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Abstract

Vector autoregression (VAR) and structural vector autoregression (SVAR) are economic models
that capture the linear interdependency between time series. VAR is purely mechanical in its
construction of independent structural residuals, whereas SVAR for the same purpose employs
economic content. Another model is built based on VAR and SVAR using the inconsistent
variance covariance structures of the residuals. This helps enhance the advantages of these two
models while avoiding their limitations.

We study the reaction of the employment rate to the GDP growth rate in the Netherlands. The
reaction has a lagged effect, which is modelled by VAR, SVAR, and the built model. Due to the
Great Recession, the effect size becomes asymmetrical, which is better operated by the built
model than VAR and SVAR. The effectiveness of the built model is perceived in terms of its
fitted values.

By fitting the models to data without the recessional period, the results of VAR and SVAR are
consistent with the CPB findings. The employment rate decreases in reaction to shocks to the
GDP rate and fluctuates back to equilibrium after three lagged periods. The fluctuation may
be caused by the confounding factors that might have imposed opposite forces than the variable
reactions.
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1 Introduction

Economists study the relationship of various labour market variables with GDP, such as em-
ployment, unemployment, labour supply etc. During the Great Recession in the late 2000s,
an economic decline was observed in world markets [Davis, 2009]. The Centraal Planbureau
(CPB) as the economic policy analysis institute for the Netherlands has done abundant research
to monitor this recession’s impact on the Dutch labour market. The CPB usually addresses
the changes in labour market variables by growth rates, which make economic interpretations
accessible. In the CPB’s publication The Dutch labour market during the Great Recession [van
den Berge et al., 2014], the employment loss due to the Great Recession is shown to be sub-
stantial. From 2008 till 2013, the employment loss was approximately 222 thousand full-time
equivalents (Figure 1.1), corresponding to an employment growth rate of −2.5%.

Figure 1.1: Employment of employees and self-employed in full-time equivalents.

In the CPB publication Roads to Recovery [Lanser et al. 2014], the decline of the Dutch
employment rate during the Great Recession was shown to differ from other countries. In the
first phase of the recession in 2008 and 2009, the decline was mild and slower than expected
whereas most other countries experienced a sharp decline. During the other countries’ recovery
phase starting 2011, the Dutch employment continued to decline. The slower decline in the first
phase, thus the lag between GDP and employment, was said to be cushioned by labour hoarding
1, temporary workers and self-employment 2, and real wages 3. The continuous decline in the
second phase could be explained by the ”double dip” 4 in the Netherlands.

There are many economic theories that link GDP and employment. Changes in GDP measure
the economic state of a country, and affect the behavior of firms on how many people they want
to hire, thus employment. Changes in aggregate employment follow changes in GDP: firms
hire workers if the economic situation improves and displace workers if the economic situation
deteriorates. However this relationship is not as simplistic as it seems. There may e.g. be a lag
in the reaction of aggregate employment to the business cycle due to labour hoarding after a
recession or due to recovery of productivity after the recession is over. Moreover, the reaction of
firms may depend on the labour market situation (whether or not the labour market was tight

1Labour hoarding implies that firms refrain from lay-offs of redundant workers during a recession [CPB, 2014].
2These two elements play an opposite role to employment in its reaction to the crisis [CPB, 2014].
3Lowered labour demand leads to a trade-off between wage and employment losses CPB, 2014.
4Two recessions occurred in the Netherlands in 2008 and 2012.
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before the recession) and on their financial situation (labour hoarding might not be feasible
if firms do not have the financial means to do so). The question is how the relation between
GDP and labour market variables can be modelled and estimated empirically, especially for the
Dutch market where the GDP-employment relationship is peculiar.

Okun’s law [Okun, 1962] is a classical econometric model that measures the empirical relation-
ship between GDP and unemployment. Several models were developed based on Okun’s law,
one of which for instance models the relationship between employment and GDP growth rates
[Kitov & Kitov, 2011]. However Okun’s law is under some criticisms of lacking long-term effect
between the two variables [Stock and Watson, 2012]. Additionally several authors have found
instability in Okun’s law over time [for example, Knotek, 2007].

Akkemik (2007) and Chinn et al. (2014) proposed an error correction model (ECM) that ac-
counts for a long-term relationship between GDP and employment. However the ECM requires
the existence of cointegration relations between the variables, that is, a linear combination of
the variables must have a long run equilibrium. This is not applicable in the case of labour
market growth rates, which usually do not form such a cointegrated trend.

The vector autoregression (VAR) model and the structural vector autoregression (SVAR) model
may be good macroeconomics models for the current purpose [see, for example, Raoufinia, 2016;
Gosselin Lalonde, 2002]. On the one hand the changes in employment lag behind changes in
GDP 5, on the other hand GDP is also a measure of the total production of the economy
which is determined by employment. Therefore the two variables are correlated. One may
expect that the lagged values of GDP have an effect on employment rate and perhaps its
contemporaneous effects. Likewise, employment rate has impact on GDP and it is hard to
conclude about their causality. VAR and SVAR models have been widely used by the CPB
to measure the interrelatedness between labour market variables [see, for example, Elbourne
and Teulings, 2011]. VAR models are used because VARs are simple to estimate [Elliott and
Timmermann, 2008] and a large class of models can be well approximated by a VAR model
[Fernandez-Villaverde et al. (2007)]. On top of these advantages, VAR models are developed to
incorporate non-statistical economic information [Pfaff, 2008], that is the SVAR models.

1.1 Aims of this thesis

In this thesis the relationship between the real GDP growth rate and employment rate is es-
timated. There are two goals of this project. One is to examine how employment reacts to
changes in GDP in the Netherlands by answering:

- How strong is the reaction of employment to changes in GDP;

- How long is the time lag for this reaction of employment to GDP;

Another goal of this project is to produce a model, built on existing models, which will improve
the analysis of the size of the reaction and the lag in asymmetrical good and bad economic
times. This model will be used to answer:

- How well it produces fitted values and predictions;

- If its fitted values and predictions outperform those of the existing models.

5Describes the situation where the leading variable GDP is cross-correlated with the values of the lagged
behind employment at earlier times.
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1.2 Structure of this thesis

This thesis is organized as follows. In Chapter 2 a detailed description of the data is provided.
Chapter 3 consists of the theoretical background of several unit root tests that are used to test
the stationarity of the series. Stationarity tests are necessary because stationarity or otherwise
can strongly influence the behavior of the series e.g. persistence of economic shocks will be
infinite for nonstationary series. Chapter 4 introduces the vector autoregression model and its
relevant tests that are used to handle the doubts about series stationarity. The Chapter ends
with a focus on the impulse response function and Cholesky decomposition. In Chapter 5 the
structural vector autoregression model is introduced, followed by overidentification tests and
parameter restrictions. In Chapter 6, an alternative model for SVAR that compensates the
traditional VAR model is described. The model setup is described in steps. Simulation tests
are included in this chapter to test the reliability and validity of the implementation. Chapter 7
assesses the prediction values using the two methods: identification of shocks using SVAR and
a change in residual volatility. The thesis ends in Chapter 8 with a discussion that answers the
research questions by relating the impulse responses to the CPB findings. It also reviews the
advantages of the built model over the classical models. The statistical analyses are performed
in the R-software environment. The R code for each chapter and some additional information
are provided in the appendices.

To sum up, the main body of this thesis consists of VAR, SVAR, and a model built on the basis
of them. The comparisons between the three methods are made throughout this thesis mainly
by means of their residuals, model fit, and the estimated parameters. The predictions made by
these models are used as final comparisons.
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2 Data description

Economic Co-operation and Development (OECD) and Centraal Bureau voor de Statistiek
(CBS) are the major sources of data used in CPB publications. The aggregated economic data
from the CBS are less accessible than the OECD data mainly because of strict security rules
of the CBS. The economic data on OECD are updated every six months. For this thesis, the
latest available data on OECD published on 30 October 2015 is used. Once there is an update
in data, the old data can be replaced, and the same models fit on it.

2.1 Data description

Data collected from Economic Projections OECD Economic Outlook No 98 6 is used in this the-
sis. The data consists of 22 variables 7, we selected the two variables Gross Domestic Product

Volume Market prices (nominal GDP) 8 and Total Employment 9 for the Netherlands. These
two series encompass the years from 1960 to 2017. Since data was published in 2015, years 2016
and 2017 were economic projections and were excluded from the analyses. The function ts in
package stats can be used for visual representations for the two processes, which are provided
in Figure 2.1. A numerical summary of the data is provided in Appendix 10.

Figure 2.1: Time series for nominal GDP and total employment

As seen in these two plots, nominal GDP continued to increase from 1961 until year 2008, when
it had a sharp decrease caused by the Great Recession. At the same time the total employment
in the Netherlands decreased only mildly. In the phase when multiple other countries who
witnessed recovery around 2011, the decline of the Dutch total employment continued. The
data for these two variables are consistent with the CPB publications introduced in the previous
chapter.

6http://stats.oecd.org/
7See G.1.
8GDP evaluated at current market prices, GDP being the monetary value of all the finished goods and services

produced within a country’s borders in a specific time period.
9Total employment is defined as the sum of civilian employment and members of the armed forces.

10A, Table A.1.
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GDP volume market prices Total employment

Min. :1.467e+11 Min. :4347823
1st Qu.:2.795e+11 1st Qu.:5334329
Median :3.631e+11 Median :5956745
Mean :3.999e+11 Mean :6369475
3rd Qu.:5.668e+11 3rd Qu.:7766083
Max. :6.868e+11 Max. :8505093

Table 2.1: Data summary
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3 Stationarity and stationarity tests

A time series is a sequence of numerical data points in successive order, which can be expressed
as (X1, ..., Xn). A stationary time series is one whose statistical properties such as mean and
variance do not change over time. Stationarity is often a prerequisite for time series analysis. If
(X1, ..., Xn) were a draw from unknown distribution, conclusions about the series distribution,
as well as tasks such as understanding the system and making predictions, would be impossible
[Van der Vaart, 2013].

One of the methods to transform a non-stationary series to a stationary series is through dif-
ferencing adjacent terms in the series. A time series may have stationary differences when itself
is nonstationary. Differencing removes a linear deterministic trend in a non-stationary series
[Van der Vaart, 2013]. First-order differencing can also transform a non-stationary series with
a stochastic trend to a stationary series. For instance, the time series {xt} is a random walk if

xt = xt−1 + wt (1)

where {wt} is stationary, for example a white noise series - a stationary series with mean zero
and zero autocorrelations. First-order differencing yields:

∇xt = xt − xt−1 = wt (2)

The first-order difference of {xt} produces the stationary series {wt}.

In Figure 2.1, the two series for the nominal GDP and total employment are non-stationary: they
both exhibit an increasing trend. First order differencing was applied to both series, and divided
by the value at the former time point to generate new variables real GDP growth rate 11 and
employment growth rate 12. For convenience these two growth rates will be abbreviated as
GDP and employment for the rest of this thesis unless specified otherwise. The current analysis
used data from 1960 till 2015. The differenced data contains GDP and employment from 1961
till 2015. The two series are plotted in Figure 3.1 using function ts in package stats. Because
of the small sample size, the converted two variables are documented in Appendix 13 to clearly
show their trend numerically.

GDP Employment

Min. :-0.03676 Min. :-0.014824
1st Qu.: 0.01651 1st Qu.: 0.005372
Median : 0.02853 Median : 0.014125
Mean : 0.02777 Mean : 0.011902
3rd Qu.: 0.04138 3rd Qu.: 0.021442
Max. : 0.08053 Max. : 0.030896

Table 3.1: Summary for GDP and employment growth rates

As shown in the summary in Table 3.1, when the economic recession struck the Netherlands
in 2008, the real GDP growth rate in 2009 decreased by -0.0367614, thus over 3%. Prior to

11Real GDP growth rate = (Nominal GDPt − Nominal GDPt−1)/Nominal GDPt−1
12Employment growth rate = (Total employmentt − Total employmentt−1)/Total employmentt−1
13A, Table A.2.
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Figure 3.1: Time series for GDP and employment

this recession, the lowest real GDP growth rate can be traced back to the recession in the early
eighties. In the plots above, employment does not seem to have a trend. The GDP series
has a slight downward trend till the early eighties. After this trend, GDP stabilized until it
experienced a sharp drop around 2008. Overall this series does not seem to follow a linear trend.
The Great Recession in the late 2000s could posit abnormalities in the time series, demanding
special attention to process the data during this period.

3.1 Tests

A model for series yt is linear if it can be expressed as

yt = α1yt−1 + ...+ αpyt−p + ut (3)

This is an autoregressive (AR) process yt of order p (AR(p)). ut is an unobservable white noise
process with mean zero and time invariant variance E(u2

t ) = σ2
u and the αi are fixed coefficients

that can be estimated by least squares. Denoting by L the lag operator (L)yt = yt−1, one can
write the process (3) more compactly as

(1− α1L− ...− αpLp)yt = ut or α(L)yt = ut (4)

with α(L) = 1 − α1L − ... − αpL
p. The process is said to be stationary if all roots of the

characteristic equation α(L) = 0 exceed unity in absolute value. On the contrary the process is
non-stationary if any of the roots is unity. Several tests have been developed for investigating
stationarity. They are commonly called unit root tests.
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Before proceeding to any unit root tests, one must conclude about the drift (constant) and linear
trend of the series. According to the graphical clue in Figure 3.1, after the data transformation,
the overall processes do not seem to have a linear trend. GDP fluctuates around 0.02 above
zero, and employment around 0.005 above zero. This may suggest a random walk model with
drift. The estimation equation including a drift parameter v then becomes

yt = v + α1yt−1 + ...+ αpyt−p + ut (5)

3.1.1 Augmented Dickey-Fuller (ADF) test

An augmented Dickey-Fuller (ADF) test tests the null hypothesis of a unit root against the
alternative of stationarity. If the process (4) is non-stationary, it is integrated at order one
α(1) = 1 − α1 − · · · − αp = 0. Assuming no linear trend, we reparameterize the model by
subtracting yt−1 on both sides of (3):

yt − yt−1 =− yt−1 + α1yt−1 + ...+ αpyt−p + ut

yt − yt−1 =(−1 + α1)yt−1 + α2yt−2 + ...+ αpyt−p + ut

∆yt =− α(1)yt−1 + α2yt−2 + ...+ αpyt−p + ut

∆yt =φyt−1 +

p−1∑
j=1

α∗j∆yt−j + ut (6)

where φ = −α(1) and α∗j = −(αj+1 + ... + αp). The t-statistic of the coefficient φ is obtained
from OLS estimation of (6) to test H0 : φ = 0 versus H1 : φ > 0 [Fuller (1976) and Dickey
Fuller (1979)]. The ADF test on the two processes can be performed using function ur.df in
package urca.

The process yt, t = 1, 2, ..., T can be decomposed into:

yt = rt + εt (7)

where rt is a random walk, and

rt = rt−1 + ut (8)

Assume ut ∼ iid(0, σ2
u) and εt is a stationary process. If σ2

u = 0, rt is a constant, yt is composed
of a constant and a stationary error εt, and is stationary. Thus, H0 : σ2

u = 0 versus H1 : σ2
u 6= 0

is equivalent to the test hypothesis.

Now consider εt as autocorrelated errors, in particular AR(1) errors of the form

εt = ρεt−1 + γt (9)

with the γt iid. Under the null hypothesis that ut = 0, yt becomes a random walk when the
parameter ρ approaches unity. As a result, the ADF test inadequately rejects the null hypothesis
of unit root of yt, depending on how close ρ is to unity [Kwiatkowski et al., 1992].
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3.1.2 Elliott, Rothenberg & Stock Unit Root (ERS) test

To improve the power of the unit root test, Elliott, Rothenberg & Stock (1996) proposed to
locally detrend or demean the time series, known as a Dickey-Fuller GLS (DF-GLS) test, which
takes the serial correlation of εt into consideration. Consider remodelling the parameter ρ in
(9) as ρ = 1 − c̄

T and filter yt with 1 − c̄
T L where L is the lag operator, i.e. ȳt = yt − ( c̄T )yt−1.

The test detects unit root by first demeaning the data yt into ȳt. Working with ȳ gains the
unit root test a 50% power. Depending on different specifications of rt in (7), c̄ takes different
values. This thesis uses predetermined ρ = 0.85 suggested by Hwang and Schmdit (1996) for
annual data to optimize the power (as in point optimal P-test).

This is an efficient unit root test because the ERS test has substantial power over the ADF
unit root test, especially when the roots of the characteristic equation approach unity. An ERS
P-test was performed for the two processes using function ur.ers in package urca.

3.2 Sensitivity to lags

The results of these tests are very sensitive to the number of lags i.e. order of the AR processes
included in their respective R functions. It is very likely that some tests will indicate the
presence of a unit root, while other will not. A sensible choice in the lag selection is crucial to
the test precision. A few generic methods of orders selection are used in this thesis.

3.2.1 Automatic lags

These two tests use default lags in the R functions by means of leaving the lags argument
empty for ur.df. The ADF function chooses the optimal lag by the AIC criterion. R automat-
ically generates output with indications of lag numbers. Function ur.ers does not admit a lag
argument or generates outputs with lags. The results are summarized in Table 3.2.

GDP Lag length α = 0.01 α = 0.05 α = 0.1

ADF 1 retain unit root reject unit root reject unit root
ERS / reject unit root reject unit root reject unit root

employment Lag length α = 0.01 α = 0.05 α = 0.1

ADF 1 reject unit root reject unit root reject unit root
ERS / reject unit root reject unit root reject unit root

Table 3.2: Default lag and results of ADF and ERS tests.

As can be seen under the results for GDP, different tests at significance level α = 0.01 indicate
inconsistent presence of unit root and stationarity. The ERS P-test rejects the unit root hy-
pothesis while the ADF test fails to do so. Although the ERS test is with higher power than
the ADF test, the inconsistent suggestions of (non)stationarities in the table may necessitate a
better input of lags in the tests.

3.2.2 OLS estimation

GDP and employment are autoregressive processes of unknown order p. The OLS estimation
approach was motivated by Hamilton (1994) in Chapter 17.7 to estimate (3). A t-test of the
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highest lag αp = 0 can then be compared with the critical value. If the null hypothesis of this
lag being zero is accepted, the F -test of the joint null hypothesis that both αp = 0 and αp−1 = 0
can be compared with the usual F (2, T − k) distribution. The procedure continues until the
joint null hypothesis that αp = 0, αp−1 = 0, ..., α1 = 0 is rejected.

This function was implemented in R 14 with an upper bound p̄ = 5 to estimate the optimal lags
for the two processes. An optimal number of lags zero was found for both GDP and employment
processes when no linear trend but only a constant was included in the models. With p = 0 for
both processes, the results of the tests are shown in Table 3.3.

GDP Lag length p = 0.01 p = 0.05 p = 0.1

ADF 0 reject unit root reject unit root reject unit root
ERS / reject unit root reject unit root reject unit root

employment Lag length p = 0.01 p = 0.05 p = 0.1

ADF 0 retain unit root reject unit root reject unit root
ERS / reject unit root reject unit root reject unit root

Table 3.3: OLS estimation for lags and results of the ADF and ERS tests.

Using this approach and its optimal p = 0, employment shows inconsistency of the presence
of unit root between the two stationarity tests. The optimal p = 0 seems dubious, as it is
nearly impossible for GDP and employment to have no lags. Hamilton’s approach is probably
a heuristic approach that is not optimal in finding lags. This is only a simple technique that
one might consider to seek lag lengths.

3.2.3 Pacf and lags

Let xt be a time series, acf computes the correlation between xt and itself at different lagged
values, and pacf computes correlation that results after removing the effect of any correlations
due to the terms at shorter lags [Cowpertwait & Metcalfe, 2009]. The correlogram containing
(p)acf were plotted for the two series in Figure 3.2 using functions acf and pacf in package
stats.

As reported by the Box-Jenkins method (1970), pacf plotting has an important role in iden-
tifying the AR lags. Referring back to AR(p) process in (3), the kth coefficient is the partial
autocorrelation at lag k. For AR(p), the coefficients αk and the corresponding partial autocorre-
lations are zero for all k > p. In Figure 3.2, the two functions for both series have departure from
zero at the 95% confidence interval indicated by the dashed lines. GDP’s first lag in the partial
ACF (top right) plot is significant, indicating an underlying AR(1) process, corresponding to
an optimal lag number zero. Employment’s first and second lags in the partial autocorrelation
plot are significant, indicating an underlying AR(2) process, corresponding to an optimal lag of
one. Using these lags and repeating all of the unit root and stationarity tests, the results are
provided in Table 3.4.

Among the three approaches that select the optimal lags, the current approach gives the seem-
ingly most consistent results of the tests. Recalling the introduction of this section, there is no
definite answers as to how to select lags. These three approaches merely give bit of an idea of
how the AR order can be.

14G.2

11



Figure 3.2: acf and pacf for GDP and employment

GDP Lag length α = 0.01 α = 0.05 α = 0.1

ADF 0 reject unit root reject unit root reject unit root
ERS / reject unit root reject unit root reject unit root

employment Lag length α = 0.01 α = 0.05 α = 0.1

ADF 1 reject unit root reject unit root reject unit root
ERS / reject unit root reject unit root reject unit root

Table 3.4: Lags determined by pacf and results of the ADF and ERS tests.

3.3 Residuals diagnostics: complete versus reduced data

Among the three approaches mentioned in the previous section, the pacf approach produces the
most consistent results of stationarity for the tests. Since there is no one definite method for
lag selection, one may use pacf to choose the AR order for the two processes and fit (5) into
the data. To examine if this regression equation could explain the data well, one may look at
ut. The residuals for test ADF are accessible using package CADFtest. Any violations of the
white noise assumptions can be checked by the residuals (p)acf, QQ-plot, serial correlation, and
homo(hetero)scedasticity plotted in Figure 3.3 and 3.4.

In Figure 3.3 no white noise assumptions seem to be violated for the employment residuals. The
acf and pacf do not exceed the 95% boundary; residuals in the QQ plot form roughly a straight
line against their theoretical quantiles; the serial correlations for the neighbouring residuals is
approximately zero; and the residuals against the fitted value ŷt do not seem problematic. For
employment, there are no evident violations against the white noise assumption. However the
residuals of GDP in Figure 3.4 exhibit light skewness to the left in its QQ-plot. The variability
of residuals seem to increase with the values of ŷt . The irregularity of the residuals could
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be attributed to two main recessions in the early eighties and 2008 when the volatility of the
residual variance became inconsistent.

Figure 3.3: Residual diagnostics for employment, 1961-2015.

Data are further split into two parts with the first part containing years 1961 till 2006 before
the recession, and the second part containing years 2007 till 2015. The recession in the eighties
was not considered as a criterion for data split as to prevent the sample size from becoming
small. Using data from years 1961 till 2006 without the data from the recession period might
free GDP from residual violations. The same tests with lags determined by the pacf approach
were performed again on the pre-recessional data, and residuals were plotted in Figure 3.5. The
resulted graphs for years 1961 till 2006 show improvements for the GDP residuals, especially
for its residual normality. The increasing residual variability in Figure 3.4 is slightly improved
after removing the Great Recession data. The improvements cannot remove the doubts about
residuals violation and about the stationarity of the GDP process even with recession data
excluded.

3.4 Summary

Conclusions about optimal lag and stationarity are impossible due to the inherent problems
of the various stationarity/unit root tests and lag selection techniques. Previously in the unit
root tests, if the optimal lags were selected based on the pacf plots, the hypothesis of unit root
was rejected by ACF and ERS. This result appeared to be consistent for both series in both
data sets. Apart from the issues over optimal lag and stationarity, the problematic residuals
make the the model fit skeptical. Reducing the data improved the residual conditions, but this
eventually does not remove the doubts about stationarity. These techniques simply shed some
light on the stationarity and lag conditions for the two series, with no clear-cut conclusions.
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Figure 3.4: Residual diagnostics for GDP, 1961-2015.

Figure 3.5: Residual diagnostics for GDP, 1961-2006.
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4 Vector autoregression

From the economics perspective, GDP and employment growth rates cannot be determined as
exogenous as they are mutually dependent. It is preterable to model them simultaneously, and
for this purpose we consider a vector autoregressive (VAR) process. In the two-variable case,
the time path of GDP can be affected by the past realizations of employment and the other
way around. Additionally the VAR model allows for several useful tools to examine the relation
between the variables, such as the impulse response analysis, which will be introduced later in
this chapter.

The basic VAR(p) process can be written as:

yt = A1yt−1 + ...+Apyt−p + ut (10)

where yt = (y1t, ..., yKt)
′ is a (K×1) random vector, the Ai are fixed (K×K) coefficient matrices.

Finally, ut = (u1t, ..., uKt)
′ is a K-dimensional white noise with E(ut) = 0, E(utu

′
t) = Σu, and

E(utu
′
s) = 0 for s 6= t. For the current analysis, K = 2. 15

4.1 VAR lags

A suitable order p of the VAR(p) model can be determined from the data by several methods.
The function VARselect in package vars offers the selection criteria: Akaike’s information
Criterion [Akaike, 1969], Hannan-Quinn Criterion [Hannan and Quinn, 1979], Schwarz Criterion
[Schwarz, 1978], and Akaike’s final prediction error [Akaike, 1970]. In Table 4.1 and Table 4.2,
all of the selection criteria indicate a lag order of three for the data with and without the data
from the recessional period. Lag order p = 3 was set for the VAR analysis of the two series.

selection
AIC(n) HQ(n) SC(n) FPE(n)
3 3 3 3
criteria

1 2 3 4 5
AIC(n) -1.7840e+01 -1.8046e+01 -1.8401e+01 -1.8301e+01 -1.8176e+01
HQ(n) -1.7753e+01 -1.7901e+01 -1.8197e+01 -1.8039e+01 -1.7855e+01
SC(n) -1.7611e+01 -1.7664e+01 -1.7865e+01 -1.7613e+01 -1.7334e+01
FEP(n) 1.7878e-08 1.4562e-08 1.0240e-08 1.1358e-08 1.2964e-08

Table 4.1: VAR lags for data 1961-2015.

selection
AIC(n) HQ(n) SC(n) FPE(n)
3 3 3 3
criteria

1 2 3 4 5
AIC(n) -1.806700e+01 -1.8183e+01 -1.8441e+01 -1.8352e+01 -1.8214e+01
HQ(n) -1.7975e+01 -1.8031e+01 -1.8228e+01 -1.8078e+01 -1.7879e+01
SC(n) -1.7816e+01 -1.7765e+01 -1.7856e+01 -1.7600e+01 -1.7294e+01
FEP(n) 1.4250e-08 1.2706e-08 9.8583e-09 1.0863e-08 1.2627e-08

Table 4.2: VAR lags for data 1961-2006.

15Details of estimation method in B.
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4.2 VAR for the complete versus reduced data

A VAR model was fitted to the complete and reduced data sets with p = 3. The differences
in residuals ut generated by VAR using either complete or reduced data can be compared to
validate the data split. The improvements of the residuals of VAR could be attributed to the
data split, which essentially prevents the VAR model from fitting the Great Recession data. The
VAR residuals can be plotted as a comparison to the residual diagnostics of the AR processes.
This may provide some ideas of how residuals’ improvement is related to the endogeneity of the
two variables.

A third-order vector autoregression VAR(3) model incorporating a drift v was constituted for
the complete data, and (10) becomes:

yt = v +A1yt−1 +A2yt−2 +A3yt−3 + ut (11)

This model is fitted to the complete data with the function VAR in package vars. The VAR
model can be summarized as 16:

Gt = 0.0081 + 0.5049Gt−1 + 0.0401Et−1 + 0.0063Gt−2 − 0.4336Et−2 + 0.2375Gt−3 + 0.2322Et−3 + u1t

Et = 0.0050 + 0.2566Gt−1 + 0.5711Et−1 − 0.1061Gt−2 + 0.0627Et−2 − 0.1261Gt−3 − 0.1222Et−3 + u2t

The same model with p = 3 was fitted to the reduced data. The VAR model can be summarized
as:

Gt = 0.0119 + 0.4635Gt−1 + 0.1939Et−1 + 0.0200Gt−2 − 0.3338Et−2 + 0.1422Gt−3 + 0.1265Et−3 + u1t

Et = 0.0071 + 0.1959Gt−1 + 0.6074Et−1 − 0.1043Gt−2 + 0.1375Et−2 − 0.1244Gt−3 − 0.2137Et−3 + u2t

The VAR parameter coefficients provide the best model fitted to the data, but the coefficients of
the lagged variables per se contain little interpretable information. The estimated parameters
are used to produce good forecasts, but the estimations do not give meanings to the causal
relationships of the variables and their past values. The signs of the VAR estimators decide the
dynamics at the same time point for the two dimensions, but the coefficients should not be used
to directly say anything about the effects at different time points (lags) the two variables have
for each other. Our data are observations of the economy, we cannot interpret the parameter
estimations the same way as we do it in an experiment. A VAR model is used to fit the data for
the parameter estimations, which further constitute analyses that study the dynamic relations
between the variables. Therefore the above estimated models are not of main interest in terms
of forecasts and interpretations. 17

4.3 VAR stability

An important characteristic of VAR(p) is its stability. This means VAR(p) is stationary with
time invariant means, variances, and covariances structure (Pfaff, 2006).

16Estimation method in B.
17Conclusion derived from a private discussion with the CPB econometrician Dr. Rob Luginbuhl.

16



Any VAR(p) can be written as VAR(1) [Lutkepohl, 2006]:

Yt = ν + AYt−1 + Ut (12)

where

Yt =


yt
yt−1

...
yt−p+1

, ν =


v
0
...
0

, A =


A1 A2 ... Ap−1 Ap
IK 0 ... 0 0
0 IK 0 0
...

. . .
...

...
0 0 ... IK 0

, Ut =


ut
0
...
0

.

The characteristic polynomial of A is det(A−λIK) or det(λIK−A), where λ are the eigenvalues
of A. The reverse characteristic polynomial is

det(IK −Aλ) = det(IK −A1λ− ...−Apλp) (13)

if det(IK−A1λ− ...−Apλp) 6= 0 for |λ| ≤ 1, VAR(p) is stable. This condition has been satisfied.
λ can be found using the function roots in package vars.

4.4 VAR Residual diagnostics

Several tests were performed on the VAR residuals. The null hypotheses of these tests are: the
residuals exhibit no autoregressive conditional heteroscedasticity (ARCH test) [Engle(1982),
Hamilton (1994), and Lutkepohl (2006)]; have zero autocorrelations (Portmanteau test) [Ljung
Box (1978)]; have skewness and kurtosis being zero (JB normality tests) [Bera and Jarque (1980),
(1981), Jarque-Bera (1987), Lutkepohl (2006)]. The R functions serial.test, arch.test, and
normality.test in package vars can be used for these tests. Results in Table 4.3 and Table 4.4
show that the null hypothesis of the Kurtosis test for the VAR residuals derived from the
complete data is rejected at p = 0.04. This indicates that the probability distribution of the
residuals is heavy-tailed and not normal. All of the other hypotheses are retained, that is, the
errors are uncorrelated and homoscedastic.

Diagnostics for the residuals are plotted in Figure 4.1 to 4.4. In the diagram of fit and

residuals for the series in these figures, the top part is the VAR model fit with the observed
values indicated by the solid black line and the fitted values by the dashed blue line. The real
values of the two variables are adequately captured by the fitted values. The plot underneath
shows that the VAR residuals seem to be a white noise series that fluctuates around a red line
at y = 0. In ACF Residuals and PACF Residuals, none of the acf or pacf have autocorrelations
between the residuals and their lagged values, indicating white noise VAR residuals.

Comparing the residuals fitting respectively to complete versus reduced data we see that the
GDP residuals have improvements especially with regards to its QQ-plot. The homoscedastic-
ity and linearity plot has a less dense scatter in the center region. Removing the data from
the recession period generates slightly better VAR residuals. For employment, there are no ob-
vious changes in the appearance of the VAR residuals. This is not surprising as the employment
series is not as problematic as the GDP series during the recessional period.

Comparing VAR residuals in Figure 4.1 and 4.3 to AR residuals in Figure 3.4 and 3.5, no clear
improvements can be observed. The VAR residuals are not essentially improved in terms of
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the residual hypothesis. However splitting the data and use only the non-recessional part does
improve the model fit for both AR and VAR.

test statistic pvalue

Portmanteau Test (asymptotic) 30.15 0.99
ARCH (multivariate) 46.33 0.41
JB-Test (multivariate) 6.70 0.15
Skewness only (multivariate) 0.47 0.788
Kurtosis only (multivariate) 6.22 0.04

Table 4.3: Diagnostic tests of VAR(3) for the complete data.

test statistic pvalue

Portmanteau Test (asymptotic) 37.83 0.92
ARCH (multivariate) 57.76 0.09
JB-Test (multivariate) 2.43 0.65
Skewness only (multivariate) 0.76 0.68
Kurtosis only (multivariate) 1.67 0.43

Table 4.4: Diagnostic tests of VAR(3) for the reduced data.

Figure 4.1: VAR fit and residuals diagnostics for GDP (complete data).
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Figure 4.2: VAR fit and residuals diagnostics for employment (complete data).

Figure 4.3: VAR fit and residuals diagnostics for GDP (reduced data).
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Figure 4.4: VAR fit and residuals diagnostics for employment (reduced data).
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4.5 Impulse response analysis

The goal of bringing out the VAR system is to find out the interrelatedness of the VAR variables,
which can be extrapolated from the autoregressive coefficients of the VAR system. Consider
forcing a shock onto the VAR system by changing the residual of one or both variables, for one
period, and then returning it to zero thereafter. The time path whereby the variables return
to the equilibrium is called the impulse response of the VAR [Greene, 2008]. In the current
analysis, impulse response analysis measures how many units in GDP and employment change
in reaction to one positive unit change in their residuals ut respectively.

In Section 4.3, we know that the VAR(1) representation for VAR(p) is (12). Under the stability
assumption, the process Yt has the moving average (MA) representation (see Lutkepohl 2006)

Yt = µ +

∞∑
p=0

ApUt−p (14)

The vector moving average (VMA) representation for the K-dimensional VAR process yt can
be obtained by premultiplying (14) by the (K ×Kp) matrix J := [IK : 0 : · · · : 0]

yt = JYt

= µ+

∞∑
p=0

Φput−p
(15)

where Φp = JApJ ′, and ut is a white noise process with covariance matrix Σu. For our two-
dimensional VAR model, this equation can be further partitioned as

yt =

[
yt,1
yt,2

]
=

[
µ1

µ2

]
+

[
Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

] [
u1t

u2t

]
The coefficients Φ of the VMA representation can be used to generate the effects of the residuals
u on the entire time paths of yt. For example, the coefficient Φ with L = 0 is the instantaneous
impact of a one-unit change in ut on yt, and Φ with L = 1 is the response of a one-unit change
on ut in yt+1. The Φ are called the impulse response functions (IRF) [Enders, 1995].

4.5.1 Orthogonalization by Choleski decomposition

Given that the variables in the VAR system are interrelated to each other, and that the shocks
are used to explain such relations, the impulse response analysis assumes that the shocks only
happen to one variable at a time [Lutkepohl, 2006]. The error terms u1t and u2t are often
instantaneously correlated, that is Σu is not diagonal. This suggests that a shock in one variable
is accompanied by a shock in another variable. Therefore the VAR impulse response analysis
is under criticisms: if the VAR residuals ut are correlated, the underlying shocks are also
correlated. One cannot force Σu to be diagonal, as this will obscure the actual relation between
the variables [Lutkepohl, 2006].

One solution to isolate the shocks in correlated components of ut is Choleski decomposition.
Using a Choleski decomposition of the covariance matrix Σu generates a lower triangular matrix
P that satisfies Σu = PP’. In that case the vector εt = P−1ut gives orthogonalized shocks,
as Σε = P−1ΣuP

−1′ = IK . Because the components of εt are orthogonal, a change in one
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component has no effect on the other components. Therefore (15) can be transformed into (see
Lutkepohl 2004)

yt = µ+
∞∑
p=0

ΦpPP−1ut−p = µ+
∞∑
p=0

θpεt−p (16)

where θp = ΦpP. For the current analysis, K = 2 and this equation can be specified as[
yt,1
yt,2

]
=

[
µ1

µ2

]
+

[
θ0,11 θ0,12

θ0,21 θ0,22

] [
εt,1
εt,2

]
+

[
θ1,11 θ1,12

θ1,21 θ1,22

] [
εt−1,1

εt−1,2

]
+ ...

The jk-th element of θp represents the effect on variable j of a unit change in shock in the k-th
variable that has occurred p periods ago. For example, a unit change in the shock of GDP given
p results in

θp =

[
θ0,11 θ0,12

θ0,21 θ0,22

] [
1
0

]
=

[
θ0,11

θ0,21

]
θp =

[
θ1,11 θ1,12

θ1,21 θ1,22

] [
1
0

]
=

[
θ1,11

θ1,21

]
...

A unit change in the shock of employment given p results in

θp =

[
θ0,11 θ0,12

θ0,21 θ0,22

] [
0
1

]
=

[
θ0,12

θ0,22

]
θp =

[
θ1,11 θ1,12

θ1,21 θ1,22

] [
0
1

]
=

[
θ1,12

θ1,22

]
...

The orthogonalized impulse response functions with θp plotted against p can visually represent
the behavior of the series in response to the shocks. Orthogonalized impulse responses of the
GDP/employment system are plotted in Figure 4.5, in which the four graphs give the entries
of the 2 × 2 matrices θp as a function of p. An orthogonalized GDP shock in the bottom-left
graph is seen to induce the employment to increase by one period (year) and then it tapers off
to zero.

In addition to a lower triangular matrix P, many matrices P satisfy Σu = PP’, but there is
some degree of arbitrariness when constructing shocks in this manner. Sims (1981) recommends
trying different orderings of the variables, the resulting different recursive structures can be used
to check the robustness of the results. That is to say, a different ordering of the variables should
produce different P matrices with different effects of the shocks on the system. Following this
idea GDP and employment variables are switched in order, the IRF for this new ordering is
plotted in Figure 4.6. It is obvious that the two figures have different impulse responses.

Which set of impulse responses actually reflects the ongoings of the variables is one of the
main obstacles in a VAR system [Lutkepohl, 2006]. The non-unique impulse responses leads
to Lucas critique (1976), which is translated by Enders (1995) as being mechanical, merely
summarizing the dynamics of the data, being devoid of any economic content. The effects of
shocks are improperly identified in a VAR system, unless there is a justification from subject
matter theory for a specific recursive structure P [Enders, 1995].
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Figure 4.5: Orthogonalized impulse responses of the GDP/employment system. Impulse re-
sponses θp,11, θp,21, θp,12, and θp,22 each corresponds the top-left, bottom-left, top-right, and
bottom-right graphs.

Another obstacle of VAR is that sometimes it is not practical to try all alternative orderings
as the number of variables increases. Yet this is not of concern for the current setting where
K = 2.

4.6 Summary

Given the unclear conclusion about their stationarity, the two processes are modelled by VAR
as an alternative option for the AR models. Unlike AR models, VAR considers the variables
simultaneously, which is expected to improve the model fit. However this is not shown in the
VAR residuals, at far as the current data is concerned. Excluding the data from the recessional
time improves the model fit, as in the case in of AR modelling. In the impulse response
analysis, the underlying shocks are not uncorrelated due to the correlated components of the
VAR residuals. To solve this problem, Choleski decomposition is used, but is associated with
doubts about its mechanical usage. It is difficult to claim that the impulse response analysis of
VAR is able to provide much of a theoretically justified result.
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Figure 4.6: Orthogonalized impulse responses of the GDP/employment system using different
ordering.
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5 Structural vector autoregression

The VAR structure produces more than one set of impulse responses and it is not possible
to determine which set of impulse responses reflect the ongoings between the variables in a
VAR system. An alternative structural vector autoregression (SVAR) model can be considered.
SVAR uses nonsample information to specify unique shocks, hence unique impulse responses.

An SVAR is the structural form of VAR. Recall the VAR equations in (10), an SVAR represen-
tation is:

Ayt = A∗1yt−1 + ...+A∗pyt−p + Bεt (17)

where A∗j = AAj(j = 1, ..., p) and εt = B−1Aut. The correlated components of the VAR
residuals ut will be transformed into uncorrelated structural residuals εt, which will have a
diagonal covariance matrix Σε with proper choice of A and B. There are three conventional
models that can be used to make such choices, and below are the representations of these three
models made by Lutkepohl (2006):

- A model, for which B is an identity matrix IK , ut = A−1εt, and Σu = A−1ΣεA
−1′ . Normalizing

the variances of the structural residuals to one, i.e., assuming εt ∼ (0, IK), Σu = A−1A−1′ .
Given GDPt and employmentt on the left-hand side of equation (17), the introduction of A
matrix models the instantaneous relations between the variables directly, and gives additional
contemporaneous endogenous variables.

- B model, for which A is an identity matrix IK , ut = Bεt, and Σu = BΣεB
′. Normalizing

the variances of the structural residuals to one, i.e., assuming εt ∼ (0, IK), Σu = BB′. The
introduction of B matrix simplifies the error structure and make the elements of the error vector
uncorrelated. This is a direct approach to orthogonalize the structural innovations εt from the
reduced form residuals ut. This model and Choleski decomposition differ from each other: the
former emphasizes the theoretical justification for the orthogonalization, and the latter has
its orthogonalization done by the mechanical application of the Cholesky decomposition. In
principle, for an SVAR B model, B can have other forms of restrictions, the triangular form is
just an example.

- AB model, for which ut = A−1Bεt and Σu = A−1BΣεB
′A−1′ . Normalizing the variances of

the structural innovations to one, i.e., assuming εt ∼ (0, IK), Σu = A−1BB′A−1′ . This model is
rarely used in practice.

Assuming the structural innovations uncorrelated, one can take the observed Σu to identify the
structural parameters A and/or B since they are not readily observable. Thereby the underlying
structural model can be uncovered from the reduced-formed VAR model, while preserving the
assumed independent error structure.

5.1 Parameter restriction and identification

The SVAR system generally suffers from the problem of underidentification, because VAR pa-
rameters are outnumbered by SVAR parameters. More specifically, the number of nonredundant
elements of Σu is equal to K(K + 1)/2 and it is not possible to identify more than this number
of parameters of the structural form. Take A model of SVAR for instance, the total number
of elements of A is K2. Therefore K2 − K(K + 1)/2 = K(K − 1)/2 would be the minimal
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number of restrictions remained to be imposed on the SVAR parameters. Sims (1986) and
Bernanke (1986) used economic theories for this restriction, which is regarded as non-recursive
identification of shocks. Recall that Choleski decomposition and its recursive orthognolization
of shocks create arbitrariness in the impulse responses. The non-recursive structure imposes the
restrictions on the A and/or B matrix and resolves the arbitrary problems.

Three ways to restrict the matrices are as follows:

- For A model, restrictions are placed on A matrix while B is offset to IK , with K = 2 in this
analysis;

- For B model, restrictions are placed on B matrix while A is offset to IK , with K = 2 in this
analysis;

- For AB model, restrictions are placed on A and B matrices.

In the current context, the variance covariance matrix Σu for GDP and employment is:

Σu =

[
σ2

1 σ12

σ21 σ2
2

]
= A−1BΣεB’A

−1′

Take the example of an A model where B is an identity matrix, and assume εt ∼ (0, IK):[
σ2

1 σ12

σ21 σ2
2

]
=

[
A11 A12

A21 A22

]−1 [
A11 A12

A21 A22

]−1′

The symmetry of Σu that σu12 = σu21 provides three equations to determine four unknown
values. The exact identification of A requires a minimal number of K(K− 1)/2 = 1 restrictions
placed on A elements to uniquely identify the system. More than one restriction on A would be
over-identifying. To implement the SVAR models and their overidentification tests, the elements
of the model(s) are set to restriction numbers and free parameters to be estimated. Using
the current example, one element of A can be restricted to zero whereas the remaining three
elements are free parameters. The output will contain the estimations of these three elements.
Note that the restriction should not be arbitrary, but is determined by economic information.
If the element that represents the relation between the variables is considered economically
insignificant, it should be restricted. The restricted models are the input in function SVAR

under package SVAR that generates estimated model parameters. The overidentification tests
and results are available in the summary of the SVAR model.

5.2 Overidentification tests and parameter estimation

Section 5.1 explained why SVAR parameter restrictions are necessary. The structural restric-
tions are made by putting at least K(K − 1)/2 numbers of restrictions on the relevant entries
in the matrix. The remaining entries are the matrix elements that need to be estimated.

Identifying more than K(K − 1)/2 restrictions, is called over-identification. Overidentification
suffers from Sims’ (1980) criticisms of the ”incredible identification restrictions” inherent in
structural models. Therefore, a likelihood ratio identification test is computed to test if the
overidentifying restrictions are valid. 18

18See C for details of the SVAR parameter estimations and overidentification tests.
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5.2.1 Tests for the complete data

In the literature of Blanchard and Perotti (2002), it is standard to introduce the restrictions on
the contemporary matrix A. For the current data, K = 2, at least K(K−1)/2 = 1 restriction can
be placed on A. Overidentification tests can be performed on an A model with three restrictions
and two restrictions respectively. In these two tables, the diagonal elements of A are restricted
to be unity, this normalization enables us to write the k-th equation (17) with yt as the left-
hand variable. An additional restriction should be imposed on A. According to Lutkepohl (2006),
such restrictions cannot be determined by statistical methods, but have to come from nonsample
sources specified by the analyst. Our main interest is how employment reacts to changes in GDP,
thus this relationship represented by NA is estimated. Consequently the additional restriction
for employment-GDP is zero (Table 5.1). In a two-restriction model (Table 5.2), the relations
between the two variables can be estimated in both directions.

A model GDP Employment
GDP 1 0
Employment NA 1

Table 5.1: SVAR three parameters restrictions.

A model GDP Employment
GDP 1 NA
Employment NA 1

Table 5.2: SVAR two parameters restrictions.

Under the null hypothesis that the restrictions are valid, overidentification tests are performed.
The null hypothesis is rejected at a 0.05 significance level for two and three restrictions. The
results suggest that the over-identifying restrictions are not valid for estimating the SVAR
parameters. A just identification model should be carried out.

GDP Employment
GDP 1 NA
Employment NA NA

Table 5.3: SVAR one parameter restriction.

For a just-identified model, one restriction is placed on GDP’s relation with itself. The restriction
of A is illustrated in Table 5.3, its estimating results of A and B are summarized in Table 5.4.

5.2.2 Tests for the reduced data

All conditions being equal, the same numbers of restrictions were done for the reduced data.
The validity of the over-identifying restrictions is rejected at a 0.05 significance level, suggesting
invalid three-restriction and two-restriction models. A just-identified model with the same
restriction as in Table 5.3 is carried out and its results of A and B are summarized in Table 5.5.

The estimated A and B parameters in these two tables are used to produce the impulse responses
for the SVAR system in the following section.
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Estimated A matrix GDP Employment
GDP 1.00 130.9

Employment -71.31 119.3

Estimated standard errors for A matrix GDP Employment
GDP 0.000 13.00

Employment 6.994 21.79

Estimated B matrix GDP Employment
GDP 1 0

Employment 0 1

Covariance matrix of reduced form residuals (*100) GDP Employment
GDP 0.035089 0.009372

Employment 0.009372 0.005693

Table 5.4: SVAR estimations for one restriction, 1961-2015.

Estimated A matrix GDP Employment
GDP 1.00 133.9

Employment -72.67 110.9

Estimated standard errors for A matrix GDP Employment
GDP 0.000 14.60

Employment 7.837 23.86

Estimated B matrix GDP Employment
GDP 1 0

Employment 0 1

Covariance matrix of reduced form residuals (*100) GDP Employment
GDP 0.031215 0.008184

Employment 0.008184 0.005454

Table 5.5: SVAR estimations for one restriction, 1961-2006.
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5.3 Structural impulse response analysis

Having found the uncorrelated structural shocks and the corresponding A and B matrices,
Lutkepohl (2006) generalized the impulse response coefficients in (15) to obtain the impulse
response coefficients for an SVAR model:

θp = ΦpA
−1B, p = 0, 1, 2, ... (18)

where Φp represents the impulse response coefficients for the correlated shocks. For an A model,
an MA representation based on the structural shocks is

yt = µ+

∞∑
p=0

ΦpA
−1Aut−p = µ+

∞∑
p=0

θpεt−p (19)

where θp = ΦpA
−1. As introduced in Section 4.5.1, impulse response function θp can be plotted

against p to visually illustrate the behavior of the series in response to shocks. The structural
impulse responses for the two variables are plotted in Figure 5.1 and 5.2 with the function
irf in package vars. The input of function irf are A and B obtained from previous section’s
just-identified SVAR model.

Figure 5.1: SVAR IRF for GDP(left) and employment(right) with restriction on GDP-GDP: 1961-
2015.

To interpret the plots, recall that the jk-th element of θp represents the effect on variable j of
a unit change in shock in the k-th variable that occurred p periods ago and can be written as

θp =

[
θp,11 θp,12

θp,21 θp,22

] [
εt−p,1
εt−p,2

]
For the complete data, the left plot of Figure 5.1 shows the responses of the variables to a
positive unit GDP growth rate shock. The dotted lines indicate 95% bootstrapped confidence

29



interval calculated using Hall’s method (1992) with 100 replications. One unit shock in GDP
at p = 0, p = 1, and p = 2 each causes the value of Gt to change by 0.0126, 0.0066, and 0.0004
units, and each causes the value of Et to change by 7.5444e−03, 7.5460e−03, and 5.1565e−03
units. The right plot of Figure 5.1 shows the responses of the variables to a positive unit
employment growth rate shock. One unit shock in employment at p = 0, p = 1, and p = 2 each
causes the value of Gt to change by −0.0138, −0.0069, and −0.0038 units, and each causes the
value of Et to change by 1.0579e− 04, −3.4919e− 03, and −2.3111e− 03 units.

Figure 5.2: SVAR IRF for GDP(left) and employment(right) with restriction on GDP-GDP: 1961-
2006

For the reduced data, the left plot of Figure 5.2 shows the responses of the variables to a positive
unit GDP growth rate shock. One unit shock in GDP at p = 0, p = 1, and p = 2 each causes
the value of Gt to change by 0.0112, 0.0066, and 0.0021 units, and each causes the value of Et to
change by 7.384390e−03, 6.692443e−03, and 5.208862e−03 units. The right plot of Figure 5.2
shows the responses of the variables to a positive unit employment growth rate shock. One
unit shock in employment at p = 0, p = 1, and p = 2 each causes the value of Gt to change
by −0.0136, −0.0062, and −0.0037 units, and each causes the value of Et to change by 0.0001,
−0.0026, and −0.0013 units.

According to the estimated SVAR model for the complete data, a positive shock to the GDP
growth rate increases the employment growth rate immediately, then increases it for about two
years with a maximal response after one year (7.5460e−03), and gradually drives down the em-
ployment growth rate. According to the estimated SVAR model for the reduced data, a positive
GDP growth rate shock increases the employment growth rate immediately, and the increase
lasts for about two years until the effect gradually returns to the baseline. An employment
growth rate shock for both data sets decreases GDP growth rate immediately until it returns to
baseline. The responses are in line with the economic theory: when recessions occur, the em-
ployment growth rate does not decrease immediately due to the lagging effect. Furthermore, the
contrast between the estimated SVAR model fitted to the complete and reduced data seems to
precisely capture the dynamics of GDP-employment growth rates proposed by the CPB findings
(2014). When the recession is absent, the employment rate should return to baseline with no
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fluctuations. When the recession is present, the employment growth rate increases within one
year after the recession probably due to the economic factors such as labour hoarding and so on
explained in Chapter one. The growth rate drops afterwards, probably showing a larger scale
of impact from the recession and a smaller effect from these confounding factors. However take
into the consideration that the CPB analysis used a different set of data, thus any comparisons
formed are not strictly justified.

5.4 Summary

VAR models are not ideal regarding their recursive structure of restrictions and arbitrary gen-
eration of uncorrelated shocks. As a consequence the impulse responses of the VAR systems are
not unique. Non-recursive restrictions for the SVAR models are made in this analysis with an
A model that directly models the instantaneous relations between GDP and employment. The
overidentifying restrictions on A matrix are not valid, necessitating just-identified models for
both the complete and reduced data. Parameters in A and B are estimated and form the struc-
tural shocks. Finally the impulse responses are formed for SVAR, and compared with the CPB
findings. Once again splitting the data is necessary, which is evident in their impulse responses:
the impulse responses generated by an SVAR model fitted to the complete data resemble the
findings of the CPB, and this is not the case with the reduced data. When recession is present,
the Dutch employment rate could be influenced by an opposite force imposed on it by the GDP
rate and other factors. If the recession is absent, such opposite force is not expected to exist.
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6 Identification of shocks via a change in volatility

SVAR restrictions are essential for unique parameter identifications. In the previous section,
the structural parameters in A and B were estimated so that the structural shocks εt are linearly
transformed from ut. The models must be restricted with a minimal number of restrictions, or
this process suffers from underidentification i.e., SVAR parameters outnumber VAR parame-
ters. However over-identifying restrictions are not necessarily valid and must be tested by the
overidentification tests, which complicate the estimation process.

Furthermore, another problem is associated with the just-identified SVAR system. Although
the relations between the two variables are justified by economic theories, information may still
be lost through the restrictions of the impact matrices A and B. In Section 5.2.1, one parameter
restriction in Table 5.3 resulted in the loss of information on the relation between GDP and
itself.

Lutkepohl (2012) proposed another approach to reveal the uncorrelated unique shocks. His
approach frees the identifying process from the problems mentioned above. The shocks identi-
fication utilizes the change in the series volatility, that is, the change before and after the Great
Recession.

6.1 Identifying SVAR via changes in volatility

According to Lutkepohl (2012), another possibility for specifying the unique shocks is available
when the ut distribution, and thus the εt distribution, changes during the sample period. For
t = 1, ..., T1 from the first part of the sample, E(utu

′
t) = Σ1, and for t > T1, E(utu

′
t) = Σ2,

and Σ1 6= Σ2. In the current analysis the first part of the sample consists of observations from
1961 till 2006, and the second part consists of observations from 2007 till 2015. The distinct
covariance matrices derived from the two samples increase the number of parameters for VAR.

Suppose all VAR parameters Ap are the same in two periods, the residual covariance matrices for
the two samples can be decomposed into a matrix B and a diagonal matrix Λ = diag(λ1, ..., λK),

Σ1 = BB′ and Σ2 = BΛB′. (20)

To uncover the structural shocks from the reduced form residuals, we have the linear transfor-
mation εt = B−1ut, which are instantaneously uncorrelated as

E(εtε
′
t) =

{
IK , t = 1, ..., T1

Λ, t > T1

The current bivariate system has

ut =

[
u1t

u2t

]
=

[
b11 b12

b21 b22

] [
ε1t
ε2t

]
The relations in (20) become

E(utu
′
t) =

[
b11 b12

b21 b22

]
E(εtε

′
t)

[
b11 b12

b21 b22

]′
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[
σ2

1,1 σ12,1

σ12,1 σ2
2,1

]
=

[
b211 + b212 b11b21 + b12b22

b11b21 + b12b22 b221 + b222

]
[
σ2

1,2 σ12,2

σ12,2 σ2
2,2

]
=

[
λ1b

2
11 + λ2b

2
12 λ1b11b21 + λ2b12b22

λ1b11b21 + λ2b12b22 λ1b
2
21 + λ2b

2
22

]
σ2

1,1 = b211 + b212

σ12,1 = b11b21 + b12b22

σ2
2,1 = b221 + b222

σ2
1,2 = λ1b

2
11 + λ2b

2
12

σ12,2 = λ1b11b21 + λ2b12b22

σ2
2,2 = λ1b

2
21 + λ2b

2
22

With K = 2, the six equations above would have a unique (apart from ordering) set of solutions
for b11, b12, b21, b22, λ1, λ2, if λ1 6= λ2 with a specific order e.g. λ1 < λ2 [Lanne et al., 2010].
Since the first sample has variance IK , the variance Λ of the second sample is the variance
relative to the first sample. This means that the requirement of λ1 6= λ2 can be satisfied when
the changes in the variance of the two variables are not the same. In fact only the residual
variance of one variable has to change [Lutkepohl, 2012]. We splitted the sample in Chapter 4
and saw slightly different variability of the GDP residuals while the employment residuals seem
to remain homoscedastic. The VAR residual plots Figure 4.1 till 4.4 give a rough idea regarding
the variance status across the two variables.

As mentioned earlier in this section, Lutkepohl’s approach expands the SVAR model and the
VAR model it is based on. Compared to the SVAR system, Lutkepohl’s approach expands the
covariance matrices with additional parameters b and new parameters Λ. Parameter restrictions,
whether over-identifying or just-identifying the system, are deemed unnecessary. This prevents
the loss of economic content caused by any parameter restrictions. Once the ordering of the vari-
ables is fixed, Lutkepohl’s approach utilizes the heterogeneous changes across the VAR residuals
to uniquely characterizes the structural shocks. Besides these contributions, Lutkepohl’s two
covariance matrices are both diagonal, the structural shocks are instantaneously uncorrelated.

6.2 Implementation of the approach

Using the equation wise OLS in (11), the residuals ut are obtained. Assume ut ∼ N(0,Σm), Σm

are the ut covariance matrices of different samples i.e., time regimes Tm

Σ̂m =
1

Tm − Tm−1

∑
t∈Tm

ûtû
′
t, (21)

where Tm− Tm−1 is the number of observations in sample Tm. Next the estimates Σ̂m are used
in a GLS estimator

β̂ =

(
T∑
t=1

Zt−1Z
′
t−1 ⊗ Σ̂−1

m

)−1( T∑
t=1

(Zt−1 ⊗ Σ̂−1
m )yt

)
, (22)
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where Zt−1 = (1, y′t−1, ..., y
′
t−p). β̂ contains the estimates for the time-invariant VAR parameters

in the form of vec[ν,A1, ..., Ap].

β̂ is then used to substitute yt − (Z ′t ⊗ IK)β̂ for ut in the maximum likelihood

log`(β, σ) = −KT
2
log2π − 1

2

T∑
t=1

log|Σm| −
1

2

T∑
t=1

u′tΣ
−1
m ut, (23)

where Σm, are replaced with BB′ and BΛmB
′. Estimation of the parameters B and Λ can be

done by the concentrated maximum likelihood optimized with respect to b and λ.

The MLE of B and Λ obtained this way can be used to substitute Σm to produce β. Therefore
the estimation process iterates until the values for b, λ, and β converge. 19

6.3 Simulation test

Simulation test was done to validate this optimization function. A two dimensional ut was sim-
ulated and incorporated with a fixed set of β parameters to simulate data. From the simulated
ut the covariance structures in (21) can be formed. From here on the iterative algorithm is done
to generate the converged b, λ, and β. β is compared with the true parameters, i.e. the fixed
set of β used to initiate the simulation. Repeating the simulation a sufficient number of times,
the estimates of β are collected at the end of each simulation.

Each simulation of varying sample size were tested on the optimization function. Increasing the
size of the sample should decrease the difference between the true parameter and the mean of
the parameter estimates. Asymptotically, the standard deviations of the parameter estimates
should decrease to zero as the sample size goes to infinity. 20 The parameters estimated by
these simulation trials are compared with the true parameters. Such simulations help explore
how sample size influences to the estimation accuracy.

With the sample size increases and the number of simulations remains the same, standard
deviations for all 14 parameter estimates decrease. Increasing sample size results in higher
accuracy of estimation produced by this optimization function. Therefore inputs of large sample
sizes are preferred for this optimization function for relatively accurate parameter estimations.

An accurate result derives from a combination of large sample size (300) simulated 1000 times.
The distribution of the simulation estimates are plotted against the 14 true parameter values
(marked in red) in Figure 6.1 till 6.4. The global maxima of the estimations’ distributions all
adequately capture the true parameters.

19A detailed description of this estimation procedure can be found in D.
20In practice, we tried a sample of size 55, which was simulated 250 times, and a sample of size 300 simulated

250 times respectively. Test results can be found in Table E.1 and Table E.2 in E.
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Figure 6.1: Parameter estimates and true parameters for GDP.constant, EMP.constant,
GDP.GDP.Lag1, EMP.GDP.Lag1. Sample size 300, 1000 simulations.
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Figure 6.2: Parameter estimates and true parameters for GDP.EMP.Lag1, EMP.EMP.Lag1,
GDP.GDP.Lag2, EMP.GDP.Lag2. Sample size 300, 1000 simulations.
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Figure 6.3: Parameter estimates and true parameters for GDP.EMP.Lag2, EMP.EMP.Lag2,
GDP.GDP.Lag3, EMP.GDP.Lag3. Sample size 300, 1000 simulations.
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Figure 6.4: Parameter estimates and true parameters for GDP.EMP.Lag3, EMP.EMP.Lag3. Sample
size 300, 1000 simulations.
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6.4 Parameter estimates

Having proved the reliability of the optimization function, the parameter estimates for the data
are estimated and listed in Table 6.1.

VAR parameter estimates

GDP.constant 0.0094732
EMP.constant 0.0059390

GDP.GDP.Lag1 0.4942354
EMP.GDP.Lag1 0.2304458
GDP.EMP.Lag1 0.1007533
EMP.EMP.Lag1 0.5877956
GDP.GDP.Lag2 0.0085358
EMP.GDP.Lag2 -0.1052553
GDP.EMP.Lag2 -0.3881558
EMP.EMP.Lag2 0.0971135
GDP.GDP.Lag3 0.1981883
EMP.GDP.Lag3 -0.1263884
GDP.EMP.Lag3 0.1943895
EMP.EMP.Lag3 -0.1638035

Table 6.1: Optimized parameter estimates for β for the data.

Therefore the VAR representation is:

Gt = 0.0094 + 0.4942Gt−1 + 0.1007Et−1 + 0.0085Gt−2 − 0.3881Et−2 + 0.1981Gt−3 + 0.1943Et−3

(24)

Et = 0.0059 + 0.2304Gt−1 + 0.5877Et−1 − 0.1052Gt−2 + 0.0971Et−2 − 0.1263Gt−3 − 0.1638Et−3

(25)

The estimated parameters for b and λ are reported in Table 6.2.

b parameter estimates

9.579433e-03 0.001170346
-9.090616e-05 -0.005835668

λ parameter estimates

1.904369 0.000000
0.000000 2.274337

Table 6.2: Optimized parameter estimates for b and λ

6.5 Summary

Lutkepohl’s approach exploits heteroscedasticity of the residual variances. By subsetting the
VAR residuals in two parts, two Σu are obtained and lead to the increase of the VAR parameters.
Any additional restrictions on the SVAR parameters will become over-identifying. Different
volatility changes also make it possible for the parameters to be uniquely identified, as long as the
ordering of the variables are fixed. Shocks obtained this way are instantaneously uncorrelated.
The optimization and simulation are done for this approach, with the conclusion that this
technique becomes accurate when the sample size becomes large.
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7 Methods comparison

By means of comparing the fitted values, one can identify the better approach between iden-
tifying shocks via SVAR versus changes in volatility. (S)VAR models generate different sets of
autoregressive parameters than Lutkepohl’s approach, the fitted values of the two approaches
differ. In econometrics, the fitted values are referred to as in-sample forecasts, whereas the
predictions into the future are termed as out-of-sample forecasts. Lutkepohl’s approach aims
to reveal the structural shocks using two regimes, which might improve both in-sample and
out-of-sample predictions compared to the VAR and SVAR predictions.

7.1 Predictions: VAR and SVAR

The in-sample forecast are fitted values of the VAR model. The out-of-sample forecast can be
achieved by predicting the short-term behaviour of the variables of the VAR model [Lutkepohl,
2004]. At forecast origin T = 2015, an h-step ahead forecast is obtained recursively through:

yT+h|T = A1yT+h−1|T + ...+ApyT+h−p|T (26)

starting with h = 1. The MSE matrix of an h-step forecast is

Σy(h) = E(yT+h − yT+h|T )(yT+h − yT+h|T )′ = Σh−1
j=0 ΦjΣuΦ′j (27)

Based on the previous analysis for the two variables, we assume that ut ∼ iid N(0, σ2
u), and

then the forecast errors are also multivariate normal. The forecast intervals can be established
as:

[yk,T+h|T − c1−α/2σk(h), yk,T+h|T + c1−α/2σk(h)] (28)

yk,T+h|T denotes the kth component of yT+h|T , and σk(h) denotes the square root of the kth
diagonal component of Σy(h), that is, σk(h) is the standard deviation of the h-step forecast error
for the kth component of yt. This out-of-sample prediction can be implemented using the R
function predict in package vars, the input of the function is the VAR model. The predictions
and their confidence intervals for the following years 2016-2020 are recorded in Table 7.1, where
the forecast step is h = 5.

GDP forecast lower upper CI EMP forecast lower upper CI

2016 0.0197 -0.0169 0.0565 0.0367 0.0168 0.0021 0.0316 0.0147
2017 0.0152 -0.0260 0.0565 0.0413 0.0175 -0.0044 0.0395 0.0220
2018 0.0171 -0.0248 0.0591 0.0419 0.0138 -0.0108 0.0384 0.0246
2019 0.0185 -0.0242 0.0613 0.0428 0.0122 -0.0124 0.0368 0.0246
2020 0.0198 -0.0236 0.0633 0.0435 0.0117 -0.0129 0.0364 0.0247

Table 7.1: Out-of-sample (S)VAR forecast for the following five years using the complete data.

In Table 7.1, the predictive interval are derived from (28). The intervals are fairly wide and
become uninformative as the prediction year increases. Therefore only a five-year forecast was
made.
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To validate the model, one should compare in-sample estimations against the sample realiza-
tions. In-sample forecasts at t+1 were estimated with the (S)VAR model containing realizations
up to t. The estimation window was expanded such that the sample increases by one obser-
vation in each estimation iteration 21. In Figure 7.2, most of the in-sample forecasts (marked
in red) starting 1964 look decent for employment, although in Figure 7.1 the VAR and SVAR
models were unable to capture the big decrease in GDP in the mid seventies, early eighties and
in 2009. This is not surprising as VAR and SVAR do not have intrinsic mechanisms to capture
big jumps.

Figure 7.1: In-sample predictions for GDP.

7.2 Predictions: identification of shocks via a change in volatility

The VAR equations in (24) and (25) can similarly be used for predictions to be made for t+ 1
in-sample forecasts 22. The in-sample forecasts are simply fitted values of VAR. Predictions
with these fitted values were plotted in green in Figure 7.1 and 7.2.

Compared to the (S)VAR fitted values, the fitted values derived by Lutkepohl’s optimization
method show no obvious improvement in in-sample forecasts. From the plots, it is very difficult

21Estimations in Table F.1, F.
22Estimations in Table F.2, F.
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Figure 7.2: In-sample predictions for employment.

to judge which model performs better around the recession time in the early 2000. The in-sample
predictions for the two approaches do not seem to have utter differences as their residual sum
of squares are very close with RSSvar = 0.01835212 and RSSopt = 0.01846032.

7.3 Comparison of the predictions through simulation

One can find out which technique is better by comparing the residual sum of squares for their
in-sample predictions. Simulate data ysim using the technique in Section 6.4, and incorporate
ysim respectively with the VAR parameters results in ŷvar. Using the same in-sample data
ysim and incorporating them with the optimized β parameters achieved by Lutkepohl’s method
results in fitted values ŷopt. Compare the VAR fitted values with the simulated data RSSvar =
(ŷvar − ysim)2, and similarly RSSopt = (ŷopt − ysim)2. After summing each method’s RSS for
the two variables, we find RSSopt < RSSvar. Although in Section 7.2 Lutkepohl’s model fits
the real data less adequately than the VAR model, the reason could very well be the limited
sample size. As demonstrated in Section 6.4, increasing the sample size increases the accuracy
of the parameter estimates, which improves the fitted values. In this simulation test, with a
large sample of 300 data simulated for each variable, the residual sum of squares for Lutkepohl’s
estimation model is smaller than that for the VAR model.
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For out-of-sample prediction comparisons, simulate in-sample data yin.sim and out-of-sample
data yout.sim for h = 5. Incorporate VAR and the optimized parameters estimates with the
simulated in-sample data yin.sim to sequentially generate out-of-sample estimations ŷvar and
ŷopt, each with h = 5. Calculate the mean squared error MSEvar = 1

h

∑
(ysim − ŷvar)

2 and
MSEopt = 1

h

∑
(ysim − ŷopt)

2. Calculate the MSE for VAR and compare it with the MSE for
Lutkepohl’s model. We found that MSEopt < MSEvar.

We want to compare Lutkepohl’s model to the VAR model, as far as their predictive behavior
is concerned. Suppose Lutkepohl’s model is really describing the true conditions of the series,
in that case VAR is an incorrect model. However we need to take into account that when we
have limited data, we are not able to estimate them accurately enough using Lutkepohl’s correct
model. With these extra noise, even if Lutkepohl’s model is the right model, it is worse than
VAR in terms of predictions. Then one needs to make decisions based on empirical experiences.
Lutkepohl’s model is more general, because it has volatility matrices and gives more freedom to
the analysis. If the covariance matrices are the same, Lutkepohl’s model is just a VAR model
with no special specifications. Therefore this approach is not less valid than (S)VAR.

Lutkepohl (2012) stated in his paper that this approach is a purely technical way of identify-
ing unique shocks. It is comparable to Choleski decomposition, which only obtains orthogo-
nal shocks but does not lead automatically to economically meaningful shocks. According to
Lutkepohl the statistical identification is handy but the method just normalizes the shocks in a
mathematical way. The shocks identified this way need not to correspond to the shocks in the
variables. The interpretation of this method requires economic insights.

43



8 Discussion

In this thesis two goals were achieved. To recap the research questions, one is to find out
the strength and lag of employment reaction to changes in GDP, the other is to produce a
supplementary approach to explain the reaction size and lag in asymmetrical economic times.
The comparisons between (S)VAR and Lutkepohl’s model are done using in-sample and out-of-
sample predictions.

The first goal was achieved by an SVAR model, based on which an IRF was made. The impact
of economic production shocks in the Netherlands is reflected in a positive employment growth
rate that decreases in size till lag two. In this context this means the impact lasts for two
years upon the economic shock. The decrease differs for the complete and reduced data, and
the difference is highlighted by their impulse responses. For an SVAR model built on data
that includes the data from the recessional period, positive unit shock in GDP is related to
nearly unchanged employment growth rate one year following this shock. The decrease of the
employment growth rate then returns to equilibrium after about two years. From such impulse
responses, one can observe a consistency with the CPB findings: compared to other countries,
the Netherlands seems to be show a difference in the employment reaction to the GDP dynamics.
In other countries, the decline in employment rate followed the shocks in GDP immediately,
whereas in the Netherlands this reaction has a one-year delay. An SVAR built on the reduced
data is ”clean” as it may be more trustworthy in revealing the relation between the two variables
free of disturbances from the Great Recession. For an SVAR model built on data that excludes
the data from the recessional period, the employment growth rate continuously decreases until
it returns to equilibrium.

VAR and SVAR modeled the two variables. To a certain extent they described the dynamics
in these two variables using the impulse response function. Their results confirmed the CPB’s
hypothesis about the difference in the Netherlands compared to other countries in terms of the
relation between GDP and employment upon the Great Recession. However with regards to
how this difference came about, or economic implications for this difference, VAR and SVAR
do not have further explanations. Economic insights are needed to interpret the results found
in light of this difference.

The CPB mainly focused on major socio-economic variables for such explanations. It is said that
labour hoarding, temporary employment, self-employment, and real wages played an opposite
role in the employment reaction to the crisis [CPB, 2014], which cushioned the effects economic
shocks had on employment. Due to the small sample size and variables and the complexity of
modelling, this research is limited in its economic implications. Including more national labour
market variables may expand the economic purposes: components such as full-time/part time,
male/female employment, and GDP components in trade, added value, savings and income of
the two variables may be analyzed in detail. This all calls for further hypotheses and tests that
may be linked to research at the CPB and other institutes in The Netherlands. Macroeconomics
variables per se are not the only means through which explanations for this national difference
can be derived.

In addition to macroeconomics, what can be looked at is NUT 2 sectoral and regional explana-
tions. The Netherlands is a country with most of its jobs in Sector three - a tertiary industry.
People employed in the tertiary industry are more flexible to economic turns/shocks, and thus
more resilient to economic shocks [Kazutoshi, 1992]. This may indeed impede employment’s
reaction to GDP in times of bad economics because the people employed can relatively easily
adjust to different working roles compared to those in the primary and secondary industries.
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Regional economics variables may shed light at the divergence according to another CPB’s pub-
lication (2015): The mismatch between labour supply and labour demand finds its roots in e.g.,
the relocation of business activities or regional differences in employment growth.

Recently it was announced that The Netherlands has the strongest after-crisis growth in Europe.
Up to 2015 the GDP growth was 1.9% [Badir, 2016]. Perhaps as an open economy majorly
dependent on imports and exports (and re-exports) implies that in bad times decline hits its
employment harder, later, with more impact, while in good times an equally fast positive effect
may be present for this reason. However the data run till 2015, which is too short to see
resilience/recovery in the Netherlands already, as only the last two years actually show renewed
growth again.

The second goal of the thesis to build a model based the existing ones was achieved by imple-
menting Lutkepohl’s (2012) approach in R. Lutkepohl has Markov switching in residual volatility
– one of his other approaches utilizing volatility change – implemented in MATLAB, but the
current approach is not known in any programming languages. This contribution may help the
CPB and other economic research institutes improve the VAR model in times of asymmetrical
economy. Prior to the adoption of this approach, one should observe the time series to see if the
volatility and the subsequent residual variances change. More specifically, if the changes satisfy
what was addressed in this paper.

As stated before, this approach only performs in a mechanical way. It may not predict better
in separate economic regimes when the sample size is small, but increasing the sample size can
improve the accuracy of this model. Therefore it can be considered as a good model with more
freedom in the choice of the residual covariances. In this paper, Lutkepohl’s model does not
have improvement over traditional models in prediction behavior. Given that the limitations of
the sample could disrupt the result of this model, it is strongly suggested to expand the data
size for further usage.

Since the beginning of the Great Recession, few models were designed in particular to account for
the recessional abnormality, either for the employment growth or other labour market variables.
Because of the Great Recession, GDP growth became unprecedentedly low, which may call for
new legitimate models for various reactions to this change. In Eurostat and ECB (2016) one
simple model can be found to identify the changing cyclicality of euro area employment over
the course of the crisis and the subsequent recovery period. Such a simple quantitative model
requires the support from more in-depth qualitative input, which are far-fetched for this thesis.

To conclude, the thesis achieves its goals in part. Further research for modelling and economic
interpretations should be made to render in-depth explanations for the different development
of GDP and employment in the Netherlands.
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9 Appendix

A Data and descriptive

Time GDP Volume Market Prices Total Employment

1 1960 1.46652e+11 4347823
2 1961 1.51373e+11 4446754
3 1962 1.57649e+11 4572996
4 1963 1.63499e+11 4670939
5 1964 1.76550e+11 4789397
6 1965 1.86599e+11 4869676
7 1966 1.92234e+11 4948973
8 1967 2.02910e+11 4977865
9 1968 2.16242e+11 5067969

10 1969 2.27962e+11 5194255
11 1970 2.40948e+11 5269608
12 1971 2.51114e+11 5317323
13 1972 2.59429e+11 5281253
14 1973 2.71592e+11 5310131
15 1974 2.82362e+11 5340996
16 1975 2.82107e+11 5339997
17 1976 2.96547e+11 5373839
18 1977 3.03421e+11 5409664
19 1978 3.10958e+11 5474178
20 1979 3.16673e+11 5584872
21 1980 3.22000e+11 5648393
22 1981 3.20346e+11 5623376
23 1982 3.16237e+11 5540016
24 1983 3.21795e+11 5490237
25 1984 3.31833e+11 5536004
26 1985 3.40647e+11 5641567
27 1986 3.51294e+11 5776231
28 1987 3.57793e+11 5902820
29 1988 3.68457e+11 6010670
30 1989 3.84961e+11 6172216
31 1990 4.01047e+11 6362913
32 1991 4.10877e+11 6485418
33 1992 4.17410e+11 6577025
34 1993 4.22685e+11 6607104
35 1994 4.35400e+11 6654059
36 1995 4.49565e+11 6796896
37 1996 4.64355e+11 6938011
38 1997 4.85317e+11 7150151
39 1998 5.06758e+11 7318368
40 1999 5.31859e+11 7523966
41 2000 5.54909e+11 7655736
42 2001 5.66692e+11 7794048
43 2002 5.67279e+11 7835167
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Time GDP Volume Market Prices Total Employment

44 2003 5.69384e+11 7782833
45 2004 5.79443e+11 7760500
46 2005 5.92475e+11 7818250
47 2006 6.13847e+11 7938583
48 2007 6.36539e+11 8169167
49 2008 6.47350e+11 8358250
50 2009 6.22968e+11 8361000
51 2010 6.31174e+11 8277917
52 2011 6.41681e+11 8279583
53 2012 6.34896e+11 8330000
54 2013 6.32278e+11 8266500
55 2014 6.38669e+11 8214000
56 2015 6.52757e+11 8303357
57 2016 6.68768e+11 8392485
56 2017 6.86833e+11 8505093

Table A.1: Raw data summary

Time GDP Employment

1 1961 0.0368965 0.0227539
2 1962 0.0376802 0.0283898
3 1963 0.0352190 0.0214177
4 1964 0.0805316 0.0253606
5 1965 0.0609474 0.0167620
6 1966 0.0270398 0.0162837
7 1967 0.0567697 0.0058379
8 1968 0.0643122 0.0181009
9 1969 0.0553588 0.0249186

10 1970 0.0563992 0.0145069
11 1971 0.0412088 0.0090549
12 1972 0.0363747 -0.0067835
13 1973 0.0443552 0.0054681
14 1974 0.0402760 0.0058124
15 1975 -0.0015890 -0.0001871
16 1976 0.0525609 0.0063374
17 1977 0.0227682 0.0066667
18 1978 0.0257681 0.0119257
19 1979 0.0181460 0.0202210
20 1980 0.0163962 0.0113738
21 1981 -0.0055277 -0.0044289
22 1982 -0.0122474 -0.0148238
23 1983 0.0166230 -0.0089854
24 1984 0.0319823 0.0083360
25 1985 0.0266208 0.0190684
26 1986 0.0306322 0.0238700
27 1987 0.0195287 0.0219155
28 1988 0.0285342 0.0182709
29 1989 0.0457270 0.0268765
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Time GDP Employment

30 1990 0.0415551 0.0308961
31 1991 0.0247886 0.0192530
32 1992 0.0152937 0.0141250
33 1993 0.0124630 0.0045734
34 1994 0.0306948 0.0071067
35 1995 0.0321292 0.0214661
36 1996 0.0332070 0.0207617
37 1997 0.0457297 0.0305765
38 1998 0.0440040 0.0235263
39 1999 0.0486219 0.0280935
40 2000 0.0432725 0.0175134
41 2001 0.0221094 0.0180664
42 2002 0.0004743 0.0052758
43 2003 0.0043831 -0.0066794
44 2004 0.0176845 -0.0028696
45 2005 0.0215217 0.0074415
46 2006 0.0362603 0.0153913
47 2007 0.0368183 0.0290459
48 2008 0.0168897 0.0231460
49 2009 -0.0367614 0.0003290
50 2010 0.0129011 -0.0099370
51 2011 0.0160876 0.0002013
52 2012 -0.0103609 0.0060893
53 2013 -0.0043975 -0.0076230
54 2014 0.0104535 -0.0063509
55 2015 0.0221179 0.0108787

Table A.2: Data summary

B VAR estimation method

For a sample of size T , define:

Y = (y1, ..., yT ), B = (A1, ..., Ap), Zt = [yt, ..., yt−p+1]′, Z = (Z0, ..., ZT−1), U = (u1, ..., uT ),
y = vec(Y ), β = vec(B), b = vec(B′), u = vec(U).

The VAR model in (10) can be written as

Y = BZ + U (29)

or

y = (Z ′ ⊗ IK)β + u (30)

The covariance matrix of u is

Σu = IT ⊗ Σu (31)
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The multivariate LS estimation (or GLS estimation) of β means to choose the estimator that
minimizes u′(IT ⊗ Σu)−1u.

The LS estimator is β̂ = ((ZZ ′)−1Z ⊗ IK)y.

Thus the VAR parameter estimates can be produced,

B̂ = B + UZ ′(ZZ ′)−1 (32)

C Estimation of (over-identifying) structural parameters

The validity of overidentifying restrictions can be tested with an LR test [see Lutkepohl (2006)]:

LR = T (ln|Σ̃∗u| − ln|Σ̃u|) (33)

T is the number of observations. The statistic has a χ2 distribution with degrees of freedom
equals the number of restrictions exceeding K(K − 1)/2 - that is, the number of overidentifica-
tions – is computed.

Σ̃u in equation (33) can be obtained through the transformations of Y = [y1, ..., yT ] and Z =
[Y0, ...YT−1]:

Σ̃u = T−1(Y − ÂZ)(Y − ÂZ)′ (34)

and Σ̃∗u in equation (33) can be obtained by:

Σ̃∗u = Ã
−1

B̃B̃
′
Ã
′−1

(35)

Ã, B̃ in equation (35) are the ML estimators of the structural parameters and A and B:

lnLc(A,B) = constant+
T

2
ln|A|2 − T

2
ln|B|2 − T

2
tr(A′B−1′B−1AΣ̃u) (36)

Maximization with respect to A and B has to be done by numerical optimization, or direct
maximization. For this thesis we use direct maximization.

D Non-linear estimation of Lutkepohl’s parameters

- Step 1: Obtain residuals ut by estimating equationwise OLS of VAR;

- Step 2: Residuals obtained according to the data split;

û1t: VAR residuals from 1961 - 2006

û2t: VAR residuals from 2007 - 2015

- Step 3: Set Zt−1 as a combination of 1 and regressors for two dimensions;
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Z1t−1 = (1, y′t−1, ..., y
′
t−p) (37)

- Step 4: Calculate the covariance matrices Σ for different regimes;

Σ̂1 =
1

TB−1 − 1 + 1

∑
t∈regime1

û1tû1′t (38)

Σ̂2 =
1

T − TB + 1

∑
t∈regime2

û2tû2′t (39)

- Step 5: β: autoregressive estimators for different regimes;

β̂ =

TB−1∑
t=1

Zt−1Z
′
t−1 ⊗ Σ̂−1

1 +
T∑

t=TB

Zt−1Z
′
t−1 ⊗ Σ̂−1

2

−1TB−1∑
t=1

(Zt−1 ⊗ Σ̂−1
1 )y1t +

T∑
t=TB

(Zt−1 ⊗ Σ̂−1
2 )y2t


(40)

- Step 6: Construct new ut;

ut = yt − (Z ′t ⊗ IK)β̂ (41)

- Step 7: Derive starting values of Λ and B;

Generate elements λ and b from the Σ matrices obtained in equations (38) and (39).

σ2
1,1 = b211 + b212

σ12,1 = b11b21 + b12b22

σ2
2,1 = b221 + b222

σ2
1,2 = λ1b

2
11 + λ2b

2
12

σ12,2 = λ1b11b21 + λ2b12b22

σ2
2,2 = λ1b

2
21 + λ2b

2
22

- Step 8: Concentrated log-likelihood optimized with respect to σ;

log`(β, σ) = −KT
2
log2π−1

2
(

TB−1∑
t=1

log|Σ1|+
T∑

t=TB

log|Σ2|)−
1

2
(

TB−1∑
t=1

u′tΣ
−1
1 ut+

T∑
t=TB

u′tΣ
−1
2 ut) (42)

Numerical optimization using starting values of b and λ from the previous step. Negative log-
likelihood of equation (40) produces MLE for the elements of Λ and B, which constitute new
Σ1 and Σ2.

- Step 9: Replace Σ̂1 and Σ̂2 in equation (40) with the new Σ1 and Σ2 in the previous step;

- Step 10: Repeat step 5 through step 8, until the elements of the consecutive Σ and β converge.
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E Results of simulation test

Simulations are built on the optimization process in D:

- Step 11: Simulate ut using the two covariance matrices from fitting the VAR model, combine
the simulated residuals with fixed auto-regressive parameters A’s to generate data;

- Step 12: Repeat step 3 through step 10 for each simulation;

- Step 13: Collect the parameter A’s estimates, and compare them with the fixed true parame-
ters.

Steps 1 to 10 generated the parameters for the empirical data. In steps 11 to 13 data were
simulated to test the reliability and the validity of the optimization function. Simulations
returned global maxima of the parameters, regardless of the initial residuals simulated to replace
ut in step 2. The parameter estimations under varying simulations and sample sizes are recorded
in the tables below.

true parameters est.mean est.sd
GDP.constant 0.0081 0.0156 0.0167
EMP.constant 0.0050 0.0126 0.0163

GDP.GDP.Lag1 0.5049 0.3106 0.4433
EMP.GDP.Lag1 0.2565 0.0734 0.4427
GDP.EMP.Lag1 0.0401 0.1514 0.4086
EMP.EMP.Lag1 0.5711 0.6617 0.4045
GDP.GDP.Lag2 0.0063 -0.0561 0.3934
EMP.GDP.Lag2 -0.1061 -0.1685 0.3818
GDP.EMP.Lag2 -0.4336 -0.3856 0.3838
EMP.EMP.Lag2 0.0627 0.0917 0.3762
GDP.GDP.Lag3 0.2374 0.1051 0.3054
EMP.GDP.Lag3 -0.1261 -0.2447 0.3060
GDP.EMP.Lag3 0.2322 0.2193 0.2827
EMP.EMP.Lag3 -0.1222 -0.1215 0.2774

Table E.1: Sample size 55, 250 simulations.

true parameters est.mean est.sd
GDP.constant 0.0081 0.0089 0.0040
EMP.constant 0.0050 0.0058 0.0040

GDP.GDP.Lag1 0.5049 0.4824 0.1219
EMP.GDP.Lag1 0.2565 0.2346 0.1218
GDP.EMP.Lag1 0.0401 0.0605 0.1268
EMP.EMP.Lag1 0.5711 0.5891 0.1270
GDP.GDP.Lag2 0.0063 -0.0063 0.1076
EMP.GDP.Lag2 -0.1061 -0.1179 0.1075
GDP.EMP.Lag2 -0.4336 -0.4374 0.1308
EMP.EMP.Lag2 0.0627 0.0546 0.1302
GDP.GDP.Lag3 0.2374 0.2310 0.1076
EMP.GDP.Lag3 -0.1261 -0.1311 0.1080
GDP.EMP.Lag3 0.2322 0.2308 0.0997
EMP.EMP.Lag3 -0.1222 -0.1204 0.1003

Table E.2: Sample size 300, 250 simulations.
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F In-sample forecasts

GDP realizations GDP forecast EMP realizations EMP forecast
1961 0.0368 NA 0.0227 NA
1962 0.0376 NA 0.0283 NA
1963 0.0352 NA 0.0214 NA
1964 0.0805 0.0287 0.0253 0.0166
1965 0.0609 0.0563 0.0167 0.0295
1966 0.0270 0.0424 0.0162 0.0162
1967 0.0567 0.0406 0.0058 0.0025
1968 0.0643 0.0485 0.0181 0.0113
1969 0.0553 0.0494 0.0249 0.0208
1970 0.0563 0.0445 0.0145 0.0198
1971 0.0412 0.0462 0.0090 0.0131
1972 0.0363 0.0423 -0.0067 0.0056
1973 0.0443 0.0393 0.0054 -0.0022
1974 0.0402 0.0458 0.0058 0.0089
1975 -0.0015 0.0337 -0.0001 0.0105
1976 0.0525 0.0169 0.0063 -0.0056
1977 0.0227 0.0459 0.0066 0.0164
1978 0.0257 0.0171 0.0119 0.0097
1979 0.0181 0.0328 0.0202 0.0090
1980 0.0163 0.0201 0.0113 0.0155
1981 -0.0055 0.0171 -0.0044 0.0103
1982 -0.0122 0.0093 -0.0148 -0.0047
1983 0.0166 0.0098 -0.0089 -0.0097
1984 0.0319 0.0202 0.0083 0.0057
1985 0.0266 0.0223 0.0190 0.0190
1986 0.0306 0.0208 0.0238 0.0188
1987 0.0195 0.0260 0.0219 0.0198
1988 0.0285 0.0195 0.0182 0.0151
1989 0.0457 0.0267 0.0268 0.0153
1990 0.0415 0.0343 0.0308 0.0250
1991 0.0247 0.0300 0.0192 0.0243
1992 0.0152 0.0254 0.0141 0.0108
1993 0.0124 0.0253 0.0045 0.0065
1994 0.0306 0.0189 0.0071 0.0046
1995 0.0321 0.0289 0.0214 0.0122
1996 0.0332 0.0264 0.0207 0.0205
1997 0.0457 0.0256 0.0305 0.0186
1998 0.0440 0.0363 0.0235 0.0253
1999 0.0486 0.0310 0.0280 0.0200
2000 0.0432 0.0418 0.0175 0.0208
2001 0.0221 0.0347 0.0180 0.0143
2002 0.0004 0.0308 0.0052 0.0079
2003 0.0043 0.0152 -0.0066 -0.0006
2004 0.0176 0.0172 -0.0028 -0.0023
2005 0.0215 0.0212 0.0074 0.0063
2006 0.0362 0.0201 0.0153 0.0130
2007 0.0368 0.0275 0.0290 0.0194
2008 0.0168 0.0283 0.0231 0.0245
2009 -0.0367 0.0174 0.0003 0.0140
2010 0.0129 -0.0048 -0.0099 -0.0127
2011 0.0160 0.0233 0.0002 0.0016
2012 -0.0103 0.0120 0.0060 0.0118
2013 -0.0043 0.0039 -0.0076 0.0037
2014 0.0104 0.0068 -0.0063 -0.0010
2015 0.0221 0.0154 0.0108 0.0046

Table F.1: In-sample (S)VAR forecast for years 1964 - 2015.
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GDP realizations GDP forecast EMP realizations EMP forecast
1961 0.0368 NA 0.0227 NA
1962 0.0376 NA 0.0283 NA
1963 0.0352 NA 0.0214 NA
1964 0.0805 0.0320 0.0253 0.0171
1965 0.0609 0.0559 0.0167 0.0295
1966 0.0270 0.0447 0.0162 0.0181
1967 0.0567 0.0411 0.0058 0.0034
1968 0.0643 0.0461 0.0181 0.0106
1969 0.0553 0.0481 0.0249 0.0205
1970 0.0563 0.0445 0.0145 0.0183
1971 0.0412 0.0463 0.0090 0.0133
1972 0.0363 0.0422 -0.0067 0.0069
1973 0.0443 0.0370 0.0054 -0.0017
1974 0.0402 0.0417 0.0058 0.0074
1975 -0.0015 0.0316 -0.0001 0.0082
1976 0.0525 0.0171 0.0063 -0.0060
1977 0.0227 0.0411 0.0066 0.0134
1978 0.0257 0.0185 0.0119 0.0093
1979 0.0181 0.0313 0.0202 0.0068
1980 0.0163 0.0217 0.0113 0.0138
1981 -0.0055 0.0193 -0.0044 0.0097
1982 -0.0122 0.0113 -0.0148 -0.0033
1983 0.0166 0.0084 -0.0089 -0.0099
1984 0.0319 0.0161 0.0083 0.0029
1985 0.0266 0.0199 0.0190 0.0151
1986 0.0306 0.0213 0.0238 0.0156
1987 0.0195 0.0277 0.0219 0.0180
1988 0.0285 0.0232 0.0182 0.0151
1989 0.0457 0.0290 0.0268 0.0154
1990 0.0415 0.0361 0.0308 0.0246
1991 0.0247 0.0336 0.0192 0.0241
1992 0.0152 0.0294 0.0141 0.0121
1993 0.0124 0.0277 0.0045 0.0078
1994 0.0306 0.0203 0.0071 0.0050
1995 0.0321 0.0281 0.0214 0.0114
1996 0.0332 0.0270 0.0207 0.0186
1997 0.0457 0.0275 0.0305 0.0171
1998 0.0440 0.0383 0.0235 0.0246
1999 0.0486 0.0345 0.0280 0.0206
2000 0.0432 0.0439 0.0175 0.0215
2001 0.0221 0.0372 0.0180 0.0153
2002 0.0004 0.0329 0.0052 0.0090
2003 0.0043 0.0173 -0.0066 -0.0003
2004 0.0176 0.0168 -0.0028 -0.0020
2005 0.0215 0.0191 0.0074 0.0049
2006 0.0362 0.0188 0.0153 0.0101
2007 0.0368 0.0268 0.0290 0.0165
2008 0.0168 0.0301 0.0231 0.0226
2009 -0.0367 0.0218 0.0003 0.0138
2010 0.0129 0.0006 -0.0099 -0.0102
2011 0.0160 0.0206 0.0002 0.0011
2012 -0.0103 0.0115 0.0060 0.0106
2013 -0.0043 0.0045 -0.0076 0.0008
2014 0.0104 0.0064 -0.0063 -0.0027
2015 0.0221 0.0137 0.0108 0.0034

Table F.2: In-sample Lutkepohl’s model forecast for years 1964 - 2015.
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G Source of R code used in this thesis

G.1 R code Chapter 2

#########################

# Load necessary packages

#########################

library(dse)

library(strucchange)

library(knitr)

library(tseries)

library(vars)

library(xlsx)

library(urca)

library(CADFtest)

library(forecast)

library(car)

library(dynlm)

#########################

# Sort data

#########################

# Load raw data

load("data_year.RData")

colnames(data.year) <- c("Country",

"Time",

"GrossDomesticProductValueMarketPrices",

"GrossDomesticProductVolumeMarketPrices",

"GrossDomesticProductDeflatorMarketPrices",

"UnemploymentLevel",

"UnemploymentRate",

"LabourProductivityOfTheTotalEconomy",

"TotalEmployment",

"TotalEmploymentNationalAccountsBasis",

"LabourForce",

"HoursWorkedPerEmployeeTotalEconomy",

"JobVacanciesTotalNewVacanciesFlow",

"JobVacanciesTotalUnfilledVacanciesStock",

"FinancialNetWorthOfNonfinancialCorporations",

"DebtOfNonfinancialCorporations",

"ShortTermFinancialAssetsToShortTermLiabilitiesRatioOf

NonfinancialCorporations",

"DebtToEquityRatioOfNonfinancialCorporations",

"DebtToTotalFinancialAssetsRatioOfNonfinancialCorporations",

"FinancialNetWorthOfFinancialCorporations",

"DebtOfFinancialCorporations",

"ShortTermFinancialAssetsToShortTermLiabilitiesRatioOf
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FinancialCorporations",

"DebtToEquityRatioOfFinancialCorporations",

"NonfinancialCorporationsDebtToGrossOperatingSurplus")

# Variables index.

varind <- which(colnames(data.year) == "GrossDomesticProductValueMarketPrices"):

which(colnames(data.year) == "HoursWorkedPerEmployeeTotalEconomy")

# Country names.

country.names <- as.vector(unique(data.year$Country))

# Replace all the coma in the original data with points.

data.year[, varind] <- apply(data.year[, varind], 2, function(x)

{as.numeric(gsub(",", ".", x, fixed = TRUE))})

#########################

# Create new data

#########################

# Create first difference GDP (fdGDP).

data.year$fdGDP <- c(NA, diff(data.year$GrossDomesticProductVolumeMarketPrices))

# Create growth rate GDP (GrowthGDP).

nGDP <- length(data.year$GrossDomesticProductVolumeMarketPrices)

data.year$GrowthGDP <- (data.year$fdGDP /

c(NA, data.year$GrossDomesticProductVolumeMarketPrices[-nGDP]))

# Create GDP deflator 2012 (GDPDeflatorMarketPrices 2012).

base.year <- which(data.year$Time == 2012) # Find row index for year 2012.

baseyear2012 <- data.year[base.year, "GrossDomesticProductDeflatorMarketPrices"]

# Find deflator 2012 for all countries.

mat <- NULL

for(i in 1:34){ # Create deflator for different countries with base year 2012.

deflator.country <- data.year[data.year$Country == country.names[i],

"GrossDomesticProductDeflatorMarketPrices"]

mat <- c(mat, deflator.country / baseyear2012[i])

}

data.year$GDPDeflatorMarketPrices2012 <- mat

# Create new GDP (NewGDPVolumeMarketPrices).

data.year$NewGDPVolumeMarketPrices <- data.year$GrossDomesticProductValueMarketPrices

/ data.year$GDPDeflatorMarketPrices2012

# Create first difference new GDP (fdNewGDP).

data.year$fdNewGDP <- c(NA, diff(data.year$NewGDPVolumeMarketPrices))

# Create new growth rate GDP (NewGrowthGDP).

nNewGDP <- length(data.year$NewGDPVolumeMarketPrices)

data.year$NewGrowthGDP <- (data.year$fdNewGDP /
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c(NA, data.year$NewGDPVolumeMarketPrices[-nNewGDP]))

# Create difference between old and new growth rate GDP (diffGrowthGDP).

data.year$diffGrowthGDP <- data.year$NewGrowthGDP - data.year$GrowthGDP

# Create employment rate.

data.year$EmpRate <- c(data.year$TotalEmployment / data.year$LabourForce)

# Create first difference total employment (fdEmp).

data.year$fdEmp <- c(NA, diff(data.year$TotalEmployment))

# Create growth rate total employment (GrowthEmp).

nemp <- length(data.year$TotalEmployment)

data.year$GrowthEmp <- (data.year$fdEmp / c(NA, data.year$TotalEmployment[-nemp]))

# Create first difference total employment national accounts (fdempNA).

data.year$fdEmpNA <- c(NA, diff(data.year$TotalEmploymentNationalAccountsBasis))

# Create growth rate total employment national accounts (GrowthEmpNA).

nempNA <- length(data.year$TotalEmploymentNationalAccountsBasis)

data.year$GrowthEmpNA <- (data.year$fdEmpNA /

c(NA, data.year$TotalEmploymentNationalAccountsBasis[-nempNA]))

# Create first difference unemployment level (fdUnempLevel).

data.year$fdUnempLevel <- c(NA, diff(data.year$UnemploymentLevel))

# Create growth rate unemployment level (GrowthUnempLevel).

nunempL <- length(data.year$UnemploymentLevel)

data.year$GrowthUnempLevel <- (data.year$fdUnempLevel /

c(NA, data.year$UnemploymentLevel[-nunempL]))

# Create first difference unemployment rate (fdUnempRate).

data.year$fdUnempRate <- c(NA, diff(data.year$UnemploymentRate))

# Create first difference labour force (fdLabourForce).

data.year$fdLabourForce <- c(NA, diff(data.year$LabourForce))

# Create growth rate labour force (GrowthLabourForce).

nlabourforce <- length(data.year$LabourForce)

data.year$GrowthLabourForce <- (data.year$fdLabourForce /

c(NA, data.year$LabourForce[-nlabourforce]))

#########################

# Output created data

#########################

# Remove the first growth rates for each country.

country.names <- as.vector(unique(data.year$Country))

ind <- c(which(colnames(data.year) == "fdGDP"), #
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which(colnames(data.year) == "GrowthGDP"), #

which(colnames(data.year) == "fdNewGDP"), #

which(colnames(data.year) == "NewGrowthGDP"), #

which(colnames(data.year) == "diffGrowthGDP"), #

which(colnames(data.year) == "fdEmp"), #

which(colnames(data.year) == "GrowthEmp"), #

which(colnames(data.year) == "fdEmpNA"), #

which(colnames(data.year) == "GrowthEmpNA"), #

which(colnames(data.year) == "EmpNASum"), #

which(colnames(data.year) == "fdUnempLevel"), #

which(colnames(data.year) == "GrowthUnempLevel"), #

which(colnames(data.year) == "fdUnempRate"), #

which(colnames(data.year) == "fdLabourForce"), #

which(colnames(data.year) == "GrowthLabourForce"))

for(i in country.names){

data.year[data.year$Country == i, ][1, c(ind)] <- NA

}

# Reorganize columns.

data.year <- data.year[, c("Country", "Time", "GrossDomesticProductValueMarketPrices",

"GrossDomesticProductVolumeMarketPrices",

"GrossDomesticProductDeflatorMarketPrices",

"GDPDeflatorMarketPrices2012", "NewGDPVolumeMarketPrices",

"fdGDP", "GrowthGDP", "fdNewGDP", "NewGrowthGDP",

"diffGrowthGDP", "EmpRate", "TotalEmployment", "fdEmp",

"GrowthEmp", "TotalEmploymentNationalAccountsBasis",

"fdEmpNA", "GrowthEmpNA", "HoursWorkedPerEmployeeTotalEconomy",

"UnemploymentLevel", "fdUnempLevel", "GrowthUnempLevel",

"UnemploymentRate", "fdUnempRate",

"LabourProductivityOfTheTotalEconomy", "LabourForce",

"fdLabourForce", "GrowthLabourForce",

"JobVacanciesTotalNewVacanciesFlow",

"JobVacanciesTotalUnfilledVacanciesStock",

"FinancialNetWorthOfNonfinancialCorporations",

"DebtOfNonfinancialCorporations",

"ShortTermFinancialAssetsToShortTermLiabilitiesRatioOf

NonfinancialCorporations",

"DebtToEquityRatioOfNonfinancialCorporations",

"DebtToTotalFinancialAssetsRatioOfNonfinancialCorporations",

"FinancialNetWorthOfFinancialCorporations",

"DebtOfFinancialCorporations",

"ShortTermFinancialAssetsToShortTermLiabilitiesRatioOf

FinancialCorporations",

"DebtToEquityRatioOfFinancialCorporations",

"NonfinancialCorporationsDebtToGrossOperatingSurplus")]

# Data for the Netherlands.
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data.year.NL <- data.year[data.year$Country == "Netherlands", ]

# Export data.

write.xlsx(data.year, file = "data_year_aggregate.xlsx", sheetName="R export",

col.names = TRUE, row.names = FALSE)

write.xlsx(data.year.NL, file = "data_year_aggregate_NL.xlsx", sheetName="R export",

col.names = TRUE, row.names = FALSE)

save.image("M:/p_arb/BBP_wgh/Xinzhu/data.year.RData")

save.image("M:/p_arb/BBP_wgh/Xinzhu/data.year.NL.RData")

#########################

# Data description

#########################

load("M:/p_arb/BBP_wgh/Xinzhu/data.year.RData")

load("M:/p_arb/BBP_wgh/Xinzhu/data.year.NL.RData")

kable(data.year.NL[, c(2,4,14)])

kable(summary(data.year.NL[-c(56:57), c(4, 14)]))

org.ts.gdp <- ts(data.year.NL[-c(56:57), 4], start = 1961, end = 2015, freq = 1)

plot(org.ts.gdp, xlab = "Time (years)", ylab = "", main = "Nominal GDP", col = "red")

org.ts.emp <- ts(data.year.NL[-c(56:57), 14], start = 1961, end = 2015, freq = 1)

plot(org.ts.emp, xlab = "Time (years)", ylab = "", main = "Total employment", col = "green")

G.2 R code Chapter 3

#########################

# Load data

#########################

NL <- na.omit(data.frame(data.year.NL$Time,

data.year.NL$NewGrowthGDP,

data.year.NL$GrowthEmp))

colnames(NL) <- c("Time", "GDP", "Employment")

kable(NL[-c(56:57), ])

kable(summary(NL[-c(56:57), 2:3]))

ts.yr <- ts(NL[-c(56:57), 2:3], start = head(NL$Time, n = 1),

end = tail(NL$Time, n = 1), freq = 1)

plot(ts.yr, xlab = "Time (years)", ylab = c("GDP", "Employment"), main = "Netherlands")

#########################

# Automatic lags

#########################
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summary(ur.df(NL[-c(56:57), "GDP"], type = "drift"))

summary(ur.ers(NL[-c(56:57), "GDP"], type = "P-test", model = "constant"))

summary(Arima(NL[-c(56:57), "GDP"], order = c(1, 0, 0), include.mean = TRUE))

summary(ur.df(NL[-c(56:57), "Employment"], type = "drift"))

summary(ur.ers(NL[-c(56:57), "Employment"], type = "P-test", model = "constant"))

#########################

# OLS estimation

#########################

op.lag.drift <- function(lags, X){

z <- diff(X)

n <- length(z)

z.diff <- embed(z, lags + 1)[,1]

z.lag.1 <- X[(lags + 1):n]

k <- lags + 1

z.diff.lag <- embed(z, lags + 1)[, 2:k]

z.diff.lag <- as.matrix(z.diff.lag)

tt <- (lags+1):n

# t-test for the lowest lag.

mod1 <- lm(z.diff ~ 1 + z.lag.1 + z.diff.lag)

p <- summary(mod1)$coefficients[2 + lags, 4]

if(p > 0.05){

print(paste("p value for", rownames(summary(mod1)$coefficients)[2+lags], "is", p))

# F-test for the full model and models with removed low lags.

out <- NULL

for(i in 1:(lags - 2)){

z.diff.lag.dp <- z.diff.lag[, -c((lags - i): lags)]

mod0 <- lm(z.diff ~ 1 + z.lag.1 + z.diff.lag.dp)

mod.nolag <- lm(z.diff ~ 1 + z.lag.1)

out <- rbind(out, anova(mod0, mod1))

}

return(rbind(out, anova(mod.nolag, mod1)))

}else{

return(summary(mod1))

}

}

op.lag.drift(lags = 5, X = NL[-c(56:57), "GDP"])

op.lag.drift(lags = 5, X = NL[-c(56:57), "Employment"])

op.lag.drift(lags = 5, X = NL[-c(47:57), "GDP"])
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op.lag.drift(lags = 5, X = NL[-c(47:57), "Employment"])

summary(ur.df(NL[-c(56:57), "GDP"], type = "drift", lags=0))

summary(ur.ers(NL[-c(56:57), "GDP"], type = "P-test", model = "constant"))

summary(ur.df(NL[-c(56:57), "Employment"], type = "drift", lags=0))

summary(ur.ers(NL[-c(56:57), "Employment"], type = "P-test", model = "constant"))

#########################

# Pacf and lags

#########################

par(mfrow = c(2,2))

acf(NL[-c(56:57), "GDP"], main = "GDP")

pacf(NL[-c(56:57), "GDP"], main = "GDP")

acf(NL[-c(56:57), "Employment"], main = "Employment")

pacf(NL[-c(56:57), "Employment"], main = "Employment")

summary(ur.df(NL[-c(56:57), "GDP"], type = "drift", lags=0))

summary(ur.ers(NL[-c(56:57), "GDP"], type = "P-test", model = "constant"))

summary(ur.df(NL[-c(56:57), "Employment"], type = "drift", lags=1))

summary(ur.ers(NL[-c(56:57), "Employment"], type = "P-test", model = "constant"))

# Unit root tests for the reduced data.

summary(CADFtest(NL[-c(47:57), "GDP"], type = "drift", max.lag.y = 5,

criterion = c("AIC")))

summary(ur.df(NL[-c(47:57), "GDP"], type = "drift", lags = 0))

summary(ur.ers(NL[-c(47:57), "GDP"], type = "P-test", model = "constant"))

summary(CADFtest(NL[-c(47:57), "Employment"], type = "drift", max.lag.y = 5,

criterion = c("AIC")))

summary(ur.df(NL[-c(47:57), "Employment"], type = "drift", lags = 1))

summary(ur.ers(NL[-c(47:57), "Employment"], type = "P-test", model = "constant"))

#########################

# Residuals diagnostics: complete versus reduced data

#########################

# GDP residual diagnostics

plot(CADFtest(NL[-c(56:57), "GDP"], type = "drift", max.lag.y = 5, criterion = c("AIC")))

res <- as.numeric(resid(CADFtest(NL[-c(56:57), "GDP"], type = "drift",

max.lag.y = 5, criterion = c("AIC"))))

qqnorm(res, ylab = "res", main = "GDP QQ-plot")

qqline(res)

n <- length(res)
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plot(res[-n], res[-1], xlab = "res_t", ylab = "res_{t + 1}",

main = paste("Serial correlation, r =", round(cor(res[-n], res[-1]), digits = 2)))

lags = 5 + 1

selectlags = c("BIC")

y <- NL[-c(56:57), "GDP"]

z <- diff(y)

n <- length(z)

x <- embed(z, lags)

z.diff <- x[, 1]

z.lag.1 <- y[lags:n]

critRes <- rep(NA, lags)

for (i in 2:(lags)) {

z.diff.lag = x[, 2:i]

result <- lm(z.diff ~ z.lag.1 + 1)

critRes[i] <- AIC(result, k = switch(selectlags, AIC = 2, BIC = log(length(z.diff))))

lags <- which.min(critRes)

}

z.diff.lag = x[, 2:lags]

result <- lm(z.diff ~ z.lag.1 + 1)

plot(as.numeric(fitted(result)), res, xlab = "fitted",

main = "Homoscedasticity and linearity")

abline(h = 0)

# Employment residual diagonostics

plot(CADFtest(NL[-c(56:57), "Employment"], type = "drift", max.lag.y = 5,

criterion = c("AIC")))

res <- as.numeric(resid(CADFtest(NL[-c(56:57), "Employment"], type = "drift",

max.lag.y = 5, criterion = c("AIC"))))

qqnorm(res, ylab = "res", main = "Employment QQ-plot")

qqline(res)

n <- length(res)

plot(res[-n], res[-1], xlab = "res_t", ylab = "res_{t + 1}",

main = paste("Serial correlation, r =", round(cor(res[-n], res[-1]), digits = 2)))

lags = 5 + 1

selectlags = c("BIC")

y <- NL[-c(56:57), "Employment"]

z <- diff(y)

n <- length(z)

x <- embed(z, lags)

z.diff <- x[, 1]

z.lag.1 <- y[lags:n]

critRes <- rep(NA, lags)
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for (i in 2:(lags)) {

z.diff.lag = x[, 2:i]

result <- lm(z.diff ~ z.lag.1 + 1 + z.diff.lag)

critRes[i] <- AIC(result, k = switch(selectlags, AIC = 2,

BIC = log(length(z.diff))))

lags <- which.min(critRes)

}

z.diff.lag = x[, 2:lags]

result <- lm(z.diff ~ z.lag.1 + 1 + z.diff.lag)

plot(as.numeric(fitted(result)), res, xlab = "fitted", main = "Homoscedasticity

and linearity")

abline(h = 0)

G.3 R code Chapter 4

#########################

# Vector lags

#########################

VARselect(NL15, lag.max = 5, type = "const")

VARselect(NL06, lag.max = 5, type = "const")

varest15 <- VAR(NL15, p = 3, type = "const")

sum.varest15 <- summary(varest15)

varest06 <- VAR(NL06, p = 3, type = "const")

sum.varest06 <- summary(varest06)

#########################

# VAR for the complete versus reduced data

#########################

varest15 <- VAR(NL15, p = 3, type = "const")

sum.varest15 <- summary(varest15)

varest06 <- VAR(NL06, p = 3, type = "const")

sum.varest06 <- summary(varest06)

#########################

# VAR covariance-stationarity

#########################

roots(varest15)

roots(varest06)

ts.yr <- ts(NL15, start = head(NL$Time, n = 1), end = tail(NL$Time, n = 1), freq = 1)
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plot(ts.yr, plot.type = "s", col = 2:3)

legend("topright", c("GDP growth rate", "Employment growth rate"), lty = 1,

col = c("red", "green"))

ts.yr <- ts(NL06, start = head(NL$Time, n = 1), end = tail(NL$Time, n = 1), freq = 1)

plot(ts.yr, plot.type = "s", col = 2:3)

legend("topright", c("GDP growth rate", "Employment growth rate"), lty = 1,

col = c("red", "green"))

#########################

# VAR residuals diagnostics

#########################

var2c.serial <- serial.test(varest15, type = "PT.asymptotic")

var2c.arch <- arch.test(varest15, multivariate.only = TRUE)

var2c.norm <- normality.test(varest15, multivariate.only = TRUE)

test <- c(var2c.serial$serial$method, var2c.arch$arch.mul$method,

var2c.norm$jb.mul$JB$method, var2c.norm$jb.mul$Skewness$method,

var2c.norm$jb.mul$Kurtosis$method)

statistic <- c(var2c.serial$serial$statistic, var2c.arch$arch.mul$statistic,

var2c.norm$jb.mul$JB$statistic, var2c.norm$jb.mul$Skewness$statistic,

var2c.norm$jb.mul$Kurtosis$statistic)

pvalue <- c(var2c.serial$serial$p.value, var2c.arch$arch.mul$p.value,

var2c.norm$jb.mul$JB$p.value, var2c.norm$jb.mul$Skewness$p.value,

var2c.norm$jb.mul$Kurtosis$p.value)

df <- data.frame(test, statistic, pvalue)

kable(df)

plot(varest15)

res.GDP <- as.numeric(resid(varest15)[, 1])

qqnorm(res.GDP, ylab = "res", main = "GDP QQ-plot")

qqline(res.GDP)

n.GDP <- length(res.GDP)

plot(res.GDP[-n.GDP], res.GDP[-1], xlab = "res_t", ylab = "res_{t + 1}",

main = paste("GDP serial correlation, r =", round(cor(res.GDP[-n.GDP],

res.GDP[-1]), digits = 2)))

plot(as.numeric(fitted(varest15)[, 1]), res.GDP, xlab = "fitted",

main = "GDP homoscedasticity")

abline(h = 0)

res.EMP <- as.numeric(resid(varest15)[, 2])

qqnorm(res.EMP, ylab = "res", main = "Employment QQ-plot")

qqline(res.EMP)

n.EMP <- length(res.EMP)

plot(res.EMP[-n.EMP], res.EMP[-1], xlab = "res_t", ylab = "res_{t + 1}",

main = paste("EMP serial correlation, r =", round(cor(res.EMP[-n.EMP],

res.EMP[-1]), digits = 2)))
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plot(as.numeric(fitted(varest15)[, 2]), res.EMP, xlab = "fitted",

main = "Employment homoscedasticity")

abline(h = 0)

plot(varest06)

res.GDP <- as.numeric(resid(varest06)[, 1])

qqnorm(res.GDP, ylab = "res", main = "GDP QQ-plot")

qqline(res.GDP)

n.GDP <- length(res.GDP)

plot(res.GDP[-n.GDP], res.GDP[-1], xlab = "res_t", ylab = "res_{t + 1}",

main = paste("GDP serial correlation, r =", round(cor(res.GDP[-n.GDP],

res.GDP[-1]), digits = 2)))

plot(as.numeric(fitted(varest06)[, 1]), res.GDP, xlab = "fitted",

main = "GDP homoscedasticity")

abline(h = 0)

res.EMP <- as.numeric(resid(varest06)[, 2])

qqnorm(res.EMP, ylab = "res", main = "Employment QQ-plot")

qqline(res.EMP)

n.EMP <- length(res.EMP)

plot(res.EMP[-n.EMP], res.EMP[-1], xlab = "res_t", ylab = "res_{t + 1}",

main = paste("EMP serial correlation, r =", round(cor(res.EMP[-n.EMP],

res.EMP[-1]), digits = 2)))

plot(as.numeric(fitted(varest06)[, 2]), res.EMP, xlab = "fitted",

main = "Employment homoscedasticity")

abline(h = 0)

#########################

# Orthogonalized impulse response function

#########################

IRF15 <- irf(varest15, n.ahead = 10, ortho = TRUE, cumulative = FALSE,

boot = FALSE, seed = 12345)

plot(IRF15)

IRF06 <- irf(varest06, n.ahead = 10, ortho = TRUE, cumulative = FALSE,

boot = FALSE, seed = 12345)

plot(IRF15)

plot(IRF06)

G.4 R code Chapter 5

#########################

# Overidentification tests and parameter estimation

#########################

64



# Tests for the complete data

Amat <- diag(2)

Amat[2,1] <- NA

svarest15 <- SVAR(varest15, estmethod = c("direct"), Amat = Amat, max.iter = 1000)

summary(svarest15)

Amat <- diag(2)

Amat[1,2] <- Amat[2,1] <- NA

svarest15 <- SVAR(varest15, estmethod = c("direct"), Amat = Amat, max.iter = 1000)

summary(svarest15)

Amat <- diag(2)

Amat[1,1] <- Amat[1,2] <- Amat[2,2] <- NA

svarest15 <- SVAR(varest15, estmethod = c("direct"), Amat = Amat, max.iter = 1000,

lrtest = FALSE)

summary(svarest15)

Amat <- diag(2)

Amat[1,1] <- Amat[2,1] <- Amat[2,2] <- NA

svarest15 <- SVAR(varest15, estmethod = c("direct"), Amat = Amat, max.iter = 1000,

lrtest = FALSE)

summary(svarest15)

# Tests for the reduced data

Amat <- diag(2)

Amat[2,1] <- NA

svarest06 <- SVAR(varest06, estmethod = c("direct"), Amat = Amat, max.iter = 1000)

summary(svarest06)

Amat <- diag(2)

Amat[1,2] <- Amat[2,1] <- NA

svarest06 <- SVAR(varest06, estmethod = c("direct"), Amat = Amat, max.iter = 1000)

summary(svarest06)

Amat <- diag(2)

Amat[1,1] <- Amat[1,2] <- Amat[2,2] <- NA

svarest06 <- SVAR(varest06, estmethod = c("direct"), Amat = Amat, max.iter = 1000,

lrtest = FALSE)

summary(svarest06)

Amat <- diag(2)

Amat[1,1] <- Amat[2,1] <- Amat[2,2] <- NA

svarest06 <- SVAR(varest06, estmethod = c("direct"), Amat = Amat, max.iter = 1000,

lrtest = FALSE)

summary(svarest06)

#########################

# Structural impulse response analysis
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#########################

# Plot SVAR IRF for complete data.

SIRF15 <- irf(svarest15, n.ahead = 10, ortho = TRUE, cumulative = FALSE, boot = FALSE,

seed = 12345)

plot(SIRF15)

# Plot SVAR IRF for reduced data.

SIRF06 <- irf(svarest06, n.ahead = 10, ortho = TRUE, cumulative = FALSE, boot = FALSE,

seed = 12345)

plot(SIRF06)

G.5 R code Chapter 6

#########################

# Implementation of the approach

#########################

opt <- function(data, var.index, p, K, TB, random.start, h){

# Gaussian log-likelihood function.

#

# Args:

# data: data

# var.index: variables index

# p: lags

# K: number of dimensions

# TB: time break point

#

# Returns:

# volchange: covariance matrices for different regimes and parameters

# estimates for the whole sample

require(knitr)

require(nleqslv)

require(vars)

if(random.start == FALSE){

# Residuals obtained by estimating equationwise OLS of VAR.

varest <- VAR(data[, var.index], p = p, type = "const")

u <- rbind(matrix(rep(NA, p*K), ncol=K), matrix(residuals(varest), ncol = 2

)) # Sample VAR residuals.

TB.index <- which(data$Year == TB)

u1 <- u[(p+1):(TB.index-1),] # First regime VAR residuals.

u2 <- u[(TB.index):nrow(data),] # Second regime VAR residuals.

}

if(random.start == TRUE){

# Simulated residuals and data.

u1 <- cbind(rnorm(200-p, mean=0.1, sd=sqrt(0.2)), rnorm(200-p, mean=0.4,
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sd=sqrt(0.45)))

u2 <- cbind(rnorm(100+h, mean=-0.7, sd=sqrt(0.4)), rnorm(100+h, mean=-2,

sd=sqrt(0.5)))

u <- rbind(matrix(rep(NA, p*K), ncol=K), u1, u2)

A <- c(0.504914292, 0.040148983, 0.006361527, -0.433609669, 0.237462457,

0.232210695, 0.256568557, 0.571149051, -0.106114636, 0.062737666,

-0.126112307, -0.122209395)

const <- c(0.008180638 , 0.005025498)

y <- matrix(NA, nrow = 300+h, ncol = K)

y[1:p,1] <- rnorm(p, mean=0.03659856, sd=0.001257373)

y[1:p,2] <- rnorm(p, mean=0.02418713, sd=0.003700394)

# Data obtained by residuals and specific autoregressive parameter estimates

for(i in ((p+1):(300+h))){

y[i,1] <- const[1] + A[1] * y[i-1, 1] + A[2] * y[i-1, 2] + A[3] * y[i-2, 1]

+ A[4] * y[i-2, 2] + A[5] * y[i-3, 1] + A[6] * y[i-3, 2] + u[i,1]

y[i,2] <- const[2] + A[7] * y[i-1, 1] + A[8] * y[i-1, 2] + A[9] * y[i-2, 1]

+ A[10] * y[i-2, 2] + A[11] * y[i-3, 1] + A[12] * y[i-3, 2] + u[i,2]

}

data <- data.frame(Year = 1:(300+h), "GDP growth rate" = y[,1], "Employment

growth rate" = y[,2])

TB.index <- which(data$Year == TB)

}

# Covariance matrices for different regimes.

sigma1 <- 1 / (TB.index - 1) * matrix(rowSums(apply(u1, 1, function(x)

x %*% t(x))), nrow = 2, byrow = TRUE)

sigma2 <- 1 / (nrow(data) - TB.index + 1) *

matrix(rowSums(apply(u2, 1, function(x) x %*% t(x))), nrow = 2, byrow = TRUE)

# Beta

beta.gen <- function(cov1, cov2){

# Beta generation function.

#

# Args:

# cov1: covariance matrix for the first regime.

# cov2: covariance matrix for the second regime.

#

# Returns:

# beta: vectorization of estimated beta containing the constants and

# autoregressive parameters.

betal <- array(NA, dim = c((1+2*p)*2, (1+2*p)*2, nrow(data)))

betar <- array(NA, dim = c((1+2*p)*2, 1, nrow(data)))

for(t in (p+1):(nrow(data))){

Z <- as.vector(unlist(c(1, data[t-1, var.index], data[t-2, var.index],
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data[t-3, var.index])))

if(t<TB.index){

betal[,,t] <- Z %*% t(Z) %x% solve(cov1)

betar[,,t] <- Z %x% solve(cov1) %*% matrix(unlist(data[t, var.index]),

nrow = 2)

}

if(t>=TB.index){

betal[,,t] <- Z %*% t(Z) %x% solve(cov2)

betar[,,t] <- Z %x% solve(cov2) %*% matrix(unlist(data[t, var.index]),

nrow = 2)

}

}

betaL <- apply(betal[,,(p+1):(nrow(data)), drop=FALSE], c(1,2), sum)

betaR <- apply(betar[,,(p+1):(nrow(data)), drop=FALSE], c(1,2), sum)

beta <- solve(betaL, tol = 1e-50) %*% betaR

return(beta)

}

beta <- beta.gen(sigma1, sigma2)

# Setting initial values for beta and sigma matrices.

beta.null <- matrix(rep(1, dim(beta)[1] * dim(beta)[2]), ncol = ncol(beta))

sigma1.null <- sigma2.null <- matrix(rep(1, dim(sigma1)[1] * dim(sigma1)[2]),

ncol = ncol(sigma1))

# Iterative optimization.

while(any(abs(sigma1 - sigma1.null) >= 1e-5) ||

any(abs(sigma2 - sigma2.null) >= 1e-5) ||

any(abs(beta - beta.null) >= 1e-3)){

beta <- beta.gen(sigma1, sigma2)

# ut generated by yt - (Z' %x% I_K) %*% beta.

ut <- array(NA, dim = c(1, K, nrow(data)))

for(i in (p+1):nrow(data)){

Zt <- as.vector(unlist(c(1, data[i, var.index], data[i-1, var.index],

data[i-2, var.index])))

ut[,,i] <- t(matrix(unlist(data[i, var.index]), nrow = 2) -

t(Zt) %x% diag(K) %*% beta)

}

ut <- apply(ut, 2, I)

# Numerical optimization.

f <- function(pars){

# Mirrored loglikelihood function for the model.
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#

# Args:

# pars: initial paramters.

b11 <- pars[1] # b[1,1]

b12 <- pars[2] # b[1,2]

b21 <- pars[3] # b[2,1]

b22 <- pars[4] # b[2,2]

l11 <- pars[5] # lambda[1,1]

l22 <- pars[6] # lambda[2,2]

B <- matrix(c(b11, b12, b21, b22), nrow = 2, byrow = TRUE)

L <- matrix(c(l11, 0, 0, l22), nrow = 2, byrow = TRUE)

sigma1 <- B %*% t(B) # New covariance matrix for the first period.

sigma2 <- B %*% L %*% t(B) # New covariance matrix for the second period

ll <- rep(NA, nrow(data))

for(t in (p+1):nrow(data)){

if(t < TB.index){

ll[t] <- log(det(sigma1)) + as.vector(matrix(ut[t, ], nrow=1) %*%

solve(sigma1) %*%

matrix(ut[t, ], ncol=1))

}

if(t >= TB.index){

ll[t] <- log(det(sigma2)) + as.vector(matrix(ut[t, ], nrow=1) %*%

solve(sigma2) %*%

matrix(ut[t, ], ncol=1))

}

}

loglik <- -1/2 * (K * nrow(data)) * log(2 * pi) - 1/2 *

sum(ll[(p+1):nrow(data)], p*det(sigma1))

# Negative log-likelihood.

-loglik

}

ini <- function(x){

# Numerical optimization of b and lambda as initial values.

#

# Args:

# x: unkonwn b and lambda elements.

c(x[1] ^ 2 + x[2] ^ 2 - sigma1[1,1],

x[1] * x[3]+ x[2] * x[4] - sigma1[1,2],

x[3] ^ 2 + x[4] ^ 2 - sigma1[2,2],

x[5] * x[1] ^ 2 + x[6] * x[2] ^ 2 - sigma2[1,1],

x[5] * x[1] * x[3] + x[6] * x[2] * x[4] - sigma2[1,2],

x[5] * x[3] ^ 2 + x[6] * x[4] ^ 2 - sigma2[2,2])
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}

x0 <- c(0.01,0.02,0.02,0.01,1.5,1.7)

ini.sol <- nleqslv(x0, ini, method = "Broyden")

# Starting b values that form the original covariance matrices,

# computed by ini function.

ini.B <- matrix(ini.sol$x[1:4], nrow = 2, byrow = TRUE)

# Starting lambda values that form the original covariance matrices,

# computed by ini function.

ini.L <- matrix(c(ini.sol$x[5], 0, 0, ini.sol$x[6]), nrow = 2, byrow = TRUE)

# Optimizing lambda and b elements and their standard errors using their

# generated starting values.

opm_mle <- optim(f, p = c(ini.B[1,1], ini.B[1,2], ini.B[2,1], ini.B[2,2],

ini.L[1,1], ini.L[2,2]),

control = list(maxit = 5000), hessian = TRUE)

opm_se <- diag(sqrt(solve(opm_mle$hessian, tol = 1e-50)))

# Optimized B and lambda matrices.

B <- matrix(opm_mle$par[1:4], nrow = 2, byrow = TRUE)

L <- matrix(c(opm_mle$par[5], 0, 0, opm_mle$par[6]), nrow = 2, byrow = TRUE)

# New sigma.null matrices.

sigma1.null <- sigma1

sigma2.null <- sigma2

# New sigma matrices.

sigma1 <- B %*% t(B)

sigma2 <- B %*% L %*% t(B)

# New beta.null matrix.

beta.null <- beta

# New beta matrix.

beta <- beta.gen(cov1 = sigma1, cov2 = sigma2)

}

if(random.start == FALSE){

volchange <- list(beta, sigma1, sigma2, B, L, opm_mle, opm_mle$convergence,

opm_se, u, data)

names(volchange) <- c("beta", "sigma1", "sigma2", "B", "Lambda", "MLE",

"MLE convergence", "SE of the estimators", "residuals",

"data")

rownames(volchange$beta) <- c("GDP.constant", "EMP.constant", "GDP.GDP.Lag1",

"EMP.GDP.Lag1", "GDP.EMP.Lag1", "EMP.EMP.Lag1",

"GDP.GDP.Lag2", "EMP.GDP.Lag2", "GDP.EMP.Lag2",

"EMP.EMP.Lag2", "GDP.GDP.Lag3", "EMP.GDP.Lag3",

"GDP.EMP.Lag3", "EMP.EMP.Lag3")

colnames(volchange$beta) <- c("parameter estimates")
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}

if(random.start == TRUE){

true.beta <- matrix(c(const[1], const[2], A[1], A[7], A[2], A[8], A[3],

A[9], A[4], A[10], A[5], A[11], A[6], A[12]), ncol = 1)

volchange <- list(true.beta, beta, B, L, u, y)

names(volchange) <- c("true parameters", "beta", "B", "Lambda", "simulated

residuals", "simulated data")

rownames(volchange$beta) <- c("GDP.constant", "EMP.constant", "GDP.GDP.Lag1",

"EMP.GDP.Lag1", "GDP.EMP.Lag1", "EMP.EMP.Lag1",

"GDP.GDP.Lag2", "EMP.GDP.Lag2", "GDP.EMP.Lag2",

"EMP.EMP.Lag2", "GDP.GDP.Lag3", "EMP.GDP.Lag3",

"GDP.EMP.Lag3", "EMP.EMP.Lag3")

rownames(volchange$'true parameters') <- c("GDP.constant", "EMP.constant",

"GDP.GDP.Lag1", "EMP.GDP.Lag1",

"GDP.EMP.Lag1", "EMP.EMP.Lag1",

"GDP.GDP.Lag2", "EMP.GDP.Lag2",

"GDP.EMP.Lag2", "EMP.EMP.Lag2",

"GDP.GDP.Lag3", "EMP.GDP.Lag3",

"GDP.EMP.Lag3", "EMP.EMP.Lag3")

colnames(volchange$beta) <- c("parameter estimates")

}

return(volchange)

}

#########################

# Simulation test

#########################

set.seed(2017)

n.sim <- 500

beta.sim <- matrix(NA, nrow = n.sim, ncol = 14)

u.sim <- array(NA, dim = c(300-3, 2, n.sim))

y.sim <- array(NA, dim = c(300, 2, n.sim))

for(i in 1:n.sim){

out.sim <- try(opt(data = NA, var.index = 2:3, p = 3, K = 2, TB = 201,

random.start=TRUE, h=0))

beta.sim[i,] <- try(getElement(out.sim, 'beta'))

u.sim[,,i] <- try(getElement(out.sim, 'simulated residuals'))

y.sim[,,i] <- try(getElement(out.sim, 'simulated data'))

print(i)

}

beta <- as.numeric(beta.sim)

beta <- matrix(beta, ncol = 14)

beta <- na.omit(beta)
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par(mfrow=c(2,2))

for(i in 1:14){

hist(as.numeric(beta[c(1:499),i]), breaks = 5, prob = TRUE,

xlab = "parameter estimates in 1000 simulations", main = rownames(out$beta)[i])

lines(density(na.omit(beta[c(1:499), i])),col = "blue")

abline(v = out.sim$`true parameters`[i], col = "red")

}

est.mean <- apply(beta, 2, mean)

est.sd <- apply(beta, 2, sd)

est.par <- cbind(out.sim$'true parameters', est.mean, est.sd)

rownames(est.par) <- c("GDP.constant", "EMP.constant", "GDP.GDP.Lag1", "EMP.GDP.Lag1",

"GDP.EMP.Lag1", "EMP.EMP.Lag1", "GDP.GDP.Lag2", "EMP.GDP.Lag2",

"GDP.EMP.Lag2", "EMP.EMP.Lag2", "GDP.GDP.Lag3", "EMP.GDP.Lag3",

"GDP.EMP.Lag3", "EMP.EMP.Lag3")

colnames(est.par) <- c("true parameters", "est.mean", "est.sd")

kable(est.par)

#########################

# Comparison of the predictions through simulation

#########################

load("data.year.NL.RData")

NL <- na.omit(data.frame(data.year.NL$Time,

data.year.NL$NewGrowthGDP,

data.year.NL$GrowthEmp))

colnames(NL) <- c("Year", "GDP growth rate", "Employment growth rate")

dat <- NL[-c(56:57), ] # 1961-2015

varest <- VAR(dat[, 2:3], p = 3, type = "const")

out <- opt(data = dat, var.index = 2:3, p = 3, K = 2, TB = 2007, random.start=FALSE)

kable(out$beta)

# OPT in-sample forecast.

gdp.opt <- emp.opt <- NULL

for(i in 4:55){

gdp.opt[i] <- out$beta[1] + out$beta[3] * dat[i-1,2] + out$beta[5] * dat[i-1,3] +

out$beta[7] * dat[i-2,2] + out$beta[9] * dat[i-2,3] + out$beta[11] * dat[i-3,2] +

out$beta[13] * dat[i-3,3]

emp.opt[i] <- out$beta[2] + out$beta[4] * dat[i-1,2] + out$beta[6] * dat[i-1,3] +

out$beta[8] * dat[i-2,2] + out$beta[10] * dat[i-2,3] + out$beta[12] * dat[i-3,2] +

out$beta[14] * dat[i-3,3]

}

# VAR in-sample forecast

gdp.var <- c(rep(NA,3),fitted(varest)[,1])

emp.var <- c(rep(NA,3),fitted(varest)[,2])
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predict.GDP <- data.frame(dat[,2], gdp.var, gdp.opt)

predict.EMP <- data.frame(dat[,3], emp.var, emp.opt)

ts.yr.predict.GDP <- ts(predict.GDP, start = 1961, end = 2015, freq = 1)

ts.yr.predict.EMP <- ts(predict.EMP, start = 1961, end = 2015, freq = 1)

#Plotting realisations and forecast values

plot(ts.yr.predict.GDP[,1], plot.type = "s")

lines(ts.yr.predict.GDP[,2], pch=22, lty=2, col="red")

lines(ts.yr.predict.GDP[,3], pch=22, lty=2, col="green")

legend("bottomleft", c("GDP growth rate", "VAR predicted GDP growth rate",

"OPT predicted GDP growth rate"), lty = c(1, 22),

col = c("black", "red", "green"))

plot(ts.yr.predict.EMP[,1], plot.type = "s", ylim = c(-0.04, 0.05))

lines(ts.yr.predict.EMP[,2], pch=22, lty=2, col="red")

lines(ts.yr.predict.EMP[,3], pch=22, lty=2, col="green")

legend("bottomleft", c("Employment growth rate", "VAR predicted employment growth rate",

"OPT predicted employment growth rate"), lty = c(1, 22),

col = c("black", "red", "green"))

sum((ts.yr.predict.GDP[-c(1:3),1] - ts.yr.predict.GDP[-c(1:3),2])^2) #RSS GDP var

sum((ts.yr.predict.GDP[-c(1:3),1] - ts.yr.predict.GDP[-c(1:3),3])^2) #RSS GDP opt

sum((ts.yr.predict.EMP[-c(1:3),1] - ts.yr.predict.EMP[-c(1:3),2])^2) #RSS employment var

sum((ts.yr.predict.EMP[-c(1:3),1] - ts.yr.predict.EMP[-c(1:3),3])^2) #RSS employment opt

G.6 R code Chapter 7

#########################

# Predictions: (S)VAR and identification of shocks via a change in volatility

#########################

load("data.year.NL.RData")

NL <- na.omit(data.frame(data.year.NL$Time,

data.year.NL$NewGrowthGDP,

data.year.NL$GrowthEmp))

colnames(NL) <- c("Year", "GDP growth rate", "Employment growth rate")

dat <- NL[-c(56:57), ] # 1961-2015

varest <- VAR(dat[, 2:3], p = 3, type = "const")

out <- opt(data = dat, var.index = 2:3, p = 3, K = 2, TB = 2007, random.start=FALSE)

kable(out$beta)

# OPT in-sample predictions.

gdp.opt <- emp.opt <- NULL

for(i in 4:55){
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gdp.opt[i] <- out$beta[1] + out$beta[3] * dat[i-1,2] + out$beta[5] * dat[i-1,3] +

out$beta[7] * dat[i-2,2] + out$beta[9] * dat[i-2,3] + out$beta[11] * dat[i-3,2] +

out$beta[13] * dat[i-3,3]

emp.opt[i] <- out$beta[2] + out$beta[4] * dat[i-1,2] + out$beta[6] * dat[i-1,3] +

out$beta[8] * dat[i-2,2] + out$beta[10] * dat[i-2,3] + out$beta[12] * dat[i-3,2] +

out$beta[14] * dat[i-3,3]

}

# VAR in-sample predictions.

gdp.var <- c(rep(NA,3),fitted(varest)[,1])

emp.var <- c(rep(NA,3),fitted(varest)[,2])

predict.GDP <- data.frame(dat[,2], gdp.var, gdp.opt)

predict.EMP <- data.frame(dat[,3], emp.var, emp.opt)

ts.yr.predict.GDP <- ts(predict.GDP, start = 1961, end = 2015, freq = 1)

ts.yr.predict.EMP <- ts(predict.EMP, start = 1961, end = 2015, freq = 1)

#Plotting realisations and forecast values

plot(ts.yr.predict.GDP[,1], plot.type = "s")

lines(ts.yr.predict.GDP[,2], pch=22, lty=2, col="red")

lines(ts.yr.predict.GDP[,3], pch=22, lty=2, col="green")

legend("bottomleft", c("GDP growth rate", "VAR predicted GDP growth rate",

"OPT predicted GDP growth rate"), lty = c(1, 22),

col = c("black", "red", "green"))

plot(ts.yr.predict.EMP[,1], plot.type = "s", ylim = c(-0.04, 0.05))

lines(ts.yr.predict.EMP[,2], pch=22, lty=2, col="red")

lines(ts.yr.predict.EMP[,3], pch=22, lty=2, col="green")

legend("bottomleft", c("Employment growth rate", "VAR predicted employment growth rate",

"OPT predicted employment growth rate"), lty = c(1, 22),

col = c("black", "red", "green"))

sum((ts.yr.predict.GDP[-c(1:3),1] - ts.yr.predict.GDP[-c(1:3),2])^2) #RSS GDP var

sum((ts.yr.predict.GDP[-c(1:3),1] - ts.yr.predict.GDP[-c(1:3),3])^2) #RSS GDP opt

sum((ts.yr.predict.EMP[-c(1:3),1] - ts.yr.predict.EMP[-c(1:3),2])^2) #RSS employment var

sum((ts.yr.predict.EMP[-c(1:3),1] - ts.yr.predict.EMP[-c(1:3),3])^2) #RSS employment opt

# Out-of-sample predictions using VAR

predictions15 <- predict(varest15, n.ahead = 10, ci = 0.95)

#########################

# Comparison of the predictions through simulation

#########################

h <- 10

p <- 3

#VAR coefficients

A <- c(0.504914292, 0.040148983, 0.006361527, -0.433609669, 0.237462457, 0.232210695,
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0.256568557, 0.571149051, -0.106114636, 0.062737666, -0.126112307, -0.122209395)

const <- c(0.008180638, 0.005025498)

set.seed(2017)

out.sim <- opt(data = NA, var.index = 2:3, p = 3, K = 2, TB = 201,

random.start = TRUE, h = 0)

#opt coefficients

beta.sim <- getElement(out.sim, 'beta')

#Simulated sample

sample.sim <- out.sim$`simulated data`

#Simulated predictions

pred.sim <- matrix(rnorm(2*h), ncol=2)

#Simulated sample and predictions

y <- rbind(sample.sim, pred.sim)

#In-sample predictions using VAR

pred <- y

for(i in 4:300){

pred[i,1] <- const[1] + A[1] * pred[i-3, 1] + A[2] * pred[i-3, 2] + A[3] *

pred[i-2, 1] + A[4] * pred[i-2, 2] + A[5] * pred[i-1, 1] + A[6] * pred[i-1, 2]

pred[i,2] <- const[2] + A[7] * pred[i-3, 1] + A[8] * pred[i-3, 2] + A[9] *

pred[i-2, 1] + A[10] * pred[i-2, 2] + A[11] * pred[i-1, 1] + A[12] * pred[i-1, 2]

}

#Accuracy of in-sample-prediction with VAR

RSS.var.gdp <- sum((y[1:300, 1] - pred[1:300, 1]) ^ 2)

RSS.var.emp <- sum((y[1:300, 2] - pred[1:300, 2]) ^ 2)

RSS.var <- RSS.var.gdp + RSS.var.emp

#In-sample predictions with opt

pred.opt <- y

for(i in 4:300){

pred.opt[i,1] <- const[1] + beta.sim[1] * pred.opt[i-3, 1] + beta.sim[2] *

pred.opt[i-3, 2] + beta.sim[3] * pred.opt[i-2, 1] + beta.sim[4] * pred.opt[i-2, 2]

+ beta.sim[5] * pred.opt[i-1, 1] + beta.sim[6] * pred.opt[i-1, 2]

pred.opt[i,2] <- const[2] + beta.sim[7] * pred.opt[i-3, 1] + beta.sim[8] *

pred.opt[i-3, 2] + beta.sim[9] * pred.opt[i-2, 1] + beta.sim[10] * pred.opt[i-2, 2]

+ beta.sim[11] * pred.opt[i-1, 1] + beta.sim[12] * pred.opt[i-1, 2]

}

#Accuracy of in-sample-prediction with VAR

RSS.opt.gdp <- sum((y[1:300, 1] - pred.opt[1:300, 1]) ^ 2)

RSS.opt.emp <- sum((y[1:300, 2] - pred.opt[1:300, 2]) ^ 2)

RSS.opt <- RSS.opt.gdp + RSS.opt.emp

#In-of-sample comparison between VAR and opt.

RSS.opt < RSS.var

#Out-of-sample predictions with VAR.

pred <- y
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for(i in 301:310){

pred[i,1] <- const[1] + A[1] * pred[i-1, 1] + A[2] * pred[i-1, 2] + A[3] *

pred[i-2, 1] + A[4] * pred[i-2, 2] + A[5] * pred[i-3, 1] + A[6] * pred[i-3, 2]

pred[i,2] <- const[2] + A[7] * pred[i-1, 1] + A[8] * pred[i-1, 2] + A[9] *

pred[i-2, 1] + A[10] * pred[i-2, 2] + A[11] * pred[i-3, 1] + A[12] * pred[i-3, 2]

}

#Accuracy of out-of-sample-prediction with VAR

MSE.var.gdp <- sum((y[301:310, 1] - pred[301:310, 1]) ^ 2) / h

MSE.var.emp <- sum((y[301:310, 2] - pred[301:310, 2]) ^ 2) / h

MSE.var <- MSE.var.gdp + MSE.var.emp

#Out-of-sample predictions with opt.

pred.opt <- y

for(i in 301:310){

pred.opt[i,1] <- beta.sim[1] + beta.sim[3] * pred.opt[i-1, 1] + beta.sim[5] *

pred.opt[i-1, 2] + beta.sim[7] * pred.opt[i-2, 1] + beta.sim[9] * pred.opt[i-2, 2]

+ beta.sim[11] * pred.opt[i-3, 1] + beta.sim[13] * pred.opt[i-3, 2]

pred.opt[i,2] <- beta.sim[2] + beta.sim[4] * pred.opt[i-1, 1] + beta.sim[6] *

pred.opt[i-1, 2] + beta.sim[8] * pred.opt[i-2, 1] + beta.sim[10] * pred.opt[i-2, 2]

+ beta.sim[12] * pred.opt[i-3, 1] + beta.sim[14] * pred.opt[i-3, 2]

}

#Accuracy of out-of-sample prediction with optimization.

MSE.opt.gdp <- sum((y[301:310, 1] - pred.opt[301:310, 1]) ^ 2) / h

MSE.opt.emp <- sum((y[301:310, 2] - pred.opt[301:310, 2]) ^ 2) / h

MSE.opt <- MSE.opt.gdp + MSE.opt.emp

#Out-of-sample comparison between VAR and opt.

MSE.opt < MSE.var
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