
A decision procedure for weighted automata equivalence
Weijer, W. de

Citation
Weijer, W. de. (2019). A decision procedure for weighted automata equivalence.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3596302

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3596302

W. de Weijer

A decision procedure for weighted
automata equivalence

Bachelor thesis
June 21, 2019

Thesis supervisors: M. Bonsangue
M. Streng

Leiden University
Mathematical Institute

Leiden Institute of Advanced Computer Science

Contents

1 Introduction 2

2 Theory 2
2.1 Automata . 3

2.1.1 Nondeterministic finite automata 5

2.1.2 Weighted automata . 7

2.2 Coalgebra . 8

2.2.1 F-algebras . 9

2.2.2 F-coalgebras . 11

3 Deciding weighted automaton equivalence 15

1

1 Introduction

Automata provide models for many different kinds of state-based compu-
tations. One kind of automata are the weighted automata, which can be
used to express a weight, cost, or probability that a certain computation
step will happen.

Due to the large variety of existing automata, category theory can be used
as a strong tool in their general analysis. This is done using the theory of
coalgebras, developed since only 1988 [Acz88].

In this thesis we will develop all the required theory for an audience of
mathematicians and computer scientists alike. This will culminate in an
algorithm that decides whether two weighted automata have the same
behaviour by using coalgebras and we will give a proof of its correctness.

2 Theory

In Section 3 we will need some ideas that may be unfamiliar to a mathe-
matician or computer scientist. We therefore summarise the necessary bits
in the following two sections, either of which can be safely skipped by a
reader who is already familiar with its contents.

In Section 2.1 we discuss the idea of automata and give several examples,
concluding with weighted automata. For a complete introduction to au-
tomata theory we refer to [Mar03]. For weighted automata, [DK12] gives
a short introduction.

Section 2.2 introduces the category theoretical concepts of algebras and
coalgebras. We show how algebras can model algebraic structure and
induction, and how, dually, coalgebras can model automata. The first
few chapters of [Rot15] and [Win14] provide a more complete treatment
of coalgebra. For a coalgebraic treatment of weighted automata, we use
[BBB+

12].

2

2.1 Automata

One of the earliest mathematical models concretely describing the most
general idea of computation was Alan Turing’s “universal computing
machine”, also called a Turing machine. We will not reproduce a precise
definition here, but there is overwhelming empirical evidence that a Turing
machine can compute exactly what a person can compute (the Church–
Turing thesis). Perhaps ironically, an important application of the Turing
machine was proving that certain problems could not be algorithmically
solved, most notably the problem of deciding whether a given Turing
machine would eventually stop or not (the halting problem). This meant
that in order to analyse the behaviour of computing machines themselves,
more restricted models had to be constructed. This has led to a very wide
range of automata varying in computational strength, the kinds of analyses
that can be applied to them, and context in which they are used.

A common notion among many automata is the presence of a set of
states, akin to the vertices in a flowchart diagram. Here each state holds
information on how to act when input is received, for example to halt the
automaton, to give output, or to move to a new state.

A very well-known type of automaton is the deterministic finite automaton.
Let Σ be a finite set called the input alphabet. A deterministic finite
automaton (or dfa) over Σ is a tuple (Q, q0, A, δ) where

• Q is a finite set of states,
• q0 ∈ Q is the initial state,
• A ⊆ Q is the set of accepting states,
• δ : Q× Σ→ Q is the transition function.

For any state q ∈ Q and letter σ ∈ Σ, we interpret δ(q, σ) as the state to
which the dfa moves if it is in state q and receives the input σ. When
an accepting state q ∈ A is reached is this manner and there is no more
remaining input, the automaton will halt and output that the given input
sequence was accepted.

Figure 1 shows an example of a finite automaton over the input alphabet
Σ = {a, b}. Its initial state is denoted with a “start” arrow and its accepting
states with a double circle. An example input string accepted by this
automaton is abaa.

3

q0start

qb

qa

qaa

b

a

a

b

b

a

b

a

Figure 1: A finite automaton

We write Σ∗ for the free monoid generated by Σ with ε as its identity, i.e.
the set of finite sequences (strings) of elements of Σ where the operation is
given by string concatenation and where ε is the unique string of length
zero.

The extended transition function δ∗ : Q×Σ∗ → Q is defined by induction
as

(q, ε) 7→ q

(q, σy) 7→ δ∗(δ(q, σ), y)

where σ ∈ Σ and y ∈ Σ∗. A string x ∈ Σ∗ is accepted by a dfa M if

δ∗(q0, x) ∈ A.

Otherwise, the string is rejected. The language accepted by M is the set

l(M) := {x ∈ Σ∗ | x is accepted by M} ∈ P(Σ∗)

where P denotes the power set.

Two automata M, N are called language equivalent, written as M ∼l N,
when l(M) = l(N).

As promised, dfa are computationally much weaker than Turing machines.
For example there is no automaton M such that

l(M) = {anbn | n ≥ 0},

4

where a, b ∈ Σ are different. Assume that such an M exists and let n = |Q|
be the number of states. Then the sequence of states q0, . . . , q2n visited as
the string anbn is read must contain some duplicate qi = qj with i < j ≤ n.

q0 · · · qi · · · qj · · · qn · · · q2n
a a a a a a b b

But this means that the subsequence qi, . . . , qj can be skipped, so that
the word aian−jbn is also accepted by the automaton. But i + n− j 6= n
and so aian−jbn /∈ L(M) which is a contradiction. This shows that the
main limitation of dfa are their lack of a potentially infinite amount of
“memory”.

It turns out that the only languages that can be accepted by finite automata
are precisely the regular languages R ⊂ P(Σ∗), defined inductively as
follows. For all regular languages l, l1, l2 ∈ R and every letter σ ∈ Σ we
have

• the empty language ∅ ∈ R,
• the singletons {σ} ∈ R and {ε} ∈ R,
• the union l1 ∪ l2 ∈ R,
• the concatenation

l1 · l2 := {xy | x ∈ l1, y ∈ l2} ∈ R,

• and the Kleene star
l∗ :=

⋃
n≥0

ln ∈ R

where

l0 = {ε},
lk+1 = l · lk.

2.1.1 Nondeterministic finite automata

The regular language accepted by the automaton in Figure 1 is {a, b}∗ ·
{aa, b}. It is however not so obvious how a dfa is obtained from a regular
language, for example to construct the automaton from Figure 1 given the

5

regular language. It is often much easier and more efficient (in terms of
memory) to first construct a less restricted kind of automaton and to then
show these to be language equivalent to dfa.

Let Σ again be a finite alphabet. A nondeterministic finite automaton (or
nfa) over Σ is a tuple (Q, q0, A, δ) of a finite set of states Q, an initial state
q0 ∈ Q, a set of accepting states A ⊆ Q, and a transition function δ. This
time however the transition function is a function δ : Q× Σ→ P(Q).

For any state q ∈ Q and letter σ ∈ Σ, we interpret δ(q, σ) as the set of
states to which the nfa can move if it is in state q and receives the input
σ. Again we define the extended transition function δ∗ : Q× Σ∗ → P(Q)

by recursion as

(q, ε) 7→ {q}
(q, σy) 7→

⋃
{δ∗(q′, y) | q′ ∈ δ(q, σ)}

where σ ∈ Σ and y ∈ Σ∗. This time a string x ∈ Σ∗ is accepted if

δ∗(q0, x) ∩ A 6= ∅.

We can construct a language equivalent dfa from a given nfa using the
powerset construction. During the execution of a dfa we need to keep
track of a single state in order to determine where to go next. In a dfa

however we need to keep track of a set of states. We can thus simulate and
nfa M = (Q, q0, A, δ) using a dfa by letting every subset of Q be a single
state in the dfa. So we define the dfa M′ as

(P(Q), {q0}, A′, δ′)

where
A′ = {q′ ∈ P(Q) | q′ ∩ A 6= ∅},

δ′(q′, σ) =
⋃

q∈q′
δ(q, σ).

Since the execution of M′ is completely the same as M, we have L(M′) =
L(M).

6

q0start qa qaa

qb

a

a, b

b

a

Figure 2: A nondeterministic finite automaton for the regular
language {a, b}∗ · {aa, b}.

2.1.2 Weighted automata

Instead of using a transition function δ : Q × Σ → P(Q) to define the
structure of an nfa, we can also write this function as a subset of Q× Σ×
Q, or rather as a function wt : Q× Σ× Q → 2, where 2 = {true, false},
given by

wt(q, σ, q′) :=

{
true if q′ ∈ δ(q, σ),

false otherwise.

We also write the initial state q0 and the accepting states A as weight
functions in : Q→ 2 and out : Q→ 2 given by

in(q) :=

{
true q = q0,

false otherwise,
out(q) :=

{
true q ∈ A,

false otherwise.

We can now use these weight functions to compute whether a word is
accepted by the automaton using a function Σ∗ → 2 given by

σ1σ2 · · · σn 7→
∨

q0,q1,...,qn∈Q

(
in(q0) ∧

∧
1≤i≤n

wt(qi−1, σi, qi) ∧ out(qn)

)
.

Doing this allows us to generalise nfa’s by exchanging the structure
(2,∨,∧) for a more general algebraic structure.

Let Σ be a finite alphabet and R a set, a weighted automaton (or wa)
over Σ and R is a tuple (Q, in, wt, out) where Q is a finite set of states,
wt : Q× Σ× Q → R is a function called the transition weight function,
and in, out : Q→ R are weight functions.

7

The least amount of structure we need on R will be that of a rig: a “ring
without negatives” (often also called a semiring). A rig (R,+, ·, 0, 1) is
a set R equipped with binary operations of addition and multiplication,
such that

• (R,+, 0) is a commutative monoid with identity 0,
• (R, ·, 1) is a monoid with identity 1,
• multiplication distributes over addition from the left and the right,

and
• the annihilation law holds: x · 0 = 0 = 0 · x.

Now let M be a weighted automaton over a rig R, then the weighted
language of M is the function lM : Σ∗ → R given by

lM(σ1 · · · σn) := ∑
q0,q1,...,qn∈Q

(
in(q0) · ∏

1≤i≤n
wt(qi−1, σi, qi) · out(qn)

)
.

Important examples of rigs are the natural numbers (N,+, ·, 0, 1), of course
the Boolean domain (2,∨,∧, false, true) used in nfa’s, and the tropical rig
(also called the max-plus rig) (Z∪ {−∞}, max,+,−∞, 0).

A weighted automaton over the rig (N,+, ·, 0, 1) allows us to “count” the
number of paths of a certain length from the initial state to an accepted
state. For example, the weighted automaton in Figure 3 with alphabet
Σ = {∗} computes the Fibonacci sequence, i.e. lM(∗n) = Fn.

Note however, that the results from Section 3 will require R to be a field
K. In fact, the problem of language equivalence for weighted automata
over the tropical rig with alphabet of at least two symbols is undecidable
[Kro92].

2.2 Coalgebra

In order to study the wide range of automata in a general way, we need to
define them using category theory. This leads to the concept of a coalgebra.
But before this we first need to look at the historically earlier, dual concept
of an algebra, which provides a general framework for algebraic structures.
Examples of algebras are the eponymous algebras over a field or ring, but
also groups and rings and fields themselves. More significant however is

8

q0 q1

∗, 0

∗, 1

1

∗, 1

∗, 1

1

1

Figure 3: A weighted automaton which computes the Fibonacci sequence.
The in and out functions are shown as arrows coming from and going to
nowhere and wt(q, σ, q′) = r is denoted as q σ, r−→ q′.

the use of algebras in studying the ideas of case analysis, pattern matching,
recursion, and induction on objects like the natural numbers.

2.2.1 F-algebras

Given a functor F : C → C from a category C to itself, an F-algebra is an
object X of C together with an arrow f : F(X)→ X. An F-homomorphism
of F-algebras (X, f) to (Y, g) is an arrow h : X → Y such that the following
diagram commutes.

X Y

F(X) F(Y)

f

h

g

F(h)

This gives us the category of F-algebras, where the objects are the F-
algebras and the arrows are the F-homomorphisms.

Let us see how we can now define a monoid as an algebra. A monoid
is a set X together with a unit e ∈ X and an operation m : X × X → X
such that m is associative and e is a unit for it. We first need to rewrite
the unit to be a function e : 1 → X where 1 is some singleton set {∗} so
that e(∗) = e ∈ X. We should also rewrite the associative and unit laws in

9

terms of commutative diagrams as follows.

X× X× X X× X

X× X X

(m,id)

(id,m) m
m

1× X X× X X× 1

X

(e,id)

'
m

(id,e)

'

Lastly, we combine m and e into a single function f : 1 + X × X → X
where + is the disjoint union of sets. We can now define a monoid to be
an F-algebra for the functor

F : Set→ Set

X 7→ 1 + X× X

such that the required laws are satisfied.

Given such a categorical definition of a monoid, we can use the power of
category theory to simultaneously define topological monoids, or smooth
monoids, or rings (being monoids in the category Ab of abelian groups).
To do this we only need to generalise the singleton 1, the cartesian product
×, and the disjoint union + to more general categories as the terminal
object, the categorical product, and coproduct respectively.

To show that we can also use F-algebras to define the natural numbers,
we will define the functor

N : Set→ Set

X 7→ 1 + X.

An algebra for this functor is again a pair (X, f : 1+ X → X). Let’s unpack
this function f as a pair of functions (z, s) where z : 1→ X (hence z defines
an element z ∈ X) and s : X → X. An N-homomorphism h : X → Y must
now satisfy the following commutative diagram.

X Y

1 + X 1 + Y

(zX ,sX)

h

(zY ,sY)

1+h

We can also unpack this diagram to give us two laws that h must satisfy:

• h(zX) = zY and
• h(sX(x)) = sY(h(x)) for all x ∈ X.

10

We can think of many such algebras, however one is special: namely the
algebra (N, (0, S)) where S is the successor function n 7→ n + 1, diagram-
matically:

0 1 2 3
. . .

This N-algebra is special since it is the initial object in the category of
N-algebras. For an N-algebra (X, (zX, sX)), the initial N-homomorphism
i : N→ X is recursively defined as

i(0) := zX

i(S(n)) = i(n + 1) := sX(i(n)).

We could in fact use the universal property of initiality to define recur-
sion and even induction on the natural numbers (cf. Peano’s axiom of
induction).

2.2.2 F-coalgebras

A coalgebra now is the categorical dual of an algebra, meaning that the
definition of a coalgebra is just the same as that for an algebra but with all
the arrows “turned around”.

Given a functor F : C → C on a category C, an F-coalgebra is an object
X of C together with an arrow f : X → F(X). An F-homomorphism of
F-coalgebras (X, f) to (Y, g) is an arrow h : X → Y such that the following
diagram commutes.

X Y

F(X) F(Y)

f

h

g

F(h)

This again gives us the category of F-coalgebras, where the objects are
the F-coalgebras and the arrows are the F-homomorphisms.

Let us investigate some coalgebras and see how they can model automata.
Here we let F be a functor F : Set→ Set and Σ an input alphabet. For an

11

F-coalgebra (X, f), we informally interpret the set X as the set of states
and f : X → F(X) as prescribing to each state its behaviour.

Example 2.1. Define F(X) := 2 × XΣ. An F-coalgebra (X, 〈o, t〉) is a
deterministic automaton. Here o : X → 2 models the set of accepting
states A = {x | o(x) = 1}, and t : X → XΣ the transition function
δ(x, σ) = t(x)(σ).

First note that, contrary to normal finite automata, we don’t fix any initial
state. Secondly, we allow the set of states X to be infinite so that the
category of F-coalgebras has a terminal object.

Example 2.2. Define F(X) := 2× (Pω(X))Σ, where Pω is the set of all
finite subsets (which is a functor). An F-coalgebra (X, 〈o, t〉) is a nondeter-
ministic automaton. Again o : X → 2 models the accepting states but this
time the transition function t : X → (Pω(X))Σ defines the (finite) set of
subsequent states.

We again allow X to be infinite contrary to an nfa. However, the transition
function must be finite branching, meaning that a single step may not put
us in an infinite amount of states and hence that after a finite amount of
steps, only a finite amount of states are reachable.

Using these constructions we can express the powerset construction in a
very succinct way ([SBBR10]) as transforming an nfa X → (Pω(X))Σ into
a dfa Pω(X)→ (Pω(X))Σ using the fact that the functor Pω : Set→ Set
is a monad with multiplication map

µPω
: Pω(Pω(X))→ Pω(X)

x 7→
{⋃

x′ | x′ ∈ x
}

and using the function

H : Pω

(
XΣ)→ Pω(X)Σ

x 7→
(
σ 7→ Pω(evalσ)(x)

)
.

Indeed the following function yields the same construction as in Section

12

2.1.1:

Pω(X)
Pω(t)−−−→ Pω(Pω(X)Σ)

H−−→ Pω(Pω(X))Σ

µΣ
Pω−−→ Pω(X)Σ.

We will now define the coalgebra corresponding to weighted automata.
For this we will need to define the free vector space over a set X

K(X) := { f : X → K | f has finite support}.

Every element of K(X) can be written as a K-linear combination of el-
ements of X. For sets X and Y, a function f : X → Y defines a linear
function

K(f) : K(X) → K(Y)

k1x1 + · · ·+ knxn 7→ k1 f (x1) + · · ·+ kn f (xn).

Definition 2.1. The functor corresponding to weighted automata with input
alphabet Σ over the field K is

W(X) := K× (K(X))Σ.

AW-coalgebra is a pair (X, 〈o, t〉) where o : X → K and t : X → (K(X))Σ.

Notice that, similarly to the coalgebra for nfa, the free vector space
construction makes the transition function finite branching, even though
the set X can be infinite.

Just like the initial object for algebras, we will see that the terminal object
plays a very important role. An F-coalgebra (Ω, ω) is called terminal if it
is terminal in the category of F-coalgebras, hence if for every F-coalgebra
(X, f) there exists a unique F-homomorphism J−KF

X : X → Ω.

A terminal object (X, f) may not always exist, since if it does, f must be an
isomorphism (a result known as Lambek’s theorem). Hence the covariant
powerset functor P : Set → Set has no terminal coalgebra because by
Cantor’s theorem there is no bijection between X and P(X). This is the
reason we used the finite powerset functor in example 2.2.

13

To see how terminal coalgebras work, let us consider again the functor
N(X) = 1 + X from the last section. Its terminal coalgebra is formed by
the set N∪ {∞} together with the function

f : N∪ {∞} → 1 + N∪ {∞}
0 7→ ∗

S(n) 7→ n

∞ 7→ ∞.

We can see this coalgebra as a very simple automaton with 0 as the only
accepting state and transitions as follows.

0 1 2 3
. . .

∞

The terminal N-homomorphism from an N-coalgebra (X, f) can infor-
mally be seen as assigning to each state x ∈ X its behaviour JxKN

X ∈
N ∪ {∞}: either accepting after n ∈ N steps, or being non-terminating
(∞). Any two states with the same behaviour are considered equivalent.

Example 2.3. Consider the following N-coalgebra. Every state x is labelled
with its image under the terminal N-homomorphism JxKN

X .

0 1

2

2 ∞ ∞

Two states x1, x2 ∈ X in a coalgebra (X, f) are called F-behaviourally
equivalent, written as x1 ≈F x2, if Jx1KF

X = Jx2KF
X.

In Section 2.1 we already saw another type of equivalence, namely weighted
language equivalence ∼l between two automata with initial states. This
equivalence can also be adapted to W-coalgabra. It turns out however
that weighted language equivalence is not the same as W-behavioural
equivalence, but ≈W⊂∼l (by Theorem 1 and Proposition 2 in [BBB+

12]).

14

3 Deciding weighted automaton equivalence

In this Section we will reproduce the results from [BBB+
12].

As noted in Section 2.2.2 we cannot use the coalgebraic notion of be-
havioural equivalence to decide weighted language equivalence ≈W in
general. To solve this problem we will provide a similar construction to
the powerset construction, which we used to translate nfa into dfa.

The powerset construction worked by substituting the state space with
the space of all possible combinations of states. Since for a weighted
automaton a combination of states consists of a linear combination of states,
the new state space will be the free vector space K(X) generated by the
original state space X.

Definition 3.1. A linear weighted automaton (or lwa) with input alpha-
bet Σ over the field K is a coalgebra for the functor L : Vect→ Vect with
L(V) = K×VΣ.

As with wa, we can also assign a weighted language to each state of the
lwa.

Definition 3.2. Let (V, 〈o, t〉) be an L-coalgebra. Given a state v ∈ V,
define the weighted language JvKLV : Σ∗ → K by

JvKLV(w) :=

{
o(v) if w = ε,

Jt(v)(σ)KLV(w
′) if w = σw′.

We would normally use the notation lLV for this, but we will see in Theorem
3.1 that J−KLV is in fact the unique terminal L-homomorphism. This also
justifies the notation for the next definition.

Definition 3.3. For an L-coalgebra V, two states v1, v2 ∈ V are called
L-behaviourally equivalent, written as v1 ≈L v2, if Jv1KLV = Jv2KLV .

From a wa we can construct a linear weighted automaton using the
linearization of a function f : X → V where V is a vector space. Since
X gives a basis in K(X), the linearization f] : K(X) → V is defined by
x 7→ f (x). Given a weighted automaton (X, 〈o, t〉) where o : X → K and
t : X → (K(X))Σ, define the linear weighted automaton (K(X), 〈o], t]〉)
where o] : K(X) → K and t] : K(X) → (K(X))Σ.

15

Additionally, if f : X → Y is aW-homomorphism of weighted automata,
then K(f) : K(X) → K(Y) is an L-homomorphism.

The following lemma shows that for a wa X the weighted language lX
corresponds to the weighted language J−KL

K(X) induced by the lwa K(X).
The proof is easy by an induction on the word length and will not be
included.

Lemma 3.1. Let (X, 〈o, t〉) be a wa and (K(X), 〈o], t]〉) the lwa constructed
from it. Then for all v = k1x1 + · · ·+ knxn

JvKL
K(X) = k1 · lX(x1) + · · ·+ kn · lX(xn).

We will now show that a terminal L-coalgebra exists and that the be-
havioural equivalence ≈L induced by it coincides precisely with weighted
language equivalence ∼l.

Theorem 3.2. The category of L-coalgabra has a terminal coalgebra (KΣ∗ , 〈ε, d〉)
where

ε : KΣ∗ → K

(l : Σ∗ → K) 7→ l(ε)

is the empty function and

d : KΣ∗ → (KΣ∗)Σ

(l : Σ∗ → K) 7→
(
σ 7→ (w 7→ l(σw))

)
is the derivative function. Its terminal homomorphism is J−KLV .

Proof. Let us first prove that ε and d are indeed linear functions. Let
l1, l2 ∈ KΣ∗ be two weighted languages. For all letters σ ∈ Σ and words
w ∈ Σ∗ we have

d(l1 + l2)(σ)(w) = (l1 + l2)(σw)

= l1(σw) + l2(σw)

= d(l1)(σ)(w) + d(l2)(σ)(w).

Secondly, let k ∈ K be a scalar and l ∈ KΣ∗ a weighted language. Now for
all letters σ ∈ Σ and words w ∈ Σ∗ we have

d(k · l)(σ)(w) = (k · l)(σ)(w) = k · (l(σ)(w)) = k · d(l)(σ)(w).

16

The proof for ε is similar.

Now we will show that (KΣ∗ , 〈ε, d〉) is terminal. Let (V, 〈o, t〉) be any L-
coalgebra. As noted, the weighted language function J−KLV : V → KΣ∗ ,
will be the terminal L-homomorphism. Indeed, the required diagram

V KΣ∗

K×VΣ K×
(
KΣ∗)Σ

〈o,t〉

J−KLV

〈ε,d〉
id×
(
J−KLV

)Σ

commutes since, for every v ∈ V, σ ∈ Σ and w ∈ Σ∗ we have

ε
(
JvKLV) = JvKLV(ε) = o(v), and(q

t(v)
yL

V

)Σ
(σ)(w) =

q
t(v)(σ)

yL
V(w)

def.
= JvKLV(σw) = d

(
JvKLV

)
(σ)(w).

To prove the uniqueness of the terminal morphism J−KLV , let h : V → KΣ∗

be an L-homomorphism. Then the following diagram must commute.

V KΣ∗

K×VΣ K×
(
KΣ∗)Σ

〈o,t〉

h

〈ε,d〉

id×hΣ

Hence for all v ∈ V, σ ∈ Σ and w ∈ Σ∗ we have

o(v) = ε(h(v)) = h(v)(ε), and

h(v)(σw) = d(h(v))(σ)(w) = h(t(v)(σ))(w).

And so h must be equal to J−KLV by induction on Σ∗.

Another kind of equivalence often employed for automata is that of bisim-
ulation. A bisimulation is a binary relation on the set of states such that
related states both “simulate” each other. The largest bisimulation is called
a bisimilarity, denoted as '. For some automata it provides a stronger
(i.e. more distinguishing) relation than language equivalence. However
we will see that for linear weighted automata, it coincides with language
equivalence.

17

Definition 3.4. Let (V, 〈o, t〉) be an lwa. A subspace U ⊆ V is a linear
weighted bisimulation if

1. U ⊆ ker(o),
2. for all σ ∈ Σ, we have t(U)(σ) ⊆ U.

Two states v, w ∈ V are bisimilar if v− w ∈ U.

We will now show that the relation induced by the largest linear weighted
bisimulation is the same as weighted language equivalence. The following
lemma and theorem are proven in [BBB+

12].

Lemma 3.3. If f : V → W is an L-homomorphism, then ker(f) is a linear
weighted bisimulation on V. Conversely, if U ⊆ V is a linear weighted bisimula-
tion, then there exists an lwa W = V/U and an L-homomorphism f : V →W
such that ker(f) = U.

Theorem 3.4. The largest linear weighted bisimulation on an lwa V is precisely
ker
(
J−KLV

)
.

Proof. Since J−KLV : V → KΣ∗ is an L-homomorphism, by the first part of
lemma 3.3 ker

(
J−KLV

)
is a linear weighted bisimulation.

Now assume U ⊆ V is a linear weighted bisimulation. By the second part
of lemma 3.3 there is and lwa W and an L-homomorphism f : V → W
such that ker(f) = U. By the uniqueness of the terminal homomorphism,
the following diagram commutes:

KΣ∗

V W

J−KLV

f

J−KLW

Hence U = ker(f) ⊆ ker(J−KLW ◦ f) = ker(J−KLV).

We can now construct an algorithm for finding the largest bisimulation,
and hence for deciding whether two states are language equivalent.

Theorem 3.5. Let (V, 〈o, t〉) be an lwa such that dim(V) < ∞. Define the

18

sequence (Ui)i≥0 of subspaces of V by

U0 := ker(o),

Ui+1 := Ui ∩
⋂

σ∈Σ

{v ∈ V | t(v)(σ) ∈ Ui}.

Then there is a j ≤ dim(V) such that Uj = Uj+1. The largest linear bisimulation
is 'L= Uj.

Proof. For every i we have Ui+1 ⊆ Ui and hence the required j must exist.
We now check that Uj is a linear weighted bisimulation.

1. Indeed Uj ⊆ U0 = ker(o).
2. Since Uj = Uj+1 we must have

Uj = Uj ∩
⋂

σ∈Σ

{v ∈ V | t(v)(σ) ∈ Uj}

and hence t(Uj)(σ) ⊆ Uj for all σ ∈ Σ.

To show that Uj is the largest bisimulation, we show that every linear
weighted bisimulation U is also included in Uj. In fact U ⊆ Ui for all i. We
prove this by induction on i. Obviously U ⊆ U0 = ker(o). Now assume
that U ⊆ Ui. By definition t(U)(σ) ⊆ U for every σ ∈ Σ, hence

U ⊆ {v ∈ Ui | ∀σ ∈ Σ, t(v)(σ) ∈ Ui} = Ui+1.

References

[Acz88] Peter Aczel. Non-Well-Founded Sets. Stanford: CSLI Publications,
1988. CSLI Lecture Notes: Number 14.

[BBB+
12] Filippo Bonchi, Marcello Bonsangue, Michele Boreale, Jan Rut-

ten, and Alexandra Silva. A coalgebraic perspective on lin-
ear weighted automata. Inf. Comput., 211:77–105, February
2012. URL: http://dx.doi.org/10.1016/j.ic.2011.12.002,
doi:10.1016/j.ic.2011.12.002.

19

http://dx.doi.org/10.1016/j.ic.2011.12.002
http://dx.doi.org/10.1016/j.ic.2011.12.002

[DK12] Manfred Droste and Dietrich Kuske. Weighted automata.
In Jean-Eric Pin, editor, Automata: from Mathematics to Appli-
cations, 2012. URL: http://eiche.theoinf.tu-ilmenau.de/
kuske/Submitted/weighted.pdf.

[Kro92] Daniel Krob. The equality problem for rational series with
multiplicities in the tropical semiring is undecidable. In Proceed-
ings of the 19th International Colloquium on Automata, Languages
and Programming, pages 101–112. Springer-Verlag, 1992. URL:
http://dl.acm.org/citation.cfm?id=646246.684713.

[Mar03] John C. Martin. Introduction to Languages and the Theory of Com-
putation. McGraw-Hill, Inc., New York, NY, USA, 3 edition,
2003.

[Rot15] Jurriaan Rot. Enhanced coinduction. PhD thesis, Leiden Univer-
sity, October 2015.

[SBBR10] Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and
Jan J. M. M. Rutten. Generalizing the powerset construction,
coalgebraically. In FSTTCS, 2010.

[Win14] Joost Winter. Coalgebraic Characterizations of Automata-Theoretic
Classes. PhD thesis, Radboud University Nijmegen, July 2014.

20

http://eiche.theoinf.tu-ilmenau.de/kuske/Submitted/weighted.pdf
http://eiche.theoinf.tu-ilmenau.de/kuske/Submitted/weighted.pdf
http://dl.acm.org/citation.cfm?id=646246.684713

	Introduction
	Theory
	Automata
	Nondeterministic finite automata
	Weighted automata

	Coalgebra
	F-algebras
	F-coalgebras

	Deciding weighted automaton equivalence

