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1 Introduction

In the field of proteomics, an attempt is made to observe all proteins of an organism at once, rather
than studying a preselected set of variables. While this obviates omitted-variable bias, the resulting high
dimensionality of the data calls for the use of different methods than in conventional research. To this end,
various techniques have been developed. In this thesis, we will focus on the use of sparse undirected graphs.
Such graphs seek to visualize the most important partial correlations between the measured variables, albeit
without providing a causal relationship.

While high dimensionality poses the main challenge of proteomics data, other problems arise as well when
variables are highly correlated or when the number of measured variables exceeds the sample size (i.e. n < p).
High correlation is especially challenging, since the nature of the correlation can be both biological or artificial.
For example, proteins measured by mass spectrometry are fragmented, yielding multiple (correlated) peaks of
the same protein. Since identification of all measured peptides is both laborious and not always possible, it is
difficult to judge which resulting network is the correct one.

In this study, our objective is to evaluate the performance of existing methods to estimate and validate
sparse undirected graphs, and to address their usefulness for proteomics mass spectrometry data, with n < p.
To this end, we will compare regularization methods and a Bayesian method for the construction of sparse
undirected graphs. Subsequently, we will try to express the relative importance of vertices in resulting graphs.

For ease of understanding, we consider analogies with regression analysis before addressing the graphical case,
since most of these methods originate in regression analysis. We touch upon a variety of subjects, including
inverse covariance matrix estimation, graph theory and node influence metrics, to address the question of
how to summarize complex relationships in proteomics.

1.1 Conditional Independence Networks

Undirected graphs can be constructed by using a sparse estimate of the inverse covariance matrix of the
data. Let & =E {(Y —E[Y])(Y — E[Y])T} be the true covariance matrix and S = ¥ 7Y the maximum

likelihood estimate (MLE). We then wish to estimate »~! = O, the precision matrix, using S. It turns out
that the entries of the precision matrix have an interpretation in terms of partial correlation (Lauritzen 1996).
That is, the partial correlation of proteins ¢ and j given the associations with all other proteins is equal to
minus the standardized precision estimate:

= ———— 1
Tij 0.0, (1)

with 6;; € ©. From (1), it is clear that when an entry of the precision matrix 6;; = 0, proteins ¢ and j
are conditionally independent. This implies that if O is sufficiently sparse, we can represent the remaining
non-zero entries as connections between nodes, which in our case correspond to protein peptides. A simple
example of such a graph is shown in (24).

Sparsity is important, because we want to visualize the relationships which explain the data best, without
cluttering the graph. However, recent literature has focussed primarily on finding a sparse estimate (see
Friedman, Hastie, and Tibshirani 2008; Kréamer, Schéfer, and Boulesteix 2009; Bien and Tibshirani 2011;
Mazumder and Hastie 2012b; Mazumder and Hastie 2012a; Sun and Li 2012), without regard for the estimate
closest to the true ®. We take on a different approach and allow © to be as dense as the methods for
estimating © suggest it should be, while summarizing the most important nodes in the resulting graph.



1.2 Regularization

Let {y; ...y, } be n observations of p variables, following a multivariate normal distribution Y ~ N,(u, )
with g = p1,...,1p and ¥ a p X p covariance matrix. If we assume p to be known and equal to zero, the
MLE of the variance-covariance matrix 3 is equal to S = %YTY. The likelihood of ® would then be:

L(©|S) = O] —exp {tr(5O)} (2)

Here, |.| denotes the determinant and ¢r the trace. From (2), we can formulate the log-likelihood as follows:

4O)S) = In(|©)) — tr(S©) (3)

Ifn>pand S = 0, (3) is maximized for ©=5" However, when n < p, S is no longer positive semi-definite,
singular and therefore uninvertible. As a consequence, (3) becomes an ill-posed problem and O is not
defined. A common way to estimate ®@ when n < p is by adding a penalty to the MLE. To this end, we will
consider two regularization methods: the ¢; and ¢5 norms (graphical lasso and ridge, respectively).

1.2.1 Lasso ({;-norm)

The Least Absolute Shrinkage and Selection Operator, commonly just referred to as lasso, is a constriction
on the MLE that results in both parameter shrinkage and selection at the same time. In regression analysis,
lasso puts a restriction on the ¢1-norm of the parameters c.f. (5). In figure 1 (left), the constrained
parameter space of the lasso is visualized for the two-dimensional case. Here, we see that the boundaries of
the lasso-contstrained parameter space are diamond shaped. As a result, the contours of equiprobability of
the least squares solution can enter the constrained parameter space through a corner. When this occurs,
one of the f; is set to exactly zero, which gives the lasso its parameter selection ability. As the number of
parameters p increases, so does the chance of coefficients to be set to zero.

In regression analysis, the ordinary least squares (OLS) estimate is obtained by minimizing the sum of squared
residuals:

ly — X B3 (4)

Where ||.||2 denotes the ¢ or Euclidean norm. When p is large and variables are correlated, lasso regression
adds the ¢1-penalty to the OLS, multiplied by a positive scalar A\ to control the size of the penalty:

lly — XBII3 + [1A8l]y ()

Where ||.||1 denotes the ¢; or ‘taxicab’ norm. Lasso regression can be extended fairly easily to the problem of
covariance matrix inversion in (3), by subtracting the (matrix) ¢;-norm of ©:

{(©]S) = In(|®]) — tr(S©) — Al[O||, (6)

Fast algorithms for solving (6) have been developed by Mazumder and Hastie (2012a); Mazumder and Hastie
(2012b) & Friedman, Hastie, and Tibshirani (2014), such as block-coordinate descent, which partitions ® and

A1
W = ©  into block-matrices (block diagonal structure in S is preserved in ®). Each block can then be
solved independently, saving considerable computation time.

More explicitly, the columns of ® are iteratively rearranged so that the target column (g;; ) in (7) is the last

column. @ is then updated using the current estimate of W. As more and more elements of W become



zero, the speed of the algorithm increases. In Mazumder and Hastie (2012a), additional simplifications were
introduced which further speed up the algorithm.

®1 012\ 41 Wi wio

©= (921 922) ® = (w21 wzz) (7)
Though the computational speed and resulting sparsity of the graphical lasso are appealing at first, a
problem arises from a mathematical point of view with the ¢;-penalty, since the lasso solution is not uniquely
determined when the number of variables is greater than the number of subjects (i.e. n < p) and selects at
most n variables. Furthermore, the lasso solution does not converge to (3) as n — oo. Another drawback of
lasso is that it tends to select only one variable among a group of predictors with high pairwise correlations.
In the latter case, there are alternative solutions like the group or fused lasso (see Friedman, Hastie, and

Tibshirani (2010) & Danaher, Wang, and Witten (2014)). We used the R package glasso to compute the
graphical lasso. It allows shrinkage of all elements of ® or only off-diagonal elements (default).

1.2.2 Ridge ({2-norm)

When sparsity is not of essence, the most commonly used method of regularization is Tikhonov regularization,
which adds a regularization term to (4) for any suitable Tikhonov matrix I':

lly — XBI[3 + [ITAI[3 (8)

Where ||.||2 denotes the ¢5 or Euclidean norm. T is a p X p matrix, often taken to be a multiple of the identity
matrix I' = AI. When this is the case, since ||[AIB]| = |A|||8]], (8) then simplifies to:

lly — XBlI3 + X813 (9)

Which is known as 5 regularization, or ridge regression. Note that A is on a different scale than (5), because
the penalty is quadratic. The ridge penalty has the desirable property over lasso of having a unique solution,
even when p > n. However, as is shown in figure 1, the ridge penalty constrains the s to a circular space
(spherical in higher dimensions). Because of this, the chance of the contours of equiprobability of the least
squares solution entering the constrained space through 3; = 0 is now zero. As such, ridge regularization
cannot select variables like the lasso. In graphical models, this implies that the ridge solution is not sparse and
requires an additional variable selection step. Another complication arises from this, since the block-diagonal
partitioning of S and © in (7) is no longer beneficial for computation speed.

Intuitively, one might assume that the ridge regression is extended to graphical models as follows:

((®[S) = In(|®]) — tr(S©) — A[|©|[3 (10)

However, as shown in (11) and (12), the archetypal graphical ridge has a different form, due to the computa-
tional difficulty of estimating ® when no elements become zero. Peeters & Van Wieringen addressed this
and proposed two alternative estimators, which we will discuss in the next paragraph. First, we discuss the
archetypes.

Commonly, a target matrix T is introduced, c.f. (11). This is known as target shrinkage, or type I ridge
estimation. A common choice for the target matrix in low-dimensional setting is T';; = S;;. Target shrinkage
with the proposed target is identical to regularization on only the off-diagonal elements (as is also the default
in the graphical lasso implementation in R: glasso). The choice for T can also be thought of as a prior on
©, in which case the proposed target is a weakly informative prior.

U(©18) = In(|®)]) — (1 — A)tr(S®) — Atr(OT) (11)



Alternatively, type II ridge estimation can be used, which penalizes all elements of ® (including the diagonal).
The log-likelihood for this type of estimation is:

UO|8) = in(|®]) — tr(SO) — Atr(©) (12)

-1— —1—

Figure 1: Visualisation of the contours of equiprobability of the least squares estimate entering the constrained
parameter space of the lasso (left: A3 || < 1) and the ridge (right: A" 8% < 1). In the case of lasso, due
to the edge(s) of the diamond-shaped constraint, some estimates will be shrunk to exactly zero, resulting
in sparsity. While lasso induces sparsity, the circle-shaped constraint of ridge has probability zero to result
in exactly zero for an estimate. Note that this figure depicts a 2-dimensional scenario (p = 2), for ease of
interpretation. In higher dimensional space, the lasso will have increasingly higher chance of resulting in
estimates that are exactly zero, due to the number of edges on the diamond increasing as well.

1.2.3 Alternative Ridge Estimators

Surprisingly, neither of the archetypal estimators in (11) and (12) are direct extensions of the ¢5-norm of
B used in ridge regression. Van Wieringen and Peeters (2015) addressed this issue by deriving analytic
expressions for two alternative ridge estimators (c.f. (13), Type I and Type II, respectively), which resemble
the constraint to the ¢o-norm of the entries of 8 in ridge regression more closely. Their article contains proof
that the alternative estimators amount to a proper ridge penalty as in (14) (Type I and Type II, respectively).
Furthermore, the alternative estimators were shown to be superior to the default ridge estimators under
various loss functions. Additionally, the estimators retain the property of the fast lasso algorithms (e.g. block
coordinate descent in eq. 7), which speed up as the penalty increases. The alternative estimators have been
implemented in the R package rags2ridges, which we have used extensively in this article.

Ol()\) = ((AIP + i(s - )\T)2)1/2 + %(s - )\T))l (13a)
e\ = ((/\Ip + isQ>1/2 + ;S)_l (13b)

The penalties corresponding to the alternative estimators shown above are respectively:



%)\tr((@ ~T)(@-T)) = %)\HG) 1|2 (14a)

1 1
§Atr(®T®) = 5A||(9||§ (14b)

Here, ||.||]2 denotes the ¢5 or euclidean norm. The ridge penalty is multiplied by % in accordance with the
penalties used in the rags2ridges package. Its use will become clear in the Bayesian interpretation of
regularization.

1.2.4 Achieving Sparsity in the Ridge Solution

A problem with ridge regression is that it will shrink parameters towards zero, but never exactly to zero,
unless A is chosen so high that all parameters become zero. This means that after choosing the strength of
the penalty, an additional step is required to perform variable selection (and thereby making the precision
matrix sparse). To this end, several options are available. We used the highest x absolute entries of ©, which
allowed us to specify the number of edges in the graph. Conveniently, this also allows us to create sparse
ridge solutions of the same level of sparsity as a given lasso solution.

Another options for sparsifying © is local False Discovery Rate (IFDR, Efron 2007) which is also included in
rags2ridges. For technical details about these methods, we refer to the package documentation.

1.3 Other Extentions of Graphical Lasso and Ridge
1.3.1 Elastic Net

In regression analysis, the lasso and ridge penalty can be combined into a hybrid penalty. This is know as
an elastic net and has the advantage of deriving some of the desirable proporties of both lasso and ridge.
Namely, to select variables and shrink variables proportionately, respectively. Although the use of elastic net
in graphical models has been proposed in Cucuringu, Puente, and Shue (2011), no software or R package has
implemented the graphical elastic net yet at the time of writing this thesis.

1.3.2 Fused Graphical Lasso and Ridge

The fused penalties have been proposed and implemented to allow for the simultaneous estimation of two or
more matrices of the same dimensions, corresponding to different classes. Yang et al. (2015) implemented
fused graphical lasso for the estimation of brain networks of Alzheimer’s patients. They estimated three
precision matrices simulaneously, corresponding to normal controls, individuals with mild cognitive impairment
(MCI) and Alzheimer’s patients (AD). Their objective was to find overall similarity between brain networks
and elaborate on the differences found between AD, MCI and controls.

This could prove valuable for case/control data and so we intended to also perform an analyses using two
covariance matrices created from cases and controls separately. However, due to time constraints, this was
left out. The JGL package and the rags2ridgesFused module of the R package rags2ridges are available
for the estimation of fused graphical lasso and ridge, respectively.



1.4 Bayesian Structure Learning

Bayesian statistics is an alternative method of inference, where the likelihood is combined with a prior
distribution function c.f. eq. (15). This prior takes into account the available knowledge or lack thereof
beforehand. Furthermore, all variables are considered random variables, to model (unknown) sources of
uncertainty. The merits of Bayesian statistics for graphical models in particular become clear when we
consider the prior as a means of inducing sparsity. In the following paragraphs, we discuss the application of
Bayesian statistics to graphical models.

16— p(6ly) - PWIOO)

= W o p(y|0)p(0) (15)

1.4.1 Bayesian Interpretation of Lasso and Ridge

If we consider the penalized likelihood functions for regression analysis in (5) and (9), one can easily show
that the penalties in lasso and ridge amount to a Laplace and multivariate normal prior on 3, respectively:

w(8,12) = 5 oxp { - 20 | (16)
"(B,1%) = ;exp{—f} a7)

with 6T = . As can be seen in figure 2, the laplace prior retains its variable selection from a Bayesian
perspective, if the maximum a posteriori (MAP) estimate is used. If sparsity is not of essence, the ridge
penalty is also justifiable from a Bayesian perspective. Namely, if we assume the means of 8 to be zero,
independent of each other and independent of the error term, normally distributed and with equal variance,
the ridge solution is the most probable solution given the data with a multivariate normal prior on 8 as in eq.
(17), (Vogel 2002).

Type I and type II shrinkage (13a, 13b) also have a Bayesian interpretation. Namely, if we consider the target
matrix T to be prior information, then type I shrinkage — a diagonal choice for T' — can be considered
a weakly informative prior. Contrarily, type II shrinkage yields the least informative prior T" = 0, which
considers all partial correlations to be equally likely a priori. Although in general we wish to express ignorance
through an uninformative prior, type I shrinkage can be justified in proteomics, since we expect a sparse
interaction network of proteins. In other words, a model where all proteins interact with all other proteins is
not considered realistic.

Deriving analytical expressions for Bayesian regularized precision matrices is not straightforward. Hao Wang
proposed a prior on ® corresponding to the lasso penalty, but a fully Bayesian approach to graphical ridge
was not available at the time of writing this article. Furthermore, no software for Bayesian graphical lasso
was already available in R. Hence, we did not implement Bayesian graphical regularization.

1.4.2 Alternative Bayesian Approach

Despite the lack of available Bayesian graphical lasso or ridge, an alternative approach to the construction
of conditional independence networks that does not involve regularization exists and is available in the R
package BDgraph. Instead of shrinkage through regularization, ® is sampled directly from the posterior
distribution. Sparsity is induced by tuning the degrees of freedom (v in eq. 18) on the prior of ©, shifting
from the least informative prior to a weakly informative prior.

Commonly, the G-Wishart distribution is used as a prior, which is conjugate for the precision matrix and
yields a postive semi-definite posterior. There is also an intuitive explanation, namely: the inverse gamma
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Figure 2: Visualisation of the densities of the Laplace and (multivariate) normal priors for a single 3}, yielding
lasso and ridge shrinkage, respectively. Although both priors are diffuse, the Laplace distribution has a
singularity at its center, allowing 3; in (16) to become exactly zero if the maximum a posteriori (MAP)
estimate is used.

distribution is conjugate to a normal likelihood with unknown variance, and the univariate form of the
inverse-Wishart distribution (i.e. p = 1) can be rewritten as the inverse-gamma distribution. As such, if we
are interested in the inverse of variance, the Wishart distribution is conjugate to the posterior of @.

m(©)  |®|r—P—1/2 exp{ - %tr(B@)} (18)

Where v > p — 1 are the degrees op freedom and B is a matrix of parameters (the scale matrix for @),
commonly taken to be the identity matrix I,. Note that in literature, the Wishart and inverse-Wishart
distribution are used interchangeably, but they are not the same. For example, the least informative prior
on O, as suggested recently by Kuismin and Silanpdd (2016) would be obtained when v is small, and when
the degrees of freedom v increase, ® would concentrate around the scaling matrix B. This is true for the
inverse-Wishart distribution, which is conjugate to the covariance matrix X, but for the Wishart distribution
(conjugate prior for @), it is the other way around, as we will see in the section results (Bayesian structure
learning), table 1.

Consider the likelihood of the data:

p(Y1©) o [ exp { - %tr(S@)} (19)

With n the number of observations, S the MLE for the covariance matrix and ©® the precision matrix to
be estimated. We can combine the prior in (18) with the likelihood in (19) to obtain the posterior for ©,
proportional to some normalizing factor as shown in (15):

7(0) x |@|ntr—r=1)/2 exp{ - %tr((B + S)@)} (20)



1.4.3 Birth-Death MCMC

Mohammadi and Wit (2015) proposed a new Monte Carlo Markov Chain (MCMC) sampler that uses continous
time birth and death rates of edges to arrive at a stationary distribution for 7(®) in (20). They derived
proof for convergence to such a stationary distribution based on proposed birth-death processes by Preston
(1976). Their sampler is included in the BDgraph package and since it differs so fundamentally from the other
techniques, we included a short description. For technical details, we refer to Mohammadi and Wit (2015)
and Mohammadi and Wit (2016).

Specifically, their sampler calculates the independent birth rates of each edge, the independent death rates of
each edge and also, the ‘waiting time’ at each graph. Let 3(®) and 6(®) denote the overall birth and death
rates, respectively and let 5.(®) and 6.(@) denote the birth and death rate of an individual edge. The birth
and death rates are then defined as independent Poisson processes as follows:

B(O)=> B.() (21a)
e¢E

5©) = 6.(0) (21D)

ecE
With the waiting time w(@®) at each graph defined as:

1

w(®)= 5@y 1 s@)

(22)

The birth-death MCMC (BDMCMC) sampler then calculates birth and death rates using (21), calculates the
waiting time using (22), simulates the type of jump (birth or death) and finally, samples from the G-Wishart
proportional to the waiting time, to update ©.

Note that since the algorithm converges to a stationary state with posterior probabilities of edge inclusion,
slightly different choices for the degrees of freedom v on the prior in (18) shrink the elements of © proportionally.
However, the choice for inducing a certain level of sparsity in Ois simple, since the graph is updated discretely
in each jump. We can therefore keep track of the size of the graph in terms of the edges |E(G)|. Then,
we sparsify © to the MAP estimate of graph size, following the burn-in period. This will be shown in the
results (Bayesian structure learning) section.



2 A Brief Introduction to Graph Theory

A branch of combinatorics, graph theory seeks to describe and summarize pairwise relations between finite
discrete objects, in a graph. A graph G = (V| E) cousists of a set V(G) of vertices (or nodes) and E(G)
edges (or connections). Said graph is connected if every vertex is reachable by traveling across the edges.
Furthermore, an undirected graph is said to be strongly connected if every vertex has edges connecting it to
every other vertex. Finally, a graph is simple if and only if it contains no self-edges (loops) or multiple edges
between vertices. An example of a simple, undirected graph, constructed from the adjacency matrix A(©) of
a hypothetical precision matrix @, is shown below.

0 ifg=0
A(©) = : (23)
1 if 0 #£0
(0777 az-j Qi ;1 1 01 0 Vi— Uk
. aji ajj ajk ajl 0 1 1 1 . ’Ujf’l)k
A((-)) o Qi QAkj; Qg Akl 1 1 1 1 = E(G) Ui—U (24)
ap; agg ark ap 0 1 1 1 Ve—U;

O,
@

®

Figure 3: Example of a graph G = (V, E) constructed from a 4 x 4 precision matrix ©.

Graphs constructed from precision matrices are often referred to in literature as Gaussian graphical models
(GGMs). In GGMs, variables from which S is constructed are assumed to follow a multivariate normal
distribution. If this assumption cannot be made, Gaussian copula graphical models (GCGM) can be used
instead. When we discuss graphical models in this report, we solely refer to GGMs. Furthermore, it is implied
in this report that any graph G is undirected.

2.1 Centrality Measures

Once a (possibly sparse) graph G is constructed from (:), the question remains of how to summarize the graph.
While this may be trivial for sufficiently sparse solutions, a graph with cardinality between 0 < |V| < 196
nodes and 0 < |E| < % edges can be sparse in terms of the number of zero elements in O, but still
difficult to interpret. To this end, centrality measures, which we will denote by C' have been developed to
identify the most central nodes in graph theory. In the following chapter, we will cover the most important
ones.

2.1.1 Degree Centrality

The degree centrality (sometimes simply referred to as degree or valency) is the simplest of the centrality
measures, but an important one. The degree of a vertex v € V(G) is defined as the number of edges connected
to that vertex and is usually denoted as Cgegree = deg(v). A connected graph can be obtained by removing
all vertices with degree zero.

10



While the degree gives some indication of which vertices are central, it is not a good measure for graphs with
variable partial correlations. Hence, a simple extension is the weighted degree, which is the sum of edge
weights connected to a vertex.

2.1.2 Betweenness

The betweenness is defined as the number of times a vertex is crossed when traveling the shortest distance
from one vertex to another in a graph G. The betweenness of a vertex v € V(G) is calculated by defining
the shortest distances between each pair of vertices and then counting the number of times the given vertex
is present in the shortest path. Let §,,i, (v;, v;) denote the shortest path between vertex ¢ and j. If ¢ and j
are adjacent, their shortest distance is taken to be 0, since no nodes are crossed and they do not contribute
to any other nodes betweenness.

C(between Uk Z Z v € 6m'm Uzv U]) (25)

1#j#AREV (G)

2.1.3 Closeness

The closeness of a vertex v € V(G) is defined as the reciprocal of its farness, which is the sum of its (shortest)
distances to every other node in the graph. Note that for regularization, a slightly different penalty can
cause the inclusion of an otherwise disconnected node, causing all ‘nearby’ vertices to gain a sudden increase
in closeness, with respect to the vertices farther from the newly included node. It may therefore not be a
suitable centrality measure for estimated graphs, but is commonly used in predefined graphs.

1

Cl S (1}) =
cone Zi;ﬁjeV(G) |Omin (vi, v;)]

(26)

2.1.4 Eigenvalue centrality

Figenvalue centrality owes its name to the fact that it can be rewritten as Av = Awv, meaning \ is an
Eigenvalue of A. The Eigenvalue centrality of each vertex is proportional to the sum of the Eigenvalue
centrality of each neighbouring vertex. This recursive property results in higher Eigenvalue centrality in
relatively dense parts of the graph: higher values are assigned to verices surrounded by others with high
values, and this Formally, the Eigenvalue centrality is defined as follows:

ACryv(vi)= Y. Cev(v)= > aijCev(v)) (27)

v;ENg(v;) vjENg(vi)

Where Ng(v;) denotes the neighbourhood of vertex v;, a;j € A is the adjacency matrix of ® shown in (23)
and % is a constant. An adaptation of Eigenvalue centrality is Google’s PageRank (Page et al. 1998).

2.2 Node Influence Metrics

While centrality measures are mathematically attractive summaries of a given network, an important limitation
is their sensitivity to subtle changes in the network and its size. While this does not pose a problem for
known networks, our data yields an estimate © of the true ® and cannot be assumed to be without error. To
determine the relative importance of nodes in an incomplete or noisy graph, physicists and epidemiologists
have developed node influence metrics. We will discuss one of these metrics: the expected force of infection
(ExF), and a simple extension: the (partial correlation) weighted expected force of infection (WExF).

11



2.2.1 Expected Force of Infection

In epidemiology, infection can be modelled in graphs, depicting those susceptible to infection as vertices
and all possible transmissions of infection as edges between those vertices. Furthermore, we can define
transmission paths of length ¢ to assess the local influence of a given vertex. The goal in epidemiology is then
to identify the vertices with the highest local influence, as this can predict the spreading power of a disease
from any given starting point, such as an airport in a network of commercial flights (Lawyer 2016). Although
its roots lie in epidemiology, ExF has been shown to effectively predict node influence in a variety of scientific
areas, ranging from digital transactions to ecological processes. (Milkau and Bott 2015; Jordan et al. 2016;
Pereira et al. 2015; Ellinas et al. 2015; Lawyer 2016).

What makes the ExF more appealing than its competitors (e.g. PageRank) for covariance matrix inversion is
that it does not depend on the entire graph, but only on the local influence defined by transmission. Since
it depends on local graph structure, it is much less sensitive to changes in the graph than alternatives like
k-shell and PageRank. This is important, since our graph is estimated from the precision matrix, and not
strictly defined.

As is shown in figure 4, we can define the force of infection by starting at an infected vertex v;, with all
other vertices susceptible. We then consider every possible cluster after ¢ = 2 transmissions and sum the
number of edges that can be reached from any of the vertices on such a cluster. Lawyer (2014) showed that
more than two transmissions adds very little information to the ExF, while increasing the complexity of the
problem from O(p?®) to O(p!*1). We therefore only consider ¢ = 2 from here on.

Lawyer (2015) defines the ExF as follows. Starting at a specific vertex, define all possible transmission paths.
Then, denote the number of outward edges from a given path: the cluster degree d;, for transmission paths
(clusters) j = 1...|J|. Then normalise the cluster degree over the cluster degrees of all paths from the
starting vertex.

_ d;
_ 28)
J J (
Z‘lel d;
Finally, we take the entropy of the normalised cluster degree to be the ExF of the starting vertex:
o -
ExF(i) = — Y d; - log, (d)) (29)
j=1

As is also shown in figure 4, not all vertices are reachable exactly once, denoted by an asterisk (*). If
we calculate the cluster degree as the sum of degrees of vertices in a cluster, then this property is ignored.
Furthermore, the cluster degree needs to be calculated without counting the edges within a cluster. We
therefore present a more explicit definition of the ExF in the methods section.

2.2.2 Weighted Expected Force of Infection

Lawyer (2015) also states how the ExF naturally extends to weighted graphs, by considering the weight of an
edge to be proportional to the likelihood of transmitting over that edge. We can then simply multiply the
weights of each transmission path to calculate the (relative) probability for a path to occur. He then also
redefines the cluster degree d; in (28) as the sum of edge weights leading out from a cluster.

The WEXF is especially interesting when n < p, since we become less dependent on sparsity. Namely, if we
proportionally shrink o, using graphical ridge, or BDMCMC, we would expect the relative node influence
to remain unchanged, when using slightly different values of A and v, respectively. For the lasso, a slightly
higher value of A could mean the exclusion of an edge. Since an edge which is almost shrunk to zero by lasso
already has a very small value, its contribution to the sum of weights was already minimal. Therefore, its
exclusion should have minimal impact on the WExF'.

12
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Figure 4: Example of the possible transmissions from a starting vertex (a — b — c¢). From the starting
vertex v;, the neighbourhood N¢(v;) is calculated and denoted v; (a). Then, for each pair {v;,v;}, denote
the new neighbourhoods N (vi)\v;, Na(vj)\v, as vx (b). Finally after two transmissions, the neighbourhoods
of every possible cluster {v;,v;,vs}, are denoted as v; (c). Note that some vertices are neighbours of multiple
other vertices, which means they can be infected in several ways. In the figure, these are denoted by an
asterisk (*).

2.3 Community Detection

In sufficiently large graphs, it can be useful to collapse strongly connected clusters to a single, new node. If
no such local strong connectivity can be collapsed, it is still useful to define subsets of nodes that are more
connected to each other than to nodes outside their subset. Such subsets are called communities, since their
conception originates in social sciences. Various methods for the detection of communities have been proposed,
some of which also allow for overlapping subsets of nodes. This could prove useful for proteomics data, which
consists both of correlations between fragments of the same protein (within) and correlations between distinct
proteins (between). If the within correlation is generally stronger than the between correlation, the network
can be divided into communities representing the original proteins. Alternatively, clusters of proteins of the
same functional group could potentially be obtained from community detection, which would also help in
understanding large proteomics networks.

2.3.1 Cohesive Blocking

A connected graph is said to have connectivity or cohesion k, where k is the minimum number of unique
elements in G that need to be removed to render the graph disconnected. For simplicity, we will only discuss
edge cohesion, which is the number of unique edges that need to be removed to this end. For edge cohesion,
the cohesion is identical to the minimum degree of (connected) vertices.

If we define proper subsets of V' (G), such that these subsets have higher cohesion than the whole graph, we
can create communities based on these subsets:

Define: V* C V(G), such that: (30)
min(deg(v € V*)) > min(deg(v € V(G)))
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The cohesive.blocks() function in the package igraph recursively identifies [-cohesive subsets as in (30)
with I > k.

2.3.2 Hierarchical Clustering
Another method to detect communities is by defining a similarity measure for vertices and performing

hierarchical clustering. The first k clusters can then be chosen as communities in the graph. Commonly, the
Hamming distance (31) between the rows of the adjacency matrix in (23) is used:

p
> laik — ajil (31)
k=1

Where every a, and a;, {i # j} = 1...p is a row of the adjacency matrix A of ©. Altenratively, the Jaccard
index (32) or the Sgrensen-Dice index (33) between vertices are used:

EiNE,| BN B )
B, UE;| |Ei|+|E;|—|E;NE,;|
2B, N E,|
_ 33
B+ 1B, 33)

Where E; and E;, {i # j} = 1...p are the sets of edges connected to two vertices {v;,v;} € V(G). In
the visualisation section, we will use the latter to attempt to decompose our resulting graph into a set of
subgraphs.
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3 Methods

3.1 Data

We used data from a case/control study on pancreatic cancer patients (n = 43) and controls (n = 102).
Mass-spectrometry data from low (p = 196) and high (p = 256) mass protein peptides were analysed, yielding
a total of p = 452 parameters measured in n = 145 individuals (Nicolardi et al. 2014). Measurements were
taken in replicates of 4 and log-transformed, after which the median was taken of the replicates. For this
article, we focussed on the low mass protein peptides only, since their corresponding peaks can be best
discerned from one another, as will be explained in the following paragraph.

3.1.1 MALDI-FTICR

Matrix assisted laser desorption ionisiation Fourier transformed ion-cyclotron mass spectrometry (MALDI-
FTICR) is an ultra high resolution mass spectrometry technique. The output of this method is a collection
of peaks corresponding to different mass to charge ratios. It is especially useful for protein peptide analysis,
because the large polymers correspond to such high mass to charge ratios, that conventional mass spectrometry
methods fail to distinguish between the peaks formed by the numerous combinations of isotopes that can be
formed in this mass to charge range. MALDI-FTICR has substantially higher resolution than conventional
mass spectrometry and allows for the distinction of protein peptides, up to a certain size. Since resolution is
still an issue for large peptides, we focused on the low mass range for this thesis.

3.1.2 Obtaining a Covariance Matrix

An empirical covariance matrix S was created using the centered values of the rows (the means of a person’s
measured peptide abundance subtracted from the measurements of individual peptides), after which the
covariance matrix was standardized. Additionally, two covariance matrices were created using cases and
controls separately for later analyses with the fused lasso. Both the fused lasso and ridge allow for a weighted
estimation based on sample size.

3.2 Software and Hardware

All calculations were made in R, version 3.2.4, using the R Studio GUI. Packages used are listed at the
reference section. We used custom functions for cross-validation, precision weighted degree and (weighted)
expected force of infection. All calculations were performed on an Intel Core i7 4790k processor at 4.4GHz
with 16GB of RAM.

3.3 Adaptation of the Expected Force

As mentioned in 2.2.1, the cluster degree is ambiguous, in that it does not explicitly state which edges to
include, and moreover: whether to include them once or several times. When using igraph to produce a
graph, this is not necessarily a problem, igraph had a built-in function for cluster degree. However, when the
input is a (possibly sparse) matrix R, we have to define what this cluster degree amounts to. In this paragraph
we provide an explicit definition of the cluster degree and in the next we present a possible algorithm for
calculating the weighted expected force using this definition.

If we call the starting node v;, we can denote the neighbourhood of that node as Ng(v;) and the nearest
neighbours therein v; (figure 4a). Then, for each pair {v;,v;}, we denote their new neighbourhoods,
excluding the edge between them: Ng(vi)\v,, Na(vj)\», and call those neighbours vy, (figure 4b). Finally,
we denote the neighbourhoods of each set of vertices in a transmission {v;, v;, vk}, namely: N (vi)\ v, v,}
NG (Vi) {v; 00} a0d NG (Vk)\{v;,0;}, and call their members v; (figure 4c). Note that v; is now an element of
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a multiset: If v; is a neighbour of more than one vertex of a given transmission path {v;,v;,vs}, then it can
occur more than once in the set of neighbours. For simplicity, we denote the multiset of reachable vertices
Nreach (Vi) where ¢ = 1...|C] are the possible transmission paths (clusters) of length ¢ = 2.

Once we have defined all neighbours v; € Nyeach (Vi) of all possible transmission paths {v;, v;, v}, we can
calculate the clgster degree for a given vertex v;, denoted by Nyeach(vi). We then calculate the normalised
cluster degree Nyeach(v;) in the same manner as Lawyer (2015).

x |Nreach(vi)c|
Nreach Vi)e = S T 7 7 34

( ) Zc|Nreach('Ui c| ( )
Finally, recall from the original definition that we calculate ExF as the entropy of the cluster degree, which
corresponds to:

IC|
ExF; = — Z Nreach(vi)c : 10g2 (Nreach(vi)c) (35)

c=1

3.4 Algorithm for the Weighted Influence of Nodes

We are particularly interested in the ExF, since it easily extends to weighted graphs (Lawyer 2015). Because
of this, it is not necessary to induce sparsity per se, so long as the less important edges are shrunk towards
zero, so that their contribution to the weighted influence is minimal.

Although sparsity is not a requisite, it speeds up calculations substantially and we therefore recommend using
IFDR discussed in the section achieving sparsity in the ridge solution of the regularization section,
when using ridge. For the Bayesian solution, the top absolute values can be chosen, such that the graph has
a number of edges equal to the MAP estimate of the graph size (see birth-death MCMC in the section
Bayesian structure learning). The lasso solution is inherently sparse.

The input of the algorithm is a p X p matrix of partial correlations R, obtained by standardizing the precision
matrix © c.f. (1). We divide the possible transmission paths into two categories, namely: from v; to two
neighbouring vertices (first order transmission) and from v; to a neighbour v; to a subsequent neighbour vy,
(second order transmission, figure 4).

Note that our implementation of the (W)ExXF is currently under the restriction that all elements of R are
nonnegative. This can be realised either by using the absolute values of the elements of R or by setting the
negative elements to zero. We used the former, since in biological terms, a strongly repressing effect of a
protein can be considered just as influential as a strongly promoting effect.
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Algorithm 1: Weighted Expected Force of Infection (WExF)

input : A (possibly sparse) p x p matrix of partial correlations R
output: A p x 1 vector of weighted ExF of each vertex v; = ry;
begin
define G = (V, E) from R
define N¢(v;) - which {r;; #0, i # j}
define f: {v;,v;} — 1y
Tij €R<—|T‘Z‘j| ERVZ,]
for i < 1 to p do
contribution of first order transmissions
while deg(v;) <1 do
Li+i+1
define C' = (c; ¢2) as a matrix of combinations of two neighbours v; € Ng(v;)
w < f(vi,e1)” f(vi, €2)
for j + 1 to |w| do
| Neeaen(1), ij < wj - 22 {f (Vi Na(Vi)\{er; e0,1)s £ (€155 Na (€15 fvr,e0,3)s £ (€25 Na(Coi)\ for.e051) }

for i <+ 1 to p do
contribution of second order transmissions
while deg(v;) =0 do

1 1+1

L Nreach,i «~0

define ¢; (vj € NG(vi))
wq < f(Ui, Cl)
for j < 1 to |wy| do
define ¢3 < (c1, v € Na(€1)\v;)
define w «+ wljf(clj, Cg)
for k «+ 1 to |w| do

Nreach(Zb), k<

wi, - 35 { (Vi Na(0i\(er; e })s T (€155 Na(C1i)\ fus.e00} ) F (€28, No(Com )\ fv,,e,1) }

L Nreach(Za), i< {Nreach(Za), i A]Vreach(Zb)7 7,}

for i <+ 1 to p do
WEzF of each vertex

Nreach, i< {Nreach(l), 2] Nreach(2a), z}
reach, i

Nrcach, i Z:Nih
reach, 1
EXFi — *Z Nreach, 1" 10g2 (Nreach, 1)
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4 Results (Regularization)

We comprehensively compare three methods for the construction of conditional independence networks:
graphical lasso, graphical ridge and BDMCMC. Since the former two are closely related and involve nearly
identical steps, we split the results section in two parts. First we discuss the regularization methods and then
the Bayesian approach.

4.1 Determining the Support of A

For each type of penalty, an appropriate value for A must be chosen, such that O is non-singular. On the
other hand, if A is chosen too high, important relationships will be excluded from the final solution. In
this chapter, we discuss three methods that will allow us to determine the minimum, the support and the
optimum value for A, respectively.

4.1.1 Minimum Value of A\ by Condition Number

Although we could directly determine the optimum by cross-validation, this is known to generally select a
value of A that is too low, resulting in networks that are not sparse and covariance matrices that are not
well-conditioned. Won et al. (2013) addressed this issue by subjecting the cross-validated value of A to a
condition number in the order of magnititude of 103.

The condition number of a function for a given parameter provides an indication of how much the output
value of the function changes for a small change in the given parameter. In our case, this allows us to see for
which value of X in eq. (6, 11 - 13) the solution is not sensitive to small changes anymore, so that a minimum
value of A can be determined. In regularizated precision matrix estimation, the condition number is defined
as the ratio between the largest and smallest Eigenvalue of S for a given amount of shrinkage (denoted S ):

max(Ay;) 4
d(Sy) =abs| ————= |, Sa = QA 36
cond(Sy) =a S(min(Aii)>’ A =QAQ (36)
With the convention %A) = o0o. Here, cond(S}) is the condition number for a covariance matrix

regularized by A. QAQ ™! is the eigenvalue decomposition of S and the diagonal values A;; the eigenvalues.
We used capital Lambda for the eigenvalues to avoid confusion with the shrinkage parameter A\. The condition
number of S can be seen as the reciprocal of the distance to the set of singular matrices (i.e. lower is better).
In either interpretation, we can take these values to be the respective minimum values of A for each of the
penalties.

By plotting the condition number against the range of possible values for A, we can visualize the condition
number of S against the range of the regularization parameter A. This way, we can roughly determine the
minimal value of A, which lies beyond the ‘elbow’ observed in figure 5, because the condition number (and
therefore the relative change in the solution) stabilizes beyond that point.

The curves of the condition numbers (figure 5) show a clear elbow, from which we drew a reference line at
cond(S)) < 1.8 - 103, since it is in the right order of magnitude and beyond the elbow for each graph. For
comparability between estimators, We took the closest integer below this threshold to be the minimal value
of \. This way, we determined the minimum values of A to be e=2 and e~ for the alternative type I and
type II ridge estimators, respectively. The closest integer value for the archetypal I ridge estimator would be
A = €%, but the archetypal I ridge is bound to A € (0, 1), so instead we used ez, Finally, the archetypal 1T
ridge estimator has its minimum around e~2. The lasso requires the largest value for A, of roughly e°.

From figure 5, it is immediately clear that the alternative estimators generally yield a more well-conditioned
S than the other penalties, even at very small values of \. However, this should come as no surprise, since
they resemble true ridge penalties more closely than the archetypal ridge penalties, as was shown in van
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Figure 5: Condition number plots of the different regularization methods (ridge and lasso). By choosing
A sufficiently large, the condition number in (36) of S will be small enough to result in a stable estimate

of X7, As a rule of thumb, any value of A beyond the elbow of the curve is sufficiently large, which we
indicated by the grey dashed line (reference).

Wieringen & Peeters (2015) and summarized in (14). Interestingly however, the alternative estimators also
appear to outperform the lasso penalty in terms of matrix conditioning. This could either be due to the
fact that the lasso penalty is on a different scale than the ridge penalty (absolute values and squared values,
respectively), or because the ridge has more an appealing interpretation than the lasso, which was conceived
due to its selective proporties and not because of some inherently logical attribute.

4.2 Visualising the Support of A with Regularization Paths

To further substantiate our choice for potential As in ridge and lasso, we will illustrate the shrinkage of
parameters as A increases. Ideally, some parameters are shrunk to zero quickly, while others shrink more
slowly, indicating the importance of some partial correlations between proteins over others.

Figures 6-8 show the shrinkage of individual elements of © as a function of A (here on the log-scale). Three
important observations can be made: First, the sum of elements of €) may shrink when A increases, but
individual elements can increase proportionally to the others. This means that the relative size of precision
estimates is dependent on A\, which means the choice for X\ is nontrivial, even when we are not interested
in the absolute size of the precision estimates. Second, it would appear that there are more negative than
positive precision elements. This may be the due to the fact that positive correlations exist biologically, but
are also introduced in the protein peptide fragmentation, while an inverse relationship between two fragments
seems less intuitive. This would result in more positive than negative partial correlations and remember from
(1) that negative precision elements correspond to positive partial correlations. Third, we see that beyond
the previously established minima for A, the estimates of the precision elements change rapidly with small
changes in \, fortifying the assertion that no value below these minima should be chosen.

If we compare the alternative type I estimator (figure 6, left) to the other ridge estimators, we see that the
former shows greater difference in shrinkage of small and large elements. Conversely, the other estimators
show a more constant shrinkage of all elements. It would appear that the alternative type I estimator has
a stronger discriminative ability than the other ridge estimators. Theoretically, the ridge should produce
more consistent results than the lasso, since the former has a unique solution, even when n < p. As in the
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Figure 6: Visualisation of the shrinkage of individual elements of @ as X increases, using the alternative ridge
estimators.
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Figure 7: Visualisation of the shrinkage of individual elements of © as \ increases, using the archetypal ridge
penalties. Note that the penalty of the archetypal I ridge estimator is bound to A € (0, 1), as can be seen in

(11).
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Figure 8: Visualisation of the shrinkage of individual elements of © as A increases, using the lasso penalty.

regression case, it appears that the ridge allows for some elements to increase as others are shrunk, while the
zero-elements of the lasso will always remain zero as A increases.

4.3 Choosing the Optimal )\ by Cross-Validation

With figure 5 we determined the minimal value of A for each estimator and figures 6-8 show the support
of X\ for these estimators. Using these minima and ranges, we will attempt to obtain a cross-validated value
for each of the estimators, using leave-one-out cross-validation (LOOCV). Asymptotically, this is equivalent
to minimizing the Kullbach-Leibler divergence between the distribution of the data given the regularized
precision matrix Y ~ N, (0, (:)_1) and the true distribution of the data Y ~ N,(0, O~ ') (Vujaci¢, Abbruzzo,
and Wit 2015). Surprisingly, no cross-validation functions were available for the graphical lasso at the time of
writing this thesis, so we implemented our own.

4.3.1 LOOCV

The package used for the estimation of ® using the ridge penalty (rags2ridges) includes built-in functions
for LOOCV, using a grid search or a root-finding algorithm for the optimal value of A in eq. (11 - 13), by
leaving out one observation at a time. The cross-validated log-likelihood is then given by:

U®[S)roocv = Y In(|0i|) — tr(S;0_;) (37)

=1

Where S; denotes the sample covariance matrix of the observation left out in the calculation of o_,. Although
(37) is the actual LOOCYV log-likelihood, the negative log-likelihood is used instead in calculations due to
the fact that optimizing in R minimizes the result of a function, rather than maximizing. Note that the
rags2ridges package contains a computationally more efficient approximate LOOCV that minimizes the
Kullbach-Leibler divergence as proposed in (Vujac¢ié, Abbruzzo, and Wit 2015). However, for comparability
with our own implementation of LOOCYV for the graphical lasso, we decided to use exact LOOCYV instead.
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Figure 9: LOOCYV negative log-likelihood over a range of values for A, of all four ridge estimators, using
the built-in function of rags2ridges. Although this is a concave problem, the optimum lies beyond the
previously determined mimimum (red line). Furthermore, the optimum falls outside the range of the plots
(except for archetypal I shrinkage), due to the fact that below the plotted values, the penalty is too low for S
to be inverted and no likelihood can be calculated. Note that the archetypal I ridge estimator is on a different

scale (see eq. (11), A € (0,1)).
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In figure 9, we see that LOOCYV suggests an extremely small optimal value of A\ for each of the estimators.
The minimum even lies below the range of calculated values in three out of four penalties, due to the fact that
below the plotted values, the penalty is too low for S to be inverted and no likelihood can be calculated. The
only exception is the archetypal I ridge estimator, which has a minimized negative log-likelihood for A ~ ¢ =06,
However, this value for X is still below the previously determined minimum of e 2. Furthermore, we would
prefer to use the alternative estimators as discussed in the introduction section, because they amount to a
proper ridge penalty.

Surprisingly, even though we could not determine the optimal value with the built-in function, LOOCV
suggests the use of a penalty as low as possible, which would correspond to a graph with maximal complexity.
We proceed to compare LOOCV with its generalization: k-fold CV.

4.3.2 k-fold CV

To compare the preferred ridge estimator (alternative type I) to the lasso, we implemented k-fold CV and its
special case LOOCV in our own function. This function uses rags2ridges and glasso to estimate ® with
the ridge and lasso penalty, respectively.

LOOCYV can be seen as a special case of k-fold CV, where each subsample has size n = 1. To assess whether
the obtained results from LOOCYV were influenced by the use of a single sample covariance matrix as in
eq. (37), we also performed k-fold cross-validation with different sample sizes (n = 2, n = 3 & n = 15,
corresponding to k = 72, k = 48 and the popular 10-fold CV). The equation for k-fold CV is given by:

K
U(O]8)ksora v = Y In(|O_4|) — tr(SkO ) (38)
k=1
Where each k is a disjoint subset of equal size.
k—fold CV with alt. | ridge k—fold CV with lasso
o 8 °T 8_]
o g7 o 3
o o)
£ o £ o
= =
5 & 5 &
o o
2 8- 2 &
< c
| B | |
-5 5 -2 -1 2 3

0 0 1
In(A) In(A)
Figure 10: Cross-validated likelihood for A for the alternative type I ridge estimator and the lasso estimator,
using our own implementation of k-fold CV and its special case LOOCV. The red lines show the previously

determined minimum values of A (see figure 3).

In figure 10, our own implementation of LOOCYV is shown for the alternative Type I ridge estimator and
the lasso estimator. Since we implemented this function only to perform cross-validation for the lasso and to
assess whether LOOCV was working correctly, we did not include the other three ridge estimators. For both
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the ridge and lasso solution, LOOCYV suggests a model with a minimal value for A, resulting in a saturated
graph.

It would appear that either cross-validation underperforms when n < p, or the true © is not sparse. Before
we continue to compare the results, we will consider two alternatives to cross-validation.

4.4 Alternatives to Cross-Validation

Numerous alternatives to leave-one-out, or k-fold cross-validation have been proposed to help deal with
the poor performance of cross-validation techniques when n < p. The most commonly used alternatives
include: Extended Bayesian Information Criterium (EBIC) and Stability Approach to Regularization Selection
(StARS). Both of these methods base their selection on the resulting (sparse) solutions instead of the likelihood.
As such, it is difficult to apply to the ridge solution, which does not induce sparsity by itself. We discuss
EBIC and StARS since they are frequently used in literature, but conclude they are not suitable for our
objective.

4.4.1 EBIC

The extended Bayesian information criterium (EBIC) for graphical models as proposed by Foygel and Drton
(2010), is given by the following equation:

EBIC, = —2{(8|S) + |E|in(n) + 4|E|vin(p) (39)

Where £(©|S) is equal to the log-likelihood defined in (3) and |E| is the cardinality of E(G), constructed
from a standardized precision matrix @. 0 < v < 1 is a parameter to increase or decrease the extent to which
EBIC scales with sparsity. When v = 0, EBIC is identical to the ordinary Bayesian information criterion.

It is easy to see that EBIC was intended for use in graphical lasso, since it depends in great part on the
number of edges in the resulting graph, which is constant for graphical ridge. Although we can reduce the
number of edges in a ridge solution using the aforementioned IFDR (see achieving sparsity in the ridge
solution), this in turn depends on a chosen threshold for the IFDR. Furthermore, both for lasso and ridge,
EBIC requires choosing some value of 0 < vy < 1.

We are trying to select the best value for A, such that the resulting graph is the closest to the true underlying
biological interactions. If we choose A based on EBIC, we are ultimately shifting the choice to another,
somewhat arbitrarily set parameter.

4.4.2 StARS

Introduced by Liu et al. (2010), StARS aims to use the least amount of regularization, such that the graph
resulting from O is sparse, while being replicable under random subsampling. More specifically, StARS
divides the original data Y into an arbitrarily large number of subsets (k) of equal size (b). Then, for each of
the subsamples, a graph is constructed from the regularized precision matrix with the same value for A. The
instability is then defined as the number of times an edge is included in one of a pair of graphs, but not in
the other. The total instability is then calculated for each pair of graphs and averaged over all edges. Finally,
a threshold § is defined and X is chosen such that total instability for a given value of % is smaller than .

As with the EBIC, the inclusion/exclusion of edges is not a convenient way to compare graphical lasso to
ridge. Furthermore, it would seem that the problem of choosing A has shifted to the problem of choosing /.
Ironically, the authors even mention this in the original paper, proposing a default value of 0.05 for .

24



4.4.3 Concluding Remarks on the Alternatives to Cross-Validation

While ad hoc modifications of the graphical ridge solution could be used to implement alternatives to CV such
as EBIC and StARS, we would have to choose at least two new thresholds (that of the ad hoc modification
and that of the proposed technique). We conclude that this would only complicate the interpretation of
the new optimal value of A and proceed to use the cross-validated values, respecting the mininum values
determined by the condition number in (36). Before comparing the resulting networks, we discuss the results
from the Bayesian approach to graph construction.
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5 Results (Bayesian Structure Learning)

In this chapter we discuss the results of the graphs constructed by sampling from the G-Wishart distribution
shown in eq. (18 - 20), using the BDMCMC sampler shown in eq. (21, 22). We used the R package BDgraph,
which has implemented the BDMCMC sampler, generally using 10° iterations per chain. While this takes
considerable computation time (upwards of 48h single-threaded), remember that there are % = 19110
possible unique edges, which all need to be explored in the posterior. Fortunately, the package allows for
multiple birth and death events to be calculated simultaneously. Following some trial and error, we set the
argument to multi.update=8, which sped up calculations.

5.1 Prior Specification

We know from theory that for a given prior and likelihood cf. (18, 19), the BDMCMC algorithm should
converge to a stationary state (Mohammadi and Wit 2015). In its current version (2.27), the package only
allows for the specification of the degrees of freedom v on the prior in (18) and the starting point: an empty
graph, a full graph or a specified starting point. Note that contrasting to what Kuismin and Sillanpaa (2016)
report, a higher degree of freedom yields a more diffuse prior on ®@. We believe the contrast arises from a
misinterpretation of Hsu, Sinay, and Hsu (2012), who correctly describes the properties of the inverse-Wishart
distribution, not the Wishart distribution. We tried several degrees of freedom for the prior of arbitrarily
large size. Interestingly, both very diffuse and very narrow priors performed poorly in terms of convergence
and priors with n < v < p generally did well (table 1). A narrow prior can be seen as a means to induce
sparsity in the posterior, as we will see in the posterior graph size. Consequently, a very weakly informative
diffuse prior can be seen as the closest we have to a non-informative prior. Mohammadi and Wit (2015) stated
that they intend to include more options for prior specification in future updates of the package BDgraph.

5.2 Assessing Convergence

To assess convergence of the algorithm, the traceplot of the number of edges e € E(G) (or half the number of
non-zero off-diagonal elements of @) can be inspected. An example is shown in figure 11 (right), where the
posterior graph size stabilizes within the first few thousand iterations following the burn-in period. The plot
of posterior probability of graph size also shows what appears to be central tendency around a mean size of
approximately 2000-2100 elements. Using these diagnostics, the results of various prior degrees of freedom v
are summarized in table 1.

MAP graph size prior d.f. starting point converged iterations

1 3422 2 empty start no 1x10°
2 2065 145 empty start yes 1 x10°
3 2330 196 empty start yes 1 x10°
4 4025 452 empty start no 1 x 10°

Table 1: BDMCMC graphs constructed with 4 different values of the degree of freedom on the Wishart prior,
corresponding to the minimum (v = 2), the number of observations (v = n = 145), the number of parameters
(v =p =196) and the number of parameters in the complete dataset of Nicolardi et al. (2013) (v = 452). All
graphs were estimated with 10° iterations, taking approximately 50h to complete each.

Likewise, table 2 shows the convergence and posterior graph size of the BDMCMC sampler, using different
starting points. We assessed convergence, starting from an empty graph (E(G) =0, ® = I,,), a full graph
(e=1Vee E(Q), ® =1,y,), a lasso solution (@ = O}, as obtained in (6), A = ¢°) and a ridge solution,
sparsified by IFDR (O = @y, as obtained in (13a), A = e~2).
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graph size prior d.f. starting point converged iterations

1 3020 145 full start no 1x10°
2 2065 145 empty start yes 1 x 10°
3 2066 145 lasso start yes 1x10°
4 2110 145 ridge start yes 1x10°
5 2330 196 empty start yes 1x10°
6 2371 196 lasso start yes 1x 10°
7 2268 196 lasso start no 5 x 10*
8 2352 196 ridge start no 5 x 10%

Table 2: BDMCMC graphs constructed from different starting points, corresponding to an empty graph, a
full graph, a lasso solution at A = ¢ and a (sparsified) ridge solution at A = e~!. From the table, it is clear
that the BDMCMC sampler reaches its stationary state fastest from a sparse starting point. Due to time
constraints, we were not able to rerun the chains in rows 7 and 8 with 10° iterations.

Finally, table 3 displays the behaviour of the BDMCMC sampler under random subsampling of Y. To
understand the extent to which the result depends on the number of observations in our data, we defined
proper subsets Y* C Y of ranging from n = 5 to n = 100. We then ran the BDMCMC algorithm with a
lasso solution as starting point and a constant prior with v = 196 degrees of freedom.

sample graph size prior d.f. starting point converged iterations
1 n=5 12296 196 lasso solution  no 1 x 10°
2 n=10 9180 196 lasso solution  no 1 x 10°
3 n=25 5612 196 lasso solution  no 1 x 10°
4 n=50 4190 196 lasso solution  no 1 x 10°
5 n =100 2787 196 lasso solution  no 1 x 10°
6 n=145=N 2371 196 lasso solution  yes 1x 10°

Table 3: BDMCMC graphs constructed with random subsamples of different sizes to assess the effect on
estimated graph size. All graphs were estimated with 10° iterations.

5.3 Choosing a Graph

Though it is technically possible to cross-validate the included edges e € E(G) by partitioning the data,
this would take extravagant computation time, since table 3 showed us that (large) subsamples of the data
converge poorly, even after 10° iterations. We will therefore use one of the converged chains, based on what
we believe to be a good choice for prior. It would be preferable to have the degree of freedom depend on
the number of variables (p) and not the number observations (n), since the true underlying structure is
independent of sample size. Hence, for our final comparison of regularization and Bayesian methods, we will
use a graph constructed with v = 196 degrees of freedom on the Wishart prior. Note that while the starting
point of the algorithm can affect convergence significantly, the eventual result is almost identical, provided
the algorithm converges at all.
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Figure 11: Example diagnostic plots of the BDMCMC chain, using the lasso solution with A = €° as a starting
point and v = 145 degrees of freedom on the Wishart prior. On the left, the graph size is depicted as a
function of the posterior probability of a given graph. On the right, a part of the traceplot for the graph size
is shown, following a 5 - 10% iteration burn-in period. Although there appears to be slight autocorrelation
judging from the traceplot (i.e. local trends can be observed instead of apparent white noise), the mean graph
size stabilizes quickly after the burn-in period.
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Figure 12: Example of diagnostic plots of an unconverged BDMCMC chain, using an empty graph as a
starting point and v = 452 degrees of freedom on the Wishart prior. On the left, the graph size is depicted as
a function of the posterior probability of a given graph. On the right, a part of the traceplot for the graph size
is shown, following a 5 - 10* iteration burn-in period. Here we see that when the chain does not converge as
there is still a trend towards higher graph size, and there is less central tendency for the posterior graph size.
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Figure 13: Example of diagnostic plots of an unconverged BDMCMC chain, using an empty graph as a
starting point and v = 2 degrees of freedom on the Wishart prior. On the left, the graph size is depicted as a
function of the posterior probability of a given graph. On the right, a part of the traceplot for the graph size
is shown, following a 5 - 10* iteration burn-in period. Here we see that when the chain does not converge as
there is still a clear trend towards higher graph size, and there is no central tendency for the posterior graph
size.
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Figure 14: Coda plot of the converged (middle) and unconverged (left, right) BDMCMC chains in figures 11
- 13. In these plots we see how the birth and death rates of individual edges affect their posterior probability.
Note that for clarity, only 100 randomly chosen edges are shown. If an edge is consistently included in the
graph over multiple jumps, its probability goes towards 1. Conversely, if an edge is consistently not in the
graph, its probability goes towards 0. The behaviour of the BDMCMC algorithm of the unconverged chain
(right) is a reflection of the degrees of freedom on the prior (v = 452), which is too high for the algorithm to
efficiently explore the posterior. Likewise, the unconverged chain on the left has degrees of freedom v = 2,
resulting in very few births and death occurring at all.
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6 Visualisation

Proper visualisation is a vital part of statistics, as it translates our complex methods into easy to digest
summaries. Especially in the field of covariance matrix inversion, we believe that this aspect of statistics is
often overlooked. Once a graph of a certain size is constructed from €) using either of the three methods,
visualisation can prove challenging. One way to resolve the vertex placement issue is by simply using the
graphical lasso with a high penalty, so that few edges remain. However, higher regularization does not
necessarily remove the least important edges in the lasso solution, as variables are not shrunk proportionally
(figure figure 8). Alternatively, an arbitrary number of highest absolute values of the partial correlations can
be displayed, but this may fail to display local strong connectivity of influential vertices. In this chapter, we
describe the available methods for summarizing and decomposing large, dense graphs, when the true graph
structure is preferred over sparsity and propose a new method, based on hierarchical clustering.

6.1 igraph

The igraph package contains a number of different algorithms for distributing vertices randomly (figure
15a), circular (figure 15b) or force based (figure 15c¢-f) on a 2D plane. For small graphs, a self-avoiding
random distribution of vertices can be sufficient, but for larger graphs, edges tend to cross too often. A
circular distribution of vertices has the appealing feature of reflecting the level of sparsity well, but can it
can be difficult to inspect a single vertex and edges between adjacent vertices are practically invisible. Force
based algorithms, like Fruchterman-Reingold iteratively search for placement of vertices that minimize the
number of crossing edges, while avoiding large differences in edge length. Unfortunately, even algorithms
specifically designed for the distribution of nodes in a way that least obscures relationships fail to produce
comprehensible graphs when |V| and |E| are sufficiently large (figure 15). Figures 16 - 18, show the
graphs of lasso, ridge and BDMCMC, respectively, using the Fruchterman-Reingold algorithm to illustrate
the difficulty of visualisation.

(b)

Figure 15: Six different algorithms for distributing vertices over a 2D plane, included in the igraph package.
(a): random layout. (b): circular layout. (c): Fruchterman-Reingold algorithm. (d): Reingold-Tilford
algorithm. (e): Large Graph Layout algorithm. (f): graphopt algorithm. Edge line width is proportional to
partial correlation and red lines represent negative correlation. In this example, graphical lasso with A = e°
was used.
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Graphical lasso = €°, 843 edges

Figure 16: Graphical lasso with A = exp® visualized using the Fruchterman-Reingold algorithm included
in the igraph package. Blue and red lines represent positive and negative partial correlations, respectively.
Furthermore, the line width of edges is proportional to the partial correlation. Even though the lasso induces
sparsity on its own, the graph is still too large to represent using conventional methods.
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Figure 17: Graphical ridge with A = exp™~ visualized using the Fruchterman-Reingold algorithm included
in the igraph package. Blue and red lines represent positive and negative partial correlations, respectively.
Furthermore, the line width of edges is proportional to the partial correlation. Even after using the IFDR to
induce sparsity in the ridge solution, the graph is still too large to represent using conventional methods.
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Figure 18: BDMCMC, using the estimate of @, thresholded to the MAP graph size. A lasso solution was
chosen as starting point and v = 196 prior degrees of freedom. The resulting graph is visualized using the
Fruchterman-Reingold algorithm included in the igraph package. Blue and red lines represent positive and
negative partial correlations, respectively. Furthermore, the line width of edges is proportional to the partial
correlation. The iterative nature of the procedure is reflected in the graph as many vertices with high degree
and low edge weights.
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6.2 Centrality Measures

In figure 19, the betweenness, closeness and Eigenvalue centrality described in eq. (25 - 27) are shown.
The highest scoring values are labelled in each of the graphs and a summary is shown in table 4, revealing
large differences both between the construction methods (lasso, ridge, Bayesian) and between the centrality
measures. Although the lasso is notorious for somewhat randomly selecting one among a number of correlated
variables, we did not expect large inconsistencies between the ridge and Bayesian solutions. We will therefore
assess relative importance of vertices using the alternative to centrality measures: node influence metrics.

lasso ridge BDMCMC

betw. close. EVc | betw. close. EVc | betw. close. EVc

1| L102 L102 L102 | L158 L158 L155 | L128 L6 Li77
2 L8 L8 L84 L139 L92 L102 L6 L128 L183
3| L165 L142 L62 L92 L102 L69 L26 L186 L181
4 | L142 L162 L137 L67 L139 L165 | L188 L26 L176
5| L162 L119 L92 L102 L129 L158 L36 L178 L135
6 L92 L175 L87 L69 L137 L137 | L178 L188 L179
7| L119 L59 L77 L155 L&7 L194 L27 L36 L162
8 | L118 L118 L165 | L156 L67 L134 | L186 L18 L180
9 L62 L93 L175 | L137 L69 L143 L94 L27 L143
10 L84 L23 L50 L194 L82 L75 L147 L154 L174

Table 4: Highest scoring vertices for different centrality measures and for each of the three estimation methods.
Abbreviations: betweenness (betw.), closeness (close.), Eigenvalue centrality (EVc).

6.3 Node Influence

Since centrality measures displayed large inconstistencies both among each other and between the graphs, we
will now assess the performance of the weighted expected force of infection (WExF), presented in the methods
section (algorithm 1). Figure 20 shows the WExF of each vertex in the lasso, ridge and Bayesian solution.
A summary of the highest ranking vertices in terms of WExF is shown below in table 5. Interestingly, the
BDMCMC graph show no consistency with the results found in the regularized solutions. Many of the central
vertices in table 4 are also identified as relatively important. Note that the overall WEXF increases with
graph denseness, as vertices can reach each other more easily.

lasso ridge | BDMCMC

1] L62(9.06) | L158 (11.13) | L22 (10.08)
2 | L102 (9.04) | L155 (10.94) L71 (9.79)
3| L175(8.7) | L102 (10.93) | L151 (9.77)
4 | L165 (8.42) | L194 (10.74) | L186 (9.73)
5| L92(8.34) | 192 (10.46) | L135 (9.72)
6 | L137 (8.33) | L69 (10.27) | L128 (9.65)
7| L99 (8.14) | L143 (10.22) L18 (9.57)
8 | L75(8.09) | L93 (10.19) L28 (9.56)
9 | L63 (8.08) | L164 (10.17) L4 (9.55)
10 | L84 (7.95) | L165 (10.17) | L189 (9.55)

Table 5: Highest scoring vertices for the weighted expected force of infection (WExF) and for each of the
three estimation methods. Contrary to centrality measures, WExF is a measure of relative node influence
and thus representable for the importance.
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Figure 19: Centrality measures of all three resulting graphs (lasso, ridge, Bayesian). The most central points
in the graph according to either of the three methods described in eq. (25 - 27) do not appear to be consistent
over different graphs. This lack of consistency centrality suggest that the graphs are very uncertain. As a
result, centrality measures poorly reflect the influence of nodes.
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Figure 20: WEXF of all three resulting graphs (lasso, ridge, Bayesian). There appears to be greater consistency
in node influence between the regularized graphs than as determined by centrality measures. Both regularized
graphs still display no similarity to the Bayesian approach.

6.4 Community Detection

Figure 21 shows the estimated communities from the three graphs in figures 16-18. Due to the relative
denseness of the graphs, no disjoint communities could be detected. However, there appears to be hierarchical
structure in the connectivity of the graphs, as the estimated communities are all nested in each other.

communities (lasso) communities (ridge) communities (BDMCMC)

Figure 21: Community detection of each of the three graphs. There appears to be a strong hierarchical
structure in the graph, with local high cohesion only present nested in other clusters.
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6.5 Hierarchical Clustering

Figure 22 shows the hierarchical clustering of nodes, using the Sgrensen-Dice index of similarity between
nodes in eq. (33). Complete linkage was used to create the dendrogram, but as shown in the appendix, Ward’s
minimum variance criterium also performed reasonably well. (include in appendix, Ward 1963) Especially for
the ridge and Bayesian solution, distinct hierarchical clusters are clearly visible. In the following step, we will
decompose the graphs into their respective hierarchical clusters.
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Figure 22: Hierarchical clustering of vertices based on the Sgrensen-Dice index of similarity (33), using
complete linkage. We cut the dendrograms such that 6 clusters were defined, which we can then use to
decompose the graphs in figures 16 - 18.

6.6 Hiveplot

Our final visualisation step uses a relatively new technique to visualize large graphs called Hiveplot. [reference]
An appealing feature of these plots is that we can define any number of axes and assign vertices to those axes
based on any property, such as hierarchical clustering. The plot then assigns the vertices on an axis such
that the vertices with the highest degree are the most outward, which yields a relatively clear plot of the
graph, compared to the conventional force based methods in figure 15c-f. A popular example of the use of
Hiveplot is by Yan et al. (2010), who compared the gene regulatory network of E. coli to the call graph of a
Linux operating system kernel.
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To decompose the graphs in figures 16 - 18, we defined 6 axes for each graph, corresponding to their
respective hierarchical clusters in figure 22. For visualisation, we made the node size and color proportional
to the WEXF in algorithm 1 and defined edge transparancy based on the partial correlations in R, obtained
from © (1). The results are shown in figures 23 - 25.
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Figure 23: Hiveplot of the graphical lasso with A = €. Position on the axes is proportional to the degree
of the vertex, such that vertices with more edges are always on the outside on the graph. Weaker partial
correlations are more transparent, such that emphasis lies on the important relationships.

The hiveplots are much clearer than the Fruchterman-Reingold plots in figures 16 - 18. In fact, the vertices
were assigned a label at alternating distance, such that each vertex can be found in the hiveplots, without
the overlapping vertices and edges in the Fruchterman-Reingold plots. Another interesting observation in
each of figures 23-25, is how vertices on the first axes are substantially more influential than on the latter
axes. Finally, compared to ridge and BDMCMC, the Hiveplot of the graphical lasso (figure 21), appears to
display that the lasso favors shrinkage of negative partial correlations (positive elements of @). Note however,
that the minimum amount of regularization for lasso is much higher than for ridge, resulting in fewer edges
overall, leading to this artificial observation.

38



6
Y]
_—
¥/ L25
21N\
L Uifay
2 126 o
g \
L8 ”""L‘i‘i\ L1238,
/,/’:‘y> L1860\
5/ Pk
453

——
N

A

NN

=

Mt
s

I\

e

Figure 24: Hiveplot of the graphical ridge with A = e~2. Position on the axes is proportional to the degree
of the vertex, such that vertices with more edges are always on the outside on the graph. Weaker partial
correlations are more transparent, such that emphasis lies on the important relationships.
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Figure 25: Hiveplot of the BDMCMC chain with v = 196. Position on the axes is proportional to the degree

of the vertex, such that vertices with more edges are always on the outside on the graph. Weaker partial
correlations are more transparent, such that emphasis lies on the important relationships.
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7 A Closer Look at the Differences in Graphs

In this chapter we will attempt to quantify the differences in terms of rank correlation of the WExF of
nodes between graphs. Then, we will make a comparison of the mass to charge ratios (m/z) of peaks in our
MALDI-FTICR data and compare them to a list of proposed sequences, to get an indication of the possible
proteins involved in the graphs. In doing so, we hope to shed some light on the actual differences in results
between lasso, ridge and BDMCMC for graph construction.

7.1 Quantifying the Differences between Graphs

The WEXF helps us identify influential vertices and we showed that it should in principle be more consistent
between methods than measures of centrality. We will now plot the rank of vertices in terms of WExF against
each other and compute the (Spearman) rank correlation to give some numeric indication of the size of
differences between graphs. Of course, other methods to compare networks exist, like the Hamming distance
n (31). However, most of such measures come from set theory, merely comparing inclusion of edges (as if the
graph were unweighted). By comparing the rank in terms of influence of vertices, we take into account the
information of the strengths of the edges.
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Figure 26: Here we attempt to quantify the difference between the three graphs by calculating the Spearman
rank correlation of vertices’ WExXF in each of the three methods used for estimating ©.

In figure 26, we confirm that the regularized solutions are much more alike than the BDMCMC algorithm,
which even correlates negatively in terms of WExF rank. From the figure, this would appear to be the case
due to a number of vertices which have near 0 influence in the regularized solutions and, contrastingly, have
very high influence in the BDMCMC graph. In the appendix, we give an example of the rank correlation
between graphs of different sizes using the same method (by means of thresholding using IFDR), which was
generally a lot higher (> 80%).

7.2 Identified Peptides

With the help of the proteomics group at the LUMC, a select number of vertices were identified from the
original MALDI-FTICR data by comparing them to a list of proposed sequences from Shen (2010). Due to
the aforementioned difficulty of uniquely identifying protein peptides from mass spectrometry data (see the
methods section), not all vertices could be identified. The results of the identification are shown in table 6.
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7.3 Qualifying the Differences between Graphs

It is important to keep in mind that the identifications in table 6 are merely proposed sequences and
would require tandem mass spectrometry for confirmation. It is therefore difficult to address the biological
implications of the networks at this stage. However, if we assume the proposed sequences to be correct, we
can compare the differences between lasso, ridge and BDMCMC in terms of proteins. In other words, are the
graphs comparable in terms of most influential proteins? For example, it might be the case that although
lasso selects one among a number of correlated variables, that the differences with ridge are merely different
fragments of the same protein. We have made an attempt at such a comparison below.

# lasso ridge BDMCMC
1 L62 L158 L22
2 | Complement C3 precursor Fibrinogen alpha chain L71
3 ITIH4 | Complement C3 precursor L151
4 Fibrinogen alpha chain Fibrinogen alpha chain L186
5 L92 L92 L135
6 Antithrombin-IT1 L69 L128
7 L99 L143 L18
8 ITTH4 L93 L28
9 IGFBP-3 L164 14

10 | Complement C3 precursor Fibrinogen alpha chain LL189

11 L8 L129 L8&9

12 L93 Le7 L172

13 Fibrinogen alpha chain ITIH4 | Pigment epithelium-derived factor

14 Vitronectin L139 L185

15 L181 | Complement C3 precursor L120

16 APOA4 L99 L108

17 ITTH4 ITTH4 L150

18 L33 L62 APOA4

19 APOA4 Fibrinogen alpha chain L25

20 L55 Ceruloplasmin L168

Table 7: Highest ranking vertices for the weighted expected force of infection (WExF) and for each of the
three estimation methods. Here we replaced the variable names of identified nodes with their proposed
proteins, where possible.

From table 7, we again see that the regularized solutions are more alike. Complement C3 precursor and
Fibrinogen alpha chain occur at least twice in either method’s influential vertices. A more interesting
observation is that although most proposed proteins are similarly influential in the lasso and ridge graph,
some proteins are influential in the lasso graph, but not in the ridge graph (e.g. APOA4).
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8 Discussion

In chapters 4 and 5, we showed the results from the three methods for constructing conditional independence
networks: graphical lasso, graphical ridge and BDMCMC. In all of these methods, the resulting networks
were not sufficiently sparse for interpretation. In the regularized methods, we addressed the choice of LOOCV
over other methods, that seek to sparsify a graph beyond what might oridnarily be possible given 2 ratio.
Since variable selection is not the primary goal — we wish to eventually understand the relationships between
proteins — we opted for LOOCYV. Interestingly, the Bayesian method produced similarly dense graphs,
suggesting there is too much uncertainty given the sample size to create a sparse graph that is still reasonably
correct. Hence, in chapter 6, we attempted to address the issue of visualizing a relatively dense graph. Finally,
in chapter 7 we tried to concretize the differences of the resulting graphs. Now we will discuss our findings.

8.1 Constructing a Graph
Graphical Lasso vs. Ridge

In chapter 1, we reviewed the popular graphical lasso (glasso), developed by Hastie, Friedman and Tibshirani.
It is extensively used for its sparsity inducing property to estimate graphs, or as a preceding step for PCA
(Zou, Hastie, and Tibshirani 2006). However, the graphical lasso not only shares sparsity with its regression
counterpart, but also inconsistency (Rolfs and Rajaratnam 2013). In light of this, attempts have been
made to induce sparsity in a precision matrix regularized by the inherently more consistent ridge penalty
(rags2ridges, Peeters, Bilgrau, and Wieringen 2015). In particular, local False Discovery Rate has been
implemented to modify @, such that it is sufficiently sparse to produce a graph. However, with either
regularization technique, the problem of choosing the amount of regularization (\) still remains, for which
numerous procedures and criteria have been developed (Ha and Sun 2014; Rina Foygel 2010; Han Liu and
Wasserman 2010). We covered the important methods and concluded that the familiar LOOCYV is still
superior when interest lies in the true graph structure and not sparseness. However, we did note that LOOCV
tends to select very small values for A, and subjected the LOOCV optimum to a minimum value corresponding
to the matrix conditioning in (36).

Among the possible types of ridge penalties, we decided to use the alternative type I shrinkage, which
corresponds to graphical lasso without penalizing the diagonal elements of the precision matrix. Both of
these are amount to a prior on ©, assuming the off-diagonal elements to be zero (i.e. a sparse matrix).
Furthermore, this penalty was superior to both lasso and the other archetypal ridge penalties, in terms of
matrix conditioning in figure 5. Using the LOOCYV levels of regularization subject to matrix conditioning,
the graphical lasso and ridge were performed, following a comprehensive analysis of centrality and node
influence. Although there was overlap in the influential vertices of the lasso solution and the ridge solution,
there were still nontrivial differences in the solutions (e.g. the proposed sequences for APOA4 in lasso but
not in ridge, table 7). We therefore wish to express our preference for the graphical ridge, which — like its
regression counterpart — has a unique solution, better consistency when n < p and an appealing Bayesian
interpretation (section 1.4.1). However, conclusive evidence for better performance of either method would
require a prediction setting, which we have not attempted due to time considerations.

BDMCMC

A completely different approach to graph construction by directly sampling from the Wishart posterior of
© was also evaluated: BDMCMC (18 - 22). Although we encourage a Bayesian perspective and the use
of Bayesian approaches, it is unfortunate that some trial-and-error was required to obtain working values
for the degrees of freedom on the prior v, especially since the BDMCMC chains generally required at least
10 iterations to reach convergence for a mere 196 x 196 covariance matrix. This is a large drawback for
high-dimensional datasets, such as in the field of genomics, where the number of genes is exceeds a thousand.
Nevertheless, we compared the BDMCMC to the regularization techniques.
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Interestingly, the estimated posterior graph size was comparable to that of the IFDR thresholded ridge.
However, we found substantial differences between BDMCMC and the regularized solutions in terms of
graph structure. Both the centrality and node influence of BDMCMC showed almost no similarity to the
regularized solutions. Due to time constraints, we did not comprehensively compare the regularized solutions
to a Gaussian copula graphical model (GCGM) contructed with BDMCMC, but a GCGM is included in the
appendix, and was found to be quite similar to the GGM using BDMCMC (in terms of influential vertices).
Furthermore, the authors of the bdgraph package noted that for practical use, a more advanced approach,
incorporating Dirichlet variable selection would be preferred.

8.2 Inference in a Graph using WExF

To cope with the large resulting graphs, we implemented a recent development in node influence metrics:
the WExF, to identify the most influential nodes in an otherwise incomprehensibly large graph. Our
implementation of the WExXF correctly assigns weights to negative partial correlations in an -omics context,
where negative correlation are both frequent and important (contrary to a network of infection). The node
influence has already proved to be useful in many areas and we found it to be a nice addition to the methods
of inference in conditional independence networks. The most appealing difference with measures of centrality,
is that the influence depends only on local graph structure and is thus less sensitive to small changes in a
network.

8.3 Conclusion
8.3.1 Graphical Lasso vs Ridge

Although simulation studies have been performed on the graphical lasso and ridge, few authors go into detail
about the differences in graph structure and node influence between these two methods. While the graphical
lasso is very popular, it is far from consistent with results from a ridge solution. Let this thesis therefore
serve as a cautionary note to those interested in true graph structure (and thus true relationships between
variables), that a sparse solution selected by lasso need not be a good solution in terms of included edges.

Future research on a dataset where each variable’s origin (e.g. protein peptide sequence) can be determined
with relative certainty could further elucidate the differences in regularized solutions. Although a prediction
setting could pick a ‘winner’ in terms of classification, it would also be interesting to find out the cost in
terms of erroneous interpretation is when using the convenient graphical lasso.

8.3.2 BDMCMC vs Regularization

In our analysis, it would appear the (current) BDMCMC sampler does not compete with the regularization
techniques for n < p scenerios, since it displayed little to no similarity in terms of centrality or influence.
Furthermore, many of the abundant (proposed) proteins, showed little to no influence in the graph.

8.3.3 Biological Interpretation

Table 6 showed us a selection of proposed protein peptides from the MALDI-FTICR data, suggesting the
complement system of the innate immune response (C3 precursor, C4 precursor) could be very influential
in a network of protein interactions, constructed from a covariance matrix of cases and controls. However,
conclusive evidence about the biological implications of these particular networks are difficult, since only
65 out of 196 variables could be identified. Moreover, these identifications are merely proposed sequences.
Confirming the sequences would require tandem mass spectrometry, such as that performed in Shen (2010).
With that in mind, further research could elucidate the role of the complement system in pancreatic cancer
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specifically, which has already been implied in a number of cancers. (e.g. Pio, Ajona, and Lambris 2013; Pio,
Corrales, and Lambris 2014; Ostrand-Rosenberg 2008; Rutkowski et al. 2010)
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9 Appendix

9.1 GGM vs GCGM

Here we show how relaxing the assumption of normality with a Gaussian Copula Graphical Model (GCGM)
has minimal effect on the resulting graph, using the BDMCMC method. In the figure below we confirm
convergence of the BDMCMC algorithm.
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9.2 WEXxF: Consistency at Different Levels of Sparsity

Continuing from the GCGM example, we now show that the WExF is relatively insensitive to small changes
in the graph. In particular, we show insensitivity to thresholding a dense graph, such that the smallest partial
correlations are set to zero.
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WEXF with and without Thresholding
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Figure 27: WExF of Bayesian GCGM. In black, the WEXF of the thresholded © is shown. In red, the WExF
of vertices is shown without thresholding. Note how the WEXF is fairly consistent, even after thresholding.
Excluding the lowest partial correlations appears to reduce the WExF porportionally among nodes.
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Figure 28: Here we confirm the WExF is consistent after thresholding by calculating the rank correlation
between the thresholded and unthresholded ©.
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