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1. Introduction

We bound the unit index of a subring in terms of its additive index
and in terms of its additive quotient group; this is Theorem 1.1. It is a
consequence of our second main result, Theorem 1.8, which describes the
complete structure of a certain class of ring extensions.

To make matters more precise, we define the category RingExt of ring
extensions. The objects are pairs of rings (E,F ) with E a subring of F , and
the morphisms are the ring homomorphisms between the larger rings that
restrict to a map between the designated subrings. We say E ⊂ F is a ring
extension, or simply an extension, to indicate that (E,F ) is in RingExt.
For the sake of brevity, we often add adjectives to ring extensions that
pertain to the larger ring, or to the subring if no confusion can arise. Let
E ⊂ F be an extension. The additive index of E ⊂ F is the order of the
additive quotient group F/E and is denoted by (F : E). The unit index of
E ⊂ F is the order of the quotient set F×/E× and is denoted by (F× : E×).

We follow the convention that N = Z≥1. For n ∈ N we define u(n) to be
the supremum of (F× : E×) over all extensions E ⊂ F with additive index
n. For every finite abelian group A, we use u(A) to denote the supremum
of (F× : E×) over all extensions E ⊂ F with additive quotient group iso-
morphic to A. We let l(n) and l(A) denote the respective infima of the unit
indices. Analogously, we define ufin(n), ufin(A), lfin(n) and lfin(A) by only
considering extensions E ⊂ F for which F has finite order.

Theorem 1.1. Let n ∈ N, let A be a finite abelian group and let Ap be the
unique Sylow p-subgroup of A for each prime p. Then:

(a) both u(n) and ufin(n) are given by the following expression, in which p
ranges over all primes: ∏

p

(p+ 1)ordp(n),

we have l(n) = 1, and lfin(n) is given by the above expression but with
“p+ 1” replaced by “p− 1”;

(b) both u(A) and ufin(A) are given by the following expression, in which
p ranges over all primes:∏

p

(p+ 1)dimFp A/pA ·#pAp,

we have l(A) = 1, and lfin(A) is given by the above expression but with
“p+ 1” replaced by “p− 1”.

We prove part (a) as Theorem 6.2 and part (b) as Theorem 6.5. It should
be noted that upper bounds for the unit index in terms of the additive
quotient have already been established in [Wol95] and [Wol97], although
both papers only consider orders in number fields. To be specific, let E and
F be orders in a common number field with E ⊂ F . In [Wol95, Theorem 3]
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it is assumed that F/E ∼= Z /pk Z for a prime p and k ∈ N, and it is shown
that (F× : E×) ≤ pk−1(p+ 1). This upper bound is precisely the expression
for u(F/E) in part (b). The upper bounds for (F× : E×) determined in
[Wol97, Theorem 3], don’t require F/E to be cyclic; however, these upper
bounds are strictly larger than the expression for u(F/E) in part (b).

It turns out that the results of Theorem 1.1 also hold if one only takes
commutative rings into account. In fact, the theorem is significantly easier
to prove in this case; we will not elaborate this however.

We move on to Theorem 1.8. An extension E ⊂ F is cosy if E is
a maximal subring of F with finite additive index, such that E does not
contain any two-sided ideals of F except for the zero ideal. Below are six
examples of cosy extensions. In corresponding order, it will be shown in
Examples 4.1, 4.3, 4.4, 4.5, 8.2 and 8.3 that the extensions are indeed cosy.

Example 1.2. Let K be a finite field and let V be a non-zero, finite-
dimensional K-vector space. Define DiagK(V ) = {(x, x) : x ∈ EndK(V )}.
Then DiagK(V ) ⊂ EndK(V )× EndK(V ) is cosy.

If K is a field, V is a non-zero K-vector space and W is a subgroup of V ,
then FixK(W,V ) = {x ∈ EndK(V ) : xW ⊂W} is a subring of EndK(V ).

Example 1.3. Let K be a finite field, let V be a finite-dimensional K-vector
space and let W be a proper, non-zero subspace of V . Then the extension
FixK(W,V ) ⊂ EndK(V ) is cosy.

Let R be a commutative ring. An R-algebra is a ring A endowed with
a ring homomorphism from R to the centre Z(A) of A. An R-algebra is
naturally a left and right R-module. Let A and B be R-algebras. The tensor
product A⊗RB has a natural ring structure determined by (a⊗b)(a′⊗b′) =
(aa′)⊗ (bb′) and a natural R-algebra structure via the map r 7→ r ⊗ 1.

Let R and S be rings. An R-S-bimodule M is a left R-module and a
right S-module such that (rm)s = r(ms) for all r ∈ R, s ∈ S and m ∈ M .
Equivalently, M is an R-S-bimodule if it is a left R⊗Z S

opp-module, where
Sopp is the opposite ring of S; the abelian group S with multiplication the
other way around.

Example 1.4. Let K be a finite field, let L ⊂ K be a field extension of
prime degree and let V be a non-zero, finite-dimensional L-vector space.
Then EndL(V ) ⊂ K ⊗L EndL(V ) is cosy.

Example 1.5. Let K be a finite field, let K ⊂ L be a field extension of
prime degree and let V be a non-zero, finite-dimensional L-vector space.
Then the extension EndL(V ) ⊂ EndK(V ) is cosy.

Let R be a ring and let I be an R-R-bimodule. Consider the abelian
group R ⊕ Iε. We define a multiplication on R ⊕ Iε by (r + xε)(s + yε) =
rs + (ry + xs)ε. This gives rise to the standard ring structure on R ⊕ Iε.
The ring R⊕ Iε contains R as a subring and Iε as a two-sided ideal.
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Example 1.6. Let K be a finite field, let L be the prime field of K, let
σ ∈ Aut(K) and let V be a non-zero, finite-dimensional L-vector space. Set
E = K⊗LEndL(V ). Endow E with the E-E-bimodule structure defined by
((x⊗ a)⊗ (y⊗ b)) · (z ⊗ c) = (xzσ(y))⊗ (acb) and write E ⊕Eεσ = E ⊕Eε
to highlight the dependence on σ. Then E ⊂ E ⊕ Eεσ is cosy.

Example 1.7. Let K be a finite field and let L and M be subfields of K such
that K = LM . Let U be an L-vector space and let V be an M -vector space
such that both are non-zero and finite dimensional. Define UK = K⊗LU and
VK = K⊗M V . Set E = EndL(U)×EndM (V ) and regard HomK(VK , UK) as
E-E-bimodule via the action ((x1, x2)⊗(y1, y2))·z = (idK ⊗x1)◦z◦(idK ⊗y2).
Then E ⊂ E ⊕HomK(VK , UK)ε is cosy.

We shall henceforth assume that an algebraically closed field Ωp of char-
acteristic p has been provided for every prime p. For each k ∈ N and each
prime p, we denote the unique subfield of Ωp with pk elements by Fpk .

Theorem 1.8. Define the following parametrised families of ring extensions
with parameters as indicated:

I. DiagK(V ) ⊂ EndK(V )× EndK(V ) with K = Fpk and V = Kn for all
primes p and k, n ∈ N;

II. FixK(W,V ) ⊂ EndK(V ) with K = Fpk , V = Kn and W = Km × 0
for all primes p and k, n,m ∈ N such that m < n;

III. EndL(V ) ⊂ K ⊗L EndL(V ) with K = Fpkd, L = Fpk and V = Ln for
all primes p, primes d, and k, n ∈ N;

IV. EndL(V ) ⊂ EndK(V ) with K = Fpk , L = Fpkd and V = Ln for all
primes p, primes d, and k, n ∈ N;

V. K ⊗L EndL(V ) ⊂ (K ⊗L EndL(V )) ⊕ (K ⊗L EndL(V ))εσ as defined
in Example 1.6 with K = Fpk , L = Fp and V = Fnp for all primes p,
automorphisms σ ∈ Aut(K) and k, n ∈ N;

VI. EndL(U) × EndM (V ) ⊂ (EndL(U) × EndM (V )) ⊕ HomK(VK , UK)ε
as defined in Example 1.7 with K = Fplcm(d,e), L = Fpd, M = Fpe,
U = Lm and V = Mn for all primes p and d, e,m, n ∈ N.

Then each of these families consists of cosy extensions and every cosy ex-
tension is isomorphic to precisely one of these extensions.

A ring is simple if it contains precisely two two-sided ideals. A ring R is
semisimple if every short exact sequence of left R-modules splits.

The proof of Theorem 1.8 is split into several parts. In Section 3 we de-
termine the maximal subrings of simple rings of finite order. They will play
an important role for our structure theorem for semisimple, cosy extensions;
this is Theorem 4.8. The non-semisimple, cosy extensions are treated in Sec-
tion 8. Here we also complete the proof of Theorem 1.8 as Theorem 8.10.

Our two main theorems are related due to Theorem 1.9. We define the
conductor of an extension E ⊂ F to be the set {x ∈ F : FxF ⊂ E}, which
is a two-sided ideal of F that is contained in E by Lemma 2.2.
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Theorem 1.9. Let E ⊂ F be an extension with finite additive index and let
C be the conductor of E ⊂ F . Then:

(a) the ring F/C has finite order and E/C ⊂ F/C has trivial conductor;
(b) we have (F× : E×) ≤ ((F/C)× : (E/C)×) with equality if #F is finite.

This is essentially a corollary of [BL15, Lemma 3.7]. However, we prove
Theorem 1.9 anew as Theorem 2.5. If E ⊂ F is a maximal extension with
finite additive index, then we shall see in Definition 2.8 that E/C ⊂ F/C
is cosy, where C is the conductor of E ⊂ F . Consequently, part (b) of
Theorem 1.9 suggests that we can determine u(n), ufin(n) and lfin(n) for all
n ∈ N using only cosy extensions. This will indeed be the case and, in fact,
only the semisimple version of our main structure theorem will be necessary
to prove part (a) of Theorem 1.1. Most of the preparation for the proof of
part (a) of Theorem 1.1 can be found in Section 5, where we compute the
additive indices and unit indices of all cosy extensions. In Example 6.1 we
will see that l(n) = 1 for all n ∈ N. We derive part (b) of Theorem 1.1 from
part (a) of Theorem 1.1.

2. Cosy extensions

This section introduces cosy extensions and establishes several elemen-
tary properties of cosy extensions. We will use the definitions and theory
developed in this section throughout the other sections.

Definition 2.1. Let E ⊂ F be an extension. The conductor of E ⊂ F is
the set {x ∈ F : FxF ⊂ E}. We denote it by C(E ⊂ F ).

Lemma 2.2. Let E ⊂ F be an extension. Then the conductor of E ⊂ F is
the greatest two-sided ideal of F that is contained in E.

Proof. Write C = C(E ⊂ F ). It is obvious that C is a two-sided ideal of F .
We have C ⊂ {x ∈ F : 1 · x · 1 ∈ E} = E, so C is contained in E. Let J
be an arbitrary two-sided ideal of F that is contained in E. Then we have
FxF ⊂ J ⊂ E for all x ∈ J and thus J ⊂ C. This proves Lemma 2.2.

Lemma 2.3. Let E ⊂ F be an extension and let I be a two-sided ideal of F
that is contained in E. Write C = C(E ⊂ F ). Then C(E/I ⊂ F/I) = C/I.
In particular, if I = C, the conductor of E/I ⊂ F/I is trivial.

Proof. By Lemma 2.2, the set C is a two-sided ideal of F and we have
I ⊂ C ⊂ E. Thus C/I is a two-sided ideal of F/I that is contained in E/I.
Pick an arbitrary two-sided ideal of F/I that is contained in E/I and write
it as J/I for some two-sided ideal J of F . Then J is contained in E and
hence J ⊂ C. It follows that J/I ⊂ C/I.

A ring is left artinian if it doesn’t have an infinite strictly-descending
chain of left ideals. This allows us to formulate the following lemma.

4



Lemma 2.4. Let R and S be rings and let φ : R → S be a surjective ring
homomorphism. If R is left artinian, then the induced group homomorphism
R× → S× is surjective as well.

Proof. See [BL15, Lemma 3.4]

We shall now state Theorem 1.9 again and prove it.

Theorem 2.5. Let E ⊂ F be an extension with finite additive index and let
C be the conductor of E ⊂ F . Then:

(a) the ring F/C has finite order and E/C ⊂ F/C has trivial conductor;
(b) we have (F× : E×) ≤ ((F/C)× : (E/C)×) with equality if #F is finite.

Proof. (a) Clearly I = {x ∈ F : Fx ⊂ E} is a left ideal of F with I ⊂ E.
Regard F and I as left F -modules via left multiplication with quotient
module F/I and associated ring homomorphism λ : F → End(F/I). Then

kerλ = {x ∈ F : xF ⊂ I} = {x ∈ F : FxF ⊂ E} = C.

Now regard F and E as right E-modules via right multiplication. The quo-
tient module F/E yields a ring homomorphism E → End(F/E)opp. Its
kernel is I and it reduces to an embedding E/I ↪→ End(F/E)opp. Conse-
quently, the ring E/I has finite order and therefore F/I has finite order as
well. The kernel of λ is C, so λ reduces to an embedding F/C ↪→ End(F/I)
and thus F/C has finite order. Lemma 2.3 yields C(E/C ⊂ F/C) = 0.

(b) The natural ring homomorphism F → F/C induces a group homo-
morphism q : F× → (F/C)×. Since q−1((E/C)×) = E×, the homomor-
phism q reduces to an embedding of sets q : F×/E× ↪→ (F/C)×/(E/C)×

and the inequality follows. If F has finite order, it is left artinian. According
to Lemma 2.4 the map q is then surjective. The map q is then surjective as
well, so we obtain an equality of unit indices.

The inequality in part (b) of Theorem 2.5 can be strict. In fact, Exam-
ple 2.6 shows that (F× : E×) need not even divide ((F/C)× : (E/C)×).

Example 2.6. Let H be the R-algebra of Hamilton quaternions. The map
· : H→ H, a+ bi+ cj + dk 7→ a− bi− cj − dk is a ring antiautomorphism
and xx = a2 + b2 + c2 + d2 ∈ R≥0 for all x = a+ bi+ cj + dk ∈ H.

Set ζ = (1 +
√
−11)/2, with

√
−11 =

√
11 · i, and set F = Z[ζ][j] ⊂ H.

We have {±1,±j} ⊂ F×. We now show the opposite inclusion holds. Note
that xx ∈ F ∩ R≥0 = Z≥0 for all x ∈ F . Let x ∈ F× and set y = x−1.
Then xxyy = x · yy · x = xyxy = 1 and it follows that xx = 1. Write
x = (a+ b

√
−11)/2 + (c+ d

√
−11)j/2 with a, b, c, d ∈ Z to obtain

4 = 4xx = a2 + 11b2 + c2 + 11d2.

Then b = d = 0 and we have either a = ±2 and c = 0 or we have a = 0 and
c = ±2. Hence x is an element of {±1,±j} and therefore F× = {±1,±j}.
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The polynomial g = x2−x+ 3 ∈ Z[x] has ζ as zero, so there is a natural
ring isomorphism Z[ζ] → Z[x]/(g). By reducing coefficients modulo 2, one
obtains a surjective ring homomorphism Z[x]/(g)→ F2[x]/(x2 +x+1). The
polynomial x2 + x+ 1 ∈ F2[x] is irreducible, so there is a ring isomorphism
F2[x]/(x2 + x+ 1)→ F4. This describes a chain of ring homomorphisms

Z[ζ]→ Z[x]/(g)→ F2[x]/(x2 + x+ 1)→ F4

with composition φ : Z[ζ]→ F4. This is a surjective ring homomorphism.
Consider F4[j] = F4⊕F4 j and endow it with a ring structure via the

relations j2 = 1 and jx = x2j for all x ∈ F4. Set F = EndF2(F4). One
readily checks that ψ : F4[j] → F , a + bj 7→ (x 7→ ax + bx2) is well-defined
and an injective ring homomorphism. Since #F4[j] = 16 = #F , the map
ψ is an isomorphism. We can now define the surjective ring homomorphism
q : F → F , a+ bj 7→ ψ(φ(a) + φ(b)j).

Consider W = {0, φ(ζ)} as an F2-subspace of F4 and define the subring
E = FixF2(W,F4) of F . For E = q−1(E) the map q induces isomorphisms
F/(ker q) ∼= F and E/(ker q) ∼= E. The extension E ⊂ F has trivial con-
ductor, because the only proper two-sided ideal of F is the zero ideal. Set
C = C(E ⊂ F ). Then Lemma 2.3 yields C = ker q and we therefore obtain

((F/C)× : (E/C)×) = (F
×

: E
×

) = 6/2 = 3. Note that j is not contained
in E, because q(j)y = ψ(j)y = y2 = 1 + y 6∈W for y = φ(ζ). Consequently,
we find that E× = {±1} and (F× : E×) = 4/2 = 2. We observe that the
unit index (F× : E×) = 2 doesn’t divide ((F/C)× : (E/C)×) = 3.

Remark 2.7. Let n ∈ N and let E ⊂ F be an extension that has additive
index n. By part (b) of Theorem 2.5, we have (F× : E×) ≤ (F : C) with
C = C(E ⊂ F ). Our proof of Theorem 2.5 yields

(F× : E×) ≤ (F : C) ≤ nl(l+1)2

with l = (log n)/(log 2). The more symmetric proof of the first statement
of part (a) of Theorem 2.5 from [BL15, Lemma 3.7] yields a smaller bound,
namely (F : C) ≤ n(l+1)2 . Both bounds show that u(n), the supremum of
the unit indices of all extensions with additive index n, is finite for all n ∈ N.

We reformulate our definition of a cosy extension from Section 1 using
the notion of the conductor of an extension. These two definitions of a cosy
extension are equivalent due to Lemma 2.2.

Definition 2.8. An extension E ⊂ F is cosy if E is a maximal subring of
F and E ⊂ F has finite index and trivial conductor.

Lemma 2.9. Let E ⊂ F be cosy and let I be a non-zero two-sided ideal of
F . Then I is not contained in E and we have E + I = F .

Proof. The conductor of E ⊂ F is trivial, so I is not contained in E. The
ring E is therefore a proper subring of E+ I. Together with the maximality
of E, this implies that E + I = F .
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Proposition 2.10. Let E ⊂ F be cosy. Then F has finite order and prime
characteristic. Furthermore, #F and (F : E) are prime powers.

Proof. From part (a) of Theorem 2.5 it follows that F has finite order. Let
p be a prime number that divides #F and consider the two-sided ideal
I = {x ∈ F : px = 0} of F . By Cauchy’s Theorem there exists an element
of additive order p in F , so I 6= 0 and thus E + I = F by Lemma 2.9. We
have pF = pE + pI = pE ⊂ E, so pF is a two-sided ideal of F that is
contained in E. It follows that pF = 0 and therefore F has characteristic p.
Consequently, every non-zero element of F has order p, so #F and (F : E)
are positive powers of p.

Corollary 2.11. Suppose that E ⊂ F is a maximal extension. Then (F : E)
is infinite or a prime power.

Proof. If the additive index (F : E) is infinite there is nothing to prove,
so suppose (F : E) is finite. Set C = C(E ⊂ F ). Then the extension
E/C ⊂ F/C is maximal and thus cosy by Theorem 2.5. The result now
follows directly from Proposition 2.10.

3. Maximal subrings of simple rings

Recall that a ring is simple if it has precisely two two-sided ideals. This
section is dedicated to the classification of maximal subrings of simple rings
with finite order. It should be noted that simple rings and semisimple rings
are strongly related. We recall some theory from [Lam01, §2–4].

A left module is simple if it has precisely two submodules. A left mod-
ule is semisimple if it is a direct sum of simple left modules. A ring R is
semisimple if every short exact sequence of left R-modules splits, or equiva-
lently if every left R-module is semisimple. Every semisimple ring is a finite
direct product of simple, semisimple rings. A ring is simple and semisimple
if and only if it is isomorphic to a linear-endomorphism ring of a non-zero,
finite-dimensional vector space over a division ring; if the ring has finite or-
der, this division ring is a field. Every simple, semisimple ring has a unique
simple left module up to isomorphism. The Jacobson radical of a ring R is
the intersection of all maximal left ideals of R and is denoted by J(R); it is
a two-sided ideal of R. Clearly, J(R) = 0 if R is a simple ring. A one-sided
or two-sided ideal I of a ring R is nilpotent if Ik = 0 for some k ∈ N.

Lemma 3.1. Let R be a ring of finite order. Then J(R) is the greatest
nilpotent two-sided ideal of R. Furthermore, R is a semisimple ring if and
only if J(R) = 0.

Proof. By [Lam01, Theorem 4.12], the Jacobson radical of a left artinian
ring is its greatest nilpotent left ideal. By [Lam01, Theorem 4.14], a ring is
semisimple if and only if it is left artinian and its Jacobson radical is trivial.
Since R has finite order, R is left artinian and Lemma 3.1 follows.
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It follows from Lemma 3.1 that a simple ring of finite order is always
semisimple, and thus isomorphic to EndK(V ) for some finite field K and
some non-zero, finite-dimensional K-vector space V . Hence we may assume
that our simple rings of finite order are of this form.

Notation 3.2. Throughout this section we let K be a finite field and we let
V be a non-zero, finite-dimensional K-vector space.

Lemma 3.3. Let E be a subring of EndK(V ) and let I be a non-zero left
ideal of E. Then I · V is a non-zero subspace of V that is fixed by E.

Proof. The set I ·V is per definition closed under addition and the equalities
K · I ·V = I ·K ·V = I ·V show that it is closed under scalar multiplication,
so I · V is a subspace of V . We have I · V 6= 0, because EndK(V ) and
therefore I act faithfully on V . Finally, E fixes I · V because E · I = I.

Lemma 3.4. Let W be a proper, non-zero subspace of V . Define the ring
E = FixK(W,V ). Then J(E) 6= 0 and J(E) · V = W .

Proof. Regard V and W as left E-modules, let V/W be the quotient module
and define the two-sided ideal I = AnnE(W ) ∩ AnnE(V/W ) of E. By
[Lam01, Corollary 4.2], the Jacobson radical of a ring equals the intersection
of the annihilators of its simple left modules. Both W and V/W are simple
left E-modules, so J(E) ⊂ I. Note that I consists of all x ∈ E such that
xW = 0 and xV ⊂W . We observe that I2 = 0. Lemma 3.1 yields I ⊂ J(E),
so that J(E) = I 6= 0 and J(E) · V = I · V = W .

Lemma 3.5. Let E be a maximal subring of EndK(V ). Then the following
statements are equivalent:

(a) we have E = FixK(W,V ) for a proper, non-zero subspace W of V ;
(b) the ring E is not simple;
(c) the ring E fixes a proper, non-zero subspace of V .

Proof. It follows immediately from Lemma 3.4 that (a) implies (b).
Next, we show that (b) implies (c). By Lemma 3.3 it suffices to find a

non-zero left ideal I of E such that I ·V ( V . First suppose that J(E) 6= 0.
Set I = J(E). If I ·V = V , then we have Ik ·V = V for all k ∈ N, but this is
absurd since I is nilpotent by Lemma 3.1. Thus I ·V is a proper subspace of
V . Now suppose that J(E) = 0. Then E is semisimple by Lemma 3.1 and
therefore a direct product of two or more rings. It follows that E contains an
idempotent e ∈ Z(E) with e 6∈ {0, 1}. Let I be the left ideal of E generated
by e. We have (1− e) · I · V = (1− e)eV = 0, so I · V ( V .

Finally, we show that (c) implies (a). Let W be a proper, non-zero
subspace that is fixed by E. Then FixK(W,V ) is a proper subring of
EndK(V ). We have E ⊂ FixK(W,V ) and the maximality of E implies
that E = FixK(W,V ).
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In Lemma 3.5 we have described the non-simple, maximal subrings of
EndK(V ). We describe the simple, maximal subrings E of EndK(V ) by
separating them into two cases: either Z(F ) is contained in E or it isn’t.

Lemma 3.6. Let E be a maximal, simple subring of F = EndK(V ). Identify
K with Z(F ) and set L = Z(E). Suppose that K 6⊂ E. Then:

(a) we have a field extension L ⊂ K of prime degree and there exists a ring
isomorphism F → K ⊗L E that is the identity on E;

(b) there exists an L-subspace W of V with dimLW = dimK V such that
K ·W = V and E = FixK(W,V ).

Proof. (a) We have E ( K · E, because K 6⊂ E. The maximality of E
implies that K · E = F and since L centralises both E and K, we obtain
L ( Z(F ) = K. Set D = K ⊗L E. Regard V as a left E-module and let
W be a simple submodule. Then E ∼= EndL(W ) and D ∼= EndK(K ⊗LW ),
so D is simple. The ring homomorphism D → F, x ⊗ y 7→ xy is surjective
because F = K · E and is injective because D is simple. This isomorphism
is the identity on E and its inverse is the desired map. Finally, if L ⊂ K
is not of prime degree, there exists a subfield L ( M ( K and we have
E (M ⊗L E ( D, which contradicts the maximality of E.

(b) Let D and W be as in (a). Then W is an L-vector space with
dimension dimK V , because EndK(K ⊗LW ) ∼= D ∼= F . Secondly, we have

K ·W = K · E ·W = F ·W = V.

Finally, we have E ⊂ FixK(W,V ) ( F and thus the maximality of E yields
E = FixK(W,V ).

Lemma 3.7. Let E be a maximal, simple subring of F = EndK(V ). Identify
K with Z(F ) and set L = Z(E). Suppose that K ⊂ E. Then K ⊂ L is a
field extension of prime degree, V is an L-vector space and E = EndL(V ).

Proof. It is clear that K ⊂ L is a field extension. Since V is a left E-module,
it is also an L-vector space. The E-submodules of V are K-subspaces. If
such a submodule is non-zero and proper, part (c) of Lemma 3.5 shows
that E is not simple, which is absurd. Hence V is a simple left E-module
and thus E = EndL(V ). It follows that K ( L. If the field extension
K ⊂ L is not of prime degree, there is a subfield K ( M ( L and we have
E ( EndM (V ) ( EndK(V ), which contradicts the maximality of E.

We now show the subrings of EndK(V ) that appear in Lemmas 3.5 to 3.7
are maximal subrings. Note that any proper subring of EndK(V ) is con-
tained in a maximal subring, because EndK(V ) has finite order.

Example 3.8. Let W be a proper, non-zero subspace of V and set E =
FixK(W,V ). LetD be a maximal subring of EndK(V ) with E ⊂ D. Suppose
that D is simple. We have K ⊂ E ⊂ D, so D = EndL(V ) for a field
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extension K ⊂ L of prime degree by Lemma 3.7. The ring E contains an
element x with a one-dimensional K-subspace of V as image. However, x
is also contained in D, so the image of x is an L-subspace of V as well,
which is absurd. It follows that D is not simple and therefore we have
D = FixK(U, V ) for a proper, non-zero K-subspace U of V by Lemma 3.5.
Clearly E only fixes a single proper, non-zero K-subspace of V , so U = W
and D = E. Hence E is a maximal subring of EndK(V ).

Example 3.9. Let L ⊂ K be a field extension of prime degree and let W
be an L-subspace of V such that dimLW = dimK V and K ·W = V . Set
E = FixK(W,V ). If E is not a maximal subring of EndK(V ), there exists a
maximal subring E ⊂ D ( F . Suppose that K ⊂ D. Then it is not difficult
to see that F = K ·FixK(W,V ) = K ·E ⊂ D, which is absurd. Consequently,
K 6⊂ D and thus D is simple by Lemma 3.5. We find that D = FixK(U, V )
for some field extension M ⊂ K of prime degree and M -subspace U of V ,
using Lemma 3.6. We have L ⊂ D ∩ Z(F ) ⊂ Z(D) = M and thus L = M ,
because L ⊂ K has prime degree. Clearly E = FixK(W,V ) is isomorphic
to EndL(W ), so E is simple. View U as a left E-module. Then U contains
a simple left E-submodule that is an L-subspace with dimension dimLW ,
which equals dimK V . However, we have dimL U = dimK V , so U is a simple
left E-module. Thus D = E and hence E is a maximal subring of EndK(V ).

Example 3.10. Let K ⊂ L be a field extension of prime degree such that V
is also an L-vector space. Set E = EndL(V ). If E is not a maximal subring
of EndK(V ), there is a maximal subring E ⊂ D ( F . Since V is a simple
left E-module, V is a simple left D-module as well. Using parts (b) and (c)
of Lemma 3.5, the ring D is simple. Furthermore, we have K ⊂ E ⊂ D,
so D = EndM (V ) for some field extension K ⊂ M of prime degree by
Lemma 3.7. Clearly all elements of M commute with L, so M ⊂ E and thus
M ⊂ L. Since K ⊂ L has prime degree, we find that M = L and D = E,
so E is a maximal subring of EndK(V ).

Proposition 3.11. The collection of maximal subrings of EndK(V ) consists
of the following three subcollections of subrings:

A. the subrings FixK(W,V ) for all proper, non-zero subspaces W of V ;
B. the subrings FixK(W,V ) for all field extensions L ⊂ K of prime degree

and all L-subspaces W of V with dimLW = dimK V and K ·W = V ;
C. the subrings EndL(V ) for all field extensions K ⊂ L of prime degree

and all L-vector-space structures on V that extend the K-vector-space
structure on V .

Proof. By Examples 3.8 to 3.10, the three collections consist of maximal
subrings of EndK(V ). Now let E be a maximal subring of EndK(V ). If E is
not simple, then E is contained in collection A by Lemma 3.5. Otherwise, E
is simple. If Z(F ) 6⊂ E, then E is contained in collection B by Lemma 3.6.
If Z(F ) ⊂ E, then E is contained in collection C by Lemma 3.7.
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4. Semisimple, cosy extensions

In this section we prove the semisimple version of Theorem 1.8, namely
Theorem 4.8. First, we restate Example 1.2 and show it describes semisim-
ple, cosy extensions.

Example 4.1. Let K be a finite field and let V be a non-zero, finite-
dimensional K-vector space. Consider the subring E = DiagK(V ) of the
semisimple ring F = EndK(V ) × EndK(V ). Clearly, E ⊂ F has finite ad-
ditive index. We have E ∼= EndK(V ), so E is simple and the zero ideal is
the only proper two-sided ideal of E; thus C(E ⊂ F ) = 0. Now let D be a
proper subring of F with E ⊂ D. Regard D/E, F/E and EndK(V ) as left
E⊗ZE

opp-modules in the natural manner. Then EndK(V ) is a simple mod-
ule, because its submodules are precisely its two-sided ideals when viewed
as a ring. Moreover, F/E is isomorphic to EndK(V ) as a module and is
therefore simple as well. Then D/E = 0 and D = E, so E is a maximal
subring of F . It follows that E ⊂ F is cosy.

Lemma 4.2. Let E ⊂ F be an extension such that F is simple. Then E ⊂ F
is cosy if and only if it is maximal and F has finite order.

Proof. The “only if” statement is clear by Proposition 2.10, so suppose that
E ⊂ F is maximal and #F is finite. The additive index of E ⊂ F is finite,
because F has finite order. Its conductor is trivial, because the only proper
two-sided ideal of F is the zero ideal. Hence E ⊂ F is cosy.

This lemma allows us to leverage Proposition 3.11 to prove that Exam-
ples 1.3 to 1.5 describe cosy extensions, as we shall see now.

Example 4.3. Let K be a finite field, let V be a finite-dimensional K-vector
space and let W be a proper, non-zero subspace of V . Then the extension
FixK(W,V ) ⊂ EndK(V ) is cosy by Proposition 3.11 and Lemma 4.2.

Example 4.4. Let K be a finite field, let L ⊂ K be a field extension of prime
degree and let V be a non-zero, finite-dimensional L-vector space. Consider
the extension EndL(V ) ⊂ K⊗L EndL(V ), which is isomorphic to the exten-
sion EndL(V ) ⊂ EndK(K ⊗L V ). We have EndL(V ) = FixK(V,K ⊗L V ),
so this is maximal subring of EndK(K ⊗L V ) by Proposition 3.11. Using
Lemma 4.2 it follows that EndL(V ) ⊂ K ⊗L EndL(V ) is cosy.

Example 4.5. Let K be a finite field, let K ⊂ L be a field extension of
prime degree and let V be a non-zero, finite-dimensional L-vector space.
Then EndL(V ) ⊂ EndK(V ) is cosy by Proposition 3.11 and Lemma 4.2.

Lemma 4.6 (Goursat). Let R1 and R2 be rings and let S ⊂ R1 × R2 be
a subset. Then S is a subring of R1 ×R2 if and only if there exist subrings
A1 ⊂ R1 and A2 ⊂ R2 with two-sided ideals I1 ⊂ A1 and I2 ⊂ A2 such that
S is the graph of a ring isomorphism g : A1/I1 → A2/I2, which is to say
that S =

⋃
x∈A1

(x+ I1)× g(x+ I1).
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Proof. Suppose first that S is a subring of R1 × R2. Let π1 : S → R1

and π2 : S → R2 be the projection maps. Set A1 = π1(S), A2 = π2(S),
I1 = π1(kerπ2) and I2 = π2(kerπ1). Then I1 and I2 are two-sided ideals of
A1 and A2 respectively, because they are images of two-sided ideals under a
surjective map. Note that kerπ2 = I1 × 0 and kerπ1 = 0× I2. Now I1 × I2

is a two-sided ideal of S with π1(I1 × I2) = I1 and π2(I1 × I2) = I2 so that
both projections reduce to ring isomorphisms:

S/(I1 × I2)

A1/I1 A2/I2

π1 π2

g

Then g = π2 ◦ π−1
1 : A1/I1 → A2/I2 is a ring isomorphism with

S = {(x1, x2) : g(x1 + I1) = x2 + I2} =
⋃
x∈A1

(x+ I1)× g(x+ I1).

For the opposite implication, suppose S is the graph of such an iso-
morphism g. Consider the subring S′ = {(x + I1, g(x + I1)) : x ∈ A1} of
A1/I1 × A2/I2. Then S is the inverse image of S′ under the natural ring
homomorphism A1×A2 → A1/I1×A2/I2 and thus a subring of R1×R2.

Lemma 4.7. Let E ⊂ F be semisimple and cosy. Suppose that F is not
simple. Then E is simple and there exists an isomorphism F → E ×E that
maps E bijectively to the diagonal.

Proof. There exists an isomorphism φ : F → R1 × R2 with R1 simple and
R2 semisimple. By Lemma 4.6 there are subrings A1 ⊂ R1 and A2 ⊂ R2

with two-sided ideals I1 ⊂ A1 and I2 ⊂ A2 such that φ(E) is the graph of
an isomorphism g : A1/I1 → A2/I2. If A1 6= R1 then φ(E) = A1 × R2 by
the maximality of E and thus 0 6= 0×R2 ⊂ C(E ⊂ F ) = 0, which is absurd.
Hence we have A1 = R1 and similarly A2 = R2. But then I1 × I2 is a two-
sided ideal of φ(F ) = R1×R2 that is contained in φ(E), so I1× I2 = 0. We
can now regard g as an isomorphism from R1 to R2 with φ(E) as its graph.
Then ψ : R1 → E, x 7→ φ−1(x, g(x)) is an isomorphism, so E is simple and
(ψ,ψ ◦ g−1) ◦ φ : F → E × E is the desired isomorphism.

We shall now formulate the semisimple version of Theorem 1.8 and prove
it. The proof requires some basic theory of semisimple rings. At the start
of Section 3 we provided a short overview.

Theorem 4.8. Define the following parametrised families of ring extensions
with parameters as indicated:

I. DiagK(V ) ⊂ EndK(V )× EndK(V ) with K = Fpk and V = Kn for all
primes p and k, n ∈ N;

II. FixK(W,V ) ⊂ EndK(V ) with K = Fpk , V = Kn and W = Km × 0
for all primes p and k, n,m ∈ N such that m < n;
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III. EndL(V ) ⊂ K ⊗L EndL(V ) with K = Fpkd, L = Fpk and V = Ln for
all primes p, primes d, and k, n ∈ N;

IV. EndL(V ) ⊂ EndK(V ) with K = Fpk , L = Fpkd and V = Ln for all
primes p, primes d, and k, n ∈ N.

Then each of these families consists of semisimple, cosy extensions and every
semisimple, cosy extension is isomorphic to precisely one of these extensions.

Proof. Examples 4.1 and 4.3 to 4.5 illustrate that the families I–IV consist
of semisimple, cosy extensions. For the second part, it suffices to show that
(a) every cosy extension is isomorphic to an extension in a family, that (b)
extensions in different families are non-isomorphic, and that (c) different
parameters yield non-isomorphic extensions within a family.

(a) Let E ⊂ F be semisimple and cosy. If this extension isn’t simple, it is
isomorphic to an extension in Example 4.1 by Lemma 4.7. If it is simple, it
is isomorphic to an extension in Examples 4.3 to 4.5 by Lemmas 4.2 and 3.5
to 3.7. It is not difficult to see that any extension in these examples is
isomorphic to an extension described by one of the families I–IV.

(b) We make note of a unique property of each family: the larger ring
in family I is not simple; the subring in family II is not simple; the subring
and larger ring in family III are simple and the centre of the larger ring
is not contained in the subring; the subring and the larger ring in family
IV are simple and the centre of the larger ring is contained in the subring.
Consequently, two extensions in different families are non-isomorphic.

(c) For families I, III and IV, an isomorphism of extensions clearly im-
plies the equality of parameters. For family II, an isomorphism between
two extensions Ei = FixKi(Wi, Vi) ⊂ Fi = EndKi(Vi) for i ∈ {1, 2} yields
K1 = K2 and V1 = V2. Moreover, such an isomorphism induces a simple
left-F1-module structure on V2 and therefore there exists a left-F1-module
isomorphism φ : V1 → V2. We have φ(W1) = φ(J(E1)·V1) = J(E2)·V2 = W2

by Lemma 3.4 and since φ is also K1-linear, we obtain W1 = W2. It follows
that the parameters of the two extensions are equal.

5. Unit indices of cosy extensions

In this section we determine an upper bound and a lower bound for the
unit indices of cosy extensions in terms of the additive index.

Lemma 5.1. Let R be a ring and let I be a two-sided ideal of R. Suppose
that 1 + I ⊂ R×. Then the natural group homomorphism R× → (R/I)×

reduces to a group isomorphism R×/(1 + I)→ (R/I)×.

Proof. Let q : R× → (R/I)× be the natural group homomorphism. Its
kernel is (1 + I) ∩R× = 1 + I. It remains to show that φ is surjective. Let
x+I ∈ (R/I)× and let y+I ∈ (R/I)× be its inverse. Then xy+I = yx+I =
1 + I ⊂ R×, so xy and yx are units. Consequently, we have xya = byx = 1
for some a, b ∈ R×, so x is a unit that satisfies φ(x) = x+ I.
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Lemma 5.2. Let E ⊂ F be an extension and let I be a nilpotent two-sided
ideal of F . If E + I has finite order, then ((E + I) : E) = ((E + I)× : E×).

Proof. Define the ring D = E + I. We have 1 + I ⊂ D× because I is
nilpotent, and we have E/(E ∩ I) ∼= D/I. The two-sided ideal E ∩ I of E is
nilpotent, so 1 + (E ∩ I) ⊂ E×. Now Lemma 5.1 yields

D×/(1 + I) ∼= (D/I)× ∼= (E/(E ∩ I))× ∼= E×/(1 + (E ∩ I)).

Using the fact that D has finite order, these isomorphisms allow us to deduce
that (D : E) = (I : (E ∩ I)) = ((1 + I) : (1 + (E ∩ I))) = (D× : E×).

With this lemma, we can prove Corollary 5.3. It describes the unit index
in terms of the additive index for every non-semisimple, cosy extension. We
refer to Section 8 for more properties of non-semisimple, cosy extensions.

Corollary 5.3. Let E ⊂ F be cosy. Suppose that F is not semisimple. Then
we have (F : E) = (F× : E×).

Proof. The ring F has finite order by Proposition 2.10 and the Jacobson
radical J(F ) of F is nilpotent and non-zero by Lemma 3.1. We then have
E + J(F ) = F by Lemma 2.9 and (F : E) = (F× : E×) by Lemma 5.2.

Lemma 5.4. Let t ∈ N with t > 1 and let a, b ∈ N be numbers satisfying
b ≤ a. Then (ta − 1)/(tb − 1) ∈ [ta−b, (t + 1)a−b]. Furthermore, the upper
bound is assumed if and only if either a = 2 and b = 1 or a = b.

Proof. Let r be the integer remainder after division of a by b. We have
0 ≤ r < b and

ta − 1

tb − 1
= ta−b +

ta−b − 1

tb − 1
= · · · = ta−b + ta−2b + · · ·+ tr +

tr − 1

tb − 1
.

The terms in the final sum are non-negative, so the sum is at least ta−b.
The coefficients of ta−b, ta−2b, . . . , tr in the final sum are all 1. The final
term is strictly less than 1 and is zero if r = 0. In the binomial expansion
of (t + 1)a−b in Z[t], the coefficients of t0, t1, . . . , ta−b are all at least 1, so
(ta − 1)/(tb − 1) ≤ (t+ 1)a−b.

For the second part, the “if” statement is clear, so suppose the upper
bound is reached. The previous remarks imply that r = 0. Moreover, if
a − b > 1, the coefficient of t in the binomial expansion of (t + 1)a−b is
a − b > 1 and the upper bound is not reached. So b | a and a − b ∈ {0, 1}.
It follows that either a = 2 and b = 1 or a = b.

We shall now determine the additive index and the unit index of every
extension listed in Theorem 4.8, the classification of semisimple, cosy exten-
sions. Each of the four families listed in Theorem 4.8 is treated, in order,
by one of the following four examples.
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Example 5.5. Let q be a prime power and let n ∈ N. Consider the rings
E = DiagK(V ) and F = EndK(V ) × EndK(V ) with K = Fq and V = Kn.

We have (F : E) = #E = qn
2
. The map from E× to the set of ordered

bases of Kn that sends a unit to the sequence of images of the standard
basis vectors, is bijective. We find

(F× : E×) = #E× =
n−1∏
i=0

(qn − qi) =
n−1∏
i=0

qi(qn−i − 1).

This number is clearly contained in [(q − 1)n
2
, qn

2
].

Example 5.6. Let q be a prime power and let n,m ∈ N with m < n.
Consider the subring E = FixK(W,V ) of F = EndK(V ) with K = Fq,
V = Kn and W = Km × 0. We have (F : E) = qm(n−m). Let F× act
transitively on the set X of m-dimensional subspaces of V . Under this
action, E× is the stabiliser of W and (F× : E×) = #X by the Orbit-
Stabiliser Theorem. By counting as in Example 5.5, we obtain

(F× : E×) =
m−1∏
i=0

qn − qi

qm − qi
=

m−1∏
i=0

qn−i − 1

qm−i − 1
.

According to Lemma 5.4 this number is contained in [qm(n−m), (q+1)m(n−m)].

Example 5.7. Let q be a prime power, let d be a prime and let n ∈ N.
Consider the subring E = EndL(V ) of F = K ⊗L EndL(V ) with K = Fqd ,
L = Fq and V = Ln. Due to Example 5.5, we know the orders of E and F

and the orders of their unit groups. We obtain (F : E) = q(d−1)n2
and

(F× : E×) =
n−1∏
i=0

qdi(qd(n−i) − 1)

qi(qn−i − 1)
.

This product is contained in [q(d−1)n2
, (q + 1)(d−1)n2

] by Lemma 5.4.

Example 5.8. Let q be a prime power, let d be a prime and let n ∈ N.
Consider the subring E = EndL(V ) of F = EndK(V ) with K = Fq, L = Fqd
and V = Ln. We determined the orders of E and F and the orders of their
unit groups in Example 5.5. We obtain (F : E) = qd(d−1)n2

and

(F× : E×) =

∏dn−1
i=0 qi(qdn−i − 1)∏n−1
i=0 q

di(qdn−di − 1)
=

dn−1∏
i=0
d - i

qi(qdn−i − 1).

This product is contained in [(q − 1)d(d−1)n2
, qd(d−1)n2

].

We can now determine an upper bound and a lower bound for the unit
indices of cosy extensions in terms of the additive index. Before we formulate
Proposition 5.9, we recall that #F and (F : E) are prime powers for any
cosy extension E ⊂ F according to Proposition 2.10.

Proposition 5.9. Let E ⊂ F be cosy. Write (F : E) = pk for a prime p
and k ∈ N. Then (F× : E×) ∈ [(p− 1)k, (p+ 1)k].
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Proof. If F is not semisimple, then (F× : E×) = pk by Corollary 5.3. Now
suppose that F is semisimple. Then the extension E ⊂ F is isomorphic to
an extension listed in Theorem 4.8. In Examples 5.5 to 5.8 we have deter-
mined the additive index and the unit index of every extension described in
Theorem 4.8. Therefore, (F× : E×) is contained in the interval at the end
of one of these examples for some power q of p. Such an interval is clearly
contained in [(p− 1)k, (p+ 1)k].

Remark 5.10. Let p be a prime number. Corollary 5.3 and the expressions
for the additive index and unit index together with the bounds of the unit
index in Examples 5.5 to 5.8, allow us to deduce the following. There are
only two cosy extensions, up to isomorphism, that reach the upper bound
in Proposition 5.9, namely FixFp(Fp×0,F2

p) ⊂ EndFp(F2
p) and Fp ⊂ Fp2 .

Both of these have unit index p+ 1. The extension Fp ⊂ Fp×Fp along the
diagonal is the only cosy extension, up to isomorphism, that assumes the
lower bound in Proposition 5.9. It has unit index p− 1.

6. Bounding the unit index

This section is dedicated to our unit-index theorem, Theorem 1.1. We
recall that u(n) is the supremum and l(n) is the infimum of the unit indices
of all extensions with additive index n, for all n ∈ N. If A is a finite abelian
group, then u(A) is the supremum and l(A) is the infimum of the unit indices
of all extensions E ⊂ F with F/E ∼= A. We defined ufin(n), lfin(n), ufin(A)
and lfin(A) analogously by only taking extensions E ⊂ F into account for
which F has finite order.

We illustrate in Example 6.1 that l(n) = 1 for all n ∈ N. We will later
see that it also shows that l(A) = 1 for each finite abelian group A.

Example 6.1. Let n ∈ Z and define ζ =
√
−2. Consider the ring F =

Z[ζ] = Z+Z ζ and its subring E = Z+nF = Z+nZ ζ. Then the additive
quotient group F/E is isomorphic to Z /nZ and thus (F : E) = n. Note
that the map σ : F → F, a + bζ 7→ a − bζ is a ring automorphism. Let
a+ bζ ∈ F× and let c+ dζ be its inverse. Then

1 = (a+ bζ)(c+ dζ) · σ((a+ bζ)(c+ dζ)) = (a2 + 2b2)(c2 + 2d2)

and we deduce that a2 + 2b2 = 1. This implies that a = ±1 and b = 0,
so F× = {±1} and (F× : E×) = 1. Thus for all n ∈ N, there exists an
extension E ⊂ F with additive index n and unit index 1.

Theorem 6.2. Let n ∈ N. Then both u(n) and ufin(n) are given by the
following expression, in which p ranges over all primes:∏

p

(p+ 1)ordp(n),

we have l(n) = 1, and lfin(n) is given by the above expression but with “p+1”
replaced by “p− 1”.

16



Proof. Let E ⊂ F be an extension with additive index n. Let E = E0 ⊂
E1 ⊂ · · · ⊂ Et = F be a chain of maximal subrings. By Theorem 2.5,
there is a cosy extension Ei ⊂ F i such that (E×i+1 : E×i ) ≤ (F

×
i : E

×
i ),

with equality if F has finite order, and such that its additive index equals
(Ei+1 : Ei) for each i ∈ {0, . . . , t − 1}. We have (F : E) =

∏t−1
i=0(Ei+1 : Ei)

and (F× : E×) =
∏t−1
i=0(E×i+1 : E×i ). It then follows from Proposition 5.9

that both u(n) and ufin(n) are bounded from above by the expression in the
theorem, while lfin(n) is bounded from below by the described expression.

Recall from Remark 5.10 that Fp ⊂ Fp2 and Fp ⊂ Fp×Fp have additive
index p and unit indices p+1 and p−1 respectively for all primes p. Consider
the two extensions

∏
p F

np
p ⊂

∏
p F

np

p2
and

∏
p F

np
p ⊂

∏
p(Fp×Fp)np , where

p ranges over all primes, and np = ordp(n). Both have additive index n.
The unit index of the former is the expression in the theorem, while the unit
index of the latter is the described expression for lfin(n). Hence the values of
u(n), ufin(n) and lfin(n) are as stated. We have l(n) = 1 by Example 6.1.

Lemma 6.3. Let p be a prime number, let A be a finite abelian p-group and
let E ⊂ F be an extension with trivial conductor and F/E ∼= A. Then:

(a) we have an extension E ⊂ E + pF with unit index #pA;
(b) the interval [(p − 1)dimFp A/pA · #pA, (p + 1)dimFp A/pA · #pA] contains

the unit index (F× : E×).

Proof. (a) Define the two-sided ideal I = pF of F . Then E + I is a ring.
Let φ : F/E → A be a group isomorphism. Then φ restricts to a group
isomorphism from (E+ I)/E = p(F/E) to pA and therefore ((E+ I) : E) =
#pA. The two-sided ideal I is nilpotent, because the conductor of E ⊂ F
is trivial and Ik ⊂ pkF ⊂ E for the exponent pk of A. Note that F has
finite order due to Theorem 2.5. Then E + I has finite order as well and
Lemma 5.2 gives ((E + I)× : E×) = ((E + I) : E) = #pA.

(b) The map φ from (a) induces a group isomorphism F/(E+I)→ A/pA.
Using Theorem 6.2 we obtain (F× : (E + I)×) ∈ [(p − 1)k, (p + 1)k], where
k ∈ N satisfies #(A/pA) = pk. Every non-zero element of A/pA has order
p, so we can also write k = dimFp A/pA. One obtains the statement in the
lemma by observing that (F× : E×) = (F× : (E+I)×) ·((E+I)× : E×).

The following example shows that for any prime p and any k ∈ N, there
exists an extension E ⊂ F with F/E ∼= A = Z /pk Z such that the unit
index equals (p+ 1)dimFp A/pA ·#pA or (p− 1)dimFp A/pA ·#pA. That is, the
upper bound and lower bound in part (b) of Lemma 6.3 are achieved.

Example 6.4. Let p be a prime and let k ∈ N. Consider the group A =
Z /pk Z with upper bound (p + 1)dimFp A/pA ·#pA = (p + 1)pk−1 and lower
bound (p− 1)dimFp A/pA ·#pA = (p− 1)pk−1. Set E = Z /pk Z, let f ∈ E[x]
be a monic polynomial of degree 2 and set F = E[x]/(f) = E + Ex. Then
E ⊂ F has trivial conductor and F/E is isomorphic to A. By part (a) of
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Lemma 6.3 we have ((E+pF )× : E×) = pk−1. We have (F : E+pF ) = p, so
E+pF is a maximal subring of F . The conductor C = C(E+pF ⊂ F ) is pF ,
so (E + pF )/C ⊂ F/C is isomorphic to the cosy extension Fp ⊂ Fp[x]/(g),
where g is f with coefficients reduced modulo p. This cosy extension has
the same unit index as E + pF ⊂ F by Theorem 2.5. If the polynomial g is
irreducible, we have Fp[x]/(g) ∼= Fp2 so that (F× : (E + pF )×) = p+ 1 and
(F× : E×) = (p+1)pk−1. In case g is the product of two different irreducible
factors, we have Fp[x]/(g) ∼= Fp×Fp so that (F× : (E + pF )×) = p− 1 and
(F× : E×) = (p − 1)pk−1. Both such g exist for any p and k, so the upper
and lower bounds in part (b) of Lemma 6.3 are attained for A = Z /pk Z.

Theorem 6.5. Let A be a finite abelian group and let Ap be the unique
Sylow p-subgroup of A for each prime p. Then both u(A) and ufin(A) are
given by the following expression, in which p ranges over all primes:∏

p

(p+ 1)dimFp A/pA ·#pAp,

we have l(A) = 1, and lfin(A) is given by the above expression but with
“p+ 1” replaced by “p− 1”.

Proof. First we prove that for every finite abelian group A, the expression in
the theorem is an upper bound for u(A) and ufin(A) and that the described
expression for lfin(A) is a lower bound for lfin(A). This is done by induction
on the number of distinct primes N that divide #A.

If N = 0 the statement is obviously true. Let N ≥ 0 and suppose the
statement holds for all finite abelian groups A such that at most N distinct
primes divide #A. Let A be a finite abelian group such that precisely N +1
distinct primes divide #A, let E ⊂ F be an extension with F/E ∼= A
and let p be a prime that divides #A. Set D = E + pkF , where pk is
the exponent of the Sylow p-subgroup Ap of A. We have F/D ∼= Ap and
A/pA ∼= Ap/pAp, because A is the direct sum of its Sylow subgroups. It
follows from Theorem 2.5 and Lemma 6.3 that

(F× : D×) ≤ (p+ 1)dimFp A/pA ·#pAp.
If F has finite order, we also have (F× : D×) ≥ (p − 1)dimFp A/pA · #pAp.
Note that F/E is isomorphic to (F/D) ⊕ (D/E) and p - #(D/E). Hence
the statement follows by applying the induction hypothesis to D/E.

Let A be a finite abelian group. Write A as a direct sum of the cyclic
groups Ei = Z /pkii Z with pi prime and ki ∈ N for i ∈ {1, . . . , t}. As
Example 6.4 shows, there is an extension Ei ⊂ Fi such that Fi/Ei ∼= Ei
and (F×i : E×i ) = (p + 1)dimFp Ei/pEi · #pEi for all i ∈ {1, . . . , t}. The
extension

∏t
i=1Ei ⊂

∏t
i=1 Fi has A as additive quotient group and has the

expression in the theorem as unit index. In a similar manner one constructs
an extension with additive quotient group A with the expression for lfin(A)
as unit index using Example 6.4, or with unit index 1 using Example 6.1.
This completes the proof of Theorem 6.5.
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7. Bimodules of semisimple rings

In this section we determine the simple left R ⊗Z R
opp-modules for all

semisimple rings R with prime-power order. We require this solely for tech-
nical reasons in the proofs of Lemmas 8.8 and 8.9. We refer to the start of
Section 3 for a short overview of basic theory of semisimple rings. Recall
from Section 1 that Ωp is an algebraically closed field of characteristic p for
every prime p. For each k ∈ N and each prime p, we denote the unique
subfield of Ωp with pk elements by Fpk .

We now provide an example of such a simple left R⊗Z R
opp-module.

Example 7.1. Let R be a semisimple ring with order pk for a prime p
and k ∈ N. There exist finite fields K1, . . . ,Kt ⊂ Ωp and non-zero, finite-
dimensional Fp-vector spaces V1, . . . , Vt such that R is isomorphic to the ring∏t
i=1Ri with Ri = Ki ⊗Fp EndFp(Vi) for all i ∈ {1, . . . , t}.

Let i, j ∈ {1, . . . , t} and let σ ∈ Aut(Kj). Consider the additive abelian
group Hij = (KiKj)⊗Fp HomFp(Vj , Vi). It is not difficult to see that this is
a simple left (KiKj)⊗Fp EndFp(Vi)⊗Fp EndFp(Vj)

opp-module via the action
(x⊗ a⊗ b) · (y ⊗ c) = (xy)⊗ (acb). Now consider the map

Ri ⊗Z R
opp
j → (KiKj)⊗Fp EndFp(Vi)⊗Fp EndFp(Vj)

opp

(x⊗ a)⊗ (y ⊗ b) 7→ (xσ(y))⊗ a⊗ b.
This is a surjective ring homomorphism and if one composes it with the
projection map R ⊗Z R

opp → Ri ⊗Z R
opp
j , one obtains a surjective ring

homomorphism R⊗ZR
opp → (KiKj)⊗FpEndFp(Vi)⊗FpEndopp

Fp
. This induces

a simple left-R ⊗Z R
opp-module structure on Hij , which we denote by Hσ

ij

to highlight the dependence on σ. Note that Hij and Hσ
ij implicitly depend

on the chosen fields and vector spaces that shall depend on the context.

Lemma 7.2. Let R be a ring and let M be a left R-module. Let R1, . . . , Rt
be rings such that R ∼=

∏t
i=1Ri. Then M is simple if and only if there exists

i ∈ {1, . . . , t} such that M has a simple left-Ri-module structure that induces
the original left-R-module structure on M via the projection map R→ Ri.

Proof. The “if” statement is clear, so, conversely, suppose that M is a sim-
ple left R-module. Regard R and R1, . . . , Rt in the obvious way as R-R-
bimodules. Then we have M ∼= R ⊗R M ∼=

⊕t
i=1(Ri ⊗R M). Since M is

simple, this induces a left-R-module isomorphism φ : Ri ⊗R M → M for
some i ∈ {1, . . . , t}. Then x ·m = φ(x⊗m) for x ∈ Ri and m ∈ M defines
the desired left-Ri-module structure on M .

Lemma 7.3. Let K ⊂ L and K ⊂ M be field extensions inside an alge-
braically closed field Ω such that K ⊂ M is finite Galois. Let X be a com-
plete set of representatives of Gal(M/K)/Gal(M/(L ∩M)). Then we have
a ring isomorphism L⊗K M →

∏
σ∈X LM given by x⊗ y 7→ (xσ(y))σ∈X .
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Proof. There exists α ∈M with M = K[α] by the Primitive Element Theo-
rem. Let f be the minimum polynomial of α over K and write f = f1 · · · ft
with f1, . . . , ft ∈ L[x] monic and irreducible. Since f is separable, no two
polynomials of f1, . . . , ft share a root in Ω and therefore f1, . . . , ft are pair-
wise coprime. The maximal two-sided ideals (f1), . . . , (ft) of L[x] are then
also pairwise coprime. Using the Chinese Remainder Theorem, we find

L⊗K M ∼= L⊗K (K[x]/(f)) ∼= L[x]/(f) ∼=
t∏
i=1

L[x]/(fi).

There is a bijection from Gal(M/K) to the set of zeroes of f in M given
by σ 7→ σ(α). Two elements of Gal(M/K) share an equivalence class in
Gal(M/K)/Gal(M/(L ∩ M)) if and only if they map α to a zero of the
same fi, for i ∈ {1, . . . , t}. Hence we have

L⊗K M ∼=
t∏
i=1

L[x]/(fi) ∼=
∏
σ∈X

L[σ(α)] =
∏
σ∈X

LM.

Composing the natural isomorphisms gives the desired isomorphism.

Lemma 7.4. Let R be a semisimple ring of order pk for some prime p and
k ∈ N. Let K1, . . . ,Kt ⊂ Ωp be finite fields and let V1, . . . , Vt be non-zero,
finite-dimensional Fp-vector spaces such that R ∼=

∏t
i=1Ki ⊗Fp EndFp(Vi).

Then the modules Hσ
ij for i, j ∈ {1, . . . , t} and σ ∈ Aut(Kj) from Exam-

ple 7.1 are, up to isomorphism, the only simple left R⊗Z R
opp-modules.

Proof. Due to Example 7.1, we only need to show that every simple left
R ⊗Z R

opp-module is isomorphic to one of the described modules. Clearly,
the rings R⊗ZR

opp and R⊗Fp R
opp are isomorphic. For all i, j ∈ {1, . . . , t},

let Xij be a complete set of representatives of Aut(Kj)/Gal(Kj/(Ki∩Kj)).
Set Ri = Ki ⊗Fp EndFp(Vi) for all i ∈ {1, . . . , t}. Using Lemma 7.3 we find

R⊗Z R
opp ∼=

t∏
i=1

t∏
j=1

Ri ⊗Fp R
opp
j
∼=

t∏
i=1

t∏
j=1

∏
σ∈Xij

Eσij ,

with Eσij = (KiKj) ⊗Fp EndFp(Vi) ⊗Fp EndFp(Vj)
opp for all i, j ∈ {1, . . . , t}

and all σ ∈ Xij . We have EndFp(Vj)
opp ∼= EndFp(V ∗j ) for the dual vec-

tor space V ∗j of Vj . It follows that Eσij is isomorphic to the simple ring
EndKiKj ((KiKj)⊗Fp Vi ⊗Fp V

∗
j ) and therefore Eσij is simple itself.

Let M be a simple left R⊗ZR
opp-module. According to Lemma 7.2 there

exist i, j ∈ {1, . . . , t} and σ ∈ Xij such that M is a simple left Eσij-module
and the original left-R ⊗Z R

opp-module structure on M is induced by the
projection map R⊗ZR

opp → Eσij . In Example 7.1 we saw that Hij is a simple
left Eσij-module and thus M is isomorphic to Hij as a left Eσij-module. If one
compares the left-R⊗ZR

opp-module structure on Hσ
ij from Example 7.1 and

the isomorphism in Lemma 7.3, it is clear that the left-R ⊗Z R
opp-module

structure on Hij induced by the projection map R⊗ZR
opp → Eσij , is precisely

Hσ
ij . Hence M and Hσ

ij are isomorphic as left R⊗Ropp-modules.
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8. The structure of cosy extensions

This section is dedicated to completing the proof of our main structure
theorem, Theorem 1.8. Here we treat the non-semisimple, cosy extensions.
We refer to the start of Section 3 for a short overview of theory concerning
semisimple rings and the Jacobson radical.

Let R be a ring and let I be an R-R-bimodule. Recall that we endowed
R⊕ Iε with the multiplication (r + xε)(s+ yε) = rs+ (ry + xs)ε to turn it
into a ring. The ring R ⊕ Iε contains R as a subring and Iε as a two-sided
ideal. Note that (Iε)2 = 0.

Lemma 8.1. Let E be a ring with finite order and let I be a simple left
E ⊗Z E

opp-module that satisfies EAnn(I) ∩ AnnE(I) = 0. Set F = E ⊕ Iε.
Then E ⊂ F is non-semisimple and cosy.

Proof. Since E has finite order, both I and F also have finite order. We
have (Iε)2 = 0, so Iε ⊂ J(F ) by Lemma 3.1. The two-sided ideal Iε is
non-zero, so J(F ) is non-zero as well. Consequently, F is non-semisimple
by Lemma 3.1.

We now prove that E ⊂ F is cosy. The additive index of E ⊂ F is #I,
which is finite. Set C = C(E ⊂ F ). Since C is contained in E, we have
C · Iε = Iε · C = 0 and therefore C is contained in EAnn(I) ∩ AnnE(I). It
follows that C = 0. For maximality, let D be a subring of F with E ( D.
Regard E, D and F as left E ⊗Z E

opp-modules. Then the inclusion map
D ↪→ F reduces to an injective homomorphism D/E ↪→ Iε. This last map is
an isomorphism because Iε is simple; hence D = F and E ⊂ F is cosy.

We restate the extensions described in Examples 1.6 and 1.7 and prove
they are non-semisimple, cosy extensions in Examples 8.2 and 8.3.

Example 8.2. Let K be a finite field, let L be the prime field of K, let
σ ∈ Aut(K) and let V be a non-zero, finite-dimensional L-vector space.
Consider the ring E = K⊗LEndL(V ) and the E-E-bimodule E with action
((x⊗a)⊗(y⊗b)) ·(z⊗c) = (xzσ(y))⊗(acb). Write E⊕Eεσ = E⊕Eε. Since
E is a simple ring, it is also a simple left E⊗ZE

opp-module. We clearly have

EAnn(E) = 0 and thus EAnn(E)∩AnnE(E) = 0. According to Lemma 8.1,
the extension E ⊂ E ⊕ Eεσ is non-semisimple and cosy.

Example 8.3. Let K be a finite field and let L and M be subfields of K such
that K = LM . Let U be an L-vector space and let V be an M -vector space
such that both are non-zero and have finite dimension. Define UK = K⊗LU
and VK = K⊗M V . Set E = EndL(U)×EndM (V ) and I = HomK(VK , UK).
The action ((x1, x2)⊗ (y1, y2)) · z = (idK ⊗x1) ◦ z ◦ (idK ⊗y2) defines an E-
E-bimodule structure on I. It is not difficult to see that I is a simple left
E ⊗Z E

opp-module. Furthermore, we have EAnn(I) = 0 × EndM (V ) and
AnnE(I) = EndL(U) × 0, so EAnn(I) ∩ AnnE(I) = 0. It now follows from
Lemma 8.1 that E ⊂ E ⊕ Iε is non-semisimple and cosy.
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Proposition 8.4. Let E ⊂ F be cosy. Then (J(F ))2 = 0.

Proof. Set J = J(F ). Let n ∈ N with n ≥ 2 and suppose that Jn 6= 0. It
follows from Lemma 2.9 that E + Jn = F . Therefore, we have the equality
J = J ∩ F = J ∩ (E + Jn) = J ∩ E + Jn and thus

F = E + (J ∩ E + Jn)n ⊂ E + (J ∩ E)n + J2n−1 = E + J2n−1,

so F = E + J2n−1. If we perform this process with 2n− 1 instead of n, we
obtain F = E+J4(n−1)+1. By induction, we find F = E+J2k(n−1)+1 for all
k ∈ N. However, J is nilpotent by Lemma 3.1, so F = E + J2k(n−1)+1 = E
for some k ∈ N, which is absurd. We conclude that J2 = 0.

The following lemma is the converse of Lemma 8.1.

Lemma 8.5. Let E ⊂ F be non-semisimple and cosy. Write J = J(F ).
Then the map φ : E ⊕ Jε → F, x + yε 7→ x + y is a ring isomorphism.
Moreover, J is a simple left E⊗ZE

opp-module and EAnn(J)∩AnnE(J) = 0.

Proof. By Lemma 3.1 we have J 6= 0 and by Lemma 2.9 we have E+J = F .
Let J carry its natural left-E ⊗Z E

opp-module structure and let I be a
submodule. Using Proposition 8.4 we obtain

F · I · F = (E + J) · I · (E + J) ⊂ I + J2 + J3 = I,

so I is a two-sided ideal of F . In particular, E ∩ J is a two-sided ideal of
F and therefore trivial, because C(E ⊂ F ) = 0. We have now shown that
E + J = F and E ∩ J = 0, so φ is bijective. Due to Proposition 8.4 it is a
ring homomorphism.

Now let I be an E ⊗Z E
opp-submodule of J and suppose that I 6= 0, J .

Then we have (E + I) ∩ J = (E ∩ J) + I = I ( J , so E + I is a proper
subring of F , but this is absurd by Lemma 2.9. It follows that J is simple.
For A = EAnn(J)∩AnnE(J) we have F ·A ·F = (E + J)A(E + J) = A, so
A is a two-sided ideal of F and therefore trivial, because C(E ⊂ F ) = 0.

Corollary 8.6. Let E ⊂ F be non-semisimple and cosy. Then the ring E
is semisimple.

Proof. Write J = J(F ). The isomorphism φ in Lemma 8.5 indicates that
E + J = F and E ∩ J = 0. We obtain the sequence E ∼= E/(E ∩ J) ∼=
(E+J)/J = F/J of natural ring isomorphisms. It is clear that J(F/J) = 0,
so J(E) = 0 and hence E is semisimple by Lemma 3.1.

If E ⊂ F is a non-semisimple, cosy extension, then #E is a prime power
by Proposition 2.10 and E is semisimple by Corollary 8.6. Thus we can
apply Lemma 7.4 to classify J(F ) up to left-E⊗ZE

opp-module isomorphism.
With the following lemma we can determine whether modules within such
an isomorphism class result in isomorphic extensions, and whether modules
in different classes result in isomorphic extensions.
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Lemma 8.7. For i ∈ {1, 2}, let Ri be a ring and let Ii be an Ri-Ri-bimodule.
Then the extensions R1 ⊂ R1⊕ I1ε and R2 ⊂ R2⊕ I2ε are isomorphic if and
only if there is a ring isomorphism φ : R1 → R2 and a group isomorphism
ψ : I1 → I2 such that ψ(xzy) = φ(x)ψ(z)φ(y) for all x, y ∈ R1 and z ∈ I1.

Proof. For the first implication, suppose that φ : R1⊕I1ε→ R2⊕I2ε is a ring
isomorphism with φ(R1) = R2. Then φ|R1 : R1 → R2 is a ring isomorphism
and it induces a group isomorphism (R1 ⊕ I1ε)/R1 → (R2 ⊕ I2ε)/R2. Since
(Ri⊕Iiε)/Ri is isomorphic to Ii for i ∈ {1, 2}, we find the group isomorphism
ψ = π ◦ φ|I1 : I1 → I2, where π : R2 ⊕ I2ε → I2 is the projection map. For
all x, y ∈ R1 and z ∈ I1 we have

ψ(xzy) = π(φ(x)φ(z)φ(y)) = φ(x)π(φ(z))φ(y) = φ(x)ψ(z)φ(y).

For the opposite implication, consider the map R1⊕I1ε→ R2⊕I2ε given
by x + yε 7→ φ(x) + ψ(y)ε. It is not difficult to see that this map is a ring
isomorphism that maps R1 bijectively to R2.

Lemma 8.8. Let E ⊂ F be non-semisimple and cosy. Suppose E is simple.
Then there exist a finite field K, a field automorphism σ ∈ Aut(K) and a
non-zero, finite-dimensional L-vector space V , where L is the prime field
of K, such that the extension E ⊂ F is isomorphic to K ⊗L EndL(V ) ⊂
(K ⊗L EndL(V ))⊕ (K ⊗L EndL(V ))εσ, as defined in Example 8.2.

Proof. The ring E has finite order by Proposition 2.10 and is therefore iso-
morphic to D = K⊗Fp EndFp(V ) for some prime p, some finite field K ⊂ Ωp

and a non-zero, finite-dimensional Fp-vector space V . By Lemma 8.5, the
Jacobson radical J(F ) is a simple left E ⊗Z E

opp-module and E ⊂ F is
isomorphic to E ⊂ E ⊕ J(F )ε. It follows from Lemma 7.4 that J(F ) is iso-
morphic to Hσ

11 = K⊗Fp EndFp(V ) for some σ ∈ Aut(K), as in Example 7.1.
Note that Hσ

11 is the same D-D-bimodule we used to construct D ⊕Dεσ in
Example 8.2. Using Lemma 8.7, we see that the extensions E ⊂ E ⊕ J(F )ε
and D ⊂ D ⊕Dε are isomorphic, which proves Lemma 8.8.

Lemma 8.9. Let E ⊂ F be non-semisimple and cosy. Suppose E is not
simple. Then there exist a prime p, finite fields K, L and M with L,M ⊂ K
and LM = K, an L-vector space U and an M -vector space V , both of
which are non-zero and finite dimensional, such that E ⊂ F is isomorphic
to EndL(U) × EndM (V ) ⊂ (EndL(U) × EndM (V )) ⊕ HomK(VK , UK), as
defined in Example 8.3.

Proof. The ring E is semisimple by Corollary 8.6 and its order is a prime
power by Proposition 2.10. Thus E is isomorphic to

∏t
i=1Ki⊗Fp EndFp(Vi)

for some t ∈ Z≥2, a prime p, finite fields K1, . . . ,Kt ⊂ Ωp and non-zero,
finite-dimensional Fp-vector spaces V1, . . . , Vt. Moreover, J(F ) is a simple
left E ⊗Z E

opp-module and E ⊂ F is isomorphic to E ⊂ E ⊕ J(F )ε due
to Lemma 8.5. By Lemma 7.4, the module J(F ) is isomorphic to Hσ

ij =
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(KiKj) ⊗Fp HomFp(Vj , Vi) for some i, j ∈ {1, . . . , t} and σ ∈ Aut(Kj), as
in Example 7.1. If i = j or t > 2, we have EAnn(Hσ

ij) ∩ AnnE(Hσ
ij) 6= 0,

which is absurd by Lemma 8.5. Thus i 6= j and t = 2. By reordering we
may assume that i = 1 and j = 2. Consider the ring automorphism φ of∏t
m=1Km ⊗Fp EndFp(Vm) given by (x ⊗ a, y ⊗ b) 7→ (x ⊗ a, σ(y) ⊗ b) and

let ψ be the identity map Hσ
ij → H id

ij . Then ψ(xzy) = φ(x)ψ(z)φ(y) for all
x, y ∈ E and z ∈ J(F ). The desired result follows from Lemma 8.7.

We are now able to prove Theorem 1.8.

Theorem 8.10. Define the following parametrised families of ring exten-
sions with parameters as indicated:

I. DiagK(V ) ⊂ EndK(V )× EndK(V ) with K = Fpk and V = Kn for all
primes p and k, n ∈ N;

II. FixK(W,V ) ⊂ EndK(V ) with K = Fpk , V = Kn and W = Km × 0
for all primes p and k, n,m ∈ N such that m < n;

III. EndL(V ) ⊂ K ⊗L EndL(V ) with K = Fpkd, L = Fpk and V = Kn for
all primes p, primes d, and k, n ∈ N;

IV. EndL(V ) ⊂ EndK(V ) with K = Fpk , L = Fpkd and V = Ln for all
primes p, primes d, and k, n ∈ N;

V. K ⊗L EndL(V ) ⊂ (K ⊗L EndL(V )) ⊕ (K ⊗L EndL(V ))εσ as defined
in Example 8.2 with K = Fpk , L = Fp and V = Ln for all primes p,
automorphisms σ ∈ Aut(K) and k, n ∈ N;

VI. EndL(U) × EndM (V ) ⊂ (EndL(U) × EndM (V )) ⊕ HomK(VK , UK)ε
as defined in Example 8.3 with K = Fplcm(d,e), L = Fpd, M = Fpe,
U = Lm and V = Mn for all primes p and d, e,m, n ∈ N.

Then each of these families consists of cosy extensions and every cosy ex-
tension is isomorphic to precisely one of these extensions.

Proof. In Theorem 4.8 we classified the semisimple, cosy extensions as fam-
ilies I–IV. According to Examples 8.2 and 8.3, families V and VI consist
of non-semisimple, cosy extensions. Semisimple, cosy extensions and non-
semisimple, cosy extensions are non-isomorphic, so it suffices to show that
(a) every non-semisimple, cosy extension is isomorphic to an extension in
family V or family VI, that (b) extensions in family V and extensions in
family VI are non-isomorphic, and that (c) different parameters yield non-
isomorphic extensions within family V and within family VI.

(a) Let E ⊂ F be a non-semisimple, cosy extension. If E is simple,
then E ⊂ F is isomorphic to an extension in Example 8.2 by Lemma 8.8.
Otherwise, E is not simple and E ⊂ F is isomorphic to an extension in
Example 8.3 by Lemma 8.9. It is not difficult to see that any extension in
these two examples is isomorphic to an extension in family V or VI.

(b) In family V the subrings are simple, while they are not in family VI.
(c) For family V, suppose Ei = Ki⊗Li EndLi(Vi) ⊂ Fi = Ei⊕ Iiεσi with

Ii = Ei for i ∈ {1, 2} are two isomorphic extensions. By Lemma 8.7, there
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is a ring isomorphism φ : E1 → E2 and a group isomorphism ψ : I1 → I2

such that ψ(xzy) = φ(x)ψ(z)φ(y) for all x, y ∈ E1 and z ∈ I1. This implies
that K1 = K2, L1 = L2 and V1 = V2. For a ∈ I1 and x ∈ K1 we have

φ(σ1(x))ψ(a) = ψ(σ1(x)a) = ψ(ax) = ψ(a)φ(x) = σ2(φ(x))ψ(a),

so φ|K1 ◦ σ1 = σ2 ◦ φ|K1 and thus σ1 = σ2, as Aut(K1) is an abelian group.
For family VI, suppose Ei = EndLi(Ui)×EndMi(Vi) ⊂ Fi = Ei⊕Iiε with

Ii = HomKi(VKi , UKi) for i ∈ {1, 2} are two isomorphic extensions. There is
a ring isomorphism φ : E1 → E2 and a group isomorphism ψ : I1 → I2 such
that ψ(xzy) = φ(x)ψ(z)φ(y) for all x, y ∈ E1 and z ∈ I1 by Lemma 8.7.
We have φ(E1Ann(I1)) = E2Ann(I2) and φ(AnnE1(I1)) = AnnE2(I2). This
implies the equality of parameters.
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