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Abstract

We propose a varying coefficient IRT model, in order to study the effect of a metric
variable on model and population parameters estimated by IRT models. Kernel smoothing
was used to capture the variation, and cross-validation to determine optimal parameters.
The model was applied to a variety of simulated data sets in order to test its properties,
and on a real-world personality data set. The tests on simulated data showed the ability
to recover and visualize the variation of coefficients and their confidence bands over time
with some success. The real-world tests showed some, but limited variation, depending
on the trait studied.
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1 Introduction

The modern field of psychometrics, as arguably introduced by Spearman with his paper
on the measurement on human intelligence [Spearman, 1904], is concerned with the
quantitative measurement and description of psychological factors. Spearman’s single
factor model was further explored [Lawley and Maxwell, 1962] and extended to multiple
factors [Thurstone, 1929] in the following century. Where factor analysis deals with
continuous responses, many experiments have discrete outcomes, calling for a method
specifically tailored to such results.

Item Response Theory (IRT) [Rasch, 1960, Birnbaum, 1968] is a method for the analysis
of latent variables based on discrete outcomes of questionnaires or other forms of tests.
Given only the answers to a questionnaire or a test, IRT allows for the estimation of
model parameters (e.g., question difficulties) and scores for the skill or miscellaneous
latent factor measured by a test.

The basic IRT model assumes the parameters of the response model to be invariant: it
does not include any data other than test or survey answers. Sometimes we do not believe
this invariance to hold, and are interested in the relationship between the parameters
and some external variable. For example, one might study the differences between a
latent factor in various demographic groups [Hambleton, 1991, p126-142]. In this thesis,
we are interested in treating the parameters of the IRT model as functions of a metric
variable (such as time), as opposed to scalars in the normal IRT model.

Hastie described varying coefficient models [Hastie and Tibshirani, 1993], and in this
thesis we will attempt to create varying coefficient IRT models, in some ways similar to
how Zhang [Zhang and Wang, 2014] described varying coefficient additive models. Our
method would improve over other approaches: for example, it allows the use of more
data for the estimates for varying coefficients than a multi-group IRT model would.

Using our method, we aim to be able to determine and visualize a relationship between
a metric variable, such as time, and latent variables or parameters in item response
model.

In Chapter 2, we formally introduce IRT, and then extend it to allow for varying
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coefficients. In Chapter 3, we create simulated data sets with varying coefficients, and
attempt to use our model to find the simulation parameters. In Chapter 4, we apply the
method to a real data set, using data from a large-scale personality test published by
the University of Amsterdam [Smits et al., 2013].
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2 Model and estimation

In this chapter we will introduce the theoretical foundations of item response theory,
and extend them into varying coefficient models. Section 2.1 defines the graded-response
IRT model we use, and an estimation method. In Section 2.2 we introduce our extension
to allow for varying coefficients, and we describe the estimation of a varying coefficient
IRT model using (full-information) maximum likelihood (FIML), kernel smoothing and
k-fold cross validation.

2.1 Definitions and model

First, we will define IRT models as applied to binary-answer tests. Then, we redefine
the terminology so that we can use the model to analyze tests for general psychological
traits.

Consider a test consisting of I questions (items) with binary answers. We will assume
without loss of generality that 1 represents a correct answer, and 0 an incorrect answer.
To define our model, we will assume several things: [Birnbaum, 1968]

1. The questions measure a single common uni-dimensional trait for each person,
often called skill, denoted by F .

2. Given a randomly selected individual with a value f for F , the probabilities of
answering the questions of a test correctly are independent. This is called local
independence.

3. We can model the probability of giving a positive response on question i by using
a probability function, which depends on f and has one or more item-specific
parameters, where xi equals 1 for a positive response, and 0 for a negative response:

P (xi = 1|F = f) = gi(f). (1)

This function g is called the item response function.
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We will additionally assume that F is normally distributed in the population, F ∼
N(µ, σ2). This is required for our varying coefficient model, where we will allow both µ
and σ to vary.

A model that corresponds to the three numbered assumptions is called an item-response
model (IRT model). A simple item response function is the one corresponding to the
one-parameter logistic model, the “Rasch model”: [Rasch, 1960]

P (xi = 1|F = f) = 1
1 + eδi−f

. (2)

Here, δi can be interpreted as the difficulty of a question. The higher δi, it becomes less
likely that the question will be answered positively, given some fixed f . Note that the
following notation is equivalent:

logit(P (xi = 1|F = f)) = f − δi, (3)

where logit(q) = log( q
1−q ).

Equation 3 says that the logit of the probability is linear in the difference between a
person’s skill, and the difficulty of a question. We also see in Equation 2 that when
skill and difficulty are equal, the probability of answering a question correctly is 1/2.
Furthermore, both the difficulty and ability are measured on the same scale; an additional
quantity of difficulty can be compensated with an equal quantity of ability without
changing the probability of a correct response, i.e. (f + c)− (δi + c) = f − δi. So, is a
very intuitive model that measures skill and difficulty on a single scale.

Another model is the two-parameter logistic model (2PL), defined by the item response
function [Birnbaum, 1968]

P (xi = 1|F = f) = 1
1 + eαi(δi−f) . (4)

We call αi the discrimination parameter. Note that the Rasch model defined in Equation
2 is a special case of the 2PL model, with αi set to 1. The main difference is that this
model allows the questions to not only vary in difficulty, but also in how much impact
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Figure 2: The probability curve for a 2PL model with difficulty δi = 0 for various
discriminations.

a small change in skill has on the probability of answering a question correctly: how
well it discriminates between different levels of skill. For example, in Figure 2 the black
line represents a question with discrimination αi = 1, the red line a question with
discrimination αi = 3. With discrimination αi = 3, there is a very large difference in the
probability of answering correctly between someone with skill -1 and skill 1.

2.1.1 Terminology

In the previous subsection we introduced the standard IRT terminology as applied to
achievement tests. In this thesis however, we will study surveys that measure general
psychological factors, such as introversion or inhibition. As such, the variable F no
longer represents a skill, but it represents a one-dimensional measure of the target trait.
We assume that the estimated trait is continuous and that for higher values of F it is
more likely that a person responds to a question with a trait-positive response, either on
a dichotomous or larger discrete scale.
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2.1.2 Scoring polytomous items

The real-world data that we want to analyze consists of answers to questions with a
polytomous answer scale. To be able to apply IRT, we need to extend our model from
Section 2.1, which only dealt with dichotomous answers. The class of IRT models that
deals with non-binary answers are polytomous item response models [Samejima, 1972].

There are various ways to model polytomous item-responses. We use a graded IRT
model. It consists of sequential 2PL models [Samejima, 1997], and can be defined by:

P (xi = k|F = f) = P (xi ≥ k|F = f)− P (xi ≥ k + 1|F = f), (5)

for k ∈ {1, 2, . . . , m}, where m is the number of points in our scale, so the number
of answers to the questions. Here, each function P (xi > k|F = f) is either, for k ∈
{2, . . . , m} a 2PL model as in equation 4 or for k = 1 or k = m+ 1 an edge case:

P (xi ≥ k|F = f) = 1
1 + eαi(f−δki)

(6)

P (xi ≥ m+ 1|F = f) = 0

P (xi ≥ 1) = 1,

where αi is a question-specific scale parameter, and δki is an answer-specific difficulty
parameter, for which we need the inequality δ2,i < δ...,i < δmi to hold in order to ensure
positive probabilities.

2.1.3 Model estimation

We can estimate the model using a marginal maximum likelihood1 method [Bock and
Aitkin, 1981] for the estimation of the item parameters.

For the estimation, we can assume the latent trait in the population to come from
a standard normal distribution with µ = 0, σ = 1. We can add a later step in the

1We can deal with missing items using Full Information Maximum Likelihood (FIML).
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estimation process to allow for arbitrary and/or varying mean and standard deviation,
by post-processing the estimated model. (See Section 2.2.1)

Given is a matrix X of scores from some survey or test taken by n people consisting of
questions as described in the previous paragraphs, where xni is the response to question i
given by person n. We assume that they are a function of unknown item parameters and
a random latent trait. We can define the marginal (over the latent trait) log-likelihood
of the full results as:

logLX(ζ) =
∑
n

log p(xn|ζ), (7)

where ζ is a matrix consisting of vectors ζi = (αi, δi1 . . . δik), one for each question.
Probability density p is:

p(xn|ζ) =
ˆ ∏

i

p(xni|ζi, f)φ(f)df, (8)

with φ(·) the standard normal density function. We can now maximize the (log-)likelihood
to estimate the parameters of the model, given a matrix X of answers to questions:

ζ̂(X) = arg max
ζ

∑
n

log
ˆ ∏

i

p(xni|ζi, f)φ(f)df (9)

If some columns xn (so a column of answers corresponding to a person) of matrix X are
thought to be more important, we can instead optimize a weighted (log-)likelihood, by
defining weights wn:

ζ̂(X) = arg max
ζ

∑
n

wn log
ˆ ∏

i

p(xni|ζi, f)φ(f)df (10)

To make it intuitively clear what such a weighting actually means, we can interpret
a weighted model as equivalent to a larger unweighted model: for wn = an

bn
∈ Q, the

optimal parameters are equivalent to those in an unweighted model with repeated rows,
with row n repeated an · z

bn
times for some z such that this number is integer. See

Appendix B for a proof.
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The weighted maximum likelihood calculation will be of use for the estimation of varying
coefficient models.

2.2 Varying coefficients

In the previous section we introduced the graded response model. In this thesis, we
are interested in extending the model to allow both model and population parameters
to vary over some metric variable, such as time. In all sections of this thesis we will
assume t to be from a finite equidistant discrete interval, simplifying to t ∈ {1, . . . , T}
for a maximum value T . The described method is still valid for non-equidistant discrete
intervals, since there need not be data for all values t. We can assume discreteness
because real-world data sets are always finite in size, and can therefore be discretized.

With varying coefficients, the latent trait of a population at value t is no longer assumed
to be distributed with a (standard) normal distribution, but along a distribution that
varies through time, which we will denote by a superscript:

F t ∼ N (µt,
(
σt
)2

). (11)

Additionally, the 2PL models defining the likelihood of various graded responses also
have time-dependent parameters:

P (xt ≥ k| f t) = 1
1 + eα

t(f t−δt
k

) . (12)

This addition allows for the use of IRT techniques for the analysis of longitudinal data.
With such a model, one could study the variation of population traits over time, while
simultaneously analyzing how item parameters change. For example, in a survey on
social activity, a population might become more social, while at the same time indicating
in the survey that they are spending less time on face-to-face contact (due to, for
example, the rise of the internet). Ideally, our model should allow for the detection of
both simultaneously.
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2.2.1 Model estimation

Because we don’t see a straight-forward way to directly extend the (marginal) maximum
likelihood method to the case with varying coefficients, we have chosen to use kernel
smoothing to estimate the parameters over time [Wand and Jones, 1994].

Lacking a reason to use something more complicated, we have chosen to use a Gaussian
kernel:

K (z0, z) = 1
b2 exp

(
−(z0 − z)2

2b2

)
, (13)

where K represents our smoothing kernel, and b is the smoothing bandwidth.

First, we assume that the latent trait in the population is at all times distributed
according to a standard normal distribution. We will correct for this assumption in a
later step.

To estimate the model parameters, we use a weighted maximum likelihood estimation,
with the algorithm described in Section 2.1.3 as basis, using weights from the Gaussian
kernel smoother.

At time t0, we use smoothing to generate weights {wtn}n for all subjects n (that is, for
all unique times tn):

∀n ∈ {1, . . . , N} : wt0tn = K(t0, tn)∑
t∗∈T K(t0, t∗n) (14)

For every given item, we can now calculate the parameter estimates α̂t0 and δ̂t0k at t0,
with ζ̂ consisting of rows ζ̂i = (α̂i, δ̂1i . . . δ̂ki) corresponding to questions as before:

ζ̂t0(X) = arg min
ζ

∑
n

wt0tn log
ˆ ∏

i

p(xni| ζi, f)φ(f)df. (15)

Note that the only change compared to the version without varying coefficients is the
weight. This allows us to re-use existing IRT estimation methods. The effect of this
weight is that it allows us to calculate parameter estimates at any point t0, even at
points without observations. In addition, since the kernel smoothing function is smooth
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(differentiable), this results in the parameter estimates being smooth over the metric
variable as well.

We use the EM-algorithm [Bock and Aitkin, 1981] for the minimization of Equation 15,
as implemented by the R-package mirt [Chalmers, 2012a]. Internally, the minimization
is done using BFGS [Broyden, 1970].

This calculation gives us parameter estimates, but still under the assumption that the
latent trait is distributed in the population according to a standard normal distribution.
A researcher is generally interested in the question whether the latent trait distribution
changed over time, or if some item(s) changed in popularity/difficulty. We can exploit
the relation between the parameters of the latent trait distribution and the model
parameters to diagnose the degree to which one or the other changes, and to thereby
correct for the assumption of standard normality of F .

We will first demonstrate that a shift of the mean of the latent trait distribution results
in a simple translation of all parameters δk. First observe that shifting the mean from µ

to µ+ c increases all f by c, and then rewrite:

P (x ≥ k|f, δk, . . .) = 1
1 + eα(f−δk)

= 1
1 + eα((f+c)−(δk+c))

= P (x ≥ k|f + c, δk + c, . . .). (16)

An example of the transformation (with parameters changing over time) can be found
in Figures 3 and 4. In Figure 3, all the δi parameters decrease over time, meaning that
questions seemingly get easier. In this case, it seems that it is more likely that the
population gets a higher trait value instead. We can use the transformation and assume
µ to be linear from 0 to 2, as seen in Figure 4. Now the question parameters stay fairly
horizontal over time, and the population trait mean µ increases instead.
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Figure 3: Sample parameters before transformation. We see that all δi decrease over
time.

Figure 4: Sample parameters after a transformation that increases µ linearly over time.
We see that the δi are now horizontal.

Similarly, we can change the standard deviation from σ to c′ · σ, noting that doing so
results in scaling all f by c′:

P (x ≥ k|f, δk, α) = 1
1 + eα(f−δk)

= 1
1 + e

α
c′ (c
′f−c′δk)

= P (xn ≥ k|c′fn, c′δk,
α

c′
). (17)
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To allow the population trait mean µ and standard deviation σ to vary in our estimated
varying coefficient IRT models, we can exploit this relationship by taking parameter
estimates from equation 15, and defining two sum-of-squares loss functions that assume
that item parameters should generally be constant over time:

L1
({
σt
}
t

)
=

I∑
i=1

T∑
t=1

(
log

(
αti
σt

)
− 1
T

T∑
t′

log
(
αt
′
i

σt

))2

, (18)

L2
({
µt
}
t

)
=

7∑
k=1

I∑
i=1

T∑
t=1

(
(δtki + µt)− 1

T

T∑
t′

(
δt
′

ki + µt
′))2

. (19)

Minimizing loss function L1 allows σt to absorb variation in {αti}t, while L2 allows µt to
absorb variation in {δtki}t. For example, if all estimated parameters {δtki}t go down as
t goes up, meaning people give higher responses to all questions over time, it is more
likely that the population trait mean has shifted over time than it is for all questions
to have become easier. We try to determine the optimal trait means µt such that the
difficulty parameters {δtki}t are as constant over time as possible. The same reasoning
holds for loss function L1 for σt in Equation 18, except it corrects for varying “spread”
in estimated {δtki}t parameters and fluctuations in {αti}t parameters.

Noting that the functions are independent, and keeping in mind Equation 17, we note
that we can combine the loss functions and minimize a single value, resulting in µ̌ = {µ̌t}t
and σ̌ = {σ̌t}t:

µ̌, σ̌ = arg min
{µt}t,{σt}t

L1
({
σt
}
t

)
+ L2

({
µt
}
t

)
, (20)

We can then modify the parameters as in Equations 16 and 17 to find the optimal
adjusted parameter estimates, so that for all t, k and i:

δ̃tki = σ̌tδtki − σ̌tµ̌t, (21)

α̃ti = αti

σ̌t
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µ̃t = σ̌tµ̌t

σ̃t = σ̌t

Depending on our assumptions, we can simplify the process by assuming that σ does
not change, reducing this process to just the minimization of L2 and the adjustment
step as in Equation 16. An example of such a transformation was illustrated in Figures 3
and 4, where the transformation that was performed was optimal, meaning it minimized
the loss function.

To make this minimization tractable for large values of N , we use a 3-degree polynomial
over t to best estimate σt with the constant coefficient set to 1, and a similar 3-degree
polynomial for µt with the constant coefficient set to 0. Using such a polynomial reduces
the minimization free variables from t (every time has its own mean trait) to just 3. If
there is domain knowledge about the potential shapes over time of µt and its standard
deviation over time, one could substitute another suitable function for the polynomial.

For the actual minimization of the loss function, we use a generic numeric optimizer.
Special care should be taken to avoid local optima. We used the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [Broyden, 1970], and to prevent local optima we
started from the best estimate from a 3-dimensional grid covering the most likely
parameter values.

2.2.2 Bandwidth selection

In order to determine the bandwidth of the Gaussian kernel smoother defined in Section
2.2.1, we use 10-fold cross-validation. This consists of splitting the data into 10 equally-
sized parts, and then predicting each part based on a model created from the other
9 parts. From those 10 estimations on the predicted data, we take the mean of the
log-likelihoods.

We select the bandwidth based on the deviance2, which we define as the mean log-
likelihood of the cross-validated solutions at a certain bandwidth, divided by −2. The
bandwidth with the lowest deviance is selected for use in all experiments.

2technically, the deviance relative to some constant saturated model.
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Given that we have no exact formula for the optimal bandwidth, we cannot perform
explicit power calculations. However, we can calculate very rough estimates of required
sample sizes using a method laid out in Section 4.3.4.

2.2.3 Confidence bands

Having estimated model and population parameters for the full data as described in
Section 2.2.1, we might be interested in the estimation errors of these parameters. To
determine these, we use a bootstrap re-sampling algorithm: first, we create 50 re-sampled
populations, each sampled from the original data (with replacement), and while keeping
the number of people per moderator variable the same. We then calculate the parameter
estimates for each of these populations at all points in time, that is, for all tn. Then,
for every point in time, we calculate the standard error, based on the 50 population
estimates at the optimal bandwidths. Based on this standard error, we can, for example,
draw point-wise 95% confidence bands around the kernel smoothed parameter estimates.

With regard to limitations of the interpretation of these confidence bands, please see
the discussion in Chapter 5.
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3 Simulated results

In order to test the power and accuracy of our model, we have created several simulated
data-sets with parameters that vary in various ways. Our goal is to use varying coefficient
models to recover as much information about the varying parameters as we can. In
this chapter, we will describe the generation of this data, the use of our model, and we
will look into the model performance. Additionally, we try to determine the influence
of sample size on the optimal bandwidth size for the real-world data. We start from a
simple data set and model, and gradually add complicating factors.

3.1 Data generation

We have chosen to generate simulated data that is similar to the data we use in Chapter
4. This means that we have a total of 8954 people, divided into 25 cohorts of varying
sizes, as seen in figure 5. Of course, while we use cohorts for these simulations, please
note that the method is equally valid if all people have a unique tn.

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

200

400

600

Cohort

C
ou

nt

Figure 5: An overview of the cohort sizes.

The generation process of the answer matrix is an inverse transform sampling process.
Given the parameters of the distribution of fn and given the model parameters αi and
δki:

1. For every person n, we generate a trait value fn from a normal distribution with
parameters specific to an experiment.
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2. For each question i and for every person n, we pick a uniformly random value
0 ≤ pni ≤ 1.

3. For every pni, determine where it lies in the intervals defined by Equations 6, given
parameters fn, αi and δki.

To illustrate step 3, consider the following parameters for some question:

α δ1 δ2 δ3 δ4 δ5 δ6

1 2 1 0 -1 -1.5 -2

If we generated f = 0 in step 1, we can fill these values in into Equations 6, and find
the following probabilities:

P (x ≥ 8) P (x ≥ 7) P (x ≥ 6) P (x ≥ 5) P (x ≥ 4) P (x ≥ 3) P (x ≥ 2) P (x ≥ 1)
0 0.12 0.18 0.27 0.5 0.73 0.88 1

Now, if in step 2 we generate a p between 0 and 0.12, we assign an answer of x = 7. If
we generate a p between 0.12 and 0.18, we assign an answer of x = 6, and so on.

The parameters in the graded response models (i.e., the question difficulties) and the
trait distributions are varied between our experiments.

3.2 Experiments

We have performed several experiments, generating data sets that vary in different ways,
and applying our methodology to try and reproduce the generation parameters. We start
with simple data sets to verify the basic principles of the method, and slowly continue
to more complex experiments.

20



Experiment 1: no varying coefficients

For all cohorts the trait value is generated from the standard normal distribution:
Fn ∼ N (0, 1). Additionally, all of the graded response model parameters are the same
for all cohorts and for all questions:

α δ1 δ2 δ3 δ4 δ5 δ6

1 2 1 0 -1 -1.5 -2

We first attempted to determine the optimal bandwidth. However, as Figure 6 shows,
there was no optimal bandwidth: for growing bandwidths, the deviance converges
downwards. This is understandable: since all of the parameters are constant over time,
we can estimate the best model by using the full data for every cohort. This happens
for a very large bandwidth. We proceeded by first applying the algorithm described in
Section 2.1.3 with a very high bandwidth (100), and then with a lower bandwidth of
2.0, to see what we would find then.

Figure 6: Deviance for various bandwidths in experiment 1. Since the coefficients are
constant, it works best to assume a very high bandwidth, using all cohorts for every
point estimate.
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Figure 7: Varying coefficients for the first item in experiment 1, with bandwidth 100.0,
which is high enough to get constant estimates. We see that all parameters are reproduced.

Figure 8: Varying coefficients for the first item in experiment 1, with (non-optimal)
bandwidth 2.0. There is some variation, but the estimates are always close to the correct
values.

For bandwidth 100.0 (Figure 7), we see straight lines with very narrow point-wise
confidence bands. The parameters are all very close to their true values. Note that this
is effectively an IRT model estimation without varying coefficients.

For bandwidth 2.0 (Figure 8), we see that all of the parameters are also estimated
quite well: the true values are almost everywhere within the confidence bands. The
confidence bands are relatively small, indicating that based on these outputs the true
model parameters are likely constant. Using a sub-optimal bandwidth shows more
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variance in the data, both in terms of the estimates and the confidence bands.

We also see that the confidence bands are wider in some regions than in others. This is
largely the result of the smaller sample sizes on those regions. This is most significant
in the boundaries, where we can only smooth in one direction, thereby weighing the
central cohort relatively heavier.

Experiment 2: varying δ1

For all cohorts the trait value is generated from the standard normal distribution:
Fn ∼ N (0, 1). The δ1 parameter varies over time/cohort, as seen in the following table,
where t is the cohort:

αtn δtn1 δtn2 δtn3 δtn4 δtn5 δtn6

2 1.1 + 8
625(25− tn)tn 1 0 -1 -1.5 -2

First, we determined the optimal bandwidth. As seen in Figure 9, the bandwidth with
the lowest deviance is around 2.4. Then, after estimating the full model using the
algorithm described in Section 2.1.3 using that bandwidth, we looked at the estimated
values for one of the questions (see Figure 11).

Figure 9: Model deviance for various bandwidths in experiment 2. We see (after ad-
ditional more precise calculations) that the deviance is minimized at a bandwidth of
approximately 1.5.

23



Figure 10: True parameters for all of the items in experiment 2, as used for data
generation.

Figure 11: Varying coefficients for the first item in experiment 2, using the optimal
bandwidth determined in Figure 9. The shape of δ1 resembles the input shape.

We clearly reproduce the trend in the true model parameters. The top of δ1 is a somewhat
lower than the real parameter, but that’s expected due to the kernel smoothing.

In order to determine the effect of sample size on the accuracy of the model parameters,
we performed the full method various times, on data sets generated as in the rest of this
chapter, but by scaling the number of participants in each cohort. Then, given model
parameters, we compare the calculated parameters to the true values by calculating the
square root of the mean square error (RMSE) of the δi parameters, after adjusting for
the αi’s:

24



RMSE =

√√√√ 1
N(K − 1)I

N∑
n=1

K−1∑
k=1

I∑
i=1

(
α̂i

(
δ̂tnki − µ̂

)
− αi

(
δtnki − µ

))2
(22)

In simple words, it is the mean squared distance between the true and the estimated
values of the model parameters. Table 1 and Figures 12 and 13 show the results. We
see that for larger sample sizes, the estimated parameters get closer to the true values,
since the RMSE goes down (with some variance).

Sample size Optimal bandwidth RMSE
2986 2.3 0.0494
4477 2.0 0.0432
5968 1.8 0.0447
8954 1.5 0.0383
13430 1.4 0.0371
17908 1.4 0.0381

Table 1: The optimal bandwidth and RMSE for various samples of data generated based
on the parameters in experiment 2.

Figure 12: The optimal bandwidth for various samples of data generated based on the
parameters in experiment 2.
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Figure 13: The RMSE for various samples of data generated based on the parameters in
experiment 2.

Experiment 3: varying Fn in data, but fixed in model

In the previous experiments, we assumed that the mean of the distribution of Fn was
constant throughout the years. We can, however, also let that vary. If we then estimate
the model while still assuming that this mean is constant, that variation will be captured
by other model parameters. Here, we chose the same model parameters as in experiment
1:

α δ1 δ2 δ3 δ4 δ5 δ6

1 2 1 0 -1 -1.5 -2

But now, Fn ∼ N (−2 + 8
625tn · (25 − tn), 1). We determine the optimal bandwidth

(Figure 14) and use it to calculate the varying coefficients (Figure 16). We see that,
since the distribution of Fn is assumed to be fixed, the variation shows up in the other
estimates. The RMSE is 0.20; this is very high because all estimates are far from the
original values, as seen in the figures.

26



Figure 14: Model deviance for various bandwidths. The optimum is around 2.3.

Figure 15: True parameters for all of the items in experiment 3, as used for data
generation.
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Figure 16: Varying coefficients fort he first item in experiment 3.

Experiment 4: varying Fn in data, varying in model

We now generate data with the skill variable distributed normally with a mean that
varies over time. That is, for person n taking the test at time t,

Fn ∼ N (−1 + tn
12.5 , 1), (23)

The other model parameters are fixed:

α δ1 δ2 δ3 δ4 δ5 δ6

1 2 1 0 -1 -1.5 -2

We then estimate the model assuming that the mean trait value varies, as described in
Section 2.2.1. This results in Figure 17. This is clearly an improvement over Figure 16,
where the variation in µ was picked up by all of the other parameters. In this model, the
drift of the mean population trait is estimated quite well, and the other parameters are
fairly constant. There is some variation at the edges, because of the effect of boundaries
on kernel smoothing. The RMSE is 0.032.
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Figure 17: Varying coefficients for the first item in experiment 4. We used an optimal
estimation bandwidth of 3.5.

Experiment 5: varying both Fn and model parameters

In this experiment, we again generate data with a distribution for F with a mean that
varies over time:

Fn ∼ N (−1 + tn
12.5 , 1). (24)

But now, one of the parameters of the measurement model also varies:

αtn δtn1 δtn2 δtn3 δtn4 δtn5 δtn6

1 2 1 0 -1 -1.5 −3.6 + 8
625tn · (25− tn)

We then estimate the model under the assumption that the mean trait indeed varies over
time, as described in Section 2.2.1. For this estimation, we assume that the standard
deviation is still fixed at 1. This results in Figure 19. We see that the trend in F is clearly
picked up by the model, and that the rest of the parameters are properly adjusted,
like we saw in experiment 4 and 5. The variation in parameter δ6 is retained after the
adjustment. The RMSE is 0.052.
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Figure 18: True parameters for experiment 5, as used for data generation. α is 1, and is
invisible since δ2 is drawn on top of it.

Figure 19: Varying coefficients for the first item in experiment 5. Estimation bandwidth
was 3.5, so we can compare it to experiment 4.

Experiment 6: varying both Fn and individual model parameters

So far, all experiments have consisted of 14 identical questions, at least in terms of their
parameters. Now, we will simulate a test with questions of varying difficulties. Let i be
the question number, 0 ≤ i ≤ 13.

We again generate data with a distribution for Fn with a mean that varies over time:

Fn ∼ N (−1 + tn
12.5 , 1). (25)
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as it was in the previous two experiments. The model parameters now depend on both
the time t and the question i:

αtni δtn1,i δtn2,i δtn3,i δtn4,i δtn5,i δtn6,i

1 2 + i
6 1 + i

6 0 + i
6 −1 + i

6 −1.5 + i
6 −3.6 + 8

625tn · (25− tn)

Figure 20 shows that we are able to estimate all the question parameters for all questions,
and that the estimate for the population mean is still accurate as well. The RMSE is
0.061.
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Figure 20: Varying coefficients for experiment 6. The first figure is for question 1, the
second for question 8, and the third for question 13. Observe that for all questions the
parameters are estimated quite accurately. The bandwidth was 3.2.
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Experiment 7: varying Fn and a fluctuating model parameter

This experiment has a question parameter that fluctuates over time. Our goal is to see
if we can capture its fluctuation, or if it gets smoothed away.

We generate data with a distribution for Fn that has a mean that varies over time:

Fn ∼ N (−1 + tn
12.5 , 1), (26)

and δ6 fluctuates over time between −4 and −2:

αtn δtn1 δtn2 δtn3 δtn4 δtn5 δtn6

1 2 1 0 -1 -1.5 −3 + cos(π4 tn)

For clarity, these input parameters are illustrated in Figure 21.

Figure 21: True parameter values as specified for experiment 7, over time.

We now estimate the parameters with various bandwidths, to see the effect of kernel
smoothing. The fluctuations of the sixth parameter have a fairly small width, so we
expect them to disappear quickly with increasing bandwidths. Figure 22 shows that this
is indeed the case. Note that all values are shifted by 1 compared to the true parameter
values in Figure 21; this is because our simulation assumes3 the mean trait value starts
at 0. We see that at the bandwidth 3.5, the fluctuations are smoothed away.

3Without loss of generality: starting at another value shifts all parameters by an equal amount.
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Figure 22: Varying coefficients for the first question in experiment 7. The first figure is
for a bandwidth of 1.0 (RMSE 0.044), the second for 1.5 (optimal; RMSE 0.053), the
third for 2.5 (RMSE 0.072), and the fourth for 3.5 (RMSE 0.082).
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Experiment 8: varying Fn and σtn in data, and varying in model

We now generate data with a distribution for Fn with both a mean and a standard
deviation that vary over time:

Fn ∼ N
(
−1 + tn

12.5 ,
(

0.5 + tn
40

)2)
. (27)

The other model parameters are fixed, except for αi, which varies based on the question,
i:

αi δ1,i δ2,i δ3,i δ4,i δ5,i δ6,i

1 + i
25 2 1 0 -1 -1.5 -2

This time, we no longer assume that σtn is constant, but we estimate it freely as described
in Section 2.2.1. The results are in Figures 23 and 24; the corrected estimation works
well. We see that both µtn and σtn are recovered from the model, resulting in stable
question parameters as intended. The RMSE is 0.057.

Figure 23: True parameter values as specified for question 1 of experiment 8, over time.
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Figure 24: Varying coefficients for question 1 of experiment 8, over time. The bandwidth
used was 3.5.
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4 Application

4.1 Data-set

To apply varying coefficient models, we use the data from a large-scale personality
test published by the University of Amsterdam [Smits et al., 2013]. The test consists
of scores of 8954 psychology freshmen from the University of Amsterdam between
the years 1982 and 2007, measuring the “Vijf Persoonlijkheidsfactoren” (“[Big] Five
Personality-factors”). This includes the following factors:

• Extroversion;

• Agreeableness;

• Conscientiousness;

• Neuroticism;

• Openness to Experience.

The test consists of a total of 70 items, and for all the test takers we know the year
(cohort) they took the test. The students are distributed over the cohorts as per Figure
25.
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Figure 25: An overview of the cohort sizes.

For the experiments in this chapter, we focus on the items corresponding to one of the
factors, namely extroversion. Results for the other factors can be found in the appendix.
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4.2 Adjustments to data-set

The resulting data-set consists of the answers to 14 questions (items) by 8954 students.
For copyright reasons, we are unable to reproduce the item text here; see the original
publication [Smits et al., 2013] for details. Answers were coded 1-7, representing (in
original Dutch, and a literal translation):

1. “absoluut niet” / “absolutely not”

2. “tamelijk slecht” / “somewhat bad”

3. “meer niet dan wel” / “more negative than positive”

4. “middenpositie” / “middle position”

5. “wel enigszins” / “somewhat”

6. “vrij goed” / “quite good”

7. “goed” / “good”

We interpreted these answers as a 1-7 Likert scale.

We found some miscoded answers, where the score on the supposed Likert scale was not
within 1-7, but was 8 or 9. The code book accompanying the data set did not mention
this possibility. Since we did not see a clear pattern in the occurrences, we chose to treat
such values as NA, and assume that they were meant as special cases of NA, as is often
the case with such values.

4.3 Results

We applied our implementation from section 2.2.1 to the Extroversion factor of the Big
Five Personality test, assuming that all parameters and the population trait mean could
vary.

First, we determined the optimal bandwidth. Then we looked at the resulting parameter
estimates. Finally, we look at the influence of sample size on the optimal bandwidth.
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4.3.1 Bandwidth determination

We performed this 10-fold cross-validation on the extroversion data set. The optimal
bandwidth we found was around 3.0, as seen in Figure 26. The deviance graph follows a
hockey-stick form as expected: very low bandwidths do not smooth at all, resulting in
models that are extremely over-fitted; very high bandwidths smooth all observations
into a single model, losing any parameter variation over time.

This bandwidth is of course only optimized for this specific data set; as it is dependent
on the presence of trends and variation in the underlying data. In Section 4.3.4 we look
at the influence of sample size on the optimal bandwidth size.

Figure 26: Deviance calculated using 10-fold cross-validation on the real-world data set
for various bandwidths. The optimal bandwidth is around 3.0, where the deviance is
minimized.

4.3.2 Parameter estimates

Using the kernel smoothing bandwidth 3.0 as found in the previous section, we calculated
the model parameters. The results can be found in Figure 27. We see a very small
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downward tendency for µt (see Figure 28 for a larger view), indicating that the mean
extroversion increased a small amount over time. σt seems to be constant over time.

Most question parameters are fairly constant (or have a very low sample size, such as
the extremely varying variants of δ1); we do however see some narrowing of question 11,
meaning that people over time tended to give less extreme answers.
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Figure 27: Estimates for all parameters. The RMSE of this fit is unknown, since we
don’t know the true values.
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Figure 28: A zoomed-in view of µt.

In Figure 29 we zoomed in on question 3 Figure 27, to look at the values and confidence
bands in detail.

Figure 29: Parameter estimates for the third question, with bootstrapped confidence
bands. The wideness of the bands around δ1 indicates that the estimates for that
parameter are inaccurate.

Based on the Figure 27 we suspected that the wild behavior of δ1 was not significant;
the larger version strengthens that suspicion, given how wide the confidence bands are.
We can see that the parameter estimates other than δ1 are fairly exact: the bands are
very narrow. So, given how flat the estimates are, it seems that answers to this question
given some trait value stayed constant over time, and that the variation of δ1 is due to
a small sample size, meaning that very few people chose the first option in question 3.
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Question 11 was also interesting: there seems to be a parameter drift in δ6; calculating
the confidence bands might show whether this is real or coincidental. Figure 30 shows
that the lowest parameter does indeed drift somewhat significantly, and so does the
highest; answers on this question became less “extreme” over time, in both directions,
after correcting for any variation in F.

Figure 30: Parameter estimates for the 12th question, with bootstrapped confidence
bands.

Looking at question 6 (Figure 31), we see a pattern similar to question 3, except that
this question is more discriminatory, given that its parameters are wider apart. The
bands around δ1 are also narrower than in question 3.

Figure 31: Parameter estimates for the 6th question, with bootstrapped confidence
bands.

43



4.3.3 Exploratory conclusions

We did not find any strong trends in the data set on a macro level. The mean extroversion
in the population stays fairly constant. Some questions changed over time: for example,
question 11 became less discriminatory. The lack of large effects does not surprise us:
we did not expect the mean extroversion in our population to change greatly in a short
period of time, nor did we expect the answers to questions to change very much.

4.3.4 The effect of sample size on optimal bandwidth

In section 4.3.1 we have determined the optimal kernel smoothing bandwidth for a given
real-world data set. Now, we’re interested in determining the influence of sample size
on the optimal bandwidth. We expect that, for lower sample sizes, larger bandwidths
will be optimal, to smooth out the variance over time. For very large sample sizes, we
would expect the optimal bandwidth to go towards 0, since we no longer need kernel
smoothing to trade bias against variance, having very accurate local estimates.

In our experiment, we followed the procedure described in Section 2.2.2 on increasingly
smaller subsets of the original data set. The results are shown in Figure 32 and in Table
2.

Now, if we wanted to be able to use a bandwidth of 2.5 on our data set (thus getting
estimates that are smoothed less by the kernel smoothing), we could calculate a very
rough estimate of the required sample size by extending Figure 32. We see a decrease of
0.5 of the optimal bandwidth between a sample size of 7163 and 8954. So, we estimate
that approximately 11000 individuals would be required for the optimal bandwidth to
be 2.5.

From the experiments in Chapter 3, one could get an idea of the bandwidth required to
be precise enough to show the effect one has in mind.
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Sample size Optimal bandwidth
8954 (100%) 3.0
8506 (95%) 3.1
8058 (90%) 3.2
7163 (80%) 3.5
5969 (66%) 4.2
4477 (50%) 5.1

Table 2: Optimal bandwidth for various sample sizes, using randomly sampled parts of
the real data.

Figure 32: Optimal bandwidth for various sample sizes. For very large sample sizes,
we expect the optimal bandwidth to go towards 0. We see that according to this
approximation, our current sample size is not close to being large enough to use a
multi-group model without kernel smoothing.

45



5 Discussion

We have demonstrated a method for the estimation of varying coefficient IRT models.
We have shown its working on a both a simulated and a real-world data-set, and have
seen that it works well for capturing and visualizing varying coefficients in IRT models on
simulated data sets. The visual overview of all parameters make it easy to detect trends
and come up with hypotheses about varying coefficients. We were able to estimate both
model parameters and population parameters simultaneously, and we found sensible
results using the restrictions we set on the population parameter.

Our method can calculate confidence intervals. While these are interesting, there are
some reasons not to use them. For one, calculating the confidence intervals increases the
computational time 50-fold. Also, the interpretation of the results can be difficult: while
the confidence intervals do somewhat indicate the accuracy of the parameter estimates,
the kernel smoothing makes it a lot less clear what exactly that accuracy means. For
example, for a non-constant parameter, increasing the smoothing bandwidth will both
increase estimation bias (the resulting parameter will be estimated to be more constant
over time), but also reduce the confidence interval size, due to the local increase in
sample size. The intervals might be a useful indicator of local accuracy: cohorts with
less or less accurate data will have wider bands than larger and more accurate regions.

In real-world data, we found that most of the effects are subtle, after applying kernel
smoothing with optimal parameters. This can mean two things: either the trends in the
underlying data are very subtle, or our method is not sensitive enough. Larger sample
sizes would allow us to use a smaller bandwidth, which would allow us to pick up smaller
effects.

To conclude: if a longitudinal parameter is available in data in an IRT framework, we
feel that it would indeed seem useful to look at a varying coefficient IRT model, to make
sure you’re not trying to fit a fixed (measurement-invariant) model to a population
whose traits and/or interpretation of the items are changing.

Further research should be done by applying the method to different data sets; if
possible, to data sets where shifts in some parameters are known. Varying coefficient
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IRT models might also be used to quickly adapt tests and surveys in response to a
changing population.

47



References

[Birnbaum, 1968] Birnbaum, A. (1968). Some latent trait models and their use in
inferring an examinee’s ability. In Lord, F. M. and Novick, M. R., editors, Statistical
theories of mental test scores, pages 397–479. Addison-Wesley, Reading, MA.

[Bock, R. D. & Aitkin, M., 1981] Bock, R. D. & Aitkin, M. (1981). Marginal maxi-
mum likelihood estimation of item parameters: An application of the em algorithm.
Psychometrika, 46:443–459.

[Broyden, 1970] Broyden, C. G. (1970). The convergence of a class of double-rank mini-
mization algorithms 1. general considerations. IMA Journal of Applied Mathematics,
6(1):76–90.

[Chalmers, 2012a] Chalmers, R. P. (2012a). Mirt: a multidimensional item response
theory package for the r environment. Journal of Statistical Software, 48(6):1–29.

[Chalmers, 2012b] Chalmers, R. P. (2012b). mirt: A multidimensional item response
theory package for the R environment. Journal of Statistical Software, 48(6):1–29.

[Fletcher, 1970] Fletcher, R. (1970). A new approach to variable metric algorithms. The
computer journal, 13(3):317–322.

[Forero and Maydeu-Olivares, 2009] Forero, C. G. and Maydeu-Olivares, A. (2009). Es-
timation of irt graded response models: limited versus full information methods.
Psychological Methods, 14(3):275.

[Golembiewski et al., 1976] Golembiewski, R. T., Billingsley, K., and Yeager, S. (1976).
Measuring change and persistence in human affairs: Types of change generated by od
designs. The Journal of Applied Behavioral Science, 12(2):133–157.

[Hambleton, 1991] Hambleton, R. K. (1991). Fundamentals of item response theory,
volume 2. Sage publications.

48



[Hastie and Tibshirani, 1993] Hastie, T. and Tibshirani, R. (1993). Varying-coefficient
models. Journal of the Royal Statistical Society. Series B (Methodological), 55(4):pp.
757–796.

[Hastie et al., 2009] Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J.,
and Tibshirani, R. (2009). The elements of statistical learning, volume 2. Springer.

[Lawley and Maxwell, 1962] Lawley, D. N. and Maxwell, A. E. (1962). Factor analysis
as a statistical method. Journal of the Royal Statistical Society. Series D (The
Statistician), 12(3):209–229.

[McDonald, 1999] McDonald, R. P. (1999). Test theory: A unified treatment. Psychology
Press.

[Muraki, 1990] Muraki, E. (1990). Fitting a polytomous item response model to likert-
type data. Applied Psychological Measurement, 14(1):59–71.

[R Core Team, 2014] R Core Team (2014). R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing, Vienna, Austria.

[Rasch, 1960] Rasch, G. (1960). Probabilistic models for some intelligence and attain-
ment tests. Nielsen & Lydiche, Copenhagen.

[Raudenbush et al., 2003] Raudenbush, S. W., Johnson, C., and Sampson, R. J. (2003).
A multivariate, multilevel rasch model with application to self–reported criminal
behavior. Sociological methodology, 33(1):169–211.

[Samejima, 1972] Samejima, F. (1972). A general model for free-response data. Psy-
chometrika Monograph Supplement.

[Samejima, 1997] Samejima, F. (1997). Graded response model. In Handbook of modern
item response theory, pages 85–100. Springer.

[Smits et al., 2013] Smits, I., Dolan, C., Vorst, H., Wicherts, J., and Timmerman, M.
(2013). Data from ’cohort differences in big five personality factors over a period of
25 years’. Journal of Open Psychology Data, 1(1).

49



[Spearman, 1904] Spearman, C. (1904). "general intelligence," objectively determined
and measured. The American Journal of Psychology, 15(2):201–292.

[Thurstone, 1929] Thurstone, L. L. (1929). The measurement of psychological value.
Essays in Philosophy by Seventeen Doctors of Philosophy of the University of Chicago.
Chicago: Open Court, pages 157–174.

[Wand and Jones, 1994] Wand, M. P. and Jones, M. C. (1994). Kernel smoothing. Crc
Press.

[Weiss and Yoes, 1991] Weiss, D. J. and Yoes, M. E. (1991). Item response theory. In
Advances in educational and psychological testing: Theory and applications, pages
69–95. Springer.

[Zhang and Wang, 2014] Zhang, X. and Wang, J.-L. (2014). Varying-coefficient additive
models for functional data. Biometrika, page asu053.

50



A Results for the other 4 factors

We have shown the results of the method as applied to Extroversion. Table 3 contains the
optimal bandwidth for the other 4 factors, and Figures 33 - 36 show the corresponding
resulting models.

Factor Optimal bandwidth
Extroversion 3.0
Neuroticism 3.1
Agreeableness 3.4

Conscientiousness 2.6
Openness 4.5

Table 3: Optimal bandwidth for all 5 factors.
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Figure 33: Estimates for all parameters for Neuroticism, using bandwidth 3.1.
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Figure 34: Estimates for all parameters for Agreeableness, using bandwidth 3.4.
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Figure 35: Estimates for all parameters for Conscientiousness, using bandwidth 2.6.
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Figure 36: Estimates for all parameters for Openness, using bandwidth 4.5.
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B Proof for 2.1.3

We can interpret a weighted model as equivalent to a larger unweighted model: for
wn ∈ Q, the optimal parameters are equivalent to those in an unweighted model with
repeated rows.

Let wn = an
bn

be fractions, so with an, bn ∈ N≥0. Now, let z = LCM{bn : 1 ≤ n ≤ N}.
We can write wn = an· zbn

z
. Because z is a multiple of bn, we know that both numerator

and denominator are integer. So, we can fill this in for wn in Equation 10:

ζ̂(X) = arg max
ζ

∑
n

wn log
ˆ ∏

i

p(xni|ζi, f)φ(f)df

= arg max
ζ

∑
n

an · zbn
z

log
ˆ ∏

i

p(xni|ζi, f)φ(f)df

= arg max
ζ

1
(n · z)

∑
n

(
an ·

z

bn

)
log
ˆ ∏

i

p(xni|ζi, f)φ(f)df

Now, because z is a product of bn it follows that an · zbn is also integer, so we see the
equivalence to a larger matrix, where row n from matrix X is repeated an · zbn times.
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