indeed, the results in Figure 10 indicate that these settings may matter, as
the differences between the plots can be attributed to the use of distinct neighbourhood functions
only.
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Both the methods recorded by Visser [23] and the results obtained here gave rise to various
questions regarding the clustering methods and the possible interpretation of the outcomes. We
wished to validate a set k beforehand, making a conscious choice for the number of clusters to
look for in the data. Moreover, we aimed to perform this optimization on a separate part of the
data to prevent overfitting and allow for a prediction-orientated study: we wanted the found
clusters to have meaning beyond the given data. Data splitting would not be in odd and even
months, but with a stratified random sampling scheme to avoid the accidential introduction of
structure in the train, validation and test sets. Individual clustering runs would be stabilized to
counter the local optima issue and lastly, a comparison was to be made with the much simpler
k-means clustering algorithm to assess any added value of the SOM itself.

The methods proposed in this work are meant to meet these issues in the pursuit of erecting
a more standardized framework to approach this clustering problem, improving on the existing
work. Their performance is presented in the followig sections.

3.2 Simulation Studies to Test Developed Methods
The simulation studies reported here serve a two-fold purpose: (1) demonstrating that the
constructed R codes and functions for the methods work and (2) testing whether the theoretically
described methods actually work in practice, i.e. can they be used to optimize k for data clustering?

3.2.1 Developed Prediction Strength Function Works

The ps() function constructed for this work was invoked on clusterings of three simulated data
sets to calculate the Prediction Strength at different values of k. A 5-fold cross-validation scheme
was used, which in turn was repeated 5 times as a whole; hence v and M were both set to 5.
Means and standard errors were computed over the 5 M -repeats for clusterings performed by both
the k-means and the SOM algorithm for k ranging from 1 to 10. Default options were used for the
SOM (e.g. bubble function). The three simulation scenarios encompassed data simulated from
either 2, 3 or 4 two-dimensional Gaussian distributions, always drawing 1000 random observations
from each distribution. Data were scaled using feature scaling.

The computed Prediction Strengths per simulation, algorithm and k are shown in Figure 11.
Recall that with Prediction Strength, one looks for the largest k that lies above some threshold
taken in the range of 0.8− 0.9. The Prediction Strength for k = 1 is by definition 1. For the case
of these well-separated clusters, the estimated k̂ are correct in all cases, implying that the created
R function works properly.

3.2.2 SOM Stabilization by nstart Wrapper Works

SOMs converge to local optima and thus yield different results over runs with equal settings.
In order to stabilize independent SOM clustering runs, a wrapper function nstart.som() was
produced with the same strategy as the nstart argument of kmeans(): run the algorithm nstart
times and return the clustering with the smallest overall WCSS. The nstart option was separately
set to 1 and 10 for both the k-means and SOM clusterings in Figure 11. The wrapper function
works well and the figure demonstrates that for the actual correct k, k̂ is mostly estimated properly
with higher certainty for the stabilized runs. This is not always the case for incorrect k, however.

This result seems reasonable, since the wrapper only helps in finding the best solution in
the data of one fold, given a certain k. If this k is correct, the locations of centroids in feature
space found in the different folds will be more similar to each other for stabilized runs, provided
the folds are representative of the full data. This in turn means that the produced Prediction
Strength will be higher, since more similar centroids yields more similar data labels. If this k is
incorrect, however, the solutions within folds may be optimized to some extent, but the locations
of the centroids will still differ over the folds due to the arbitrary splitting or joining of clusters.
This latter process is more dependent on the random splitting of data into folds: due to mere
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chance a cluster in some fold may be a bit more elongated than in another fold, for instance.
However, the centroids found in the different folds will still be disparate and not necessarily less
so for stabilized within-fold clusterings. The Prediction Strength found for an incorrect k will
thus not necessarily be affected by finding the “best” solution within a fold. In brief: the best
solution for a fold will still be wrong for incorrect k and will still differ from the best solution of
another fold.

Simulated data k−means SOM
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Figure 11: Prediction Strength for three simulated data sets clustered by both k-
means and Self-Organizing Maps with different nstart options for a range of k.
Simulated sets and corresponding results are depicted per row. Left column shows data sets,
middle column outcomes of k-means clustering, right column outcomes of SOM clustering. A
5-times repeated 5-fold cross-validation scheme was used. Error bars are standard errors and points
averages, computed over the M = 5 overall cross-validation repeats. Data sets were simulated
from two-dimensional Gaussian distributions, with n = 1000 observations per distribution, over
which feature scaling was applied. SOM: Self-Organizing Map; k: number of clusters looked for
by the algorithm.
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3.2.3 Gridded Silhouette Width Works and Approximates Real Silhouette Width

The Gridded Silhouette Width validation index was tested on three simulated data sets. Random
sets of 1000 observations were drawn from 2, 3 and 4 Gaussian distributions in four dimensions,
respectively. These data sets are depicted in the left panels of Figure 12, where the third and
fourth dimension of the data are colour-coded in the fillings and edges of the points. The data
were clustered with the k-means algorithm, using k settings of 2−10. For each of these clusterings,
both the actual Silhouette Width and the Gridded Silhouette Width were computed per found
cluster. The Gridded Silhouettes were calculated for a range of grid cells per dimension c, namely
2− 50. The Mean Squared Errors (MSE) of the actual and gridded indices over the clusters per
clustering are shown in the right panels of Figure 12.

The overall trend in the plots demonstrate that the Gridded Silhouette indeed appears to
approximate its original cousin: the MSE effectively goes down to 0 as c increases. Thus, the
silh.grid() function constructed here seems to work as it should. Furthermore, the grid cells
per dimension required to achieve proper approximation rise with increasing k clusters looked
for in the data. This observation makes sense in the light that clusters need to exist in more
than one grid cell to yield a sensible result: otherwise the gaj values of the method will become
non-existent (NA), as there are no other grid cells in that cluster to compute distances to. As k
increases, more clusters will be split and the resulting clusters will thus be smaller. Consequently,
the risk of a cluster falling into one grid cell exclusively is greater for larger k. The inverse is true
for c: smaller values thereof mean larger grid cells and therewith a greater risk too. Therefore, it
is indeed important to choose a large enough c.

Lastly, Figure 12 shows that the MSE convergence is not entirely smooth over the course of
increasing c. This may be explained by the fact that the clusters in these simulated examples are
well isolated and relatively tightly bound together: for some c, the grid cell net casted over the
feature space may again just separate most of the clusters each in their own grid cell. For one c
smaller or larger however, the boundaries between the grid cells for that net may just fall right
on the found clusters, thereby ensuring they exist in more than one grid cell. The MSE values of
some c may therefore be based on the (Gridded) Silhouette Widths of less clusters, because any
non-existing (NA) values will be omitted. This effect of grid cell-cluster alignment may cause the
convergence curve to decline staggeringly for well-separable clusters, especially in combination
with large k (as this implies smaller clusters). For this same reason, some of the curves start out
at very low MSE values. The most extreme cases are seen for the two-Gaussian simulation: all
cluster-wise Gridded Silhouette Widths for c = 2 had to be omitted, except for k settings of 2
and 3.

Taken together, it appears that at least three factors decrease the accuracy of the Gridded
Silhouette Width approximation: large k, small c and small standard deviation of the underlying
Gaussian distribution. These issues can all be resolved if c is taken to be large enough, since this
takes on the latent problem of perfect grid cell-cluster alignment. Naturally, larger c is opposed
by computational cost. Hence, an optimal c has to be chosen per situation, in which MSE curves
might play a useful advisory role.

3.2.4 Cross-Validation Framework and Validation Measures Work

Data sets were simulated as in the previous section to assess the workings and performance of the
cross-validation scheme in combination with the cluster number validation measures as described
in the Theory and Methodology section. All three simulation settings were generated four times,
setting the standard deviation (SD) of the simulation distributions to either 0.5, 1, 2 or 5, followed
by feature scaling. The cv.clust() framework was tested on each of these 3x4 data sets, using
both k-means and SOM clustering for a k ranging from 2 to 10. The cross-validation was not
repeated (i.e. M = 1) and the fold number was set to v = 5; means and standard errors of each
validation index were thus computed over the v solutions produced by the validation folds. For
the Gridded Silhouette Width calculations, the number of grid cells per dimension c were set to
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Figure 12: Silhouette Width approximation accuracy by Gridded Silhouette Width
for three simulated data sets for a range of c and k. Simulated sets and results are shown
per row; left column depicts the sets in feature space, right column the approximation accuracy.
The approximation error is calculated as the Mean Squared Error (MSE) between the actual
Silhouette Width and Gridded Silhouette Width per found cluster. Clustering is performed by
the k-means algorithm for a set of k numbers of clusters to look for. Data were simulated from
Gaussian distributions in four dimensions, with n = 1000 observations per cluster, scaled by
feature scaling. Last two dimensions are shown by colour coding of the data fillings and edges,
respectively. The error converges towards 0 for larger numbers of grid cells per dimension c.
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Figure 13: Illustrative example of variation in Silhouette Widths over cross-validation
folds. Averages and minima over clusterings do not really differ between two folds the data is
randomly split in, even though the solutions do. Based on simulated data from two Gaussians
in two dimensions, clustered by k-means clustering with k = 3 after feature scaling. Number of
observations n = 1000 per simulation distribution. Colours indicate clusters identified by k-means.
Numbers in the plot are average Silhouette Widths per cluster.

20: reasonably high for an adequate approximation of the Silhouette Width, in accordance with
Figure 12. Since sample sizes in these simulation studies were not inordinately big (maximum
N is 4000), the actual Average and Minimum Validated Silhouettes (AVS & MVS) could be
calculated, on top of their gridded alternatives (AVGS & MVGS) and the Prediction Strength
(PS). Note that in real-life situations, the Gridded Silhouette Widths become obsolete when the
original indices can be used.

The results of the 5-fold cross-validated cluster number validation measures for the two-, three-
and four-Gaussian cluster simulation sets are presented in Figures 14, 15 and 16, respectively. As
can be expected, the increase in overlap of the true clusters (due to larger SD) makes it more
difficult for all indices to estimate k̂ correctly. This difficulty seems to grow along with true
cluster number: for two distributions, all measures estimate k̂ accurately (Figure 14); for three
distributions the MVS and MVGS just break down for the largest SD (Figure 15) and for four
distributions, none of the indices produce the right k̂ for an SD of 5 and the MVS and MVGS
also fail for an SD of 2 (Figure 16).

In all three figures, it can again be observed that the Validated Gridded Silhouettes behave
analagous to their original versions. An additional peculiarity of all Validated Silhouette measures,
is that in all figures the standard errors seem to be missing. In fact, they are not missing, but
exceptionally small. This implies that, over the folds, the minimum and average Silhouette Widths
of the clusterings remain similar, even for incorrect k. This does not have to come as a surprise,
considering that the main difference between the fold clusterings in such a case lies in the cluster
locations, not the distances. In other words: strikingly similar Silhouette Widths are found, albeit
in different parts of the feature space. This concept is illustrated in a simplified way in Figure 13.

All in all, the constructed cv.clust() function in combination with these clustering algo-
rithms and the described cluster validation measures can, at least in some situations, be employed
to estimate k̂. The minimum Silhouette variants yield more extreme and outspoken estimations,
as due to their nature, they are more sensitive to clusterings of which just one cluster is not very
compact and separable.
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3.3 POLDER-3 Train Set: Optimization of k

The train set contained 70% of the total data, which equals approximately 800, 000 observations.
This data split was achieved randomly, stratified on month of observation. The train set was used
to independently find an optimal value of k clusters to estimate in the data.

3.3.1 Find Adequate c for Gridded Silhouette Width

MSE curves were constructed for five pre-train sets of the POLDER-3 data, each containing
2% (n ≈ 16, 000) of the train set data, in the same manner as the ones depicted in Figure 12.
The data was sampled in a random fashion, stratified on the month of observation and each
set was clustered with the nstart option set to 10 for both k-means and SOM clustering. The
objective was to get an indication of which value of c for the Gridded Silhouette would yield
adequate approximations of the actual Silhouette Widths. Averages and standard errors over the
five pre-train set solutions are shown in Figure 17.

k−means SOM
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Figure 17: Approximation accuracy of Silhouette Width by Gridded Silhouette Width
on 5 pre-train sets of POLDER-3 data. Validation indices for a range of c were computed
per cluster found for a range of k using either k-means or SOM clustering. Averages and standard
errors of the cluster-wise Mean Squared Errors between the measures over the 5 data subsets
are depicted. SOM: Self-Organizing Map; k: number of clusters the algorithm searched for; c:
number of grid cells per dimension for Gridded Silhouette Width; n ≈ 16, 000 per pre-train set.
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The plots suggest that for both the k-means and the SOM clustering of these data, a c of
about 10 appears to be sufficient. The MSE curve seems to have reached an average approximation
error of virtually 0 at that c, with only very small improvement after.

3.3.2 Optimization of k with Cross-Validated Indices

Due to the large number of observations in the POLDER-3 train set, only the PS, MVGS and
AVGS validation measures could be employed. The number of folds v for cross-validation of these
measures was set to 5 and the full procedure, including fold splits, was repeatedM = 5 times. The
assignment of data to the folds was again done at random, stratified on the month of observation.
For the Gridded Silhouette Width calculations, the number of grid cells per dimension c was set
to 10, as explained in the preceding subsection.

Taking a cut-off threshold of 0.8 for the Prediction Strength measure as before, it advises for
both of the clustering algorithms a k̂ of 8 (Figure 18). The Gridded Silhouette Width indices
however show a surprising pattern with all optima at k = 2. The minimum variant produces this
answer more decisively as well, as seen before, demonstrating a bigger gap between its optimum
and the other options. As in the simulated examples above, the standard errors for these validation
measures are again negligible.

The results presented here suggest that although k = 8 clusters can reliably be found in the
train data, the average pairwise distances of observations to others within their own cluster are for
this k only marginally larger than those to data in the nearest other cluster. This balance between
within- and between-cluster pairwise distances is considerably better for k = 2. Nevertheless,
if more clusters can stably be identified, this data clustering has our preference, despite these
distances being more equal between and within clusters. We expect that the reproducable clusters
may still represent different (mixtures of) aerosol types in the end, making the distinction between
the clusters meaningful for the objective of the clustering. Even if some of these clusters may in
terms of Silhouette Widths be close to each other, separating them might still be informative, as
long as this can be reproduced and is not just an artefact. Since the Prediction Strength results
show that this latter risk is unlikely to be the case, we continued to cluster the test set with k set
to 8. This decision was futhermore supported by reasoning that it is highly unlikely that there
are only 2 well-distinguishable aerosol mixture types in the Earth’s atmosphere.

3.4 POLDER-3 Test Set: Clustering and Aerosol Typing
The test set comprised the remaining 30% of the data, so n ≈ 340, 000. It was used to assess
the final clustering model performance and to interpret the found clusters. As for the train set
(Figure 18), the cross-validated indices were also computed for the test set using the optimized
k̂ = 8 and otherwise equal settings. The found values were indeed comparable, suggesting no
problems regarding the generalizability of the train set estimated k̂ (Table 1).

Table 1: Cluster validation measures on POLDER-3 test set, clustered with optimized
k. Rounded averages and standard errors, retrieved by the cross-validation framework with the
same settings as for the train set (M and v set to 5). Number of clusters k set to 8, as optimized on
the train set. SOM: Self-Organizing Map; PS: Prediction Strength; M/AVGS: Average/Minimum
Validated Gridded Silhouette.

PS MVGS AVGS
k-means 0.84 +/- 0.03 0.12 +/- 0.00 0.20 +/- 0.00
SOM 0.77 +/- 0.01 0.12 +/- 0.00 0.20 +/- 0.00
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Figure 18: Optimization of k on POLDER-3 train set using the cross-validation frame-
work. Clusterings by k-means (left column) and SOM (right column) assessed for range of k
centroids. Means and standard errors over M = 5 repeats of 5-fold cross-validation are depicted.
SOM: Self-Organizing Map; Min: Minimum; Ave: Average; Valid: Validated; n ≈ 800, 000
observations in train set.
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Figure 19: Final centroids in feature space found by all four clustering algorithm -
stabilization method combinations in the POLDER-3 test set. Two of the four dimen-
sions are depicted with colour codes on the fillings and edges of the shown points. Clustering
was performed on (feature) scaled data, centroid coordinates were transformed back to original
scale prior to plotting. More transparent, smaller points represent (50) iteratively found cen-
troids by the EMcMc methods. Large, solid points represent final returned centroids. EMcMc:
Expectation-Maximization-centered Mahalanobis clustering; SOM: Self-Organizing Map; RRI:
Real Refractive Index; SSA: Single Scattering Albedo; n ≈ 340, 000 observations in the test set.

3.4.1 Comparison of Clustering Solutions

The test set was clustered into k = 8 partitions using both clustering algorithms and for both
stabilization methods: with nstart set to 10 and by means of centering iteratively found centroids
with EMc(Mc). In the latter approach, each clustering run was repeated 50 times.

The thus found centroids are plotted in Figure 19. The separate iterations of the EMcMc
procedure are depicted semi-transparent and the symbols of the final centroids are for all methods
depicted with larger symbols. Two of the four dimensions are colour-coded, allowing the 4D feature
space to be depicted in a 2D plot. As can be observed, all clustering algorithm - stabilization
method combinations generate highly comparable final centroids: they are always found in the
same regions. The EMcMc iterations for the SOM are spread more or less symmetrically, whereas
those of the k-means runs reside more stable in almost the exact same place with very few
exceptions, as the one centroid found in the lower left of the feature space. These few exeptions do
however influence the vcv matrix estimated by the EM algorithm. Since subsequent data-cluster
assignment is based on Mahalanobis distances, this can actually affect the final labels appointed
to the data. Indeed, especially the low sphericity data are split a bit differently for this method,
compared to the others (not shown). The data that would otherwise reside in the two clusters
with slightly higher average Angstrom Exponent were for a major part drawn into the cluster
represented by the centroids in the lower left region of Figure 19, presumably because of this
reason. The more smooth SOM clustering produced more evenly spread out centroids over the
EMc(Mc) iterations and resembles the partitions made by the nstart approaches. Notwithstanding,
it appears that clusterings of the test data into k = 8 parts can yield stable clusters.
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Figure 20: Grid plot of Self-Organizing Map that clustered the POLDER-3 test set.
Clustering was stabilized by setting nstart to 10. Per found cluster, indicated by the cluster
numbers next to each centroid, the weight vectors are depicted for each variable. Cluster numbers
correspond to the ones in Table 2, other figures and text.

3.4.2 Cluster Characterization

Since the four combinations of methods shown in Figure 19 produce comparable ultimate centroids,
here we will only interpret and characterize the clusters of one of them for the sake of clarity and
brievety. The nstart stabilization method is simpler and more established and the Self-Organizing
Map allows for outcome illustration by means of what we call here a grid plot. Therefore, all
following results are derived from that clustering.

The grid plot is shown in Figure 20. It demonstrates the final feature space weights of all
centroids on the rectangular 2-by-4 grid. For larger grids with more centroids, it will be easier to
see that those close on the grid resemble each other more closely in their weight vectors. Some
trends can be spotted here too: the centroids in the lower part of the grid have higher sphericities
and higher values of Angstrom Exponent can be found in the lower right part. Two clusters
have low Single Scattering Albedo; these clusters thus contain absorbing particles, presumably
smoke-like aerosols. However, for proper characterization, it is more useful to also plot the labelled
test set data on world maps. In that way, their geographical occurance can also be taken into
account for the aerosol typing process. In Table 2 the proposed aerosol types are listed per cluster,
based on the characterization and discussion described below.

One of the mentioned absorbing clusters can be found at the very lower left of the grid (Figure
20). The particles in this cluster 1 are furthermore spherical, which would be in agreement with
biomass burning-originating smoke [19]. This matches the geographical occurence of that cluster
well (Figure 21). That is, wildfires typically ravage parts of Mexico and California (spring and
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summer), the Iberian peninsula in Southern Europe (summer), parts of Central Asia (summer),
Australia (notorious bushfires in autumn and winter), the Sahel region and Sudanian Savanna in
Africa (autumn and winter) and Southern Africa (late autumn and winter) [33, 34]. Note that
these seasons mark those of the nothern hemisphere, i.e. these fires happen in the warmest time
of year for each region.

Table 2: Manually estimated dominant aerosol types per cluster. Cluster numbers
coincide with those in other figures and text. n: number of observations.

Cluster Proposed aerosol type(s) n
1 Smoke 25,328
2 Mixed Smoke 31,212
3 Marine 76,391
4 Urban-Industrial 56,527
5 Dusty Smoke 15,105
6 Marine Dust 63,879
7 Dust 52,711
8 Poluted Dust 18,249

However, this cluster 1 is not spotted over other areas where wildfires are known to occur
routinely. These zones are however covered by cluster 2 (Figure 22) and include central South
America and Middle Africa [33, 34]. Additionally, atmospheric air columns over Siberia are
assigned to this cluster during summer. This might be explained by reported wildfires in the
boreal forests, or taiga, in summer [33, 34, 93]. The higher SSA values might be explained by the
difference in biomass burning smoke type: dark or white smoke, as distinguished by e.g. Russell
et al. [19]. Another explanation can be offered by this cluster representing a mixture of more than
one dominant aerosol type, like inorganic, industrial aerosols. These are generally finer and less
absorbing, possibly clarifying the shifts of SSA (lower) and AE (higher), compared with cluster 1
(Figure 20). However, the regions mentioned are not known for their density in population and
none of these options elucidate the high RRI, still.

Strikingly, the centroid directly adjacent to number 2 on the grid, namely cluster 4, does
appear to embody industrial polution as dominant aerosol sort, causing centroid 2 to lie more or
less in between smoke and urban-industrial representing centroids (Figure 20). The particles in
there are generally highly spherical, non-absorbing, fine and lower in RRI (Figure 20), which all
corresponds to the urban-industrial aerosol kind as described by Russell et al. [19]. Furthermore,
this cluster is found over densily populated areas such as India, Bangladesh, Western Africa, East
China and Indonesia (Figure 24). Taking the microphysical profile and geographical locations
into account, the urban-industrial aerosol type for developing economies of Russell et al. [19]
appears to be a good match with the cluster identified here. This could be further supported
by the observed remarkable accumulation of data assigned to this cluster just off-coast Peru,
particularly in spring. Elevated atmospheric sulfur levels have been reported, assumed to originate
from industrial areas in northern Chile [94]. Although the absence of this cluster over India in
the summer may seem extraordinary, this can easily be clarified by the fact that there was almost
no complete data available for this location during this season (see also e.g. Figure 3).

The cluster mostly spotted over the oceans is number 3 (Figure 23). Indeed, its microphysical
characterization matches that of the marine aerosol cluster of Russell et al. [19]: highly non-
absorbing, coarse, spherical and a relatively low RRI, suggesting high water content (Figure 20).
The dominant aerosol type in this cluster is thus expected to be sea salt.

As mentioned, the clusters in the upper part of the grid have lower sphericity values (Figure
20); this indicates the presence of dust, which is highly non-spherical. Moreover, dust particles are
coarse and non-absorbing [19]. This corresponds to cluster 7, which is indeed mostly located over
large deserts (Figure 27): the Sahara Desert, Arabian Desert, Thar Desert, Taklamakan Desert
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and Gobi Desert are all covered during multiple seasons, as well as a region in between Australia’s
Great Victoria, Simpson and Strzelecki Deserts. These are all known major dust sources [95].
In addition, transport of desert dust from the Sahara Desert over the Atlantic Ocean to the
Caribbean and Central and Northern America can be seen during spring and, especially, summer
[95, 96]. In winter, it can be seen that the Saharan dust spreads a little more south-west and away
from the Mediterranean Sea, in line with previous studies, although the reported transport over
the Gulf of Guinea and the ocean towards South America cannot be observed [95, 97, 98, 99].

The remaining three clusters 5, 6 and 8 are assumed to be mixtures of multiple dominant
aerosol types: they have lower sphericity values, pointing to dust in the cluster, but the rest of
the microphysical properties of the clusters do not match this one type (Figure 20). Cluster 6 is
likely to comprise dust particles, as its contents are non-absorbing and coarse and it is located
over deserts, like cluster 7. The main difference with cluster 7 is the higher sphericity in this
cluster. This thus implies a mixture of dust with another type of aerosol. The most apt candidate
is the marine type: cluster 6 is also found over oceans and marine aerosols are spherical, on top
of non-absorbing, coarse and relatively low in RRI (Figure 26). Some transport of dust over the
Atlantic Ocean, mixed with marine aerosols, may be seen: during autumn and winter southward
to Brazil, in spring to the Carribean and in summer even a little more northward to the northern
USA east-coast. During summer a cloud lies over the Gulf of Guinea as well, however, which is
not in line with current dust transport models; rather with biomass burning ones [95, 100].

Probably the most noticable characteristic of cluster 5 is its low SSA: the particles are
predominantly absorbing in nature (Figure 20). Accordingly, its geographical spread overlaps
largely with that of cluster 1, which we assigned smoke aerosols from biomass burning (Figure
25). On the other hand, the current cluster also contains non-spherical matter, suggesting we
are dealing with a mixture of aerosols including dust too. The presence of the cluster above the
Atacama Desert and arguably the northern Patagonian Desert, the Australian Deserts and Namib
Desert in autumn and winter and over the North American Deserts, as the Mojave and Sonoran
Desert in spring and summer, support the inclusion of dust. Note that this cluster occurs in
multiple locations that border between wildfire areas (as described earlier) and deserts: the Sahel
region and Sudanian Savanna, Southern Africa, Australia, Central Asia and the Middle East and
California (Figure 25).

Finally, cluster 8 holds a major dust part as well, as its sphericity is very low (Figure 20). It
appears clearly over the isolated Taklamakan Desert in Central Asia during winter, spring and
summer (Figure 28) and to a lesser extent above other dust sources, including inland Australia, the
Sahara Desert, Arabian Desert and Thar Desert in summer [95]. In terms of optical parameters,
it mainly differs from cluster 7 due to its high RRI, implying less water content. Moreover, a
glance at the histograms in Figure 28 reveals slightly higher sphericity than one would expect for
dust and a bimodal distribution for AE. This in turn implies that the cluster may consist mainly
of dry dust, but in addition to another, fine aerosol type. Admitting it is difficult to identify
this potentially second large component of the mixture, the most likely type is probably of the
urban-industrial kind: these particles are commonly fine, spherical and non-absorbing [19]. What
is more, accumulations of cluster 8 appear to take place off-shore India in autumn and along
Indonesia in winter, where they might represent mixtures of polution from those countries and
dust from the Arabian or Thar Desert and the Australian Deserts, respectively. This is, however,
speculative.
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4 Conclusion and Discussion
In this work, we presented a method to identify clusters of aerosol types in the atmosphere based
on their optical properties by making use of microphysical parameters derived from the 2006
POLDER-3 data. No a priori assumptions on aerosol types, number or nature are required,
making use of unsupervised learning techniques. The proposed approach comprises a framework
in which prototype-based clustering algorithms can be used and which allows for optimization of
the number of clusters k in the data by means of (repeated) cross-validation of several cluster
validation indices, thereby countering overfitting. The methods have been practically implemented
in the statistical software R and examined in this thesis. Simulation studies have shown that all
created software functions work properly and the methods can indeed be used for k optimization;
at least in the basic case of scaled Gaussian distributed clusters. Subsequent application to a
subset of the POLDER-3 data has demonstrated that meaningful clusters can be found in practice
in this way as well, extending its potential to use on real-life data. A more elaborate discussion
on the gathered results, the proposed methodology, its usefulness and limitations and suggestions
for future work to study these aspects to a greater extent is presented below.

4.1 On the POLDER-3 Data Results
In order to find generic clusters of aerosol contents in the POLDER-3 data, the described cross-
validation framework was used on a separate (stratified) train set, followed by a clustering of
the test set with the thus optimized model parameter k. We used both the Validated Gridded
Silhouette Width and Prediction Strength measures to determine the optimal value of k. A
marked outcome was that the Silhouette indices suggested the presence of only k̂ = 2 clusters,
whereas the Prediction Strength implied k̂ = 8. From a practical point of view, we know that
there should almost certainly be more than 2 types of aerosol mixtures in the data: in a full year
there should be more distinct mixtures of particles in the atmosphere around the complete globe.
However, this does not explain the obtained result.

Recall, that the Silhouette Width is basically defined by two distances: the average within-
cluster pairwise distance a (marking cohesion) and the average pairwise distance to the nearest
neighbouring cluster b (marking separation). In our data set, a is mostly relatively large and b
relatively small, due to the large spread of the data throughout the feature space (in essence, every
data point is a mixture of aerosol types). Although b is still always larger than a (no Silhouette
Width became less than 0 in Figure 18), this means that the data density at the cluster center
has to be increasingly large for a cluster to get a high Silhouette Width. After all, only such a
high density could compensate for the small b by reducing a. Ostensibly, sufficiently dense data
masses are only achieved for k = 2 clusters. The Silhouette Width has furthermore been reported
to be influenced by non-normality of clusters and high variance (high degree of overlap), in which
case the indices become lower due to the distance-based makeup as the authors presumed [91].
Nevertheless, the Prediction Strength measure demonstrated that for higher k, clusters could still
reliably, repeatedly be found in the data.

Indeed, we showed that the k = 8 clusters could stably be recovered and, importantly,
appeared to bear meaningful information on reality: by characterizing the typical data patterns
within clusters and studying their geographical dispersion, we could propose probable aerosol
contents for each cluster. Bear in mind, that every datum in the data set is in principle a weighted
average of a mixture of aerosols in the corresponding air column; i.e. presumably no observation
belongs to a truly pure cluster. This is reflected by the fact that all clusters can be observed
over geographical locations where they do not necessarily belong. Even clusters we expect to be
relatively pure, as desert dust (cluster 7), can be seen to be spread out a little over the world
maps (Figure 27).

The aerosol typing step following the clustering was performed in a manual fashion for
this project. That is, by comparing the outcomes with available knowledge on aerosol optical
properties in existing literature, we managed to generate probable aerosol labels per cluster.
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Ideally, the aerosol typing procedure would be automated or standardized in some way for future
studies. It seems that this step will inevitably involve comparisons to be made with results in
other publications. One could use the centroids of reference clusters from other studies and assign
each found cluster center to the closest centroid label. However, such an approach would disregard
the potentially mixed clusters and, moreover, the fact that such a reference centroid is “closest”
to a newly found centroid does not necessarily imply it is “close”. It would already seem more
sensible to compare the obtained centroids with only a few, major reference clusters (e.g. dust,
marine, biomass burning and polution) from, for example, AERONET data: one could for each
found centroid compute its relative probability to belong to each of those reference clusters,
representing the extent to which a cluster may hold a certain type of aerosol. Nonetheless, this
issue requires a great deal of attention first if it is to be challenged and this was beyond the scope
of the current project. The method applied here has produced interpretable results, in light of
which the methodology described and worked out here appears to be a reliable one to gain insight
in aerosol distribution in the atmosphere.

Another use of the SOM is in a mere exploratory fashion, i.e. not for prediction purposes.
This could prove very helpful in gaining insight in prevalence of aerosol types in the atmosphere
as well, albeit only in the data at hand. One could opt for choosing a very large k, for instance
100x100 centroids and display the clustering in the form of the grid plot. On the grid plot, it
may be possible to identify more or less pure clusters in the same manner as we did in our results
section. Because the SOM preserves global topological ordering on the grid, the centroids in
between roughly pure cluster centroids should represent mixtures thereof. The distance to such a
“clean” centroid would indicate to what extent the corresponding aerosol type can be found in
the mixed cluster. Additionally, the grid topology could be defined as toroidal, connecting the
edges on either side. Naturally, clusters found in this way could again be depicted on actual world
maps, which could verify any assigned aerosol labels. Using colour coding, one could potentially
even display degrees of mixtures on the world maps, similar to Taylor et al. [20].

A logical next step in a practical sense could be to carry out the same analyses using more
variables, or microphysical parameters. Many more can be included from the provided data and
adding more dimensions to the feature space should never result in worse separation of the data.
Such a study would shift the analysis towards a more severe machine learning approach. One
could for example start with the same variables as used in Russell et al. [19] and compare the
outcomes. However, bear in mind that this data set has many observations (large N), which
brought us to create and use the Gridded Silhouette. This measure will, however, pose problems
for higher-dimensional data (larger p), due to exponential growth of the total number of grid cells
(cp).

In addition, the POLDER-3 data set contains uncertainties on the microphysical parameters,
resulting from the retrieval algorithm used to derive these variables from the raw data [101].
These could potentially be included in an extension of the methodology reported in this work. By
illustration, Russell et al. [19] do this by treating every observation as an extended data point,
taking into account their uncertainties; one could view every extended observation as a “pseudo-
cluster” in its own respect. These uncertainties can then be incorporated in e.g. Mahalanobis
distance calculations.

4.2 On the Methodology
When using our reported cross-validation framework, one should always consider the added value
of cross-validating on a separate train set; i.e. is preventing overfitting an issue for the task at
hand? The answer depends on the research objective: data exploration or prediction. In this
work, we aimed to do the latter, in which it is important to set aside a test set and assess model
quality on validation sets in order to find a generic solution. However, cluster analyses are often
carried out with the former objective, in which k may be found by applying a(n) (cross-validation)
optimization scheme over the full data at once, followed by a clustering of the same data set with
the optimized k. The cv.clust() function constructed here allows for this possibility as well.
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Additionally, when a test set is used like here, the relative size of this set may be varied: for
large data sets as in our case, it may be worthwhile to enlarge the test set, since the train set
might nonetheless very well remain sufficiently large for proper training. A study of the effects of
different train:test ratios, as well as varying values of both the number of cross-validation repeats
M and the number of folds v therein, was not within the scope of this work.

A second consideration involves the way in which the clustering is performed. Here, we
demonstrated the use of two clustering algorithms: k-means and the Self-Organizing Map (SOM).
Since these algorithms are both prototype-based, the cv.clust() software can treat the objects
made by both clusterings nearly in the same way: it takes the names of the elements within
the objects that contain the centroids and cluster labels as input. In turn, this means that the
implementation of other such clustering algorithms would only require minor code adaptations, if
any. Besides for instance k-medoids methods as PAM (Partitioning Around Medoids) [102, 103]
or others [104], or for exceedingly large data sets CLARA (Clustering LARge Applications) [103],
we have contemplated using density-based clustering algorithms. A prime candidate would be the
implementation of the popular DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) [105]. This algorithm does not require k to be specified, but rather two other parameters,
for whose optimization the cross-validation scheme could be used too. Validation fold data could
then be assigned to train clusters by matching each of them to the label of their nearest train
fold datum. For DBSCAN usage, the clusters to identify do not need to be (approximately)
Gaussian distributed; validation of clustering quality by Silhouette Width may therefore also not
be advisable [91].

Prototype-based clusterings can be stabilized by means of nstart or EMcMc (EM-centered
Mahalanobis clustering) procedures as we report. Both are de facto nstart mechanisms: in both
cases, the exact same clustering run has to be invoked a set number of times. The main difference
is that the former picks the “best” of these runs, whereas the latter averages the centroids in
feature space (and assigns the data anew based on Mahalanobis distances). Hence, the code
facilitating these methods could be made more generic, allowing the user to specify the desired
stabilization mode, if any. An additional option could be to let the user define the metric as well
(e.g. Mahalanobis or Euclidean). We wish to emphasize that EMcMc is a – to our knowledge – new
concept, of which the applicability and performance have yet to be examined to a considerably
larger extent, also in simulation studies. In addition, it should be noted that EMcMc will only
produce meaningful results for a k that yields stable results over the iterations. As multiple
authors have suggested, inverting this principle can be used as foundation for a cluster validation
index: stable results over the same runs with different sets of initiation points can be an indication
for proper k specification [78, 79].

Furthermore, the uses of the SOM algorithm extend way beyond our application in this
work. Similar to common k-means clustering, a batch version exists for the SOM and is even
available in the kohonen package. Since the creator of the SOM himself recommends the use of
the batch version (claiming it is faster and obsolesces the need to set the learning rate parameter),
it would be wise to at least investigate its use for this application as well [44]. Other SOM
input parameter settings could be explored too, on top of the sheer default options we used in
our studies. Straightforward options are to examine the influence of alternative neighbourhood
functions, grid topology, number of epochs and both starting values and decay functions of the
learning rate and neighbourhood radius. It should be noted that the possibilities for some of
these options are limited in the current kohonen package (e.g. no exponential decay functions).

A few selected cluster validation measures were implemented for this thesis. Naturally, other
indices can be added to the framework in the future; the R code is composed in such a manner
that it should not be complicated to do so. In concert with the cv.clust() function, the ps()
function works comparably to the fpc package to calculate Prediction Strength. Whereas our
implementation allows for specification of v in addition to M , which is not possible in the fpc
version, the latter has a few advantages of its own for now as well: more clustering algorithms
are already integrated for usage, as well as more ways to assign the data of the validation fold a
second label. However, our combination of creating ps() as a building block to include it in a
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larger cross-validation function could in time be more flexible: other measures can be included in
addition.

The other cluster validation measures currently built into cv.clust() are variants of the
Silhouette Width. The Validated Silhouettes are computed over the clusters found by training
centroids in the validation folds and are thus informative on how well a trained clustering can
partition a validation set of data into k regions. As illustrated in Figure 13, found differences over
folds may be very small even for incorrect k, rising the question whether v-fold cross-validation
has any added value for this index. It appears that the index will only vary over folds if the
samples in the different folds are not comparable. This would suggest that the use of v = 2 folds
is sufficient for both the Average and the Minimum Validated Silhouette Widths presented here.

The addition of a minimum validated index was originally inspired by the Prediction Strength
calculation and denotes a measure of the Minimax decision format: minimize the maximum loss.
In other words: consider all worst-case scenarios and pick the best of those. Hence, a clustering
is only as good as its worst fitting cluster: as soon as just one cluster has a bad fit according
to the index, the whole clustering index goes down. This approach is thus more sensitive for
outlying clusters, which might make its usage more desirable in case of many “true” clusters: the
bad fits within a clustering cannot be averaged out by many good fits. Nevertheless, a thorough
examination would be needed to state in which cases the use of the minimum may be prefered
over the average.

For data sets with many observations (large N), the Silhouette Width cannot be computed
due to computational cost. Here, a solution is presented in the form of the Gridded Silhouette
Width, which approximates the original measure. We showed that the new index has been
successfully implemented in the software, indeed approximates the real Silhouette Width and
can aid in k optimization through the use of the AVGS and MVGS as well. On the downside, it
requires the choice of an extra parameter value: the number of grid cells per dimension c. The
optimization of c is a balance between the approximation accuracy and the computational cost,
which both increase with c. Suggestions for c optimization have been presented, but an inquiry
into the matter remains to be carried out. The accuracy of the Gridded Silhouette Width is
furthermore influenced by the parameter k of the clustering: larger k requires a finer grid to cover
all clusters sufficiently.

Taken together, the framework has been set up and works for k optimization and clustering
purposes. However, a wealth of experiments is yet to be performed to test the performance of the
proposed methods in a wide range of situations. Simulation studies can be carried out to assess
for example the effects of other underlying distributions (non-Gaussian, in which a potential
implementation of DBSCAN would pose an advantage) and their dimensionality, different degrees
of cohesion and separation, and varying sample sizes over clusters. Moreover, the influence of
various values for M , v and c can be examined, as well as the use of alternative validation
measures, clustering algorithms and their settings.

Since all of these aspects of the methodology remain to be studied, caution should be taken in
its application. After all, its efficacy has only been demonstrated here for a few selected, relatively
simple situations. Additionaly, it is important to consider the objective of the cluster analysis to
be performed ahead of cv.clust() usage. The choice of cluster algorithm and validation tools
depend heavily on the type of clusters one expects (distribution, overlap, etc.) and the clustering
purpose (exploration or prediction) [106]. So, the first question to be answered should always be:
what are the “true” (or “natural”) clusters that we wish to model? The answer may oftenwise be
strikingly devious: one could argue that the “true” clusters for our POLDER-3 analysis are the
ones that ideally represent pure aerosol types. In practice, however, these could not be modelled
due to the abundance of data that embody mixtures of such types. Hence, for our analysis, the
stably occuring aerosol mixtures could be seen as the “true” clusters. Even though we did thus
not model the underlying reality (pure types), but rather the patterns caused by it (mixtures),
we demonstrated that our approach can still be informative on reality. Nonetheless, one should
always bear in mind what the clusters resulting from a cluster analysis represent and how they
are meaningful in the interpretation of nature’s workings, in the real world.
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In summary, we showed a means to retrieve clusters of atmospheric columns that are
comparable in aerosol contents, studied the performance of the proposed clustering and validation
methods and discussed their workings, interpreted the generated clusters and demonstrated how
and to what extent they may describe the aerosol distribution in the atmosphere of the Earth.
Such information – potentially based on more locally acquired data with enhanced resolution in
the forseeable future – could support (local) governments in shaping their policies regarding air
quality for improvement of public health, in which atmospheric aerosols play a key role in this
day and age.
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Appendices
A Soft Clustering in Aerosol Typing
The aim of both k-means and SOM clustering in this work is to assign each datum from a data
set X to one of k clusters. This type of clustering is called hard clustering, as each datum
belongs to only one specific cluster and none other. Even when an observation is right in between
two dense masses of data, it will be assigned to either one of the two clusters. Opposingly, in
soft clustering methods, each datum is assigned to multiple or all clusters with a certain degree
of “belongness”. This concept corresponds to the idea of fuzzy sets, as introduced by Zadeh [107].

Considering the ultimate goal of clustering atmospheric columns on grounds of aerosol content,
this perspective might make sense here. Every observation in the data at hand corresponds to
such a column and every column represents a massive volume of air. So, these columns are
unlikely to contain merely one type of aerosol each. Hence, the observations in our data set
embody mixtures of aerosol types and therefore weighted averages of the microphysical parameters.
Ideally, our cluster centroids represent pure aerosol types, instead of mixtures. Mixtures would
emerge naturally in soft clustering for data points that are, to a certain degree, assigned to
multiple clusters: observations would belong to various “pure” aerosol types (clusters) with
different weights. In other words: hard clustering methods would model the patterns (mixtures),
whereas soft clustering approaches might model the underlying reality (pure types), after which
the observed patterns would emerge.

Fuzzy c-means

A basic soft clustering method is that of Fuzzy c-means (FCM) [108]. Originally proposed as
fuzzy variant of Ball and Hall’s ISODATA algorithm [39] by Dunn [63], FCM basically extends
k-means clustering to fuzzy sets. In essence, FCM works the same as k-means as described above,
with an extra membership parameter to weigh the WCSS for each datum in each cluster. This
membership in turn depends on a ‘fuzziness’ parameter. If the latter is set to 1, each membership
weight converges to either 0 or 1, yielding classic hard k-means results [109].

Expectation-Maximization

Another approach to identify mixtures of clusters, is by means of the Expectation-Maximization
(EM) algorithm [51]. EM is a density-based method: given a data set X, it attempts to fit
a defined k number of specific distributions over the data, allowing for the computation of
relative probabilities of an observation to ‘belong’ to each cluster. A common application is to
model mixtures of Gaussians, thereby estimating the latent mixing parameter τ which specifies
the aforementioned relative mixing probabilities. This algorithm also works iteratively until it
converges:
(1) In the E-step, each datum is assigned a relative probability estimate for all distributions;
(2) In the M-step, the distribution parameter estimations are updated based on the new soft

cluster assignments.
As starting parameters for {µ̂1, ..., µ̂k}, usually random data points are picked. The starting

variances
{

σ̂2
1, ..., σ̂

2
k

}
could be set to the overall variance in the data and the mixture parameter

τ is often initialized equally over the clusters: 1
k .

From this display of the two-step core EM workings, the similarity of its usage in data
clustering to that of k-means is clear. One could imagine that in EM clustering, the distributions –
instead of just the centroids as in k-means clustering – move iteratively through the feature space.
In a sense, the described application of EM for cluster analysis could be viewed as a probabilistic
version of k-means clustering. When the variance parameters σ2 of the fitting densities are
restricted to 0, the approach becomes a k-means algorithm.
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Soft Clustering not Suitable for this Work

Soft clustering techniques appear optimal for modelling mixtures of clusters, which are without
doubt present in the current data. However, any fuzzy clustering algorithm requires sufficient
data representing the “pure” clusters, and not too much data in between, in order to recognize
them. This is a vital component of the approach and unfortunately, it cannot hold for the data at
hand. As mentioned before, here we deal with observations that are most probably all mixtures
in themselves. When a vast portion of data lies in between what are actually “pure” clusters,
any clustering algorithm will recognize such a mixture as a cluster. A potential solution would
be granted by the usage of reference clusters, as mentioned in the Introduction. However, this
again requires assumptions on microphysical profile and number of existing aerosol types, as well
as their prevalence. This was something we attempted to circumvent in this work, as described
before. Thus, soft clustering would not be of any additional value in this case. It is for this reason
that soft clustering methods were not considered further for this work, but the focus remained on
hard clustering by k-means and SOM clustering instead.

B Full Data Set

Short name Long name Wavelengths / Modes / Variants
AOT Aerosol Optical Thickness 440, 490, 563, 670, 865, 1020 nm
SSA Single Scattering Albedo 440, 490, 563, 670, 865, 1020 nm
reff Effective Radius Fine, Coarse Mode Fraction
veff Effective Variance Fine, Coarse Mode Fraction
m_r Real Refractive Index Fine, Coarse Mode Fraction
m_i Imaginary Refractive Index Fine, Coarse Mode Fraction
sphere_frac Sphericity Fine, Coarse Mode Fraction
lat Latitude Coordinates of Centers and Cor-

ners
long Longitude Coordinates of Centers and Cor-

ners
psurf Surface Pressure
N Aerosol Column Number Density Fine, Coarse Mode Fraction
number_of_points Number of Data Points Over Ocean, Land
error Parameter Retrieval Uncertainty /

Error
AOT, SSA, reff, veff, m_r, m_i,
N, sphere_frac

C List of Main Created R Functions

cv.clust

DESCRIPTION
Carries out a (repeated) v-fold cross-validation procedure for cluster analysis given cluster
algorithm parameters.

USAGE
cv.clust(data, v = 5, M = 1, cellsperdim = 10, split = c("stratified", "standard"),
split_by = NULL, clustering_method = kmeans, labels = "cluster", centroids =
"centers", val_measure = c("ps", "mvgs", "avgs", "mvs", "avs"), ...)

INPUT
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data an R data frame with numeric data.
v integer indicating number of folds.
M integer indicating number of global cross-validation repeats.
cellsperdim integer specifying the c parameter for the gridded silhouette: number of

grid cells per dimension.
split fashion of data splitting into folds. Either standard (totally random), or

stratified by a variable in the data frame.
split_by if split is set to stratified, character string matching the colname of the

variable in the data frame to stratify on.
clustering_method function name of the clustering algorithm. NOTE: not as character string,

merely the function name without parentheses (e.g. kmeans, not "kmeans"
or kmeans()).

labels name of the element containing the cluster labels in the object returned
by the clustering algorithm, as character string.

centroids name of the element containing the cluster centroids in the object returned
by the clustering algorithm, as character string.

val_measure (vector of) character string(s) indicating cluster validation index or in-
dices to be computed. Current options are: Prediction Strength ("ps"),
Minimum / Average Validated (Gridded) Silhouette ("m/av(g)s").

... other arguments passed to the clustering algorithm (e.g. centers, grid
etc.).

OUTPUT
A list of M matrices with v columns containing the found values of the specfied cluster validation
indices per fold.

extract.nc

DESCRIPTION
Extraction of data from netCDF files, loading them into R. Data has to be provided in the format
filebasenameyyyymm.nc, e.g. SRON_parasol_gridded200601.nc.

USAGE
extract.nc(filebasename, path, variables = c("SSA_490nm", "AE", "sphere_frac_coarse",
"m_r_fine", "m_r_coarse"), year = 2006, months = 1:12, format = c("array",
"dataframe"), AE_lambda1 = 490, AE_lambda2 = 670, AOT490nm_lowerlim = 0.1,
AE_lowerlim = 0, SSA_lowerlim = 0.6, fill_treshold = 9e36)

INPUT

filebasename string with the base of the file names (the common part).
path string with path to the local data files.
variables names of variables to extract from the data file.
year year of which to extract data (integer).
months numbers of months of which to extract data (integer or vector of integers).
format whether to output an object of class data.frame or array.
AE_lambda1 lower AOT wavelength to be used in AE extraction.
AE_lambda2 upper AOT wavelength to be used in AE extraction.
AOT490nm_lowerlim lower bound of AOT (490 nm) values to be used in AE computation.
AE_lowerlim lower bound of AE values to be included in the data.
SSA_lowerlim lower bound of AE values to be included in the data.
fill_treshold threshold value to distinguish fill values from measurements.
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OUTPUT
A single data object of the specified class (default data.frame) and contents.

feature.scaling

DESCRIPTION
Perform feature scaling and backscaling to the original scale on numeric vectors.

USAGE
feature.scaling(x)
feature.backscaling(xnorm, minorig, maxorig)

INPUT

x numeric vector to be scaled.
xnorm scaled numeric vector to be scaled back.
minorig minimum value of numeric vector on original scale.
maxorig maximum value of numeric vector on original scale.

OUTPUT
Numeric vector containing the (back)scaled values.

gg.heatmap.nc

DESCRIPTION
Creates a ggplot-based heatmap, displaying the averages per grid box of a given variable on a
world map per season.

USAGE
gg.heatmap.nc(data, seasons = 1:4, variable = "SSA_490nm", legend_name = "SSA",
title_name = "Single Scattering Albedo (490nm)")

INPUT

data an R data frame with numeric data. NOTE: NA values should NOT be
removed prior to invoking this function.

seasons (vector of) integer(s) indicating of which seasons maps should be produced
(1:4 = winter:autumn, chronologically).

variable character string: name of the variable to be plotted as it appears in the
data frame.

legend_name character string indicating title of the legend.
title_name character string indicating title of the total grid of world maps.

OUTPUT
Plot: grid of world heatmaps depicting seasonal means of the variable, one map per season.

grid.dim

DESCRIPTION
Finds the two integers closest to the square root of the input, whose product is the input. Thus
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gives optimal grid dimensions for a given number of elements to create 2D grid as square as possible.

USAGE
grid.dim(x)

INPUT

x integer to be split in factors.

OUTPUT
Two integers: the factors as similar as possible that still produce the input.

mah.clust

DESCRIPTION
Mahalanobis clustering: calculates Mahalanobis distances of data to cluster centers with respect
to their variance-covariances and assigns labels to the data matching their closest centers in this
metric.

USAGE
mah.clust(data, center, sigma, verbose = TRUE)

INPUT

data an R data frame with numeric data.
center matrix with cluster center coordinates in same dimensions as data.
sigma array containing variance-covariance matrices; third dimension represents

different cluster centers.
verbose logical operator: show progress during computations (TRUE) or not

(FALSE).

OUTPUT
List with two elements: Cluster is a vector with Mahalanobis clustering label assignments for
the data; Dist_mat is the calculated Mahalanobis distance matrix.

nstart.som

DESCRIPTION
Wrapper function for the som() function of the R kohonen package. Runs the specified
Self-Organizing Map nstart times and returnes the solution with the smallest overall within-cluster
sum of squared error (WCSS).

USAGE
nstart.som(data, nstart, verbose)

INPUT

data an R data frame or matrix with numeric data.
nstart integer: the number of random initialization sets to be chosen to run the

SOM with.
verbose logical operator: show progress during computations (TRUE) or not

(FALSE).
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... arguments to be passed to the som() function.

OUTPUT
An "enhanced.kohonen" object with added computed total WCSS tot.wss value of final solution.
Otherwise same output as som() from the R kohonen package.

ps

DESCRIPTION
Computes the Prediction Strength of two clusterings on the same data.

USAGE
ps(labels_train, labels_valid)

INPUT

labels_train Vector with cluster labels assigned to the validation fold data by the
clustering on the train fold.

labels_valid Vector with cluster labels assigned to the validation fold data by the
clustering on the validation fold.

OUTPUT
Integer: Prediction Strength of given clusterings. Issues a warning if at least one cluster of size 1
occured in the direct clustering of the validation fold data. This produces NA values, which are
omitted.

silh.grid

DESCRIPTION
Computes the Gridded Silhouette Width. Divides feature space of input data into grid cells.
Calculates Silhouette Widths per cluster label between grid cells. Distances are weighted
relative to data counts in the target grid cell. Approximates Silhouette Widths of data per grid cell.

USAGE
silh.grid(data, labels, cellsperdim)

INPUT

data An R data frame with (scaled) numeric data.
labels clustering labels of the data.
cellsperdim number of desired grid cells per dimension c.

OUTPUT
List of same length as number of unique clustering labels. Each element is a matrix containing:
Weighted_gridcell_silhouette: the silhouette of that grid cell for that label, weighted relative
to the number of observations of that label in that grid cell; Gridded_silhouette: the silhoutte
width per grid cell; Weight: the weight corresponding to that grid cell for that label; CellID: an
ID index for the grid cell number in the feature space; Count: the number of observations of that
label in that grid cell.
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SOM.onecluster.heatmap

DESCRIPTION
Produces a heatmap superimposed on a world map depicting the prevalence of a specified cluster
per season.

USAGE
SOM.onecluster.heatmap(data, clustvarname, cluster)

INPUT

data an R data frame containing the clustered data, including one variable
holding the assigned cluster labels. Data should also include variables
"Latitude", "Longitude" and "Season".

clustvarname character string of the name of the variable containing the cluster labels.
cluster cluster label of which the maps are to be created.

OUTPUT
Seasonal world heatmaps displaying the number of times (counts) every grid box on the surface
of the Earth was assigned to the specified cluster.

strat.split

DESCRIPTION
Splits given data randomly into a specified number of equally sized folds, stratified on a factor.

USAGE
strat.split(data, k, by, train_fraction = 0.5)

INPUT

data an R data frame with numeric data, including the variable to be stratified
on.

k an integer indicating the number of folds the data should be split in.
by a character string of the name of the variable to be stratified on.
train_fraction if 2 folds are specified, a fraction indicating the size of the train fold

relative to the total data size.

OUTPUT
Returns a list with two elements, both containing the random stratified fold division: folds_df
and folds_ls.
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