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Abstract

The Covariant Galileon Model is an extension of General Relativity
constructed by adding an extra scalar degree of freedom to it. The
mathematical background of the model is therefore also found in

differential geometry. The equations of motion of the model can be
derived from its Lagrangian. Using the ADM formalism and tools from

differential geometry the EFT functions of the model are then found.
Numerical solutions to the model are given for two different sets of

parameters and for variations of the the present day matter density and
the Hubble constant at the start of the simulation. From these it is

concluded that a more thorough Monte Carlo simulation of the model is a
useful tool for further analysis of the model. Furthermore more research
is needed for a better interpretation of the found solutions to the model.



Contents

1 Introduction 1

2 Geometry 3
2.1 Manifolds 3
2.2 Tangent spaces 8
2.3 Tensors 12
2.4 Vector bundles 16
2.5 Differentiation & integration 23
2.6 Curvature 30

3 General Relativity 39
3.1 Geometry of the Universe 39
3.2 Principle of Least Action 41
3.3 The Einstein-Hilbert action 44

4 The Covariant Galileon Model 49
4.1 The model 50
4.2 The ADM formalism 53
4.3 The EFT formalism 59
4.4 The mapping 62

5 Simulations 68
5.1 The equations 68
5.2 The parameters 71
5.3 The simulations 72

6 Conclusion 79

Version of 29 August 2018– Created February 26, 2019 - 05:31

i



Chapter 1
Introduction

Since the dawn of man, mankind has always looked up to the sky and
wondered about the contents of the cosmos, trying to unveil the myster-
ies of the universe. Our current understanding of the universe on these
grand scales is given by Einstein’s Theory of General Relativity. It posits
that space and time form one geometrical structure and that gravity is the
curvature of that structure. The inception of this theory meant a huge
leap forward in our understanding of the universe and it brought forth
many big technological advancements. Currently however challenges to
the theory have arisen. In particular the accelerated expansion of the uni-
verse can not be satisfactorily explained with standard General Relativity.
The cosmological constant can help solve these issues, but for theoretical
reasons this approach is not favoured by everyone. Therefore new models
of gravity have been sought to explain among others this accelerated ex-
pansion. One such model is the Covariant Galileon Model, which will be
discussed here. The goal of this thesis is to give an understanding of this
model and to show how this model can be falsified.

The Covariant Galileon Model is an extension of General Relativity and
thus cannot be understood without knowledge of General Relativity. As
such, this thesis will first dedicate itself to give a quick overview of the
mathematics involved in these theories, before moving to reviewing the
basics of General Relativity and then giving the details of the Covariant
Galileon Model. The thesis will end with a numerical investigation of the
Covariant Galileon Model. This numerical analysis will show how mea-
surements can be used to falsify this model.

Now a little bit of technical details about this thesis. Firstly, if not oth-
erwise specified, differentiable shall mean C∞. Secondly, Einstein’s sum-
mation convention will be used throughout this thesis. This means that,
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2

unless stated otherwise, whenever in a term of an equation two indices are
repeated, one being a lower index and the other an upper index, then there
is a sum implied over all values of the indices. Greek indices will always
take values in {0, 1, 2, 3}, while from chapter 3 onward Latin indices take
values in {1, 2, 3}. Note that the i in ∂

∂ui is considered to be a lower index.
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Chapter 2
Geometry

In this chapter the mathematical foundation will be laid for the physical
theories that will be discussed in the next two chapters. The mathemat-
ics discussed will involve differential geometry. This branch of mathe-
matics concerns itself with the properties of objects that exhibit a certain
type of smoothness. In particular differential manifolds will be discussed.
These objects are mathematical spaces that model certain types of smooth
shapes. They provide a rich mathematical structure that in the next chap-
ters will turn out to be fundamental to the description of Nature of the
physical theories discussed. This chapter will give an overview of the
properties of differential manifolds.

2.1 Manifolds

A differential manifold is a topological space that locally looks like Rn.
This notion of ’local sameness’ will be made precise in the following def-
initions, but the general idea will be sketched here first. A differentiable
manifold will be locally like Rn in the sense that around any point in the
differentiable manifold there exists a region that is homeomorphic to an
open subset of Rn. Such a local homeomorphism will be called a chart
and the set of all charts will be called an atlas. In this way there is a trans-
lation from the possibly complicated differentiable manifold to the simpler
space Rn in the same way a chart in a ’normal’ atlas, the one you can buy
in a store, gives a translation between the complicated structure of a part
of the surface of the Earth and the simple piece of paper on which the chart
is written. This translation can then be exploited to lift structure from Rn

to the differentiable manifold. In particular a notion of differentiability can
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2.1 Manifolds 4

be defined this way, hence the name differentiable manifold.
Now in order to define a differentiable manifold, let M be a topological

space. First the charts and atlas need to be defined:

Definition 2.1.1. An n-dimensional differentiable atlas for M is a set

A = {(Ui, hi, Vi) : i ∈ I}

where I is an index set and:

1. {Ui : i ∈ I} is an open cover of M

2. Vi ⊂ Rn is open for all i ∈ I

3. hi : Ui → Vi is a homeomorphism for all i ∈ I

4. the gluing maps (hj ◦ h−1
i )|hi(Ui∩Uj)

: hi(Ui ∩ Uj) → hj(Ui ∩ Uj) are
differentiable for all i, j ∈ I

An element of an atlas is called a chart. Points 1. to 3. thus define
a chart. The fourth point will make it possible to lift the differentiability
from Rn to M. Since there are multiple possible atlases available for a
given M, this can lead to multiple possible notions of differentiability.

To clear this ambiguity an equivalence relation can now be defined on
the set of n-dimensional differentiable atlases for M. LetA = {(Ui, hi, Vi) : i ∈
I} and A′ = {(U′j , h′j, V′j ) : j ∈ J} be two such atlases. They are called
equivalent, notated asA ∼ A′, if their unionA∪A′ is again an n-dimensional
differentiable atlas for M. This is the case if and only if for all i ∈ I and
j ∈ J the maps

(h′j ◦ h−1
i )|hi(Ui∩U′j)

: hi(Ui ∩U′j)→ h′j(Ui ∩U′j)

(hi ◦ h′j
−1)|h′j(Ui∩U′j)

: h′j(Ui ∩U′j)→ hi(Ui ∩U′j)

are differentiable.
Now to single out a specific notion of differentiability arising from the

atlases, the following definition is made:

Definition 2.1.2. An n-dimensional differentiable atlas A for M is called
an n-dimensional differentiable structure in M if it satisfies:

A′ ∼ A =⇒ A′ ⊂ A
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4



2.1 Manifolds 5

The equivalence class of an atlasA thus contains a unique n-dimensional
differentiable structure in M

SA =
⋃
A′∼A

A′

and a differentiable structure can thus be specified by giving an atlas of
the equivalence class of the differentiable structure.

The definition of a differentiable manifold is now as follows:

Definition 2.1.3. An n-dimensional differentiable manifold is a pair (M,S)
where M is a second countable Hausdorff topological space and S is an n-
dimensional differentiable structure in M.

Now also substructures can be defined:

Definition 2.1.4. Let X be an n-dimensional differentiable manifold. A
subset Y ⊂ X is called a k-dimensional differentiable submanifold of X if
for every p ∈ Y there exists a chart (U, h, V) for X such that p ∈ U and

h(U ∩Y) = {x = (x1, . . . , xn) ∈ V : xk+1 = · · · = xn = 0}

Submanifold substructures turn out to be manifolds in their own right:

Proposition 2.1.5. Let X be an n-dimensional differentiable manifold and Y be
a k-dimensional differentiable submanifold of X, then Y is a k-dimensional differ-
entiable manifold.

Proof. Take the subspace topology on Y, then Y is also a second countable
Hausdorff topological space. For every p ∈ Y take the chart (Up, hp, Vp)

for X as given in Definition 2.1.4 and let the set A =
⋃

p∈Y{(UY
p , hY

p , VY
p )}

be given by:

UY
p = Up ∩Y

hY
p = π ◦ (hp|UY

p
)

VY
p = π(Vp)

where π : Rn → Rk is the projection on the first k coordinates. In this way
{UY

p : p ∈ Y} is an open cover of Y. Since the projection is an open map
and the Vp are open, the VY

p are also open.
Now let ι : Rk → Rn be the inclusion map of Rk into the first k coor-

dinates of Rn. Since the topology on Rk and the subspace topology on
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2.1 Manifolds 6

ι(Rk) agree, ι is a homeomorphism onto its image, with inverse π|ι(Rk).
It holds hY

p (UY
p ) = π ◦ (hp|UY

p
)(Up ∩ Y) = π(Vp ∩ ι(Rk)) = VY

p by def-

inition of hp, so hY
p : UY

p → VY
p is a bijection. Since the projection and

inclusion are continuous and hp is a homeomorphism, hY
p = π ◦ (hp|UY

p
)

and (hY
p )
−1 = (hp)−1 ◦ (π−1|VY

p
) = (hp)−1 ◦ ι|VY

p
are continuous. Hence hY

p

is a homeomorphism.
Now for two p, q ∈ Y the gluing map is:

hY
p ◦ (hY

q )
−1|hY

q (UY
p ∩UY

q )
= (π ◦ hp ◦ (hq)

−1 ◦ ι)|hY
q (UY

p ∩UY
q )

Since π and ι are differentiable and hp ◦ (hq)−1 is differentiable by defini-
tion, the gluing map hY

p ◦ (hY
q )
−1|hY

q (UY
p ∩UY

q )
is differentiable for all p, q ∈ Y.

This shows that A is a k-dimensional differentiable atlas for Y. Taking the
associated differentiable structure SA in Y (from the equivalence class of
A) makes (Y,SA) into a k-dimensional differentiable manifold.

Now an example:

Example 2.1.6. Consider a second countable Hausdorff n-dimensional topo-
logical vector space V. Take a basis (ei)i and let φ : V → Rn be the map
given by φ(v) = φ(viei) = (v1, . . . , vn). Then it is clear that {(V, φ, Rn)} is
an n-dimensional differentiable atlas for V. By taking the associated differ-
entiable structure of this atlas, V becomes an n-dimensional differentiable
manifold.

Using the atlas, coordinates can be defined on the differentiable mani-
fold:

Definition 2.1.7. Let (M,A) be an n-dimensional differentiable manifold
and let x1 to xn be the coordinate functions of Rn, so for x = (x1, . . . , xn) ∈
Rn it holds xi(x) = xi for all i. Choose a chart (U, h, V) ∈ A. Then the
functions x1 ◦ h to xn ◦ h are called a local coordinate system in U. Any
p ∈ U can now be written as p = (p1, . . . , pn), where pi = (xi ◦ h)(p) is
called the i-th coordinate of p.

This local coordinate system transfers the coordinate structure of Rn to
the differentiable manifold. Since the U cover M, a local coordinate system
can be found around any point of M.

There is more structure that can be carried over to the differentiable
manifold. The differentiable structure allows namely for the lift of differ-
entiability on Rn to differentiability on manifolds. For this we have the
following two definitions:
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2.1 Manifolds 7

Definition 2.1.8. Let X be an n-dimensional differentiable manifold with
n-dimensional differentiable structureM = {(Ui, hi, Vi) : i ∈ I}. A func-
tion f : X → R is called differentiable if for every i ∈ I the function
f ◦ h−1

i : Vi → R is differentiable.
With respect to a given coordinate system u1 to un defined by a chart

(U, h, V) the partial derivative of f with respect to ui at p ∈ X is defined

as ∂ f
∂ui (p) = ∂ f ◦h−1

∂xi (h(p)).

Definition 2.1.9. Let (X,M) and (X′,M′) be n- and m-dimensional dif-
ferentiable manifolds respectively and f : X → Y a map. Then f is called
differentiable if it is continuous and the function

(h′ ◦ f ◦ h−1)|h(U∩ f−1(U′)) : h(U ∩ f−1(U′))→ V′

is differentiable for all (U, h, V) ∈ M and (U′, h′, V′) ∈ M′.
With respect to a given coordinate system u1 to un defined by a chart

(U, h, V) on X and coordinate system u′1 to u′m defined by a chart (U′, h′, V′)
on X′ the i-th coordinate of the partial derivative of f with respect to uj at

p ∈ X is defined as (u′i ◦ ∂ f
∂uj )(p) = ∂u′i◦ f

∂uj (p) = ∂x′i◦h′◦ f ◦h−1

∂xj (h(p)), where
the xi denote the coordinate functions on V and x′i denote the coordinate
functions on V′. From this definition it is clear that the chain rule holds for
differentiable functions on manifolds.

Fortunately one doesn’t need to check differentiability on the whole
differentiable structure:

Lemma 2.1.10. Let A ⊂ M be an atlas for X and f : X → R a function. If
f ◦ h−1

i is differentiable for all (Ui, hi, Vi) ∈ A, then f is differentiable.

Lemma 2.1.11. Let A ⊂ M and B ⊂ N be an atlas for X respectively Y and
f : X → Y a map. If hj ◦ f ◦ h−1

i is differentiable for all (Ui, hi, Vi) ∈ A and
(Uj, hj, Vj) ∈ B, then f is differentiable.

Proof. These Lemmas both follow from the fact that the gluing maps are
differentiable.

In the rest of this thesis every time the term manifold is used the ad-
jective differentiable is implied and the choice of a suitable differentiable
structure is assumed.
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2.2 Tangent spaces 8

2.2 Tangent spaces

Since a manifold in general is a topological space, it has no natural way
of comparing its elements, in contrast to for example a vector space. The
differential structure however gives a way to be able to make this compar-
ison locally. The concept needed for this comparison is that of the tangent
space. This section is dedicated to its construction.

The tangent space shall rely on the idea of the velocity of curves on the
manifold. To define this, the following definition is given:

Definition 2.2.1. Let M be a manifold. A differentiable curve on M is a
differentiable map γ : (−ε, ε)→ M for some 0 < ε. A differentiable curve
through a point p ∈ M is a differentiable curve γ on M such that γ(0) = p.
The space of all curves through p is denoted by Kp.

Let p ∈ M and let (U, h, V) be a chart around p. Now an equivalence
relation on Kp can be defined by:

γ ∼ γ′ ⇐⇒ dh ◦ γ

dt
(0) =

dh ◦ γ′

dt
(0)

It is easy to see that this definition is independent from the chosen chart
and thus well defined. The equivalence class of an element γ ∈ Kp will
be noted as [γ]. This equivalence relation can be thought of as grouping
together differentiable curves on M with a common velocity vector at p.

Denote by Fp the set of differentiable functions to R defined on a neigh-
bourhood around p. Fp forms a real algebra under pointwise operations.
Given an equivalence class [γ] with representative γ ∈ Kp a map function
can now be defined by:

X[γ] : Fp → R, f 7→ d f ◦ γ

dt
(0)

This map is called the tangent vector to [γ] at p. By the chain rule this
definition is independent from the chosen representative, so the function
is well defined. Note that the functions X[γ] are linear due to the fact that
the derivative is linear and Fp is a real algebra.

Having this the tangent space can now be defined:

Definition 2.2.2. Let M be a manifold and let p ∈ M. The tangent space
TpM of M at p is the set TpM = {X[γ] : γ ∈ Kp}.

An element X[γ] of the tangent space can be thought of as a derivative
in the direction of γ, tangent to the manifold at p. The tangent space itself
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2.2 Tangent spaces 9

can thus be seen as the set of all directional derivatives at p in directions
tangent to the manifold at p. This becomes more clear in the following
theorem:

Theorem 2.2.3. Let M be an n-dimensional manifold and let p ∈ M, then the
tangent space TpM of M at p is an n-dimensional real vector space.

Proof. (Adapted from Kobayashi and Nomizu [1]) Since the functions X[γ]

are linear, TpM is a subset of the vector space Hom(Fp, R). Choose a local
coordinate system u1 to un around p. The functions ∂

∂ui |p : Fp → R are
linear for all i, so they are elements of Hom(Fp, R). It is going to be proved
that these functions are a basis for TpM. Let γ ∈ Kp and write γi(t) for the
coordinates of γ(t) in the chosen coordinate system. For f ∈ Fp it holds:

X[γ] f =
d f ◦ γ

dt
(0) =

d f ◦ h−1 ◦ h ◦ γ

dt
(0)

= ∑
i

∂ f ◦ h−1

∂xi (h(γ(0)))
dxi ◦ h ◦ γ

dt
(0)

= ∑
i

∂ f ◦ h−1

∂xi (h(p))
dγi

dt
(0) = ∑

i

∂ f
∂ui (p)

dγi

dt
(0)

Hence every X[γ] is a linear combination of the ∂
∂ui |p. Now let ∑i ai

∂
∂ui |p be a

linear combination of the ∂
∂ui |p. Define a curve γ by setting its coordinates

to γi(t) = ui(p) + ait for all i. The associated tangent vector is then given
by, for f ∈ Fp:

X[γ] f =
d f ◦ γ

dt
(0) = ∑

i

∂ f
∂ui (p)

dγi

dt
(0) = ∑

i
ai

∂ f
∂ui (p)

where the result of the previous equation was used. So ∑i ai
∂

∂ui |p is indeed
an element of TpM. This means that all elements of TpM are linear com-
binations of the functions ∂

∂ui |p. Since the ∂
∂ui |p are part of the vector space

Hom(Fp, R), the ∂
∂ui |p induce a linear structure on TpM and TpM becomes

an n-dimensional real vector space with basis B = ( ∂
∂ui |p : 1 ≤ i ≤ n).

The explicit vector space structure in terms of curves is now found as
follows. Let γ, η ∈ Kp and λ, µ ∈ R, then, because TpM is a vector space,
there exists a ψ ∈ Kp such that X[ψ] = λX[γ] + µX[η]. Let (ui)i be a local
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2.2 Tangent spaces 10

coordinate system around p. For an f ∈ Fp it thus holds:

∂ f
∂ui (p)

dψi

dt
(0) = X[ψ] f = λX[γ] + µX[η]

= λ
∂ f
∂ui (p)

dγi

dt
(0) + µ

∂ f
∂ui (p)

dηi

dt
(0)

=
∂ f
∂ui (p)

dλγi + µηi

dt
(0)

Thus ψ is a curve whose velocity vector is the sum, weighted appropriately
by λ and µ, of the velocity vectors of γ and η. This will also be denoted as
[ψ] = λ[γ] + µ[η].

Since B = ( ∂
∂ui |p : 1 ≤ i ≤ n) is a basis of TpM, the explicit dependence

of the tangent vectors on the differentiable curve equivalence class [γ] will
often be suppressed. Furthermore, note that for all X ∈ TpM it holds for
f , g ∈ Fp that X( f g) = f (p)X(g) + g(p)X( f ).

Now an example:

Example 2.2.4. Let V be a second countable Hausdorff n-dimensional topo-
logical vector space. It was shown in Example 2.1.6 that V is a manifold
with atlas {(V, φ, Rn)}, for basis (ei)i. Then φ gives a coordinate system
(ui)i on whole V. Let p ∈ V, then TpV is an n-dimensional vector space
with basis ( ∂

∂ui |p)i. Hence V and TpV are isomorphic with isomorphism
given by ψ(v) = ψ(viei) = vi ∂

∂ui |p.

Since the tangent space is a vector space, it has a dual:

Definition 2.2.5. Let M be a manifold and let p ∈ M. The cotangent space
T∗p M of M at p is the dual to TpM. An element of T∗p M is called a covector.
The basis of T∗p M dual to the basis B = ( ∂

∂ui |p : 1 ≤ i ≤ n) of TpM is
denoted by B∗ = ((dui)p : 1 ≤ i ≤ n), so (dui)p(

∂
∂uj |p) = 1 if i = j and zero

otherwise.

If there is a map between two manifolds, this induces a map between
the tangent spaces of those manifolds:

Definition 2.2.6. Let f : M → N be a differentiable map between mani-
folds. The push forward of f at p ∈ M is the map:

D f (p) : TpM→ Tf (p)N, X[γ] 7→ X[ f ◦γ]

By the chain rule it is clear that this map is independent of the repre-
sentative of γ and thus is well defined.

The push forward is linear:
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2.2 Tangent spaces 11

Proposition 2.2.7. Let f : M → M′ be a differentiable map between manifolds
and p ∈ M. Let (U, h, V) be a chart of M around p and (U′, h′, V′) be a chart
of M′ around f (p). The push forward of f at p ∈ M is linear and its matrix is
given by J(h′ ◦ f ◦ h−1)(h(p)).

Proof. Let (ui)i and (u′i)i be the local coordinate systems associated to
the respectively unprimed and primed charts in the proposition and let
X[γ], Xη ∈ TpM and λ, µ ∈ R. There exists aψ ∈ Kp such that [ψ] =

λ[γ] + µ[η]. For a function g ∈ F′f (p) it holds:

D f (p)(λX[γ] + µX[η])(g) = D f (p)(X[ψ])(g) = X[ f ◦ψ]g =
dg ◦ f ◦ ψ

dt
(0)

=
∂g

∂u′ j
( f (p))u′ j(

∂ f
∂ui (p))ui(

dψ

dt
(0))

=
∂g

∂u′ j
( f (p))u′ j(

∂ f
∂ui (p))ui(λ

dγ

dt
(0) + µ

dη

dt
(0))

= λ
∂g

∂u′ j
( f (p))u′ j(

∂ f
∂ui (p))ui(

dγ

dt
(0))

+ µ
∂g

∂u′ j
( f (p))u′ j(

∂ f
∂ui (p))ui(

dη

dt
(0))

= λ
dg ◦ f ◦ γ

dt
(0) + µ

dg ◦ f ◦ η

dt
(0)

= λD f (p)(X[γ])(g) + µD f (p)(X[η])(g)

Thus the tangent map is linear. Furthermore it holds:

u′ j(
∂ f
∂ui (p)) =

∂x′ j ◦ h′ ◦ f ◦ h−1

∂xi (h(p)) = J(h′ ◦ f ◦ h−1)(h(p))

So from the previous equations it also follows that J(h′ ◦ f ◦ h−1)(h(p)) is
the matrix representation of D f (p).

Since the tangent map is linear, it has a dual, called the pullback:

Definition 2.2.8. Let f : M → N be a differentiable map between mani-
folds. The pull back of f at p ∈ M is the map f ∗(p) : T∗f (p)N → T∗p M dual
to D f (p). It is thus given by f ∗(p)(ω)(X) = ω(D f (p)(X)) for ω ∈ T∗f (p)N
and X ∈ TpM.

A tangent space is a space assigned to a point of the manifold. This can
be done for all points on the manifold. If one tangent vector is picked from
every tangent space of the manifold, one gets a vector field:
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2.3 Tensors 12

Definition 2.2.9. Let M be a manifold. A vector field X on M is a map
X : M → ⊔

p∈M TpM, where
⊔

denotes the disjoint union, such that Xp :=
X(p) ∈ TpM.

Let f : M → R be a differentiable function and X a vector field on M.
Then X f denotes the function on the manifold given by (X f )(p) = Xp f .

Definition 2.2.10. Let M be a manifold and X a vector field on M, then X is
called differentiable if X f is differentiable for every differentiable f : M→
R. The set of all differentiable vector fields on M is denoted by X(M) and
forms a vector space under pointwise operations.

With this in mind the following map can be defined:

Definition 2.2.11. Let M be a manifold. The map [·, ·] : X(M)× X(M) →
X(M) given by [X, Y] = XY−YX is called the Lie-bracket.

Since Y f is a differentiable function on M, (XY) f = X(Y f ) is well de-
fined. XY is thus again a vector field. Since X(M) is a vector space, it
follows that the Lie-bracket is well defined. With the Lie-bracket as mul-
tiplication, X(M) becomes a non-commutative algebra. Furthermore, if
(ui)i is a local coordinate system and Xp = Xi ∂

∂ui |p and Yp = Y j ∂
∂uj |p for all

p, then the coordinate expression of the Lie-bracket is, for all p:

[X, Y]|p = XpYp −YpXp = Xi ∂

∂ui |pY j ∂

∂uj |p −Y j ∂

∂uj |pXi ∂

∂ui |p

= Xi ∂Y j

∂ui |p
∂

∂uj |p −Y j ∂Xi

∂uj |p
∂

∂ui |p = (X j ∂Yi

∂uj |p −Y j ∂Xi

∂uj |p)
∂

∂ui |p

Summarizing the tangent space essentially encodes in which direction
the manifolds extends onward. Globally points on a manifolds cannot
be compared, but the tangent space makes it possible to do this on an
infinitesimally close range. Later on in this chapter this comparison will
be made clearer.

2.3 Tensors

The Laws of Physics shouldn’t depend on the particular coordinate sys-
tem chosen to describe the physical system. This means that a coordinate
change puts a restriction on the transformation behaviour the objects con-
sidered in the theory. Objects that obey these transformation restrictions
are called tensor fields. Before tensor fields can be discussed however,
tensors need to be introduced:

Version of 29 August 2018– Created February 26, 2019 - 05:31

12



2.3 Tensors 13

Definition 2.3.1. Let V be a finite dimensional vector space. A type-(k, l)
tensor T on V is a multilinear function:

T : (V∗)k ×V l → R

with the V∗ and V not necesarilly in this order. The set of all type-(k, l)
tensors is called Tk

l (V) and forms a vector space under pointwise opera-
tions. A general tensor is an element of the direct sum T(V) =

⊕
k,l Tk

l (V)
of the vector spaces of tensors of all types.

Some examples:

Example 2.3.2. By definition a type-(0, 0) tensor T is just a number T ∈ R.
This is also called a scalar.

A type-(1, 0) tensor T is a linear function V∗ → R. Since the (vector)
space of linear functions V∗ → R is isomorphic to V, if V is finite dimen-
sional, T is just a vector in V.

On the other hand a type-(0, 1) tensor T is a linear function V → R,
which is by definition a covector in V∗.

A type-(1, k) tensor T is a multilinear function V∗×Vk → R. The (vec-
tor) space of linear functions V∗ × Vk → R is isomorphic to the (vector)
space of linear functions Vk → V. So T is a multilinear map from Vk to V.
In particular, a type-(1, 1) tensor is just a linear map on V, which is often
represented by a matrix.

In analogy to the matrix representation of tensors of type (1, 1), tensors
of other types can as well be represented by a set of numbers. To do this,
let (e1, . . . , en) be a basis for V and (ε1, . . . , εn) be a basis for V∗. Then, with
respect to this basis, a type-(k, l) tensor T is uniquely determined by the
set of numbers Ti1...ik j1...jl = T(εi1 , . . . , εik , ej1 , . . . , ejl), with 1 ≤ ia, jb ≤ n for
all 1 ≤ a ≤ k and 1 ≤ b ≤ l, due to its multilinearity. These numbers are
called its components. Often tensors will be given only in terms of their
components. To avoid ambiguity, it is customary to write the basis vectors
of V with lower indices and the basis vectors of V∗ with upper indices. In
this way the upper indices on a tensor component always refer to covector
entries and the lower indices refer to vector entries. The upper and lower
indices are also called contravariant and covariant indices respectively. A
tensor that only has upper or lower indices is also called a contravariant
respectively covariant tensor. A vector for example is a contravariant ten-
sor.

There exists a natural product on the set of tensors:
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Definition 2.3.3. Let S ∈ Tk
l (V) and T ∈ Tr

s(V). Then the tensor product
S⊗ T of S and T is a tensor of type (k + r, l + s) defined by:

(S⊗ T)(α1, . . . , αk+r, a1, . . . , al+s) = S(α1, . . . , αk, a1, . . . , al)

· T(αk+1, . . . , αk+r, al+1, . . . , al+s)

where αi ∈ V∗ and aj ∈ V for all i and j. With this multiplication T(V)
becomes a non-commutative algebra.

From this definition it is clear that every type-(k, l) tensor can be de-
composed as the tensor product of k type-(1, 0) tensors and l type-(0, 1)
tensors.

Using the Einstein summation convention, the tensor product also gives
a new way to write tensors. Due to its multilinearity the evaluation of a
tensor T of type (k, l) can be written as, for α1, . . . , αk ∈ V∗ and a1, . . . , al ∈
V:

T(α1, . . . , αk, a1, . . . , al)

= T(εi1 , . . . , εik , ej1 , . . . , ejl)α1,i1 · . . . · αk,ik · a
j1
1 · . . . · ajl

l

= Ti1...ik j1...jl · α1,i1 · . . . · αk,ik · a
j1
1 · . . . · ajl

l

= Ti1...ik j1...jl ei1(α1) · . . . · eik(αk,ik) · ε
j1(a1) · . . . · εjl(al)

= Ti1...ik j1...jl(ei1 ⊗ · · · ⊗ eik ⊗ εj1 ⊗ · · · ⊗ εjl)(α1, . . . , αk, a1, . . . , al)

The tensor T can thus be written as T = Ti1...ik j1...jl ei1 ⊗ · · · ⊗ eik ⊗ εj1 ⊗
· · · ⊗ εjl . This shows that the tensors ei1 ⊗ · · · ⊗ eik ⊗ εj1 ⊗ · · · ⊗ εjl form
a basis for Tr

s(V). If V is n-dimensional, this shows that Tk
l (V) is nk+l-

dimensional. Moreover the previous calculation shows that an evaluation
of a tensor can be completely expressed in terms of the components of the
tensors involved. It is easy to see that the same holds true for the scalar
multiplication, addition and tensor product multiplication of tensors. This
means that any tensor equation can be solved completely in terms of com-
ponents.

The final basic operation on tensors often encountered is the contrac-
tion:

Definition 2.3.4. Let T ∈ Tk
l (V). The contraction Ca

b of the a-th upper
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2.3 Tensors 15

index with the b-th lower index of T is the type-(k− 1, l − 1) tensor:

Ca
b(T) =εjb(eia)T

i1...ia ...ik j1...jb ...jl ei1 ⊗ · · · ⊗ eia−1 ⊗ eia+1

⊗ · · · ⊗ eik ⊗ εj1 ⊗ · · · ⊗ εjb−1 ⊗ εjb+1 ⊗ · · · ⊗ εjl

=δ
jb
ia

Ti1...ia ...ik j1...jb ...jl ei1 ⊗ · · · ⊗ eia−1 ⊗ eia+1

⊗ · · · ⊗ eik ⊗ εj1 ⊗ · · · ⊗ εjb−1 ⊗ εjb+1 ⊗ · · · ⊗ εjl

=Ti1...ia−1xia+1...ik j1...jb−1xjb+1...jl ei1 ⊗ · · · ⊗ eia−1 ⊗ eia+1

⊗ · · · ⊗ eik ⊗ εj1 ⊗ · · · ⊗ εjb−1 ⊗ εjb+1 ⊗ · · · ⊗ εjl

where δi
j is the Kronecker delta.

Since the contraction also has a component expression, this means that
any tensor equation can be solved completely in terms of components.

If now the tangent space TpM is chosen as vector space, then a tensor
can be assigned to every point on the manifold:

Definition 2.3.5. Let M be a manifold. A tensor field T of type-(k, l) on
M is a map T : M → ⊔

p∈M Tk
l (TpM). By pointwise operations all tensor

fields of type-(k, l) form a vector space. A general tensor field T is a map
T : M → ⊔

p∈M(
⊕

k,l Tk
l (TpM)). With pointwise multiplication ⊗, the set

of all tensor fields forms an algebra.

If one chooses a chart (U, h, V) of M, then, if (ui)i is the associated
local coordinate system, a tensor field T of type (k, l) on U can be written
as T = Ti1...ik j1...jl(p) ∂

∂ui1
|p ⊗ · · · ⊗ ∂

∂uik
|p ⊗ (duj1)p ⊗ · · · ⊗ (dujl)p, where

Ti1...ik j1...jl is now a function on U.
In physics often a condition to check whether something is a tensor

field is given in terms of a transformation rule:

Proposition 2.3.6. Let M be a manifold, p ∈ M and (U, h, V) and (U′, h′, V′)
two chart of M around p. Let (ui)i be the local coordinate system defined by
(U, h, V) and (u′i)i the one defined by (U, h, V). Let T be a tensor field of type-
(k, l) on U ∩U′. Then the components of T transform as:

T′i1...ik j1...jl(p) =
∂u′i1

∂ua1
· · · · · ∂u′ik

∂uak
· ∂ub1

∂u′j1
· · · · · ∂ubl

∂u′jl
· Ta1...ak b1...bl

(p)

Proof. The basis vectors of the tangent space associated to (u′i)i are ∂
∂u′i .

They transform as ∂
∂u′i = ( ∂uj

∂u′i )
j
i

∂
∂uj . The associated dual basis then trans-

forms as du′i = (( ∂uj

∂u′i )
−1)i

jduj = ( ∂u′i
∂uj )

i
jduj. The desired property then

follows from the multilinearity.
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2.4 Vector bundles 16

Since tensor fields are maps, a differentiability condition can be formu-
lated:

Definition 2.3.7. Let M be a manifold and (ui)i a local coordinate system
with coordinate neighbourhood U. A tensor field is called differentiable
on U if its components with respect to (ui)i are differentiable on U.

By the transformation property of tensor fields and the differentiability
of the gluing maps, this notion is independent from the chosen coordinate
system.

Finally, a tensor is called symmetric respectively antisymmetric in the
indices a and b if switching the indices a and b leaves the tensor component
the same respectively flips the sign of the tensor component.

A tensor can be made symmetric as follows:

Definition 2.3.8. Let T be a tensor (field) of type (k, 1) with components
Ti1...ik j1 , then the tensor (field) defined in components as follows is sym-
metric in the indices between the brackets:

T(i1...in)in+1...ik j1 =
1
n! ∑

σ∈Sn

Tσ(i1...in)in+1...ik j1

where Sn is the permutation group of n elements. The same definition is
made for lower indices.

A tensor can also be made antisymmetric:

Definition 2.3.9. Let T be a tensor (field) of type (k, 1) with components
Ti1...ik j1 , then the tensor (field) defined in components as follows is anti-
symmetric in the indices between the square brackets:

T[i1...in]in+1...ik j1 =
1
n! ∑

σ∈Sn

sign(σ)Tσ(i1...in)in+1...ik j1

where Sn is the permutation group of n elements. The same definition is
made for lower indices.

2.4 Vector bundles

In the previous two sections constructions were given for defining a vector
space related to a point on a manifold, the tangent space and the space of
tensors. When the union of all these vector spaces is considered, an object
is created that turns out to have a manifold structure. This object is called
a vector bundle.
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2.4 Vector bundles 17

Definition 2.4.1. Let M be an n-dimensional manifold. A differentiable
vector bundle of rank r over M is a triple (E, π,AE) such that:

1. E is a (n + r)-dimensional differentiable manifold

2. π : E→ M is a differentiable map

3. AE = {(UE
i , hE

i , Ui ×Rr) : i ∈ I}, where I is an index set, is a bundle
atlas for E, meaning:

(a) {Ui : i ∈ I} is an open cover for M, the UE
i cover E and UE

i =

π−1(Ui) for all i
(b) hE

i : UE
i → Ui ×Rr is a diffeomorphism for all i

(c) If pi : Ui × Rr → Ui is the projection on the first factor, then
π|UE

i
= pi ◦ hE

i for all i

(d) The maps hE
i |π−1(p) ◦ (hE

j |π−1(p))
−1 : {p} ×Rr → {p} ×Rr are

linear on the second factor for all p ∈ Ui ∩Uj and all i and j

To see that the map hE
i |π−1(p) ◦ (hE

j |π−1(p))
−1 is well defined, let p ∈

Ui ⊂ M for some i. Then π−1(p) ⊂ UE
i , so :

p = π|UE
i
(π−1(p)) = pi(hE

i (π
−1(p)))

Since pi is the projection on the first factor, it must hold that hE
i (π

−1(p)) ⊂
{p} ×Rr. So the maps hE

i |π−1(p) ◦ (hE
j |π−1(p))

−1 are well defined. More-
over, since the hE

i are diffeomorphisms, it follows that the maps hE
i |π−1(p)

from π−1(p) to {p}×Rr are bijections. Hence the maps hE
i |π−1(p) ◦ (hE

j |π−1(p))
−1

are isomorphisms.
Often the bundle atlas is implied and a differentiable vector bundle

(E, π,AE) over a manifold M is denoted as π : E → M. If the projection
is clear, then also E itself is called a differentiable vector bundle. The set
Ep := π−1(p) is also called the fibre of E over p. The bijection hE

i |Ep defines
an r-dimensional real vector space structure on Ep. This justifies the name
vector bundle. The vector bundle E is basically an addition of a vector
space to each point on the base manifold M.

It is very useful to define maps M→ E as follows:

Definition 2.4.2. Let π : E → M differentiable vector bundle. A section s
is a map s : M → E such that s(p) ∈ Ep for all p ∈ M. If s is differentiable,
then s is called a differentiable section. The space of all differentiable sec-
tions on E is denoted by Γ(E). It is a vector space under pointwise opera-
tions.
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2.4 Vector bundles 18

Since a vector bundle E is in particular a manifold, it carries all the
structure of manifold. In particular it has a tangent space. This leads to
the following definition:

Definition 2.4.3. Let π : E→ M differentiable vector bundle of rank r and
let v ∈ E. Eπ(v) has a natural r-dimensional vector space structure and
using the subspace topology it is a second countable Hausdorff topological
space. This means that Eπ(v) is a manifold by Example 2.1.6. The vertical
space VvE of E at v is now defined as VvE = TvEπ(v).

The vertical space is part of the tangent space of E:

Proposition 2.4.4. Let π : E → M be a differentiable vector bundle of rank r
and let v ∈ E. The vertical space VvE is a linear subspace of tangent space TvE.

Proof. Let AE = {(UE
i , hE

i , Ui × Rr) : i ∈ I} be a bundle atlas for E and
A = {(Ui, hi, Vi) : i ∈ I} be an atlas for M. Then it is clear that {(UE

i , (hi ×
idRn) ◦ hE

i , Vi ×Rr) : i ∈ I} is a differentiable atlas for E, (UE
i is open in E

since π is continuous.) Take E to be a manifold using differentiable struc-
ture associated to this atlas. Let v ∈ E and let (UE, (h× idRn) ◦ hE, V ×Rr)
be a chart around v. Let (ui)i be the local coordinate system defined
by this chart. It holds hE(Eπ(v) ∩ UE) ⊂ {π(v)} × Rr, since π(v) =

π|UE(Eπ(v) ∩UE) = p ◦ hE(Eπ(v) ∩UE). This gives:

ui(Eπ(v) ∩UE) = (xi ◦ (h× idRn) ◦ hE)(Eπ(v) ∩UE)

⊂ (xi ◦ (h× idRn))({π(v)} ×Rr) = xi({h(π(v))} ×Rr)

which shows that on Eπ(v) only the last r coordinate functions ui vary.
Moreover Eπ(v) is a r-dimensional vector space, so by Example 2.2.4 TvEπ(v)
is also a r-dimensional. This means that VvE = TvEπ(v) has as a basis the
r vectors ∂

∂un+1 |v to ∂
∂un+r |v. Since TvE has ( ∂

∂ui |v)n+r
i=1 as a basis, this shows

that VvE is a r-dimensional linear subspace of tangent space TvE.

Furthermore one can define a complement of vertical space:

Definition 2.4.5. Let π : E → M be a differentiable vector bundle and let
v ∈ E. A horizontal space HvE is a linear subspace of TvE such that TvE =
VvE⊕ HvE.

Let M be an n-dimensional manifold. Here are some important exam-
ples for vector bundles over M:
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Example 2.4.6. The trivial bundle
Consider E = M×Rr. If E is given the product topology, it is second

countable and Hausdorff, since M and Rr are. There is a natural pro-
jection π : E → M onto the first factor. Now take a differentiable atlas
{(Ui, hi, Vi) : i ∈ I} for M. Then consider the set {(Ui ×Rr, hi × idRr , Vi ×
Rr) : i ∈ I}. It is clear that this is an (n + r)-dimensional differentiable
atlas for E. With the associated differentiable structure it is also clear that
π becomes differentiable. Finally take AE = {(E, idM×Rr , M×Rr)}. It is
clear that this is a bundle atlas, hence (E, π,AE) is a vector bundle. E is
called the trivial bundle.

Example 2.4.7. The tangent bundle
(This construction is an extension of the one shown in Lübke [2] and Tu

[3].) Consider the disjoint union TM =
⊔

p∈M TpM. There exists a natural
projection π : TM → M, namely for all v ∈ TM there exists a unique
p ∈ M such that v ∈ TpM. π is then given by π(v) = p. Now take a
differentiable atlas A = {(Ui, hi, Vi) : i ∈ I} for M. Then this defines a
local coordinate system (u1

i , . . . un
i ) on Ui for each i. Define for all i the

sets UTM
i := π−1(Ui) =

⊔
p∈Ui

TpM, the map g : M × Rn → TM given
by g(p, x) = xk ∂

∂uk
i
|p, where xk is the k-th component of x in Rn, and its

restrictions gi := g|Ui×Rn : Ui ×Rn → g(Ui ×Rn) = UTM
i . Because A is

an atlas for M, {Ui : i ∈ I} is an open cover for M and by construction it
holds TM =

⋃
i UTM

i . Given the fact that TpM is an n-dimensional vector
space with basis ( ∂

∂uk
i
|p)k (see Theorem 2.2.3), it follows that g, and thus

also the gi, are bijective. By construction of UTM
i , it holds π ◦ gi = pi,

where pi : Ui × Rr → Ui is the projection on the first factor. This gives
π|UTM

i
= pi ◦ g−1

i .
Topology of the tangent bundle:
Now a topology on TM is going to be created. Take for all i the product

topology on Ui ×Rn. Since the gi are bijective, this induces a topology on
UTM

i by setting X ⊂ UTM
i open if and only if g−1

i (X) is open in Ui ×Rn.
Now suppose Xi is open in UTM

i and Xj is open in UTM
j . Then Xi ∩UTM

j

and Xj ∩UTM
i are open in UTM

i ∩UTM
j . It holds Xi ∩ Xj ⊂ UTM

i ∩UTM
j ,

so Xi ∩ Xj = (Xi ∩ Xj) ∩ (UTM
i ∩ UTM

j ) = (Xi ∩ UTM
j ) ∩ (Xj ∩ UTM

i ).
This means that Xi ∩ Xj is open in UTM

i ∩UTM
j . From this it follows that

the set BTM = {X ⊂ TM|∃i : X ⊂ UTM
i open} is a topological basis.

Take on TM the topology generated by BTM. The maps gi are now by
construction homeomorphisms. Now suppose another compatible atlas
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A′ = {(U′i , h′i, V′i ) : i ∈ I′} was chosen, which gave rise to another basis
B′TM. Then for p ∈ Ui ∩U′j it holds:

gi(p, y) = yk ∂

∂uk
i
|p = yk

∂u′lj
∂uk

i
(hi(p)) · ∂

∂u′lj
|p

= yk
∂xl ◦ h′j ◦ h−1

i

∂xk (hi(p)) · ∂

∂u′lj
|p = g′j(p, J(h′j ◦ h−1

i ) · y)

where the xi denote the coordinate functions on Rn and J( f ) denotes the
Jacobian of f . This thus gives g′−1

j ◦ gi(p, y) = (p, J(h′j ◦ h−1
i ) · y). Since

h′j ◦ h−1
i is differentiable, because of the compatibility of the atlases, J(h′j ◦

h−1
i ) is an isomorphism and thus a homeomorphism. This implies that

g′−1
j ◦ gi = idM × J(h′j ◦ h−1

i ) is a homeomorphism, since Ui × Rn and
U′j ×Rn have the product topology. Moreover, by the same token it is then

found that g−1
j ◦ gi = idM × J(hj ◦ h−1

i ) (without prime) is linear on the
second factor for all p ∈ Ui ∩Uj and all i and j. Going back to the primed
case, the map g′j ◦ (g′−1

j ◦ gi) ◦ g−1
i , from UTM

i with topology induced by
BTM to U′TM

j with topology induced by B′TM, is then a homeomorphism.
This implies that the topologies induced by BTM and B′TM on TM are the
same. The topology is thus independent from the chosen atlas. This also
means that g is a homeomorphism.

Topological properties of the tangent bundle:
First note that if Y ⊂ M is open, then the triples (Y ∩Ui, hi|Y∩Ui , hi(Y ∩

Ui)) are charts for M for all i and they are compatible with the atlas A
for M. Hence the differentiable structure contains all such charts for M.
Now take p, q ∈ TM with p 6= q. Because M is Hausdorff, if π(p) 6=
π(q), there exist open P, Q ⊂ M such that π(p) ∈ P, π(q) ∈ Q and P ∩
Q = ∅. Moreover there arei and j such that π(p) ∈ Ui and π(q) ∈ Uj.
Therefore the charts given by the restriction to the sets P ∩Ui =: Up and
Q ∩ Uj =: Uq are part of the differentiable structure of M. Since the gi

are homeomorphisms, UTM
p = gp(Up ×Rn) and UTM

q = gq(Uq ×Rn) are
open in TM, it holds p ∈ UTM

p and q ∈ UTM
q and, since g is bijective,

UTM
p ∩UTM

q = ∅. Because the topology is independent from the chosen
atlas, this means that TM is Hausdorff.

Since M is second countable, it has a countable basis BM. This means
that for all i and p ∈ Ui a Bp,i ∈ BM can be picked such that p ∈ Bp,i ⊂ Ui.
The set B̃M of these Bp,i forms a subset of BM that covers M and hence
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is a countable basis for M. Moreover, since each Bp,i is open, it forms a
chart as a restriction of the chart of Ui. The set of all these charts then
forms a compatible atlas. M thus has a countable basis {Ub}b consisting of
coordinate charts. Since M is second countable, the Ub are second count-
able and, because also Rn is second countable, the Ub × Rn are second
countable. Since the gb are homeomorphisms, also the UTM

b are second
countable. Therefore the basis of TM given by the union of the bases of
the UTM

b is countable. Since the topology is independent from the chosen
atlas,TM is second countable.

Manifold structure of the tangent bundle:
Now TM has a topology, a manifold structure can be defined. For this

purpose, define hTM
i := (hi× idRn) ◦ g−1

i : UTM
i → Vi×Rn for all i. Since hi

and gi are homeomorphisms, the hTM
i are also all homeomorphisms. For

all i and j and all (x, y) ∈ hTM
i (UTM

i ∩UTM
j ) it holds:

hTM
j ◦ (hTM

i )−1(x, y) = ((hj × idRn) ◦ g−1
j ◦ gi ◦ (h−1

i × idRn))(x, y)

= (hj × idRn)(h−1
i (x), J(hj ◦ h−1

i ) · y)
= ((hj ◦ h−1

i )(x), J(hj ◦ h−1
i ) · y)

Since the gluing maps hj ◦ h−1
i for M are differentiable, it follows that the

gluing maps hTM
j ◦ (hTM

i )−1 for TM are also differentiable. This means
that {(UTM

i , hTM
i , Vi ×Rn) : i ∈ I} is a differentiable atlas for TM and TM

is thus a 2n-dimensional differentiable manifold. If another compatible
atlas A′ = {(U′i , h′i, V′i ) : i ∈ I′} for M was chosen, then in the same way
as the hTM

j ◦ (hTM
i )−1 are differentiable, the functions h′TM

j ◦ (hTM
i )−1 are

differentiable. This means that the atlas {(U′TM
i , h′TM

i , V′i ×Rn) : i ∈ I}
found for TM is compatible and the same differentiable structure would
have been defined on TM. So the differentiable structure on TM is inde-
pendent of the chosen atlas.

Using the trivial bundle structure on Ui ×Rn, it is clear that with the
defined manifold structure on TM the maps gi become diffeomorphisms.
The set {(UTM

i , g−1
i , Ui×Rn) : i ∈ I} is thus a bundle atlas for TM. Finally,

for all i and all (x, y) ∈ hTM
i (UTM

i ∩UTM
j ) it holds:

hi ◦ π ◦ (hTM
i )−1 = hi ◦ π ◦ gi ◦ (h−1

i × idRn)

= hi ◦ pi ◦ (h−1
i × idRn) = pi ◦ idVi×Rn

Since the projection pi is differentiable, it follows that π is differentiable.
Thus it can be concluded that TM is a vector bundle of rank n over M. TM
is called the tangent bundle.
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Example 2.4.8. The tensor bundle
Consider the disjoint union Tk

l M =
⊔

p∈M Tk
l (TpM). There exists a

natural projection π : Tk
l M → M, namely for all v ∈ Tk

l M there exists a
unique p ∈ M such that v ∈ Tk

l (TpM). π is then given by π(v) = p. Now
take a differentiable atlasA = {(Ui, hi, Vi) : i ∈ I} for M. Then this defines
a local coordinate system (u1

i , . . . un
i ) on Ui for each i. Define for all i the

sets UTk
l M

i = π−1(Ui) =
⊔

p∈Ui
Tk

l (TpM) and the maps gi : Ui ×Rnk+l →

UTk
l M

i given by gi(p, x) = xa1...akb1...bl
∂

∂u
a1
i
|p ⊗ · · · ⊗ ∂

∂u
ak
i
|p ⊗ dub1

i |p ⊗ · · · ⊗

dubl
i |p, where, if x is represented as a (k + l)-dimensional array of num-

bers, xa1...akb1...bl
is the entry of x at place a1 in the first dimension, a2 in the

second dimension, b1 in the (k + 1)-th dimension and so on. Given the fact
that Tk

l (TpM) is an nk+l-dimensional vector space with basis given by the
vectors ∂

∂u
a1
i
|p ⊗ · · · ⊗ ∂

∂u
ak
i
|p ⊗ dub1

i |p ⊗ · · · ⊗ dubl
i |p (see right after Defini-

tion 2.3.3), it follows that the gi are bijective. Then, completely analogous
to the case of TM, it is found that Tk

l M is a vector bundle of rank n(k + l)
over M. Tk

l M is called the tensor bundle of type (k, l).

Example 2.4.9. The vertical and horizontal bundle
Let π : E→ M be a differentiable vector bundle of rank r with E having

the differentiable structure as prescribed in the proof of Proposition 2.4.4.
Now consider the disjoint union VE =

⊔
p∈E VpE. As the previous two

examples show, if a vector space is added to every point on a manifold in
such a way that a basis can be given in terms of the coordinate functions of
a local coordinate system, then the structure obtains a differentiable vector
bundle structure. Precisely this has been done in the proof of Proposition
2.4.4. This means that VE becomes a rank r vector bundle over E. If for
all p ∈ E a horizontal space HpE is chosen, then in the same way HE =⊔

p∈E HpE becomes a vector bundle of rank n called a horizontal bundle,
by definition of the horizontal space and the fact that TpE has a basis in
terms of coordinate functions on E.

This shows that (differentiable) vector fields and tensor fields can be
reinterpreted as (differentiable) sections of the tangent bundle and tensor
bundle respectively.
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2.5 Differentiation & integration

There is no obvious way to take a derivative of a tensor field on a mani-
fold. A tensor field namely gives a tensor on each point on a manifold, but
these tensors are incomparable since they live in different vector spaces.
To make the comparison, a way is needed to relate the vector spaces at
neighbouring points on the manifold. To solve this problem the covariant
derivative is called into being. It however needs additional structure to be
defined in the form of a vector. There however turns out to be a way to
define a notion of differentiability that not suffers from this problem called
the exterior derivative.

To define the exterior derivative, the k-th exterior power ΛkV of the
vector space V has to be defined:

Definition 2.5.1. Let V be a vector space. The sets ΛkV are defined in-
ductively. Set Λ0V = R and Λ1V = V. Then define inductively the
map ∧ : ΛkV × ΛlV → Λk+lV for all k, l ∈ N as the alternating bilin-
ear map given by ∧(v, w) = v ∧ w, where for k = 0 it is defined as
∧(a, w) = a ∧ w = aw and for l = 0 as ∧(v, b) = v ∧ b = bv. Then
ΛkV is a vector space. The map ∧ is called the wedge product. If V is n-
dimensional and has a basis (ei)

n
i=1, then ΛkV is (n

k)-dimensional and has
a basis (ei1 ∧ · · · ∧ eik)1≤i1≤···≤ik=n.

Since ∧ is alternating, it holds ΛkV = {0} for all k > n. Furthermore
ΛnV is 1-dimensional with basis vector e1 ∧ · · · ∧ en.

Now let M be an n-dimensional manifold. Take V = T∗p M and consider
the set ΛkT∗M =

⊔
p∈M ΛkT∗p M. Since T∗p M has a basis in terms of the

coordinate functions of a local coordinate system on M and ΛkT∗p M has a
basis in terms of the basis vectors of T∗p M, this defines a rank (n

k) vector
bundle structure on ΛkT∗M, analogous to Example 2.4.7. Then:

Definition 2.5.2. Let M be a manifold. The vector space of differentiable
sections of ΛkT∗M is denoted as Ωk M. An element of Ωk M is called a
differential form of degree k, or just k-form in short.

Let k > n, since ΛkT∗M = {0}, Ωk M contains only one section, namely
the zero section, thus Ωk M = {0}. Similarly, since Λ0T∗M = R, Ω0M
is just the space of differentiable R-valued functions on M. Moreover,
for f : M → R a differentiable function and ω a k-form, the k-form f ω
can be defined as ( f ω)(p) = f (p)ω(p) ∈ ΛkT∗p M. The wedge product
∧ can be extended to differential forms by pointwise application, thus if
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ω ∈ Ωk M and η ∈ Ωl M then ω ∧ η ∈ Ωk+l M. With this as multiplication,
ΩM =

⊕n
i=0 Ωi M becomes an algebra, called the exterior algebra of M.

The pull back can now be extended to ΩM:

Definition 2.5.3. Let f : M → N be a differentiable map between mani-
folds and (ui)i a local coordinate system of N. Let ω ∈ ΩkN for some k,
then ω can locally be written as ω = a · dui1 ∧ · · · ∧ duik for some function
a on N. The pull back of ω by f is now defined as:

f ∗(ω)(p) = f ∗(a · dui1 ∧ · · · ∧ duik)(p)

= (a ◦ f )(p) · f ∗(dui1 | f (p)) ∧ · · · ∧ f ∗(duik | f (p)) ∈ ΛkT∗p M

The pull back f ∗ : ΩN → ΩM is then defined as the linear extension of
this map.

Now the exterior derivative can be defined. Let M be a manifold and
f : M → R be a differentiable function, then the 1-form d f ∈ Ω1M can
be defined as d f (p)(X) = X f for allp ∈ M and X ∈ TpM. Since f is
differentiable, d f is also differentiable and thus well defined. The 1-form
d f is called the total differential of f . Then:

Definition 2.5.4. Let M be a manifold. The exterior derivative d is a linear
endomorphism on ΩM such that:

1. for f ∈ Ω0M a differentiable function d f is the total derivative of f

2. for ω ∈ Ωk M and η ∈ Ωl M it holds d(ω ∧ η) = dω ∧ η + (−1)kω ∧
dη

3. d2 = 0

Let (ui)i be some local coordinate system on M and write ω = f dui1 ∧
· · · ∧ duikfor some differentiable function f . Then ω ∈ Ωk M. Now it holds
dω = d f ∧ dui1 ∧ · · · ∧ duik + f d(dui1 ∧ · · · ∧ duik) = d f ∧ dui1 ∧ · · · ∧ duik

by properties 2 and 3, so dω ∈ Ωk+1M. Since d is linear and Ωk M is a
vector space, this implies d(Ωk M) ⊂ Ωk+1M for all k.

It may feel a bit strange to call d a derivative, so here is an clarifying
example:

Example 2.5.5. Let f : M→ R be a differentiable function, then d f (p)( ∂
∂ui |p) =

∂ f
∂ui (p) = ∂ f ◦h−1

∂xi (h(p)) is the derivative of f in the direction of ui, i.e. the
derivative of f ◦ h−1 : V → R in the direction of xi. This means that d f
can be thought of as the gradient of f . In particular if f = uj is taken, one
gets duj(p)( ∂

∂ui |p) = ∂uj

∂ui (p) = ∂xj

∂xi (h(p)) = δ
j
i . This clarifies the notation of

(dui|p)i being the dual basis of ( ∂
∂ui |p)i of TpM.
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Furthermore, d commutes with the pullback. For a proof see Lübke [2].
The exterior derivative does not need any extra structure to be defined.

The other type of derivative, the covariant derivative, does need that:

Definition 2.5.6. Let M be a manifold and X ∈ TpM a tangent vector for
some p ∈ M. The covariant derivative ∇X with respect to X is a map
∇X : Γ(T M)→ Γ(T M) such that:

1. for f a differentiable function it holds (∇X f )(p) = X f

2. for Y a vector field (∇XY)(p) is a vector linear in X and additive in
Y

3. for T and S tensor fields it holds (∇X(T ⊗ S))(p) = (∇X(T)⊗ S +
T ⊗∇X(S))(p)

4. ∇X commutes with contractions

From this it follows that for a covector field ω, a vector field Y and a
vector X, it holds:

Xω(Y) = ∇X(ω(Y)) = ∇X(C1
1(ωaYb)) = C1

1(∇X(ωaYb))

= C1
1(∇X(ωa)Yb + ωa∇X(Yb)) = (∇Xω)(Y) + ω(∇XY)

Hence ∇Xω is a covector field given by (∇Xω)(Y) = Xω(Y)− ω(∇XY).
For λ ∈ R it also holds ∇X(λY) = X(λ)Y + λ∇XY = λ∇XY, since λ can
be seen as a constant function on the manifold. It now follows that ∇X is
R-linear. Moreover, since X f is a function for f a function, ∇XY a vector
field and ∇Xω a covector field, it follows that ∇X preserves the tensor
type. Furthermore, the symbol ∇ can be thought of as a covector acting
on the vector X to give a function that acts as a derivative, since ∇X is
tensor type preserving. This is why ∇X is called the covariant derivative
along X.

Now let (ui)i be some local coordinate system around p and write X =

Xi ∂
∂ui |p, Y = Y j ∂

∂uj |pand ω = ωjduj(p) for the vector X, the vector field Y
and the covector field ω (the Y j and ωj are thus functions). By applying
the properties one then finds:

∇XY = ∇Xi ∂

∂ui |p
(Y j ∂

∂uj |p) = Xi(∇ ∂

∂ui |p
Y j)

∂

∂uj |p + XiY j∇ ∂

∂ui |p
∂

∂uj |p (2.5.1)

= Xi ∂Y j

∂ui (p)
∂

∂uj |p + XiY jΓk
ij

∂

∂uk |p = (Xi ∂Yk

∂ui (p) + XiY jΓk
ij)

∂

∂uk |p
(2.5.2)
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and thus also:

(∇Xω)(Y) = Xω(Y)−ω∇XY = Xi ∂ωjY j

∂ui (p)−ωk(Xi ∂Yk

∂ui (p) + XiY jΓk
ij)

= XiY j ∂ωj

∂ui (p)−ωkXiY jΓk
ij

where Γk
ij is the k-th component of the vector∇ ∂

∂ui |p
∂

∂uj |p. The Γk
ij are called

connection coefficients. They determine the covariant derivative. There
is thus not one unique covariant derivative. The components of ∇X are
thus (∇X)

k
j = Xi ∂

∂ui |pδk
j + XiΓk

ij = Xi∇i, where ∇i =
∂

∂ui |pδk
j + Γk

ij, in the

case of a vector entry and (∇X)
k
j = Xi ∂

∂ui |pδk
j − XiΓk

ij = Xi∇i, where ∇i =
∂

∂ui |pδk
j − Γk

ij, in the case of a covector entry. Using the decomposition of a
tensor field in tensor fields of type (1, 0) and (0, 1) and the product rule for
the covariant derivative gives the components of ∇X for a general tensor
field entry. For a type-(1, 1) tensor field T, with decomposition T = A⊗ B
with A ∈ Γ(T1

0M) and B ∈ Γ(T0
1M), e.g. it holds in components:

(∇XT)a
b = (∇X(A⊗ B))a

b = ((∇X A)⊗ B + A⊗∇XB)a
b

= Bb(∇X)
a
j Aj + Aa(∇X)

j
bBj

= Bb(Xi ∂

∂ui |pδa
j Aj + XiΓa

ij A
j) + Aa(Xi ∂

∂ui |pδ
j
bBj − XiΓj

ibBj)

= Xi(
∂Aa

∂ui (p)Bb + Aa ∂Bb

∂ui (p)) + Xi(Γa
ij A

jBb − Γj
ib AaBj)

= Xi ∂Ta
b

∂ui (p) + Xi(Γa
ijT

j
b − Γj

ibTa
j)

The connection coefficients don’t form a tensor, even though they have
indices! That’s why they are called coefficients. For a proof of this see
Carroll [4].

The connection coefficients can be thought of as being those coefficients
that compensate for the non tensorial nature of the partial derivative is
such a way that the resulting object is tensorial. A geometric interpretation
of the covariant derivative∇X in the direction of X is then that it describes
the change of the coefficients of the tensor in the direction of X whereby it
compensates for the change of the basis by use of Γ.

Given a vector field, all three defined derivatives act the same on func-
tions on the manifold, giving the partial derivative of the function in the
direction of the vector field. The exterior derivative stands out because it is
only defined on k-forms. The Lie-derivative and the covariant derivative
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on the other hand are defined on all types of tensor fields. The difference
between those two is that the covariant derivative along a single vector
is well defined, as opposed to the Lie-derivative. The Lie-derivative can
only be taken with respect to a full vector field around the point of dif-
ferentiation, because it also involves the change of the vector field along
which the Lie-derivative is taken. Furthermore, the covariant derivative is
the only one that is not unique.

Functions on manifolds can be integrated. The next part of this section
is devoted to defining this integral and stating the Theorem of Stokes for it.
The integral will however not be completely atlas independent. To make
this precise the following definition is given:

Definition 2.5.7. LetA = {(Ui, hi, Vi) : i ∈ I} be an atlas for a manifold M.
A is called oriented if for all i, j ∈ I and p ∈ Ui ∩Uj the gluing maps satisfy
det(J(hj ◦ h−1

i )(hi(p))) > 0. If such an atlas exists, M is called orientable.

Let M be a manifold with differentiable structure S . Define the set of
all compatible oriented atlases A = {A ⊂ S : A is oriented}. Then define
the relation ∼ on A by A ∼ A′ if and only if A ∩A′ ∈ A. This relation
is clearly reflexive and symmetric. By the chain rule and the multiplica-
tive nature of the determinant it is also transitive, and thus an equivalence
relation on A. There are only two equivalence classes in A/ ∼. An orien-
tation of M is a choice of equivalence class in A/ ∼. M is called oriented
if it has an atlas that is an element of the chosen orientation.

The integral makes use of the charts of a manifold. The integral must
therefore be cut into pieces along the charts. Since charts in general over-
lap, something is needed to not overcount these regions:

Definition 2.5.8. Let X be a topological space with open cover U = {Ui : i ∈
I}. A partition of unity of X subordinate to U is a set of continuous func-
tions {τi : X → [0, 1]|i ∈ I} such that:

1. supp(τi) ⊂ Ui for all i

2. for every p ∈ X there exists an open neighbourhood U of p in X for
which supp(τi) ∩U 6= ∅ holds for at most finitely many i

3. ∑i∈I τi(p) = 1 for all p ∈ X

If X is a manifold, a partition of unity is called differentiable if the τi are
differentiable. Such a partition of unity always exists for a manifold:
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Lemma 2.5.9. If M is a paracompact manifold with open cover U = {Ui : i ∈
I}, then there exists a partition of unity subordinate to this cover. Moreover, if
K ⊂ M is compact, then there exists a partition of unity subordinate to a finite
open cover of a subset U ⊂ M, such that K ⊂ U, given by charts of M.

Proof. For the first statement see Kobayashi and Nomizu [1] and for the
second statement see Lübke [2].

Now let A = {(Ui, hi, Vi) : i ∈ I} be an atlas for the n-dimensional
manifold M and let ω be an n-form. Then locally ω can be written as
ω|Ui = ωidu1

i ∧ · · · ∧ dun
i , where (uj

i)j is the local coordinate system de-
fined by (Ui, hi, Vi). Locally ω can then be pulled back to an n-form on Vi
as:

(h−1
i )∗(ω|Ui) = (ωi ◦ h−1

i )(h−1
i )∗(du1

i ) ∧ · · · ∧ (h−1
i )∗(dun

i )

= (ωi ◦ h−1
i )dx1

i ∧ · · · ∧ dxn
i

since

(h−1
i )∗(duj

i)(p)(X) = duj
i(p)(Dh−1

i (hi(p))X) = duj
i(p)(IX) = dxj

i(p)(X)

The integral of ω is then defined as:

Definition 2.5.10. Let M be an oriented n-dimensional manifold with ori-
ented atlas A = {(Ui, hi, Vi) : i ∈ I}, A ⊂ M open and ω ∈ ΩnM an
n-form. Let {Uj : j ∈ J ⊂ I} be an open cover of supp(ω) and {τj : j ∈ J}
a partition of unity subordinate to this cover. The integral of ω over M is
then defined as:ˆ

A

ω = ∑
j∈J

ˆ

hj(Uj∩A)

(h−1
j )∗(τj ·ω|Uj)

= ∑
j∈J

ˆ

hj(Uj∩A)

((τj ·ωj) ◦ h−1
j )dx1

j ∧ · · · ∧ dxn
j

= ∑
j∈J

ˆ

hj(Uj∩A)

((τj ·ωj) ◦ h−1
j )dnxj

where the last integral is just the standard Lebesgue integral.

This definition is independent of the chosen atlas and partition of unity,
hence this integral is well defined. For a proof see Lübke [2]. Moreover,
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if ω has compact support in M, the integral of ω is finite. This follows
from Lemma 2.5.9. Furthermore, this integral is also well defined for non-
differentiable n-forms. The only real requirement is that the functions ωi
are Lebesgue integrable.

Often one also wants to define the integral of a function on a manifold.
Since the product of a function and an n-form is again an n-form, this can
be done by choosing a particular n-form.

Definition 2.5.11. Let M be an oriented n-dimensional manifold. A vol-
ume form on M is a particular choice of Vol ∈ ΩnM such that it differs
from the n-forms du1 ∧ · · · ∧ dun, defined by the charts, only by a positive
function. If f is a function on M its integral over an open A ⊂ M is then
defined as: ˆ

A

f =

ˆ

A

f ·Vol

Note that in general there is no natural choice for a volume form. Since
ΛnV, for V an n-dimensional vector space, is one dimensional, different
choices of volume forms differ only by a function. In particular this defines
the volume Vol(M) of the manifold M, if it is compact, as:

Vol(M) =

ˆ

M

Vol

To state Stokes Theorem, the boundary of a subset of a manifold has to
be defined:

Definition 2.5.12. Let M be a manifold, A an open subset of M and ∂A the
topological boundary of A in M, then A is said to have a smooth boundary
if for every p ∈ ∂A there exists a chart (U, h, V) for M around p such that
h(U ∩ A) = {(x1, . . . , xn) ∈ V : x1 < 0}.

Lemma 2.5.13. Let M be an n-dimensional manifold and A an open subset of
M with smooth boundary. Then ∂A is a (n− 1)-dimensional submanifold of M.
Moreover, an orientation of M induces an orientation of ∂A.

Proof. Take charts as given in Definition 2.5.12. Suppose now that there
exists a p ∈ ∂A ∩U such that h(p) ∈ {(x1, . . . , xn) ∈ V : x1 > 0}. Since h
is an homeomorphism, U is open and V is Hausdorff, there exists an open
neighbourhood P ⊂ U around p such that h(P) ⊂ {(x1, . . . , xn) ∈ V : x1 >
0}. On the other hand P ∩ A 6= ∅, since ∂A = A\A, by definition of the
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closure. This contradicts the assumption that the chart is of the form given
in Definition 2.5.12. It thus holds h(∂A∩U) = {(x1, . . . , xn) ∈ V : x1 = 0}.
By definition ∂A is thus an (n − 1)-dimensional submanifold of M (the
coordinates can be rearranged such that xn = 0 in stead of x1 = 0).

For the proof of the fact that M induces an orientation on ∂A see Lübke
[2].

Now the Theorem of Stokes can be stated:

Theorem 2.5.14. Let M be an oriented n-dimensional manifold and A an open
subset of M with smooth boundary ∂A. Fix on ∂A the orientation induced by M.
Let ι : ∂A → M denote the inclusion map. Then for every ω ∈ Ωn−1M with
compact support it holds:

ˆ

A

dω =

ˆ

∂A

ι∗(ω)

Proof. See Lübke [2].

In terms of covariant derivatives Stokes’s Theorem can be restated as:

Theorem 2.5.15. Let M be an oriented n-dimensional manifold and A an open
subset of M with smooth boundary ∂A. Fix on ∂A the orientation induced by
M, giving rise to the normal vector n of ∂A. Let g be a metric on M, let γ be
the induced metric on ∂A and let ∇ be the covariant derivative associated to the
Levi-Civita connection. Then for every vector field X with compact support it
holds: ˆ

A

∇aXa
√
|g|du1 ∧ · · · ∧ dun =

ˆ

∂A

naXa
√
|γ|du1 ∧ · · · ∧ dun−1

where du1∧ · · · ∧ dun is the n-form locally given by the chart under consideration
when evaluating the integral.

Proof. See Wald [5]. For the definition of the metric and the Levi-Civita
connection see next section.

2.6 Curvature

One of the most important features of manifolds is that manifolds allow
for a general definition of curvature. That is also the reason manifolds are
often used to model physical theories. They do not restrict the shape of the
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space to have some particular type of curvature. The notion of curvature
on a manifold will be made clear in this section.

There are two independent ways of defining a curvature on a manifold.
The first is by way of a metric:

Definition 2.6.1. Let M be a manifold. A metric g ∈ Γ(T0
2M) on M is a

non-degenerate symmetric type-(0, 2) tensor field. In a local coordinate
system (ui)i it is given by g = gijdui ⊗ duj. This is often also written as
ds2 = gijduiduj. The inverse of g is the tensor field g−1 ∈ Γ(T2

0M) such
that g−1(ω, g(X, ·)) = ω(X) for ω a covector field and X a vector field,
thus in components, (g−1)abgbc = δa

c . Usually the inverse sign −1 is left
out in component notation, since there is no confusion because the indices
are in an other spot.

Since the metric gives a symmetric bilinear map on every tangent space
that takes two vectors and outputs a number, it gives rise to an inner prod-
uct on those spaces. In this way it defines for example lengths and angles
on the manifold.

Example 2.6.2. Lengths and angles
The length L of a curve γ on a manifold M with metric g is given by:

L =

ˆ √
g(X[γ](t), X[γ](t))dt

where X[γ](t) = X[γ(·−t)].
The angle θ between two curves γ and η on a manifold M with metric

g intersecting at p ∈ M is given by:

g(X[γ](γ
−1(p)), X[η](η

−1(p)))

= cos(θ)g(X[γ](γ
−1(p)), X[γ](γ

−1(p)))g(X[η](η
−1(p)), X[η](η

−1(p)))

An important way to characterise the metric is with the following con-
cept:

Definition 2.6.3. Let g be a metric on an n-dimensional manifold M. The
signature (p, q) of g is the amount p of positive eigenvalues and q negative
eigenvalues of g when viewed as a matrix when it is expressed in some co-
ordinate system. The signature is clearly basis independent and the same
on whole M, since g is differentiable and non-degenerate, so it is well de-
fined. A metric is called Euclidean if its signature is (n, 0) and Lorentzian
if it is (n− 1, 1).

Version of 29 August 2018– Created February 26, 2019 - 05:31

31



2.6 Curvature 32

When the metric is Lorentzian, vectors can be categorised into three
different types:

Definition 2.6.4. Let g be a Lorentzian metric on a manifold M and p ∈ M.
A vector v ∈ TpM is called spacelike/timelike/null if g(p)(v, v) is re-
spectively positive/negative/zero. Similarly a vector field is called space-
like/timelike/null if it consists of spacelike/timelike/null vectors and a
hypersurface is called spacelike/timelike/null if every possible vector field
tangent to it is spacelike/timelike/null.

Furthermore note that a metric defines a natural volume form on an
oriented manifold as follows. The inverse metric can be extended to Ωk M
by setting g−1(a1 ∧ · · · ∧ ak, b1 ∧ · · · ∧ bk) = ∏i g−1(ai, bi) for all ai, bi ∈
Γ(T0

1M). The natural volume form defined by the metric is then given by
g−1(Vol, Vol) = 1. This condition fixes the volume form up to sign. The
sign however is determined by the orientation, so this means that the vol-
ume form is uniquely determined. Given a local coordinate system (ui)i
Vol can be written as Vol = Ṽoldu1 ∧ · · · ∧ dun where Ṽol is a function. It
holds:

1 = g−1(Vol, Vol) = Ṽol2|g−1(du1 ∧ · · · ∧ dun, du1 ∧ · · · ∧ dun)|

= Ṽol2|det((gij)ij)| = Ṽol2|det(((gij)ij)
−1)| = Ṽol2|g−1| = Ṽol2|g|−1

where (Aij)ij is the matrix with at position (i, j) the element Aij and g is
the determinant of the matrix representation of the metric. The fact that
(gij)ij = ((gij)ij)

−1 follows from gabgbc = δa
c . This thus gives:

Vol = Ṽoldu1 ∧ · · · ∧ dun =
√
|g|du1 ∧ · · · ∧ dun

The pullback can be extended to general covariant tensors:

Definition 2.6.5. Let f : M → N be a differentiable map between mani-
folds and (ui)i a local coordinate system of N. Let T ∈ Γ(T0

k N) for some k,
then T can locally be written as T = a · dui1 ⊗ · · · ⊗ duik for some function
a on N. The pullback of T by f is now defined as:

f ∗(T)(p) = f ∗(a · dui1 ⊗ · · · ⊗ duik)(p)

= (a ◦ f )(p) · f ∗(dui1 | f (p))⊗ · · · ⊗ f ∗(duik | f (p)) ∈ T0
k(T
∗
p M)

The pull back f ∗ : Γ(
⊕

T0
k N)→ Γ(

⊕
k T0

k M), where
⊕

denotes a fibrewise
direct sum (it is clear from Example 2.4.7 that this is a vector bundle), is
then defined as the linear extension of this map.
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Given a manifold with a metric, there is a natural metric on any sub-
manifold:

Definition 2.6.6. Let M be a manifold with metric g and X be a subman-
ifold of M. Let ι : X → M be the inclusion map. Then g induces a metric
on X defined by γ = ι∗(g). This is called the induced metric.

The metric is often used to change the tensor type:

Definition 2.6.7. Let M be a manifold and T ∈ Γ(Tk
l M). Then a (k− 1, l +

1)-type tensor field can be defined by:

T(ω1, . . . , g(Xi, ·), . . . , ωk, Xk+1, . . . , Xk+l)

for ω1, . . . , ωk ∈ T0
1M and Xi, Xk+1, . . . , Xk+l ∈ T1

0M. In components this
tensor field is given by gcai T

a1...ak b1...bl
. This is called lowering an index.

Conversely a (k + 1, l − 1)-type tensor can be defined by:

T(ω1, . . . , ωk, Xk+1, . . . , g−1(ωi, ·), . . . , Xk+l)

for ω1, . . . , ωk, ωi ∈ T0
1M and Xk+1, . . . , Xk+l ∈ T1

0M. In components this
tensor is given by gcbi Ta1...ak b1...bl

. This is called raising an index.

Because g is non-degenerate it is clear that these operations are isomor-
phisms on the fibres of the tensor bundles.

Another way to characterise curvature on a manifold is by way of a
connection:

Definition 2.6.8. Let π : E → M be a vector bundle over M. A connection
∇ on E is an bilinear map∇ : X(M)× Γ(E)→ Γ(E) satisfying∇(X, f s) =
∇X f s = f∇Xs + (X f )s.

The covariant derivative can thus be seen as a particular connection
on the tensor bundle. In the same way as for the covariant derivative, a
connection can be expressed in terms of connection coefficients Γk

ij. If (ui)i

is some local coordinate system of M and (ei(p))i is some basis of the fibre
Ep, then X = Xi ∂

∂ui and s(p) = siei(p). In the same way as equation 2.5.1
one finds:

∇Xs = (Xi ∂sk

∂ui (p) + XisjΓk
ij)ek(p)

where the connections coefficients are defined as Γk
ij = ∇ ∂

∂ui
ej(p).

Curves on manifolds extend to curves on vector bundles:
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Definition 2.6.9. Let π : E→ M be a vector bundle and γ : (−ε, ε)→ M a
curve. A curve η : (−ε, ε)→ E on E is called a curve above γ if η(t) ∈ Eγ(t)
for all t.

The connection then defines a notion of parallel transport of an element
of E along a curve in M:

Definition 2.6.10. Let π : E → M be a vector bundle, ∇ a connection on
E and γ : (−ε, ε) → M a curve. A curve η : (−ε, ε) → E is called parallel
along γ if ∇γ̇(t)η(t) = 0 for all t ∈ (−ε, ε), where γ̇(t) = X[γ(·−t)] ∈
Tγ(t)M. A section s ∈ Γ(E) is called parallel along γ if ∇γ̇(t)(s ◦ γ)(t) = 0
for all t ∈ (−ε, ε).

Proposition 2.6.11. Let π : E → M be a vector bundle, ∇ a connection on E,
γ : (−ε, ε) → M a curve and e0 ∈ Eγ(0). Then there exists a unique curve η

above γ that is parallel along γ and has η(0) = e0.

Proof. See Kobayashi & Nomizu [1].

In this way all fibres of the tangent bundle can be connected to one
another:

Definition 2.6.12. Let π : E→ M be a vector bundle, ∇ a connection on E
and γ : (−ε, ε) → M a curve. Parallel transport along γ from time t0 to t1

is the map Tt0,t1
γ : Eγ(t0) → Eγ(t1)

given by Tt0,t1
γ (e0) = η(t1) where η is the

unique curve above γ that is parallel along γ and has η(t0) = e0.

Proposition 2.6.13. The parallel transport map Tt0,t1
γ : Eγ(t0) → Eγ(t1)

is a lin-
ear isomorphism.

Proof. See Kobayashi & Nomizu [1].

A connection thus gives a way of relating one fibre to the next in a vec-
tor bundle. It can be thought of as defining the direction of the normal to
a fibre and thus it gives a way to make a directional derivative for sections
of the fibre bundle. This directional derivative for sections is what is called
the covariant derivative associated to the connection.

A connection on the tangent bundle has two properties, a torsion and
a curvature:

Definition 2.6.14. Let π : TM→ M be the tangent bundle and∇ a connec-
tion on TM. The torsion T̂ of ∇ is a map T̂ : Γ(TM)× Γ(TM) → Γ(TM)
given by:

T̂(X, Y) = ∇XY−∇YX− [X, Y]
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The curvature R̂ of ∇ is the map R̂ : (Γ(TM))3 → Γ(TM) given by:

R̂(X, Y)Z = ∇X(∇YZ)−∇Y(∇XZ)−∇[X,Y]Z

Both the torsion and the curvature are C∞(M)-linear:

Lemma 2.6.15. The torsion and the curvature are C∞(M)-linear in all their en-
tries.

Proof. Let M be a manifold, let X, Y, Z ∈ Γ(TM) and let f ∈ C∞(M). Then
it holds:

T( f X, Y) = ∇ f XY−∇Y( f X)− [ f X, Y]

= f∇XY− (∇Y f )X− f∇YX− f XY + Y( f X)

= f∇XY− f∇YX−Y( f )X− f XY + Y( f )X + f YX
= f (∇XY−∇YX− [X, Y]) = f T(X, Y)

R̂( f X, Y)Z = ∇ f X(∇YZ)−∇Y(∇ f XZ)−∇[ f X,Y]Z

= f∇X(∇YZ)−∇Y( f∇XZ)−∇ f XY−Y( f X)Z

= f∇X(∇YZ)− (∇Y f )∇XZ− f∇Y(∇XZ)
−∇ f XY−Y( f )X− f XYZ

= f∇X(∇YZ)− (Y f )∇XZ− f∇Y(∇XZ)
−∇ f [X,Y]Z + Y( f )∇XZ

= f (∇X(∇YZ)−∇Y(∇XZ)−∇[X,Y]Z) = f R(X, Y)Z

R̂(X, Y)( f Z) = ∇X∇Y( f Z)−∇Y∇X( f Z)−∇[X,Y]( f Z)

= ∇X((∇Y f )Z) +∇X( f∇YZ)−∇Y((∇X f )Z)
−∇Y( f∇X f Z)− (∇[X,Y] f )Z− f∇[X,Y]Z

= ∇X((Y f )Z) +∇X( f∇YZ)−∇Y((X f )Z)
−∇Y( f∇XZ)− ([X, Y] f )Z− f∇[X,Y]Z

= (∇X(Y f ))Z + (Y f )∇XZ + (∇X f )∇YZ + f∇X(∇YZ)
− (∇Y(X f ))Z− (X f )∇YZ− (∇Y f )∇XZ
− f∇Y(∇XZ)− ([X, Y] f )Z− f∇[X,Y]Z

= (X(Y f ))Z f∇X(∇YZ)− (Y(X f ))Z− f∇Y(∇XZ)
− ([X, Y] f )Z− f∇[X,Y]Z

= f (∇X(∇YZ)−∇Y(∇XZ)−∇[X,Y]Z) = f R(X, Y)Z

Furthermore it holds T̂(Y, X) = −T̂(X, Y) and R̂(Y, X)Z = −R̂(X, Y)Z.
This means that T and R̂ are C∞(M)-linear in all their entries.
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From this it follows that T̂ and R̂ can be seen as giving multilinear maps
Tp : TpM × TpM → TpM and Rp : (TpM)3 → TpM smoothly varying in
p. By Example 2.3.2, T̂ and R̂ give rise to tensor fields T ∈ Γ(T1

2M) and
R ∈ Γ(T1

3M).

Definition 2.6.16. The tensor field R ∈ Γ(T1
3M) is called the Riemann cur-

vature tensor. It is given by R(ω, X, Y, Z) = ω(R(Y, Z)X).

The components of these tensor fields are in some local coordinate sys-
tem (ui)i:

Ta
bc = dua(T(

∂

∂ub ,
∂

∂uc )) = dua(∇ ∂

∂ub

∂

∂uc −∇ ∂
∂uc

∂

∂ub − [
∂

∂ub ,
∂

∂uc ])

= dua(Γk
bc − Γl

cb) = Γa
bc − Γa

cb

Ra
bcd = dua(R(

∂

∂uc ,
∂

∂ud )
∂

∂ub )

= dua(∇ ∂
∂uc

(∇ ∂

∂ud

∂

∂ub )−∇ ∂

∂ud
(∇ ∂

∂uc

∂

∂ub )−∇[ ∂
∂uc , ∂

∂ud ]

∂

∂ub )

= dua(∇ ∂
∂uc

Γk
db −∇ ∂

∂ud
Γl

cb)

= dua((
∂

∂uc + Γm
ck)Γ

k
db − ((

∂

∂ud + Γn
dl))Γ

l
cb)

= dua(
∂

∂uc Γk
db + Γm

ckΓk
db −

∂

∂ud Γl
cb − Γn

dlΓ
l
cb)

=
∂

∂uc Γa
db −

∂

∂ud Γa
cb + Γa

ckΓk
db − Γa

dlΓ
l
cb

where the [ ∂
∂ui ,

∂
∂uj ] vanish because partial derivatives commute on C∞-

functions. The contractions of the Riemann tensor are also often encoun-
tered:

Definition 2.6.17. Let M be a manifold with metric g. The Ricci tensor is a
tensor field Ric ∈ Γ(T0

2M) given in components by Ricab = Ri
aib. Since the

amount of indices of the Riemann tensor and the Ricci tensor is different,
the components of Ric are often just written as Rab. The Ricci tensor is
also known as the intrinsic curvature. The Ricci scalar R ∈ Γ(T0

0M) is a
differentiable function whose value is given by R = gabRicab.

Curvature can also be defined on a submanifold. Note that if M is a
manifold with submanifold N, then it is clear that TN is a subspace of TM
in a natural way. Using this fact two notions of curvature can be defined
for a submanifold.
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Definition 2.6.18. Let M be a manifold with connection ∇. Let N be a
submanifold of M and let ι : N → M be the inclusion map. The induced
connection ∇̂ on N is a connection on N defined by, for v, w ∈ Γ(TN):

∇̂vw = ∇Dι(v)(Dι(w))

Definition 2.6.19. Let M be a manifold with metric g and connection ∇.
Let N be a submanifold of M with induced metric γ and induced con-
nection ∇̂. The intrinsic curvature of N is the Ricci tensor R̂ic on N with
respect to the induced connection on N.

Note that if the submanifold N is one dimension smaller than M, then
there clearly exists a differentiable vector field n normal to N, meaning
that TpM = TpN ⊕ Span(n(p)) holds for all p ∈ N, and that its restriction
n|N is unique up to a scalar. This allows for the definition of the second
kind of curvature.

Definition 2.6.20. Let M be an r-dimensional manifold with metric g and
connection ∇. Let N be a (r − 1)-dimensional submanifold of M with
inclusion map ι : N → M. Finally let n be a unit vector field normal to
N, so its restriction n|N is unique up to sign. Then the extrinsic curvature
K ∈ Γ(T0

2N) is the type-(0, 2) tensor field given by, for v, w ∈ Γ(TN):

K(v, w) = g(Dι(v),∇Dι(w)n|N)

In physics often a special connection is chosen:

Definition 2.6.21. Let M be a manifold with metric g. The Levi-Civita
connection ∇ is a connection on the tangent bundle of M such that its
torsion vanishes for all vector fields and it is compatible with the metric,
meaning ∇Xg(Y, Z) = 0, where g(Y, Z) is a function, for all X, Y, Z ∈
Γ(TM), or in components ∇agbc = 0.

The connection coefficients of the Levi-Civita connection are called Christof-
fel symbols.

Proposition 2.6.22. Let M be a manifold with metric g, then there exists a
unique Levi-Civita connection on TM.

Proof. See Kobayashi & Nomizu [1].

Christoffel symbols can be expressed in terms of the metric.

Proposition 2.6.23. For Christoffel symbols it holds:

Γi
jk =

1
2

gil(
∂gjl

∂uk +
∂gkl

∂uj −
∂gjk

∂ul )
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Proof. See Carroll [4].

For the Levi-Civita connection the following relations hold:

Proposition 2.6.24. Consider the Levi-Civita connection on a manifold with a
metric. For this connection it holds:

LXY = ∇XY−∇YX
Γa

bc = Γa
cb

Rabcd = −Rbacd

Rabcd = −Rabdc

Rabcd = Rcdab

Rabcd = −Rbacd

Rabcd + Radbc + Racdb = 0
Ra[bcd] = 0

R[abcd] = 0

∇[kRab]cd = 0

Rab = Rba

Proof. See Carroll [4].
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Chapter 3
General Relativity

The current understanding of Nature at her biggest scales is given by the
theory of General Relativity. General Relativity is namely the theory that
describes the origin of gravity. Since at galactic scales, ranging from the
solar system to the entirety of he universe, the other three fundamental
forces play a negligible role, General Relativity alone can predict the evo-
lution of Nature at these scales. It does this by describing the universe
as a four dimensional manifold and relating its curvature to the energy-
momentum content of the universe. Gravity is then just the physical effect
of this curvature on objects inhabiting the universe. Though the predic-
tive power of General Relativity is great, especially in smaller scale regions
about the size of the solar system, it has its known limitations. The search
for a sound theory with greater predictive power, of which this thesis is
a part, is thus ongoing. However, since General Relativity offers such a
good description in smaller scale regions, it should be a limiting case for
any new theory. It is therefore fruitful to investigate the theory of General
Relativity.

3.1 Geometry of the Universe

General Relativity thus describes the universe as a four dimensional man-
ifold. This section will explain why this description was chosen and what
it looks like.

In Special Relativity, space is modelled by the vector space R4. There
are three spatial dimensions defined on it and one temporal one and an in-
ner product is defined on R4 by the matrix diag(−1, 1, 1, 1), given in a basis
such that the first basis vector spans the temporal dimension. Moreover,
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gravity is thought of as just a force FG given by some potential Φ. Each ob-
ject then has a "gravitational charge" mG associated to it, i.e. a measure of
how much it is affected by the force of gravity, analogous to electric charge
for electromagnetism. Newton’s Second Law then states that:

mIa = FG = mG∇Φ

where a is the acceleration of the object and ∇ is just the gradient for dif-
ferentiable functions on R4. Moreover, mI , called the inertial mass of the
object, is a property of the object defined as the constant in Newton’s Sec-
ond Law. It thus measures the objects accelerations reaction to a force. The
quotient mG

mI
is therefore a measure of the effect of the force on the motion of

the object. There is a priori no relation between mI and mG other than the
one given. From experiments however it is concluded that mI = mG, thus
that a = ∇Φ, for all objects. This means that locally there can be made no
distinction between gravitational acceleration and acceleration stemming
from another source. This leads naturally to the following assumption:

Assumption 3.1.1. Locally physics reduces to special relativity. In particular it
is impossible to detect a gravitational field by means of local experiments. This
assumption is called the Einstein Equivalence Principle.

This however raises a problem. Suppose you want to measure some
force in a local experiment. To do this you have to measure the accelera-
tion of the object in question. Any gravitational field will also contribute
to the acceleration of the object. However, since locally the gravitational
field is undetectable, it is completely unclear what part of the accelera-
tion of the object stems from gravity and what part stems from the force
you wanted to measure. Hence under Einstein’s Equivalence Principle it
becomes impossible to measure forces locally. The problem encountered
here is that it is not possible to find a frame of reference in which the mo-
tion is unaccelerated, since it is unclear what the acceleration of the object
due to gravity is. This is because the acceleration due to gravity can in
turn not be defined well since all objects are always subject to gravity in
the same way, i.e. have the same quotient mG

mI
= 1, so there is no frame

of reference to measure it against. The concept of gravity as a force which
gives rise to acceleration thus is very problematic in this setting. In stead
of keeping to try to find a way to find unaccelerated motion, Einstein gave
the following solution:

Solution 3.1.2. Unaccelerated motion is defined as that motion that an
object exhibits in a gravitational field (free from other forces).
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As a consequence this solution imposes a curved manifold structure
on the space in which the object moves, i.e. the universe. Firstly the Ein-
stein Equivalence Principle states that physics locally reduces to Special
Relativity. This means three things, that the universe locally looks like R4,
that velocity comparisons can only be done locally and that there exists a
Lorentzian metric on the manifold. The first point leads to the idea of a
manifold and the second to that of the tangent space. The Lorentzian met-
ric arises from the fact that there is a Lorentzian inner product in Special
Relativity which is used to measure lengths and angles. So the universe
can be described by a manifold with a Lorentzian metric. The definition of
unaccelerated motion as motion in a gravitational field then gives a unique
set of curves on the manifold given by paths of unaccelerated test parti-
cles. These curves then naturally give rise to a covariant derivative along
them and thus a connection on the manifold, defined by parallel trans-
port along the curves. By choosing the Levi-Civita connection, the parallel
transport becomes dependent on the metric and the metric can therefore
be used to model gravity, i.e. the change of the curves as the gravitational
field changes. Gravity is thus represented as the curvature of the manifold,
via the metric and thus the connection and thus also the curvature tensor
and the Riemann tensor. This is the setting in which the theory of Gen-
eral Relativity in formulated. The equations of motion given by General
Relativity then dictate the evolution of the metric and thus gravity.

3.2 Principle of Least Action

In physics it is often difficult to obtain the equations of motion, that de-
scribe the behaviour of the system, directly. Luckily the equations of mo-
tion can be derived from the Lagrangian of the system, which, most of
the time, is a lot simpler to do. The method of obtaining the equations
of motion of a system from its Lagrangian is called the Principle of Least
Action.

The Principle of Least Action is an algorithm that, if you input the La-
grangian of the system, outputs the equations of motion of that system.
For classical mechanics it works as follows. In classical mechanics the ob-
ject of study is the path that a particle or object takes. If M is the manifold
of possible positions of the object, then its path in a finite time interval is
described by a curve γ : (−ε, ε) → M for some ε > 0. Let L be the La-
grangian of the system, not dependent on time. Then L is determined by
the position and the velocity of the object, thus L can be thought of as a
function from TM to R. The action S of the system between two events A
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and B with coordinates (xA, tA) respectively (xB, tB) is then defined by:

S =

tBˆ

tA

Ldt

The only requirement made here is that the object moves from event A
to event B, thus from position xA at time tA to position xB at time tB.
The way it does this is arbitrary, hence the value of S is dependent of
the path γ of the object. In general the action can thus be seen as a map
S : C∞((−ε, ε), M)→ R given by:

S[γ] =

εˆ

−ε

L((γ(t), γ̇(t)))dt

where γ̇(t) ∈ Tγ(t)M is the velocity of the object along its path. The
Principle of Least Action now states that the path taken by the object
is the path that is a critical point for the action. To find this path con-
sider a parametrised family of curves Φ = {γs : s ∈ (−α, α)} for some
α > 0 depending differentiably on s and a differentiable map φ : (−ε, ε)×
(−α, α) → M given by φ(t, s) = γs(t). Then for this family the action can
be viewed as a function SΦ : (−α, α) → R given by SΦ(s) = S[γs]. The
path taken by an object in this system can then be found by setting the
derivative of this function to zero:

dS[γs]

ds
=

d
ds

εˆ

−ε

L((φ(t, s),
∂

∂t
φ(t, s)))dt = 0

Manipulation of this expression will result in obtaining a differential equa-
tion that describes all paths that an object in this system can take. If there
are multiple independent variables, this procedure is repeated for each
variable. The resulting set of differential equations are the equations of
motion of the system.

This procedure is generalisable to General Relativity. There are how-
ever a couple of important differences. To make these precise, the notion
of infinite dimensional manifolds is necessary. This however is beyond the
scope of this thesis, so only a sketch of the ideas will be given here. For a
more detailed description of infinite dimensional manifolds see Kriegl &
Michor [6]. In General Relativity the variable of study is the metric, which
describes gravity. The metric is a section of the tensor bundle T0

2M. The
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space of sections Γ(T0
2M) is a vector space by Definition 2.4.2. It is clear

that in general it is infinite dimensional. Choosing an appropriate topol-
ogy (see Kriegl & Michor [6] for the specifics), Γ(T0

2M) becomes an infinite
dimensional manifold, analogous to the case of Example 2.1.6.

Where as the position and velocity of a particle can be specified by giv-
ing a particular time and path, the metric depends on its position of eval-
uation on the whole space-time manifold. To specify a metric, its value
on the whole manifold must be given as well as its path. Therefore the
integral in the action is taken over the complete space-time manifold in
stead. Since the whole manifold is taken as integration domain, General
Relativity considers the Lagrangian density of the system in stead of the
Lagrangian. The Lagrangian density is then a map L : T0

2M → R. Fur-
thermore, to guarantee that the integral exists the action is given by not
a single map but a family of maps {SK : Γ(T0

2M) → R|K ⊂ M compact}
given by:

SK(g) =
ˆ

K

L((x, g(x)))Vol :=
ˆ

K◦

L((x, g(x)))Vol

whereK◦ = K\∂K is the interior of K and Vol a volume form on M.
Consider now a differentiable map φ : M × (−α, α) → T0

2M for some
α > 0 such that φ(·, s) ∈ Γ(T0

2M) for all s. This map gives thus a family of
metrics Φ = {φ(·, s) : s ∈ (−α, α)} depending differentiably on s. For this
family the actions can be viewed as a functions SΦ

K : (−α, α)→ R given by
SΦ

K (s) = SK[φ(·, s)]. The Principle of Least Action then again states that
the metric of the system can then be found by setting the derivative of this
function to zero:

dSK[φ(·, s)]
ds

=
d
ds

ˆ

K

L((x, φ(x, s)))Vol = 0

for all K. Manipulation of this expression will give the equations of motion
of the system for the metric. It is clear that the same procedure can be
applied to any kind of tensor field on the manifold.

In order to simplify the expressions when manipulating the integral,
the following operator is introduced. Let π : E→ M be a vector bundle of
rank r. Suppose g ∈ Γ(E) and φ : M× (−α, α) → E a map for some α > 0
such that φ(·, s) ∈ Γ(E) for all s and φ(·, 0) = g. The operator δ acting
on g is then given by (δg)(x) = ∂φ(x,s)

∂s |s=0 for all x ∈ M. Note that this
operation is well defined because for fixed x ∈ M the map φ(x, ·) is just a
map from (−α, α) to Ex, which is a vector space, so the derivative in the
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standard vector calculus sense can indeed be applied. Since φ(·, s) ∈ Γ(E)
for all s, this defines a curve on Γ(E). Hence δg = ∂φ(·,s)

∂s |s=0 can be thought
of as a tangent vector of Γ(E) at g in the direction of φ. This function φ is
therefore called a variation of g. Moreover it follows that φ(p, s) ∈ Ep for
all s. This means that for all x:

(δg)(x) =
∂φ(x, s)

∂s
|s=0 ∈ Tg(x)Ex = Vg(x)E

Hence more specifically δg is a differentiable section of the pullback bun-
dle g∗VE. Using this notation the requirement of the Principle of Least
Action can be stated as:

δSΦ
K = 0

for all K ⊂ M compact.
Since δ is basically given by a ’normal’ derivative and Γ(E), where E

is a vector bundle, is a vector space, it follows that δ is linear. Moreover,
from the definition of the tensor product and the Leibniz property of the
’normal’ derivative, it follows that δ also satisfies the Leibniz property, i.e.
δ(S⊗ T) = δS⊗ T + S⊗ δT. This makes computations a lot easier.

As a final remark, when performing computations, one typically wants
to apply the Theorem of Stokes and then neglect the boundary terms.
When integrating over the whole manifold this can be done by choos-
ing the variations to be become zero as they approach the boundary of
the manifold. The integration however is not over the complete manifold,
but just over (the interior of) a compact subset K. Therefore the variations
shall in general not vanish on the boundary of K and the boundary terms
cannot be neglected. However it turns out that the all variations possible
are always compactly supported, if Γ(E) where to become a differentiable
manifold. See chapter 42.2 of Kriegl & Michor [6] for more information.
A K can thus always be chosen such that the support of the variation is
contained in K and the boundary term can be neglected. The only real
boundary terms therefore come from the boundary of the manifold itself,
which also can be chosen to be zero as stated earlier.

3.3 The Einstein-Hilbert action

Using the Principle of Least Action, the equations of motion of the theory
of General Relativity can now be found from the Lagrangian. This section
is dedicated to obtaining this result. It follows the derivation of Carroll [4].
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In General Relativity the universe is described by an oriented 4-dimensional
differentiable manifold M with metric g and corresponding Levi-Civita
connection∇. The Lagrangian of the system is given by L = c4

16πG R + LM,
where c is the speed of light, G the gravitational constant, R the Ricci scalar
and LM is the Lagrangian of the matter. The corresponding action is then:

SK =

ˆ

K

LVol =
ˆ

K

(
c4

16πG
R + LM)

√
|g|du1 ∧ · · · ∧ du4

=
c4

16πG

ˆ

K

R
√
|g|du1 ∧ · · · ∧ du4 +

ˆ

K

LM

√
|g|du1 ∧ · · · ∧ du4

where the natural volume form defined by the metric is chosen. The left
integral after the final equality is called the Einstein-Hilbert action. Given
now a family of metrics Φ = {φ(·, s) : s ∈ (−α, α)} depending differen-
tiably on s such that φ(·, s) = g. The Principle of Least Action now states
that:

0 = δSΦ
K =

c4

16πG
δ

ˆ

K

R
√
|g|du1 ∧ · · · ∧ du4 + δ

ˆ

K

LM

√
|g|du1 ∧ · · · ∧ du4

To obtain the equations of motion, first the first integral is manipulated. It
holds:

δ

ˆ

K

R
√
|g|du1 ∧ · · · ∧ du4 = δ

ˆ

K

gµνRµν

√
|g|du1 ∧ · · · ∧ du4

=

ˆ

K

((δgµν)Rµν

√
|g|+ gµν(δRµν)

√
|g|

+ Rδ
√
|g|)du1 ∧ · · · ∧ du4

So the integral splits in three parts. The goal is to express everything that
is under the integral as a function times a variation of the inverse metric.
The first term in the integral is thus already of the correct form.

The Ricci tensor is given by a contraction of the Riemann tensor. The
variation of the Ricci tensor can therefore be obtained from the variation
of the Riemann tensor. The Riemann tensor is given by:

Rρ
µλν =

∂

∂uλ
Γρ

νµ −
∂

∂uν
Γρ

λµ + Γρ
λτΓτ

νµ − Γρ
ντΓτ

λµ
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as shown under Definition 2.6.16. Since the Christoffel symbols Γρ
νµ are

just functions on the manifold, they can be considered as sections on an
appropriate vector bundle (specifically M×R43

). Therefore the variation
of the Riemann tensor is:

δRρ
µλν =

∂

∂uλ
δΓρ

νµ −
∂

∂uν
δΓρ

λµ + (δΓρ
λτ)Γ

τ
νµ

− (δΓρ
ντ)Γτ

λµ + Γρ
λτδΓτ

νµ − Γρ
ντδΓτ

λµ

Now since Γ(M×R43
) is a vector space and a variation δΓρ

νµ can be thought
of as an element of the tangent space of Γ(M×R43

), by the infinite dimen-
sional analogue of Example 2.2.4 it then follows that δΓρ

νµ can be thought
of as an element of Γ(M × R43

). Since Γ(M × R43
) is a vector space it

follows that δΓρ
νµ is the difference of two Γρ

νµ. Thus it holds:

δΓρ
νµ = Γ′ρνµ − Γρ

νµ =
∂

∂uν
+ Γ′ρνµ −

∂

∂uν
− Γρ

νµ = ∇′ν −∇ν

where the ∇ are the connections associated to the connection coefficients.
Since the connections are tensorial objects, it follows that δΓρ

νµ is also a
tensor. Its covariant derivative is therefore well defined and is given by:

∇λδΓρ
νµ =

∂δΓρ
νµ

∂uλ
+ Γρ

λτδΓτ
νµ − Γτ

λνδΓρ
τµ − Γτ

λµδΓρ
ντ

which follows from the component expression of the covariant derivative
given after Definition 2.5.6. Note that from this it follows that:

δRρ
µλν =

∂

∂uλ
δΓρ

νµ −
∂

∂uν
δΓρ

λµ + Γτ
νµδΓρ

λτ − Γτ
λµδΓρ

ντ + Γρ
λτδΓτ

νµ − Γρ
ντδΓτ

λµ

=
∂

∂uλ
δΓρ

νµ + Γρ
λτδΓτ

νµ − Γτ
λµδΓρ

ντ − (
∂

∂uν
δΓρ

λµ + Γρ
ντδΓτ

λµ − Γτ
νµδΓρ

λτ)

=
∂

∂uλ
δΓρ

νµ + Γρ
λτδΓτ

νµ − Γτ
λνδΓρ

τµ − Γτ
λµδΓρ

ντ

− (
∂

∂uν
δΓρ

λµ + Γρ
ντδΓτ

λµ − Γτ
νλδΓρ

τµ − Γτ
νµδΓρ

λτ)

= ∇λδΓρ
νµ −∇νδΓρ

λµ

where the fact that the Christoffel symbols, i.e. the connection coefficients
of the Levi-Civita connection, are symmetric in the lower indices is used.
The variation of the Ricci tensor is thus given by:

δRµν = δRλ
µλν = ∇λδΓλ

νµ −∇νδΓλ
λµ
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Since the connection is compatible with the metric it follows that:
ˆ

K

gµν(δRµν)
√
|g|du1 ∧ · · · ∧ du4

=

ˆ

K

gµν(∇λδΓλ
νµ −∇νδΓλ

λµ)
√
|g|du1 ∧ · · · ∧ du4

=

ˆ

K

∇λ(gµνδΓλ
νµ − gµλδΓτ

τµ)
√
|g|du1 ∧ · · · ∧ du4

By the Theorem of Stokes this equals a boundary term which can be taken
to be zero by considering appropriate K as discussed at the end of Sec-
tion 3.2. Note that since Γλ

νµ contains derivatives of the metric, also the
variations of the derivative of the metric need to be chosen zero on the
boundary of K.

For general matrices M it holds that ln(det(M)) = Tr(ln(M)). Varying
this gives det(M)−1δ det(M) = Tr(M−1δM). Now taking as M the matrix
representation (gµν)µν of the metric, this gives g−1δg = Tr(gµνδgλρ) =

gµνδgµν, where g = det((gµν)µν). Now varying the identity gµλgλν = δ
µ
ν

gives:

0 = δδ
µ
ν = δ(gµλgλν) = (δgµλ)gλν + gµλδgλν

since the Kronecker delta δ
µ
ν is constant. Plugging this into the previous

equation gives:

δ
√
|g| = sgn(g)

1
2
√
|g|

δg = sgn(g)
g

2
√
|g|

gµνδgµν

= −sgn(g)
g

2
√
|g|

gµνδgµν = −1
2

√
|g|gµνδgµν

The result of these manipulations of the three terms in the integral is thus:

δ

ˆ

K

R
√
|g|du1 ∧ · · · ∧ du4

=

ˆ

K

((δgµν)Rµν

√
|g| − 1

2

√
|g|gµνRδgµν)du1 ∧ · · · ∧ du4

=

ˆ

K

(Rµν −
1
2

gµνR)δgµν
√
|g|du1 ∧ · · · ∧ du4
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Now as a last step the energy-momentum tensor Tµν is defined by the
relation:

−2Tµνδgµν = LM

√
|g|

Its precise form thus depends on the dependence of the matter Lagrangian
on the metric. For different types of matter this dependency is in general
also different. The energy-momentum tensor is thus dependent of the type
of matter considered.

Given this definition the Principle of Least Action states that:

0 = δSΦ
K =

c4

16πG
δ

ˆ

K

R
√
|g|du1 ∧ · · · ∧ du4 + δ

ˆ

K

LM

√
|g|du1 ∧ · · · ∧ du4

=

ˆ

K

(
c4

16πG
(Rµν −

1
2

gµνR)− 2Tµν)δgµν
√
|g|du1 ∧ · · · ∧ du4

Since this equation must hold for all variations δgµν it follows that:

Rµν −
1
2

gµνR =
8πG

c4 Tµν

This equation is called the Einstein Field Equation and is the equation of
motion of General Relativity. Since the Ricci tensor consists of derivatives
of the metric, the Einstein Field Equation consists of a set of 16 coupled
differential equations. Given a specific matter Lagrangian, the solution
metrics to this differential equations describe the force of gravity in the
universe according to the theory of General Relativity.
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Chapter 4
The Covariant Galileon Model

Observations show that General Relativity does not describe our Universe
correctly. On smaller scales, of the order of the solar system for example,
General Relativity gives a good description, but on very large scales the
theory deviates from the observations. A new theory is therefore needed.
The Covariant Galileon model gives such a new theory. The conception of
this model starts with the observation that on very large scales the matter
densities are nearly completely homogeneous and isotropic. The spatial
part metric of the Universe giving rise to this matter distribution must
therefore be also homogeneous and isotropic. The metric on these large
scales is therefore of the form:

ds2 = −dt2 + (a(t))2(dx2 + dy2 + dz2)

where t denotes the temporal coordinate, x, y and z the spatial coordinates
and the function a : R→ R is called the scale factor. Moreover the scale
factor is positive.

From the form of this metric it is now clear that the time coordinate t
plays a special role. It is set apart from the other three coordinates. This
means that the general symmetry in the four coordinates of General Rela-
tivity is broken for the temporal direction. There is no temporal symmetry
any more, just spatial symmetry. Goldstone’s Theorem now states that
there is a scalar field φ associated to this symmetry breaking. The Covari-
ant Galileon Model takes this as a starting point. It introduces an addi-
tional scalar field to the theory of General Relativity in order to amend
for the discrepancies found between General Relativity and made obser-
vations. This additional field can be thought of as being some kind of
strange not yet observed form of energy, a ’dark energy’ if you will. This
makes the Covariant Galileon Model part of the wider range of a dark

Version of 29 August 2018– Created February 26, 2019 - 05:31

49



4.1 The model 50

energy models.
In this Chapter the Covariant Galileon Model shall be set up, its equa-

tions of motion on the background will be given and solved and values
for different parameters of the theory shall be discussed.

4.1 The model

The Covariant Galileon Model is a theory of gravity. As stated before it
takes General Relativity as a basis and adds an additional scalar field φ,
called the Galileon field. The mathematical basis of the theory is thus the
same as that of General Relativity. The Universe is still described by a
manifold with curvature such that the metric gives rise to gravity, only
now the Galileon field gives rise to additional dynamics. The Galileon
field can however not be any scalar field. The Covariant Galileon model
imposes three conditions on the scalar field:

1. The equations of motion of the theory remain invariant under trans-
formations of the form ∂µφ→ ∂µφ+ aµ. This comes down to the idea
that under everyday circumstances, i.e. objects having speeds much
lower than the speed of light, the theory is invariant under Galilean
transformations. Hence also the name of the theory.

2. The equations of motion arising in the theory are at most second
order. This is to exclude the possibility of getting negative energies
and other instabilities.

3. The equations of motion on small scales reduce to the case of General
Relativity. This means that the effect of φ on the dynamics of the
system is negligible on small scales.

These conditions heavily constrain the possibilities for the Lagrangian of
the theory. To meet these constraints, the action that defines the Covariant
Galileon Model is given by:

S =

ˆ
(

c4

16πG
R− 1

2

5

∑
i=1

ciLi + LM)
√

gd4x

where c is the speed of light, G the gravitational constant, R the Ricci
scalar, the ci constants, LM the matter Lagrangian and the Lagrangians
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Li are given by:

L1 = M3φ

L2 = X

L3 =
2X
M3�φ

L4 =
X

M6 (2(�φ)2 − 2(∇µ∇νφ)(∇µ∇νφ)− 1
2

RX)

L5 =
X

M9 ((�φ)3 − 3(�φ)(∇µ∇νφ)(∇µ∇νφ)

+ 2(∇µ∇νφ)(∇ν∇ρφ)(∇ρ∇µφ)− 6(∇µφ)(∇ρφ)(∇µ∇νφ)Gνρ)

where φ is the Galileon field,∇ is the Levi-Civita connection, X = ∇µφ∇µφ,
�φ = ∇µ∇µφ, R is again the Ricci scalar and Gµν = Rµν − 1

2 gµνR is the
Einstein tensor. M is just a constant given by M3 = Mpl H2

0 where H0 is the
present day value of Hubble’s constant and Mpl is the Planck mass given

by M2
pl =

c4

8πG .
The Covariant Galileon Model is thus a theory of gravity that describes

the Universe as a 4-dimensional oriented manifold M with metric g and
associated Levi-Civita connection ∇ and with a function φ : M → R asso-
ciated to the Universe. Moreover the Galileon field is such that its deriva-
tive ∇φ is nowhere vanishing. The action that then further defines the
Covariant Galileon Model is the one given above. Now note that if the
Li are considered part of the matter Lagrangian, then the action takes the
same form as the action in the Theory of General Relativity. The dynam-
ics of the system are thus given by the Einstein Field Equation only with a
energy-momentum tensor modified such that it includes the Galileon field
addition. Therefore the Galileon field can be thought of as a form of yet
unknown energy, the ’dark energy’ of the Covariant Galileon Model.

To solve the dynamics of this system in general is really hard. To sim-
plify calculations only the background of the system will be considered.
The background of the system is the spatial average of the system. Here
the dynamical variables g and φ are thus replaced with their spatial aver-
ages. As stated in the introduction of this chapter it follows from observa-
tions that the metric on this scale is of the form:

ds2 = −dt2 + (a(t))2(dx2 + dy2 + dz2)

So the whole dynamics arising from the (16 components of the) metric
on the background reduces to the dynamics arising from just the scale
factor a. Since the scale factor is not directly observable, Hubble’s constant
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H, which is directly measurable, shall be used as a variable instead of it.
Hubble’s constant is defined by:

H =
ȧ
a

This switch of variable is not problematic since the scale factor can be re-
covered from Hubble’s constant via:

a = exp(
ˆ

Hdt)

Moreover the Galileon field φ can on the background effectively be seen as
just a function of time, since it is constant in space by definition of consid-
ering only the spatial average. The Galileon field on the background is de-
noted by φ0 : R → R and on the background it thus holds φ((t, x, y, z)) =
φ0(t) given a point p ∈ M with coordinates p = (t, x, y, z). Note that on
the background the covariant derivative of φ reduces to ∇µφ = ∂φ

∂t = φ̇0.
Using the Principle of Least Action the equations of motion for the Co-

variant Galileon Model can now be found. On the background they are
given by:

0 = R + 3H2 − κρ

0 = 3Ḣ + 3H2 +
κ

2
(ρ + 3p)

0 = c2(φ̈0 + 3Hφ̇0) +
c3

M3 (12Hφ̇0φ̈0 + 18H2φ̇2
0 + 6Ḣφ̇2

0)

+
c4

M6 (54H2φ̇2
0φ̈0 + 36HḢφ̇3

0 + 54H3φ̇3
0)

+
c5

M9 (45H4φ̇4
0 + 60H3φ̇3

0φ̈0 + 45H2Ḣφ̇4
0)

where R is the Ricci scalar, ρ and p are respectively the energy density and
the pressure of the matter in the Universe, the c’s are the ones from the
action and κ is a constant given by κ = M−2

pl .
Considering the Galileon field as dark energy, four types of energy can

be distinguished in the Universe as described by the Covariant Galileon
Model. Those are the energies associated to normal matter, radiation, neu-
trino’s and the Galileon field. Their energy densities and pressures are on
the background given by:

ρm =
ρm,0

a3 pm =0

ρr =
ρr,0

a4 pr =
1
3

ρr =
ρr,0

3a4

ρν =0 pν =0
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and

ρφ =
1
2

c2φ̇2
0 + 6

c3

M3 Hφ̇3
0 +

45
2
· c4

M6 H2φ̇4
0 + 21

c5

M9 H3φ̇5
0

pφ =
1
2

c2φ̇2
0 − 2

c3

M3 φ̇2
0φ̈0 −

3
2
· c4

M6 (8Hφ̇3
0φ̈0 + 2Ḣφ̇4

0 + 3H2φ̇4
0)

− 3
c5

M9 (5H2φ̇4
0φ̈0 + 2HḢφ̇5

0 + 2H3φ̇5
0)

where a subscript m denotes normal matter, r denotes radiation, ν denotes
neutrino’s and φ denotes the Galileon field and the additional subscript 0
in the energy density and pressure denotes the present value.

The derivation of the equations of motion and the energy density and
pressure of the Galileon field can be found in Barreira et al. [7] and the
derivation of the energy density and pressure of the other energy types
can be found in Carroll [4].

4.2 The ADM formalism

It turns out to be numerically very difficult to solve the general (i.e. not on
the background) equations of motion, without choosing a particular set of
coordinates. This particular choice of coordinates and the setting which
it creates, in which the numerical calculations are relatively easy to per-
form, is called the Arnowit-Deser-Misner formalism or ADM formalism.
In this formalism the manifold is sliced up in hyperspaces and the coor-
dinates are chosen to align with the hyperspaces. The idea is then that
the hyperspaces are chosen in such a way that the equations on the hy-
perspaces become easier to work with. This approach will be used in this
thesis in order to be able to incorporate the results later on in a more gen-
eral scheme used by many other theories as well which facilitates making
comparisons.

So the Covariant Galileon Model describes the Universe as a 4-dimen-
sional manifold M with metric g and scalar field φ. Since the derivative
∇φ is nowhere vanishing, the Galileon field can be used to slice up the
manifold. This happens in the following way. First notice that given
a local coordinate chart the Galileon field can be decomposed locally as
φ(t, x, y, z) = φ0(t) + δφ(t, x, y, z) where φ0 is the average in the spatial co-
ordinates of φ, i.e. the background value of φ, on the coordinate patch and
δφ its deviation around that average. The coordinate patch can then be
split up in level surfaces of φ0 which are by construction spacelike. Such
decompositions of φ also exist globally.
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As an example consider the following. The metric, viewed as a matrix,
is diagonalisable at every point, since it is diagonal in normal coordinates
(see Kobayashi & Nomizu [1]). therefore there is a basis of eigenvectors
of the metric for the tangent space of the manifold at every point. Since
the metric is Lorentzian, 3 of those eigenvectors are spacelike and one is
timelike. Moreover this basis of eigenvectors can be chosen to change dif-
ferentiably, since the metric is differentiable. This thus constitutes 3 space-
like vector fields and one timelike vector field all linearly independent
from each other. The integral curves of the 3 spacelike vector fields form a
spacelike hypersurface Σt. By letting the start point of the integral curves
change with a parameter t along the integral curves of the timelike vector
field, a splitting of the manifold in spacelike hypersurfaces Σt is created.
One can then take φ0(t) to be the average of φ on Σt. This shows that
there indeed exists a such decomposition of φ. Note that this decomposi-
tion is not unique. Moreover, since ∇φ 6= 0, the Σt can be reparametrised
such that φ0(p0) = t for all p = (p0, p1, p2,p3) ∈ Σt. Furthermore, if the
manifold is globally hyperbolic, then it follows that t ∈ R - and not some
smaller interval contained in R - for such a decomposition (see Gourghoul-
hon [8]).

The level sets of this decomposition are submanifolds:

Lemma 4.2.1. Σt is a 3-dimensional submanifold of M.

Proof. Let p ∈ M and (U, h, V) be a chart of M around p with associated
coordinates (t, x, y, z). Then the rank of φ at p is given by

rkpφ = rk(J(φ ◦ h−1)(h(p)))

= rk((
∂φ

∂t
(h(p)),

∂φ

∂x
(h(p)),

∂φ

∂y
(h(p)),

∂φ

∂z
(h(p))))

= rk(∇φ(h(p))) = 1

since ∇φ 6= 0 everywhere. This holds for all p ∈ M, so by the Rank
Theorem (see Lübke [2]) there exists for all p ∈ M a chart (U′, h′, V′) of M
around p such that:

φ ◦ h′−1(x1, x2, x3, x4) = x1 ∈ R

Choosing this chart around p ∈ Σt for some t ∈ R gives:

h′(U′ ∩ Σt) = h′(U′ ∩ φ−1
0 (t)) = {(x1, x2, x3, x4) ∈ V′ : x1 = t}
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Since the function given by f ((x1, x2, x3, x4)) = (x2, x3, x4, x1 − t) is a dif-
feomorphism, there exists a chart (Û, ĥ, V̂) of M around p such that Û =
U′ and:

ĥ(Û ∩ Σt) = f ◦ h′(U′ ∩ φ−1(t)) = {(x1, x2, x3, x4) ∈ V̂ : x4 = 0}

This means that Σt is an 3-dimensional submanifold of M.

Since the Σt are submanifolds they have their own intrinsic and extrin-
sic curvature tensor fields denoted respectively by3R and K (the subscript
3 to distinguish from the intrinsic curvature of the whole manifold.) They
also have an induced metric h and a corresponding Levi-Civita connection
D.

Furthermore this means that the whole manifold can be given as a
union of submanifolds:

M =
⋃

t∈R

Σt

such that Σt ∩ Σr = ∅ if t 6= r. This is called a foliation of M and each
hypersurface Σt is called a leaf.

From now on we will consider the only the background case, so δφ = 0,
and we will identify φ with φ0.

Now a normal vector to Σt can be defined as follows. Since φ is a scalar
function, ∇φ = ∇µφ is a covector field, so ~∇φ = g−1(·,∇φ) = ∇µφ is
the associated vector field given by index raising. Let V be a vector field
tangent to the Σt. Then it holds:

g(V, ~∇φ) = gµνVµ∇νφ = gµνVµgνσ∇σφ

= δσ
µVµ∇σφ = Vµ∇µφ = ∇Vφ = 0

since φ = φ0 is constant on Σt by definition. So ~∇φ is normal to Σt.
The lapse function N : M→ R can now be defined as:

N = (−g(~∇φ, ~∇φ))−
1
2

Since ~∇φ is timelike it follows that the lapse function is real. This defines
a unit normal n as n = N~∇φ. It is clear that n is normal to Σt. It is a unit
vector because:

g(n, n) = g(N~∇φ, N~∇φ) = N2g(~∇φ, ~∇φ) =
g(~∇φ, ~∇φ)

−g(~∇φ, ~∇φ)
= −1
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This offers a physical interpretation of the foliation of M. Since n is a time-
like unit vector it can be thought of as a velocity vector of some observer.
Such observers are called Eulerian observers. The world lines of these ob-
servers are thus orthogonal to the leaves Σt of the foliation. This means
that the Σt are locally the set of events that occur at the same time as seen
from the perspective of the Eulerian observer. The acceleration a of the
Eulerian observer is given by a = ∇nn. It holds:

g(a, n) = g(∇nn, n) =
1
2
∇ng(n, n) =

1
2
∇n(−1) = 0

So a is tangent to the Σt.
Now also what is called the normal evolution vector m can be defined.

It is given by m = −Nn. It holds:

∇mφ = (∇φ)(m) = dφ(m) = −Ndφ(n)

= −N2dφ(~∇φ) = −N2g(~∇φ, ~∇φ) = 1

This means that the flow generated by m lets the Σt flow into each other.
Now a specific coordinate system is going to be introduced on M. Let

(ui
t)i = (u1

t , u2
t , u3

t ) be some local coordinate system for Σt with coordinate
neighbourhood Ut such that it smoothly varies with t, meaning that the
map f :

⋃
t∈I Ut → R3 with I ⊆ R given by f (p) = (u1

t (pt), u2
t (pt), u3

t (pt)),
where pt is defined by p = (t, pt), is differentiable w.r.t. the whole space
M. Such coordinate systems exist at least locally, i.e. for I = (a, b) for
some a, b ∈ R with a < b. Then (uµ)µ = (t, u1

t , u2
t , u3

t ) constitutes a local
coordinate system for M. The subscript t is from now on dropped from
the u’s.

This particular coordinate system thus defines a basis:

(
∂

∂t
|p,

∂

∂u1 |p,
∂

∂u2 |p,
∂

∂u3 |p)

for TpM for all p ∈ ⋃
t∈(a,b) Ut. The vector ∂

∂t |p is called the time vector.
Note that it is not necessarily timelike. Since φ(p) = t and t can be seen as
a scalar field and φ and t can be identified with each other. In particular it
thus holds:

∇ ∂
∂t

φ = (∇φ)(
∂

∂t
) = dφ(

∂

∂t
) = 1

so the flow of generated by ∂
∂t lets the Σt flow into each other in the same

way as m does. In general these vectors are however not equal. Their
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difference is called the shift vector denoted by β = ∂
∂t −m. It holds:

g(n, β) = Ng(~∇φ, β) = Ndφ(β) = N(dφ(
∂

∂t
)− dφ(m)) = N(1− 1) = 0

so β is tangent to the leaves Σt. Since ∂
∂t points along curves of fixed ui, the

shift vector β can thus be interpreted as the shift of the coordinate system
as it is pushed along m.

Note that:

g(
∂

∂t
,

∂

∂t
) = g(β + Nn, β + Nn) = g(β, β) + N2g(n, n) = g(β, β)− N2

thus ∂
∂t can be spacelike, timelike or null.

This completes the description of the ADM formalism. The goal is now
to describe tensors on M in terms of ADM quantities, i.e. in terms of the
unit normal n, the lapse function N, the normal evolution vector m, the
shift vector β and tensors on the leaves Σt. This will be done for the metric
g, the intrinsic curvature R and the extrinsic curvature K.

To do this it is helpful to make the following observation. The tan-
gent bundle TM can be decomposed as TM = (

⊔
t∈R TΣt) ⊕ Span(n),

where the direct sum is taken fibrewise and
⊔

denotes the disjoint union.
This decomposition gives rise to a projection γ : TM→ ⊔

t∈R TΣt given by
γ(v) = v + g(v, n)n. This is the orthogonal projection onto the Σt. Its dual
γ∗ :

⊔
t∈R T∗Σt → T∗M is given by γ∗(ω)(v) = ω(γ(v)) for all v ∈ TM.

For all k this can be extended to tensor bundles of type (0, k) by entrywise
application. γ∗ can be used to extend tensors defined on the leaves Σt to
the whole manifold M.

Consider now the induced metric h on the leaves
⊔

t∈R Σt. Let ι :
⋃

t∈R Σt →
M be the inclusion map, then h = ι∗g by Definition 2.6.6. Let u, v ∈⊔

t∈R TΣt ⊂ TM, then:

(γ∗h)(u, v) = h(γ(u), γ(v)) = h(u + g(u, n)n, v + g(v, n)n)
= h(u, v) = (ι∗g)(u, v) = g(Dιu, Dιv) = g(u, v)

Now let v ∈ TM and λ ∈ R, then:

(γ∗h)(λn, v) = h(γ(λn), γ(v)) = h(λn + g(λn, n)n, v + g(v, n)n)
= h(λn− λn, v + g(v, n)n) = 0

From this it follows that:

γ∗h = g + g(·, n)⊗ g(·, n)
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The induced metric gets now redefined as this extension, i.e. h := γ∗h. In
components this gives:

hµν = gµν + nµnν

On the other hand the metric g can be written in terms of the lapse
function and the shift vector as follows. First note that, since β is tangent
to the leaves Σt, it holds β = βi ∂

∂ui . This gives:

g00 = g(
∂

∂t
,

∂

∂t
) = g(β, β)− N2 = βiβ

i − N2

Moreover:

g0i = g(
∂

∂t
,

∂

∂ui ) = g(β,
∂

∂ui )− Ng(n,
∂

∂ui )

= g(β,
∂

∂ui ) = (β jduj)(
∂

∂ui ) = β jδ
j
i = βi

and

gij = g(
∂

∂ui ,
∂

∂uj ) = h(
∂

∂ui ,
∂

∂uj )− g(
∂

∂ui , n)⊗ g(
∂

∂uj , n) = hij

Thus:

gµν =

(
βiβ

i − N2 β j
βi hij

)
(4.2.1)

The metric inverse is then given by:

gµν =

(
− 1

N2
βj

N2

βi

N2 hij − βiβj

N2

)

Now for the extrinsic curvature K. For u, v ∈ TM it holds:

γ∗K(u, v) = K(γ(u), γ(v)) = g(Dι(γ(u)),∇Dι(γ(v))n)

= g(u + g(u, n)n,∇v+g(v,n)nn) = g(u + g(u, n)n,∇vn + g(v, n)a)

= g(u,∇vn) + g(u, n)g(n,∇vn)
+ g(v, n)g(u, a) + g(u, n)g(v, n)g(n, a)

= g(u,∇vn) + g(v, n)g(u, a) = g(u,∇n)(v) + g(v, n)g(u, a)

From this it follows that, if K gets redefined as its extension, i.e. K := γ∗K:

K = g(·,∇n)(·) + g(·, n)⊗ g(·, a)
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In components this gives:

Kµν = ∇µnν + nµaν = ∇µnν + nµnσ∇σnν

For the intrinsic curvature it holds in components:

R + 2Rµνnµnν = 3R + K2 − KµνKµν

This relation is called the Gauss equation and its derivation can be found
in Gourghoulhon [8]. Moreover it holds:

Rµνnµnν = Rα
µανnµnν = (∇α∇νnα −∇ν∇αnα)nν

= ∇α(nν∇νnα)−∇νnα∇αnν −∇ν(nν∇αnα) +∇αnα∇νnν

= ∇αaα −∇νnα∇αnν −∇ν(Knν) + K2

= ∇αaα − KµνKµν −∇ν(Knν) + K2

So the Gauss equation can also be written as:

R + 2∇αaα − 2∇ν(Knν) = 3R− K2 + KµνKµν

4.3 The EFT formalism

The EFT formalism is a general way to treat a physical theory. This allows
for easy comparison of different theories describing the same phenomena.
The idea behind the EFT formalism is to Taylor expand the Lagrangian
of the theory around some commonly agreed upon base case, called the
background, of the theories, e.g. a low energy limit of the theories. The
different theories can then be compared by comparing the coefficients of
the variations of the various orders. These coefficients are also called the
EFT functions. Here the formalism will be applied to dark energy theories.

The dark energy theories considered are all extensions of General Rel-
ativity and thus all abide to the basic mathematical theory behind General
Relativity. Therefore they can all be cast into the ADM formalism. Follow-
ing Frusciante et al. [9] the general Lagrangian of such a theory is of the
form:

L = L(N, 3R, S, K, Z, U, Z1, Z2, α1, . . . , α5; t)
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where the variables are defined as:

S = KµνKµν

Z = 3Rµν
3Rµν

U = 3RµνKµν

Z1 = Di
3RDi3R

Z2 = Di
3RjkDi3Rjk

α1 = aiai

α2 = aiDjDjai

α3 = 3RDiai

α4 = ai(DjDj)2ai

α5 = DiDi3RDjaj

The base case around which this Lagrangian will be varied is the FLRW
metric, i.e. the case when the metric is of the form:

ds2 = −dt2 + a(t)2δijduiduj

where a : R → R is the scale factor. By comparing this to equation 4.2.1 it
follows that on the background it holds N = 1, β = 0 and hij = a(t)2δij.
This means in particular that n = (1, 0, 0, 0) and that a = 0, since its a
derivative of n. Furthermore note that on the background it holds 3Rµν =
0, since h is flat. For the extrinsic curvature the following holds:

Kµν = ∇νnµ + aµnν =
∂nµ

∂uν
− Γσ

νµnσ = −Γσ
νµnσ = −Γ0

νµ

since n is constant on the background. This gives:

Kµ
ν = gµαKαν = −gµαΓσ

ναnσ = −gµαgσβΓβναnσ = −Γµ
βνnβ = −Γµ

0ν

which in turn gives for the scalar extrinsic curvature:

K = Kµ
µ = −Γµ

0µ = −1
2

gµα(
∂gα0

∂uµ +
∂gµα

∂u0 −
∂g0µ

∂uα
)

= −1
2

gµµ(
∂gµ0

∂uµ +
∂gµµ

∂u0 −
∂g0µ

∂uµ ) = −1
2

gµµ ∂gµµ

∂u0

= −3
2

a−2 da2

dt
= −3

ȧ
a
= −3H
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where there is made use of the fact that the FLRW metric is diagonal. Fur-
thermore it also holds on the background:

S = KµνKµν = Γ0
νµgναΓµ

0α = gννΓ0
νµΓµ

0ν

=
1
4

gννg0α(
∂gαν

∂uµ +
∂gµα

∂uν
−

∂gνµ

∂uα
)gµβ(

∂gβ0

∂uν
+

∂gνβ

∂u0 −
∂g0ν

∂uβ
)

=
1
4

gννg00(
∂g0ν

∂uµ +
∂gµ0

∂uν
−

∂gνµ

∂u0 )gµµ(
∂gµ0

∂uν
+

∂gνµ

∂u0 −
∂g0ν

∂uµ )

= −1
4

gννg00gµµ ∂gνµ

∂u0 ·
∂gνµ

∂u0 =
1
4
(gµµ)2(

∂gµµ

∂u0 )2 =
3
4

a−4(
da2

dt
)2 = 3H2

Now following Frusciante et al. [9] the action of the theories in the EFT
formalism up to second order variations is then given by:

S =

ˆ
d4x
√
−g
(m2

0
2
(1 + Ω(t))R + Λ(t)− c(t)δg00 +

M4
2(t)
2

(δg00)2

−
M̄3

1(t)
2

δg00δK− M̄2
2(t)
2

(δK)2 −
M̄2

3(t)
2

δKµ
νδKν

µ

+
M̂2(t)

2
δg00δ3R + m2

2(t)h
µν∂µg00∂νg00 +

m̄5(t)
2

δ3RδK

+ λ1(t)(δ3R)2 + λ2(t)δ3Rµ
νδ3Rν

µ + λ3(t)δ3Rhµν∇µ∂νg00

+ λ4(t)hµν∂µg00∇ρ∇ρ∂νg00 + λ5(t)hµν∇µ
3R∇ν

3R

+ λ6(t)hµν∇µ
3Rij∇ν

3Rij + λ7(t)hµν∂µg00(∇ρ∇ρ)2∂νg00

+ λ8(t)hµν∇ρ∇ρ3R∇µ∂νg00
)

Now let a subscript denote a partial derivative, i.e.LX denotes the deriva-
tive ∂L

∂X . Then the following functions are defined:

A = LKK + 4H2LSS − 4HLSK

B = LKN − 2HLSN

C = LK3R − 2HLS3R +
1
2

LU − HLKU + 2H2LSU

D = LN3R +
1
2

L̇U − HLNU

E = L3R −
3
2

HLU −
1
2

L̇U

F = LK − 2HLS
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Then Frusciante et al. [9] shows that the following EFT functions are given
by:

M̄2
2(t) = −A− 2E

M4
2(t) =

3
4

LN +
1
4

LNN −
1
4
Ḟ − 1

2
HĖ + 1

2
Ë + E Ḣ

M̄3
1(t) = −B − 2Ė

M̄2
3(t) = −2LS + 2E

m2
2(t) =

1
4

Lα1

m̄5(t) = 2C
M̂2(t) = D

These are the EFT functions of that will be discussed further on in the the-
sis. The expressions of the other EFT function can be found in Frusciante
et al. [9].

4.4 The mapping

In this section the EFT functions for the Covariant Galileon Model on the
background will be derived. In order to do this, the Lagrangian of the
model will be written in terms of ADM quantities and then compared to
the EFT action. By immediately making the comparison with the EFT ac-
tion, it follows that only the functions L1 to L5 need to be expressed in
terms of ADM quantities. The first term is namely already a part of the
EFT action and the matter Lagrangian can be disregarded in this process.
The functions are given by:

L1 = M3φ

L2 = X

L3 =
2X
M3�φ

L4 =
X

M6 (2(�φ)2 − 2(∇µ∇νφ)(∇µ∇νφ)− 1
2

RX)

L5 =
X

M9 ((�φ)3 − 3(�φ)(∇µ∇νφ)(∇µ∇νφ)

+ 2(∇µ∇νφ)(∇ν∇ρφ)(∇ρ∇µφ)− 6(∇µφ)(∇ρφ)(∇µ∇νφ)Gνρ)

Looking at L1, it already is written in terms of ADM quantities, since
the only variable is the Galileon field. Since φ is the only variable of L1, it
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follows that L1 does not contribute to the EFT functions under considera-
tion.

The only variable of L2 is X, which, when identifying φ with φ0, can be
written as:

X = ∇µφ∇µφ = gµν∇νφ∇µφ = g00(∇0φ)2 = − φ̇2

N2

in terms of ADM quantities. From this it follows that L2 also has no non-
zero contributions to the EFT functions that are considered.

For the L3 and L4 cases the following relations are needed:

∇µN−1 = −N−2∇µN = −N−2∇µ(−X)−
1
2

= − 1
2N2 (−X)−1 1

2∇µX = −1
2

N∇µX

which gives:

∇µ∇νφ = ∇µ
nν

N
= N−1∇µnν + nν∇µN−1

= N−1(Kµν − nµaν)−
1
2

Nnν∇µX

= N−1(Kµν − nµaν)−
1
2

Nnν∇µ(∇λφ∇λφ)

= N−1(Kµν − nµaν)− Nnν∇λφ∇λ∇µφ

= N−1(Kµν − nµaν)− Nnν∇λφ∇λ
nµ

N
= N−1(Kµν − nµaν)− nν∇λφ∇λnµ − Nnν∇λφnµ∇λN−1

= N−1(Kµν − nµaν)− N−1nνnλ∇λnµ +
1
2

N2nν(∇λφ)nµ∇λX

= N−1(Kµν − nµaν − nνaµ) +
1
2

N2(∇λφ∇λX)nνnµ

and its contraction:

�φ = ∇µ∇µφ = N−1K− 1
2

N2∇λφ∇λX

where there is made use of the fact that n and a are orthogonal. Further-
more, using the fact that:

Kµνnµ = (∇µnν + nµaν)nµ = aν − aν = 0
Kµνnν = Kνµnν = Kµνnµ = 0
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this gives:

∇µ∇νφ∇µ∇νφ =(N−1(Kµν − nµaν − nνaµ) +
1
2

N2(∇λφ∇λX)nνnµ))

· ((N−1(Kµν − nµaν − nνaµ) +
1
2

N2(∇λφ∇λX)nµnν

=N−2(S− 2aµaµ) +
1
4

N4(∇λφ∇λX)2

For L3 the following relation then holds:

L3 =
2X
M3�φ =

2X
M3 (N−1K− 1

2
N2∇λφ∇λX)

=
2

M3 X
√
−XK +

1
M3∇

λφ∇λX =
−2
M3 (−X)

3
2 K− X

M3�φ

= −1
2

L3 −
2

M3 (−X)
3
2 K

where there is made use of partial integration to move the covariant deriva-
tive from X to φ (and the boundary terms are neglected.) Hence in ADM
quantities:

L3 = − 4
3M3 (−X)

3
2 K = − 4

3M3 ·
φ̇3

N3 K

The nonzero contributions to the EFT functions given by L3 are thus:

M4
2(t) =

3
4

L3N +
1
4

L3NN −
1
4

L̇3K

=
3

M3 ·
φ̇3

N4 K− 4
M3 ·

φ̇3

N5 K +
1

M3 ·
φ̇2

N3 φ̈− 1
M3 ·

φ̇3

N4 Ṅ

M̄3
1(t) = −L3KN = − 4

M3 ·
φ̇3

N4

On the background they are thus given by:

M4
2(t) = −

9
M3 Hφ̇3 +

12
M3 Hφ̇3 +

1
M3 φ̇2φ̈ =

3
M3 Hφ̇3 +

1
M3 φ̇2φ̈

M̄3
1(t) = −

4
M3 φ̇3

Now for L4 consider a function f of the form:

f (g, φ) = G4(φ, X)R− 2G4X(φ, X)((�φ)2 −∇µ∇νφ∇µ∇νφ)
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where G4 is a differentiable function and G4X is its derivative w.r.t. X.
Noting that:

aµ∇µX = aµ∇µ(∇λφ∇λφ) = 2aµ∇λφ∇µ∇λφ = 2aµ∇λφ∇λ∇µφ

= 2aµN−1nλ∇λ
nµ

N
= 2aµN−1nλ(nµ∇λN−1 + N−1∇λnµ)

= 2aµN−2nλ∇λnµ = 2N−2aµaµ

f can be written as:

f (g, φ) = G4R− 2G4X((N−1K− 1
2

N2∇λφ∇λX)2

− N−2(S− 2aµaµ)−
1
4

N4(∇λφ∇λX)2)

= G4R + 2G4X(NK∇λφ∇λX + N−2(S− K2 − 2aµaµ))

= G4R + 2G4X((Knλ − aλ)∇λX + N−2(S− K2))

= G4R + 2XG4X(K2 − S) + 2G4X(Knλ − aλ)∇λX

Now, using ∇µG4 = G4φ∇µφ + G4X∇µX, this gives:

f = G4R + 2XG4X(K2 − S) + 2G4X(Knλ − aλ)∇λX

= G4R + 2XG4X(K2 − S) + 2(∇λG4 − G4φ∇λφ)(Knλ − aλ)

= G4R + 2XG4X(K2 − S) + 2(∇λG4 − G4φN−1nλ)(Knλ − aλ)

= G4R + 2XG4X(K2 − S) + 2(∇λG4)(Knλ − aλ) + 2G4φN−1K

= G4R + 2XG4X(K2 − S)− 2G4∇λ(Knλ − aλ) + 2G4φN−1K

where in the last line partial integration was used. Using the Gauss equa-
tion gives:

f = G4R + 2XG4X(K2 − S)− 2G4∇λ(Knλ − aλ) + 2G4φN−1K

= G4(R− 2∇λ(Knλ − aλ)) + 2XG4X(K2 − S) + 2G4φN−1K

= G4(
3R− K2 + KµνKµν) + 2XG4X(K2 − S) + 2G4φN−1K

= G4
3R + (2XG4X − G4)(K2 − S) + 2G4φ

√
−XK

If G4 = −1
2 M−6X2 then f equals L4. This means that L4 can be written in
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terms of ADM quantities as:

L4 = − 1
2M6 X2 · 3R + (− 2

M6 X2 +
1

2M6 X2)(K2 − S)

= − 1
2M6 X2(3R + 3(K2 − S))

= − 1
2M6 ·

φ̇4

N4 (
3R + 3(K2 − S))

The non-zero contributions from L4 to the EFT functions are thus:

M̄2
2 = −L4KK − 2L43R =

3
M6 ·

φ̇4

N4 +
1

M6 ·
φ̇4

N4 =
4

M6 ·
φ̇4

N4

M̄3
1 = −L4KN + 2HL4SN − 2L̇43R

= − 12
M6 ·

φ̇4

N5 K− 12
M6 ·

φ̇4

N5 H +
4

M6 ·
φ̇3

N4 φ̈− 4
M6 ·

φ̇4

N5 Ṅ

M̄2
3 = −2LS + 2L3R = − 3

M6 ·
φ̇4

N4 −
1

M6 ·
φ̇4

N4 = − 4
M6 ·

φ̇4

N4

M̂2 = L4N3R =
2

M6 ·
φ̇4

N5

and

M4
2 =

3
4

LN +
1
4

LNN −
1
4

L̇4K +
1
2
(HL̇4S + ḢL4S)−

1
2

HL̇43R +
1
2

L̈43R + L43RḢ

=
3

2M6 ·
φ̇4

N5 (
3R + 3(K2 − S))− 5

2M6 ·
φ̇4

N6 (
3R + 3(K2 − S)) +

3
M6 ·

φ̇3

N4 Kφ̈

− 3
M6 ·

φ̇4

N5 KṄ +
3

4M6 ·
φ̇4

N4 K̇ +
1
2
(

6
M6 ·

φ̇3

N4 Hφ̈− 6
M6 ·

φ̇4

N5 HṄ

+
3

2M6 ·
φ̇4

N4 Ḣ) +
1

M6 ·
φ̇3

N4 Hφ̈− 1
M6 ·

φ̇4

N5 HṄ − 3
M6 ·

φ̇2

N4 φ̈2

+
4

M6 ·
φ̇3

N5 Ṅφ̈− 1
M6 ·

φ̇3

N4

...
φ +

4
M6 ·

φ̇3

N5 Ṅφ̈− 5
M6 ·

φ̇4

N6 Ṅ2

+
1

M6 ·
φ̇4

N5 N̈ − 1
2M6 ·

φ̇4

N4 Ḣ
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So on the background these contributions are given by:

M̄2
2 =

4
M6 φ̇4

M̄3
1 =

36
M6 Hφ̇4 − 12

M6 Hφ̇4 +
4

M6 φ̇3φ̈ =
24
M6 Hφ̇4 +

4
M6 φ̇3φ̈

M̄2
3 = − 4

M6 φ̇4

M̂2 =
2

M6 φ̇4

and

M4
2 =

9
2M6 (9H2 − 3H2)φ̇4 − 15

2M6 (9H2 − 3H2)φ̇4

− 9
M6 Hφ̇3φ̈− 9

4M6 φ̇4Ḣ +
1
2
(

6
M6 Hφ̇3φ̈ +

3
2M6 φ̇4Ḣ)

+
1

M6 Hφ̇3φ̈− 3
M6 φ̇2φ̈2 − 1

M6 φ̇3...
φ − 1

2M6 φ̇4Ḣ

=− 18
M6 H2φ̇4 − 5

M6 Hφ̇3φ̈− 2
M6 φ̇4Ḣ − 3

M6 φ̇2φ̈2 − 1
M6 φ̇3...

φ

Since the total Lagrangian of the system is given by L = c4

16πG R− 1
2 ∑5

i=1 ciLi +
LM, the individual contributions can be summed to give the EFT functions
of the system:

M̄2
2 = − 2c4

M6 φ̇4

M4
2 = − c3

M3 (
3
2

Hφ̇3 +
1
2

φ̇2φ̈)

+
c4

M6 (9H2φ̇4 +
5
2

Hφ̇3φ̈ + φ̇4Ḣ +
3
2

φ̇2φ̈2 +
1
2

φ̇3...
φ)

M̄3
1 =

2c3

M3 φ̇3 − c4

M6 (12Hφ̇4 + 2φ̇3φ̈)

M̄2
3 =

2c4

M6 φ̇4

m2
2(t) = 0

m̄5(t) = 0

M̂2 = − c4

M6 φ̇4

in the case that c5 = 0.
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Chapter 5
Simulations

In this chapter the the Covariant Galileon model, as explained in the previ-
ous chapter, will be solved numerically and the corresponding EFT func-
tions will be given.

5.1 The equations

As shown in Barreira et al. [7] the equations of motion of the model at the
background are:

0 = 3H2 − κρ

0 = 3Ḣ + 3H2 +
κ

2
(ρ + 3p)

0 = c2(φ̈0 + 3Hφ̇0) +
c3

M3 (12Hφ̇0φ̈0 + 18H2φ̇2
0 + 6Ḣφ̇2

0)

+
c4

M6 (54H2φ̇2
0φ̈0 + 36HḢφ̇3

0 + 54H3φ̇3
0)

+
c5

M9 (45H4φ̇4
0 + 60H3φ̇3

0φ̈0 + 45H2Ḣφ̇4
0)

Note that R̂ = 0 on the background since the metric is flat. This is a system
of three equations in the variables φ and H as a function of time. As such
the system is thus overdetermined. To fix this the first equation will be
used as a means to constrain one of the parameters of the model in stead
of as a equation to evolve the system. Furthermore the energy density and
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pressure are given by:

ρm =
ρm,0

a3 pm =0

ρr =
ρr,0

a4 pr =
ρr,0

3a4

ρν =0 pν =0

and

ρφ =
1
2

c2φ̇2 + 6
c3

M3 Hφ̇3 +
45
2
· c4

M6 H2φ̇4 + 21
c5

M9 H3φ̇5

pφ =
1
2

c2φ̇2 − 2
c3

M3 φ̇2φ̈− 3
2

c4

M6 (8Hφ̇3φ̈ + 2Ḣφ̇4 + 3H2φ̇4)

− 3
c5

M9 (5H2φ̇4φ̈ + 2HḢφ̇5 + 2H3φ̇5)

These equations make up the system that is to be solved.
In order to solve these equations it is beneficial to use the logarithm of

the scale factor, ln(a), as variable in stead of time. Hence time derivatives
transform as:

d
dt

=
da
dt
· d ln(a)

da
· d

d ln(a)
=

ȧ
a
· d

d ln(a)
= H

d
d ln(a)

and the derivative of a quantity X w.r.t. ln(a) will be denoted as X̊ =
dX

d ln(a) . Since the equations only involve derivatives of φ, but not φ itself, it

is useful to introduce the quantity ψ = φ̇. Then it holds e.g. φ̈ = ψ̇ = Hψ̊

and
...
φ = H dHψ̊

d ln(a) = Hψ̊H̊ + H2 ˚̊ψ.
To make the equations involved dimensionless the following dimen-

sionless variables are introduced:

φ̄ =
φ

Mpl
ρ̄ =

ρ

3M2
pl H

2
0

H̄ =
H
H0

p̄ =
p

M2
pl H

2
0

ψ̄ =
ψ

Mpl H0
Ω =

ρ̄

H̄2 =
ρ

3M2
pl H

2
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In terms of these new variables the equations become:

ρ̄ = H̄2 (5.1.1)

0 = H̄ ˚̄H + H̄2 +
1
2
(ρ̄ + p̄) (5.1.2)

0 = c2(H̄ ˚̄ψ + 3H̄ψ̄) + c3(12H̄2ψ̄ ˚̄ψ + 18H̄2ψ̄2 + 6H̄ ˚̄Hψ̄2) (5.1.3)

+ c4(54H̄3ψ̄2 ˚̄ψ + 36H̄2 ˚̄Hψ̄3 + 54H̄3ψ̄3)

+ c5(45H̄4ψ̄4 + 60H̄4ψ̄3 ˚̄ψ + 45H̄3 ˚̄Hψ̄4)

ρ̄φ =
1
6

c2ψ̄2 + 2c3H̄ψ̄3 +
15
2

c4H̄2ψ̄4 + 7c5H̄3ψ̄5 (5.1.4)

p̄φ =
1
2

c2ψ̄2 − 2c3H̄ψ̄2 ˚̄ψ− 3
2

c4(8H̄2ψ̄3 ˚̄ψ + 2H̄ ˚̄Hψ̄4 + 3H̄2ψ̄4) (5.1.5)

− 3c5(5H̄3ψ̄4 ˚̄ψ + 2H̄2 ˚̄Hψ̄5 + 2H̄3ψ̄5)

and

ρ̄m =
Ωm,0

e3 ln(a)
p̄m = 0

ρ̄r =
Ωr,0

e4 ln(a)
p̄r =

Ωr,0

e4 ln(a)

ρ̄n = 0 p̄n = 0

If now the following quantities are defined:

α = 6c3H̄ψ̄2 + 36c4H̄2ψ̄3 + 45c5H̄3ψ̄4

β = c2H̄ + 12c3H̄2ψ̄ + 54c4H̄3ψ̄2 + 60c5H̄4ψ̄3

γ = 3c2H̄ψ̄ + 18c3H̄2ψ̄2 + 54c4H̄3ψ̄3 + 45c5H̄4ψ̄4

δ = −3c4H̄ψ̄4 − 6c5H̄2ψ̄5

ε = −2c3H̄ψ̄2 − 12c4H̄2ψ̄3 − 15c5H̄3ψ̄4

ζ =
1
2

c2ψ̄2 − 9
2

c4H̄2ψ̄4 − 6c5H̄3ψ̄5

Π = ρ̄ + p̄− p̄φ

then the equations of motion used to evolve the system, i.e. equations 5.1.2
till 5.1.5, can be expressed as:

˚̄H =
β(2H̄2 + Π + ζ)− γε

αε− β(2H̄ + δ)

˚̄ψ =
α(2H̄2 + Π + ζ)− γ(2H̄ + δ)

β(2H̄ + δ)− αε
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Written in this way the system can be easily solved numerically.
Lastly it is useful to give the EFT functions in a dimensionless form.

To this purpose the dimensionless EFT functions are defined by and in the
quartic case given by:

γ1 =
M4

2
M2

pl H
2
0
= −c3(

3
2

H̄ψ̄3 +
1
2

H̄ψ̄2 ˚̄ψ) + c4(9H̄2ψ̄4 +
5
2

H̄2ψ̄3 ˚̄ψ

+ H̄ψ̄4 ˚̄H +
3
2

H̄2ψ̄2 ˚̄ψ2 +
1
2

H̄ψ̄3 ˚̄H ˚̄ψ +
1
2

H̄2ψ̄3 ˚̄̊ψ)

γ2 =
M3

1
M2

pl H0
= 2c3ψ̄3 − c4(12H̄ψ̄4 + 2H̄ψ̄3 ˚̄ψ)

γ3 =
M̄2

2
M2

pl
= −2c4ψ̄4

γ4 =
M̄2

3

M2
pl

= 2c4ψ̄4

γ5 =
M̂2

M2
pl

= −c4ψ̄4

γ6 =
m2

2
M2

pl
= 0

5.2 The parameters

Now that the equations that have to be simulated are established, the val-
ues of the parameters of the system need to be determined in order to be
able to perform the simulations. The Covariant Galileon Model contains
twelve parameters:

{c2, c3, c4, c5, Ωm,0, Ωr,0, H̄i, ψ̄i, Mpl, H0, zi, ze}

where H̄i and ψ̄i denote the values of the dimensionless Hubble constant
and time derivative of the Galileon field at the start of the simulation and
zi and ze denote the start and end redshift used in the simulation. Note
that there are two other parameters that implicitly have been taken to be
zero, namely the neutrino energy density Ων,0 - for observational reasons -
and the coefficient c1 - for mathematical reasons. The choice of the twelve
parameters will closely follow the choice of Barreira et al. [7].

Leaving out zi and ze, a distinction can be made between two types of
parameters. On the one hand there are the parameters that can be directly
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measured to find their value. Those are Ωm,0, Ωr,0, H̄i, Mpl and H0. They
obtain their value from established models of well understood phenom-
ena. The other five parameters, i.e. c2 to c5 and ψ̄i, can not be determined
by measurement directly, rather their values are determined by the pre-
dictions of this model. Their values are such that the predictions of the
model are in agreement with the observations. The last two parameters zi
and ze just determine the length of the simulation. The parameters c2 to
c5 and ψ̄i can thus in principle only be determined by running the model
and comparing the results, the other parameters can be fixed beforehand.

Luckily this five dimensional parameter space can reduced by noting
the following. Firstly, as stated in Barreira et al. [10], this system has an at-
tractor, characterised by the so called tracker solution. This is a particular
solution of the system to which many other neighbouring solutions are at-
tracted. The tracker solution is determined by the relation ψ̄H̄ = ξ, where
ξ ∈ R is just some fixed number. This relation will be used to relate the two
initial conditions to each other, thus replacing ψ̄i with ξ as a variable. Sec-
ondly there is a scaling degeneracy in the system. If λ ∈ R is some number
and the variables φ′ = λ−1φ and c′i = λici (no summation intended here)
for i ∈ {2, . . . , 5} are introduced, then when using these variables instead
of their unprimed counterparts the Lagrangian of the system retains its
form, meaning the dynamics of the system remain unchanged. This free-
dom can be used to fix one of the parameters. As in Barreira et al. [10],
here c2 will be set to−1. Next, the fact that the present day Universe is flat
can be used to fix one parameter by using the constraint equation 5.1.1.
This can be done by choosing parameter values, running the simulation
and in the end check whether or not the constraint equation is satisfied. If
not the parameter values are changed and the model is run again. In this
way c3 is fixed. Lastly, assuming flatness at the starting time of the simu-
lation, by using the constraint equation and the expression of the Galileon
energy density, a relation between the initial conditions and the ci coeffi-
cients can be found. This relation will be used to fix ψ̄i. This leaves two
free parameters, namely c4 and c5.

5.3 The simulations

In this section the results of the simulations are shown. The model is sim-
ulated by using a Python script created for this purpose. The simulations
concern the quartic Covariant Galileon Model, meaning that c5 is fixed to
0, and the model will be run from initial redshift zi = 106 to end redshift
z = 0. Two sets of parameter values have been simulated. The first one is

Version of 29 August 2018– Created February 26, 2019 - 05:31

72



5.3 The simulations 73

being given by:

c3 = 0, 10104 Ωm0 = 0, 249

c4 = −4, 4523 · 10−3 Ωr0 = 7, 18 · 10−5

ξ = 2, 43

This set of parameter values can also be found in Barreira et al. [10]. The
evolution of the dimensionless Hubble constant H̄ and the dimensionless
time derivative of the Galileon field ψ̄ are found to be:

Figure 5.3.1: The evolution of the dimensionless Hubble constant on the left and
the dimensionless time derivative of the Galileon field on the right as a function
of the scale factor in the quartic Covariant Galileon Model using parameter values
as described directly above the figure.

For this solution the simulated present day Hubble constant is 9, 0,
which thus makes it 9 times the observed present day Hubble constant.
Furthermore for the constraint equation it holds H̄2(1)− ρ̄(1) = 82.

The solution can be further characterised by the equation of state w of
the Galileon field, which is defined as the pressure divided by the energy
density. It is given by:
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Figure 5.3.2: The evolution of the equation of state as a function of the scale fac-
tor in the quartic Covariant Galileon Model using parameter values as described
above.

The found solutions can be compared to the tracker solution, the so-
lution to which solutions for other parameter values are attracted. The
tracker solution can be found in Barreira et al. [10]. Comparing this solu-
tion to the solution found by the full simulation of the equations gives:

Figure 5.3.3: The quotient of the Hubble constant as derived by the simulation
and as given by the tracker solution on the left and the quotient of the time deriva-
tive of the Galileon field as derived by the simulation and as given by the tracker
solution on the right as a function of the scale factor in the quartic Covariant
Galileon Model using parameter values as described above.

The EFT functions of this solution are given by:
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Figure 5.3.4: The dimensionless EFT functions corresponding to the solution of
the model given by the simulation in Figure 5.3.1 as a function of the scale fac-
tor in the quartic Covariant Galileon Model using parameter values as described
above.

To look at the sensitivity of the model to the parameter values chosen
two parameters are varied. Here the present day matter energy density is
varied in three steps between±5% of its original value and the initial value
of the (dimensionless) Hubble constant is varied in three steps between
±0, 01% of its original value. This gives for the solutions to the model:
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Figure 5.3.5: The solutions, with on the left the dimensionless Hubble constant
and on the right the dimensionless time derivative of the Galileon field, as a func-
tion of the scale factor with parameter values as above and with the present day
matter energy density Ωm0 and the initial value of the Hubble constant H̄i varied
resulting in nine graphs. The offshoots to below on the left and to the top on the
right are present in the solutions in which Ωm0 is bigger than its original value, or
H̄i is smaller than its original value and Ωm0 is at its original value.

This gives as EFT functions:

Figure 5.3.6: The EFT functions corresponding to the solutions shown in the fig-
ure above.
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For the other parameter value set the results are very much the same.
The parameter values now are:

c3 = 0, 1 Ωm0 = 0, 315

c4 = −2, 778 · 10−3 Ωr0 = 10−4

ξ = 2

The solution of the model is now found to be:

Figure 5.3.7: The evolution of the dimensionless Hubble constant on the left and
the dimensionless time derivative of the Galileon field on the right as a function
of the scale factor in the quartic Covariant Galileon Model using parameter values
as described directly above the figure.

For this solution the simulated present day dimensionless Hubble con-
stant is approximately 16, which thus given a present day Hubble constant
that is of by a factor of 16. Furthermore for the constraint equation it holds
H̄2(1)− ρ̄(1) = 248.

Varying the parameters again, now the present day matter energy den-
sity is varied in three steps between ±5% of its original value and the ini-
tial value of the (dimensionless) Hubble constant is varied in three steps
between ±0, 005% of its original value, gives:
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Figure 5.3.8: The solutions, with on the left the dimensionless Hubble constant
and on the right the dimensionless time derivative of the Galileon field, as a func-
tion of the scale factor with parameter values as above and with the present day
matter energy density Ωm0 and the initial value of the Hubble constant H̄ivaried,
resulting in the nine graphs. The offshoots to below on the left and to the top
on the right are present in the solutions in which Ωm0 is bigger than its original
value, or H̄i is smaller than its original value and Ωm0 is at its original value.

and the corresponding EFT functions:

Figure 5.3.9: The EFT functions corresponding to the solutions shown in the fig-
ure above.
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Chapter 6
Conclusion

Building on the differential geometric setting from General Relativity, the
Covariant Galileon Model gives a description of the Universe. It posits in
the same way as General Relativity that the Universe can be described by a
four-dimensional manifold consisting of the three spatial dimensions and
the one temporal dimension we experience. To this manifold a metric and
a connection are associated and gravity is then described by the curvature
resulting from those two. Moreover a dynamical scalar field, the Galileon
field, is defined on the manifold, which interacts with gravity, extending
the General Relativity model. Applying the Principle of Least Action to
the Lagrangian of the model, the equations of motion can be obtained.
After having done this, the model was analysed by numerically finding
solutions to the equations of motion. This has been done for two sets of
parameters.

Firstly, by looking at the equation of state of the Galileon field, some-
thing can be said about the nature of the introduced Galileon field. For
normal non-relativistic matter the equation of state is w = 0 and for rel-
ativistic matter such as radiation it is w = 1

3 . The Galileon field is thus
clearly a substance of a whole different kind with a negative equation of
state.

When comparing the simulations of the two sets of parameters, there is
no big qualitative difference between the results of the simulations for the
different parameters both for the actual solutions to the model and the EFT
functions of the model. However direct comparison of the found solutions
with the tracker solution shows that there is a mostly increasing difference
between the found solutions and the tracker solution. The tracker solu-
tion however should attract solutions. This suggests that the numerical
integration of the equations of motion was not implemented correctly and
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thus behaved badly.
When considering the varying of the present day matter density and

the Hubble constant at the start of the simulation, what immediately strikes
the eye are the spikes arising in the simulations of the model for both sets
of parameters. This suggests that the model is highly sensitive to param-
eter changes. On the other hand the spikes only occurred when the pa-
rameters were varied in a specific direction, they didn’t occur in the other
direction. This suggests that the high sensitivity only occurs for some pa-
rameter values and that there is a region in parameter space for which the
solutions are relatively stable under the variation of the present day matter
density and the Hubble constant at the start of the simulation. The tracker
solution however should stabilize the behaviour of the solutions for all pa-
rameter values. This contradiction reinforces the idea that the integration
of the equations of motion was not implemented correctly.

Furthermore the spikes arise around the a = 10−4 mark in the simula-
tion. It is at the moment unclear why this happens at this specific value of
the scale factor. Maybe it relates to the fact that the equation of state of the
Galileon field begins to change at that moment. Furthermore, when per-
forming the variations of the present day matter density and the Hubble
constant at the start of the simulation in this analysis, the other parameters
were kept fixed. This however will cause the solutions to in general not fit
the pre-imposed conditions that determine the other parameters. In par-
ticular this means that the assumed flatness of spacetime at the start and
end of the simulation will not in general hold for the solutions with the
varied parameters.

The current response of the solutions and EFT functions of the Covari-
ant Galileon Model to the variations of the present day matter density and
the Hubble constant at the start of the simulation is thus contradictory to
the expectations obtained from the existence of the tracker solution. If the
contradictions in the predictions of the model can be resolved however,
then the viability of the model can be tested by comparing observations
concerning the EFT functions with the predicted EFT functions and hence
ruling out possible parameter values of the model. Hence to be able to test
this model, more research is needed in the analysis of this model, espe-
cially concerning the implementation of the numerical integration of the
model.
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