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1 Introduction

In this thesis we look at a reaction-diffusion equation in discrete space. Reaction-diffusion equa-
tions in continuous space have been used extensively to model real life situations, in areas such
as biology, physics and chemistry. Typical applications feature one or more species or chemical
substances that can interact with each other and spread throughout a spatial domain. As we
will explain below, the interactions can be modelled by reaction terms, which do not depend on
space. The spreading can be modelled by diffusion terms, which do have a spatial dependence.

1.1 Diffusion

Consider a group of rabbits on a surface D ∈ R, and write u for the density of the rabbits in D.
The behaviour of the rabbits is influenced by diffusion. This means that the group of rabbits
will eventually spread equally in space. At a certain moment the total amount of rabbits ND in
the surface D is

ND =

∫∫
D
udA. (1)

We write
−→
F for the vector field corresponding to the velocity of the rabbits. Our main assumption

here is that the rabbits move in the direction in which the density decreases the fastest. This
can be modelled mathematically by

−→
F = −∇u. (2)

We denote the total decrease of the amount of rabbits in the surface D with FD. This is equal
to the amount of rabbits that move over the boundary δD of D in the outward direction, which
gives

FD =

∫
δD

−→
F · −→n ds. (3)

Using the divergence theorem we can compute

FD =

∫∫
D

∇ ·
−→
F dA. (4)

Using our model (2), the decrease of the total amount of rabbits in D becomes

FD = −
∫∫

D

∇ · ∇udA =

∫∫
D

∆udA. (5)

The change in the amount of rabbits on the surface is equal to minus the amount of rabbits that
leave the surface. This means that

d

dt
ND = −FD. (6)
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Substituting the equations (1) and (5) in equation (6) gives us

d

dt

∫∫
D
udA =

∫∫
D

∆udA.

Interchanging integrals and differentials, we therefore get∫∫
D
utdA =

∫∫
D

∆udA.

Since this has to hold for any surface D, we can conclude that

ut = ∆u. (7)

This last equation is well-known as the heat equation and plays a very important role in many
processes involving diffusion.

1.2 Reaction

We discuss the reaction term with an example coming from population dynamics, based on [2].

Consider a population of cells and suppose that the gene at a specific locus in a specific chromo-
some pair occurs in two forms, which we denote by a and A, named ”alleles”. Genes occur in
couples and since we have two ”alleles” we have three different couples, namely aa, aA and AA,
which we call genotypes. The genotype Aa is included in the genotype aA. The first and the
last genotypes carry only one allele and are called homozygotes. The second genotype carries
two different alleles, and is called heterozygote.

The population is distributed in a one-dimensional habitat. The linear densities of the genotypes
aa, aA and AA at the point x at time t are respectively denoted by ρ1(x, t), ρ2(x, t) and ρ3(x, t).
The alleles couple at random, which means that every genotype has the same birthrate r. How-
ever, each allele has a different death rate, so the death rates of the genotypes are also different.
We denote the death rate with τ1, τ2 and τ3 respectively.

With the assumptions we stated before, the population densities satisfy the system of partial
differential equations,

dρ1
dt = d2ρ1

dx2 − τ1ρ1 + r
ρ (ρ1 + 1

2ρ2)2

dρ2
dt = d2ρ2

dx2 − τ2ρ2 + 2r
ρ (ρ1 + 1

2ρ2)(ρ3 + 1
2ρ2)

dρ3
dt = d2ρ3

dx2 − τ3ρ3 + r
ρ (ρ3 + 1

2ρ2)2
(8)

in which ρ = ρ1 + ρ2 + ρ3 denotes the total population.

In the system we see in every equation the term dρi
dt = d2ρi

dx2 , which is equal to the diffusion
explained in subsection 1.1.

The term τiρi denotes the departed genotypes in the habitat and the term r
ρ (ρi+

1
2ρ2)2 gives the

born genotypes in the habitat. Note that for the second equation we have 2r
ρ (ρ1+ 1

2ρ2)(ρ3+ 1
2ρ2),

this is because aA can occur when allele a couples A, which gives (ρ1 + 1
2ρ2) and when allele A
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couples a, which gives (ρ3 + 1
2ρ2). This means that the chance that we get the genotype aA is

twice the chance that we get the genotype aa or AA.

It is easier to evaluate the behaviour of a PDE which is only dependent of one variable u,

u =
ρ3 + 1

2ρ2

ρ1 + ρ2 + ρ3
, (9)

which denotes the percentage of allele A of all alleles.

In [2] the authors explain that the behaviour of u can be approximated by the scalar system
ut = ∆u+ g(u) in which g is given by

g(u) = u(1− u) ((τ1 − τ2)(1− u)− (τ3 − τ2)u) . (10)

This function g is called the reaction term and approximated the interaction described in (8).

To determine the behaviour of this reaction term we need the derivative of g(u), which is given
by

dg

du
= (τ1 − τ2)(1− 4u+ 3u2) + (τ3 − τ2)(3u2 − 2u). (11)

Notice that the relative values of the death rates τ1, τ2, τ3 are essential for the behaviour of the
reaction term. Without loss of generality, we assume that τ1 > τ3, which means that AA is more
viable than aa.

We can distinguish three cases for the relative viability of the genotypes, where each case has a
different impact on the term ((τ1 − τ2)(1− u)− (τ3 − τ2)u).

Case 1. If τ3 ≤ τ2 < τ1, the viability of the heterozygote is in between the viability of the
homozygotes, we call this heterozygote intermediate. This implies the following for equation
(10),

g′(0) > 0,
g(u) > 0 for u ∈ (0, 1).

(12)

Case 2. If τ2 < τ3 ≤ τ1, the viability of the heterozygote is better than the viability of the
homozygotes, we call this heterozygote superiority. This implies that there exists an α ∈ (0, 1)
for which,

g′(0) > 0, g′(1) > 0,
g(u) > 0, for u ∈ (0, α),
g(u) < 0, for u ∈ (α, 1).

(13)

Case 3. If τ3 ≤ τ1 < τ2, the viability of the heterozygote is worse than the viability of the
homozygotes, we call this heterozygote inferiority. This implies that there exists an α ∈ (0, 1)
for which,

g′(0) < 0, g′(1) < 0,
g(u) < 0, for u ∈ (0, α),
g(u) > 0, for u ∈ (α, 1).

(14)
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We will focus on the last case in this thesis. This case has three equilibria, namely u = 0, u = 1
and u = α. We have g′(u, α) < 0 for u = 0 and u = 1, so these are stable equilibria. For
u = α we have g(α, α) > 0 thus the equilibrium in u = α is unstable. Since we have two stable
equilibria, g(u) is a bistable reaction term. This means that spatially constant solutions will go
to 0 if u < α and to 1 when u > α. In this system we can conclude that when u < α allele A
will die out and when u > α allele a will die out.

1.3 The Model Equations

The Partial Differential Equation we focus on consists, like the genetic model discussed above,
of a diffusionterm and a bistable reaction term,

ut = γ∆u+ f(u, α), 0 < α < 1. (15)

In this thesis we choose the constant γ = 0.05 and the bistable reaction term f(u, α) is defined
by

f(u) = u(1− u)(u− α) (16)

which is plotted in Figure 1. This function has the same characteristics as case 3, namely two
states {0, 1} that are stable under the dynamics u̇ = f(u) and one unstable state {α} in between.

Figure 1: f(u, 0.25) = u(1 − u)(u− 0.25).

Lately it has become clear that some situations cannot be described in continuous space, for
example the nervous system, see Figure 2.

Consider a signal that travels along an axon. The signal travels quickly at the parts where the
axon is covered with myelin sheath. At the small parts which are not covered with myelin sheath
the signal travels very slow. When we demand to simulate how the signal moves through the
nerves, we need to measure with two different time scales. This makes it difficult to get correct
information about the behaviour of the signals. Since the signals travels quickly through the
parts which are covered with myelin sheath, we can simulate the signals travelling through the
axon like it jumps from the end of a part of the axon without myelin sheath, to the beginning of
the next part on the axon without myelin sheath. This provides us a discrete situation.

6



Figure 2: Part of the nervous system [1].

When a situation is not continuous in time or space, but is still modelled by a reaction-diffusion
equation which assumes that the situation is continuous in time and space, we get incorrect
information about the behaviour of the solution. This thesis will therefore also focus on the
behaviour of the Lattice Differential Equation based on the PDE given in (15). The Lattice
Differential Equation is

u̇i,j = γ(∆+u)i,j + f(ui,j , α) (17)

in which f(ui,j , α) is the same bistable reaction term as by the PDE.

The special solution we focus on is an expansion wave, this is the solution which arises when
there is a large enough perturbation. In other words, when we have LDE with initial conditions
that can be interpreted as everywhere the conditions are zero except for a compact region where
the conditions are one, then the solution of the PDE is called an expansion wave. The shape
of this expansion wave is closely related to the behaviour of another special class of solutions to
(17), namely planar travelling waves.

2 Behaviour of the Partial Differential Equation

We directly see that u = 0, u = α and u = 1 are solutions of (15), that do not vary in time and
space. In this section we are interested in solutions for which u(x, y, t) ∈ [0, 1] for all x, y ∈ R2

and t ≥ 0. We start in section 2.1 by looking at special solutions called travelling waves. In
section 2.2 we use them to make general solutions concerning the behaviour of (15).

2.1 Travelling wave solution

We look for a special class of solutions that maintain their shape as they travel through space.
These kind of solutions are called travelling waves and can be written in the form u(x, t) =
φ(x+ ct). Here we call φ the wave profile, ξ(x, t) = x+ ct the travelling wave coordinate and c
the wavespeed. This gives us the travelling wave solution

u(x, t) = φ(ξ(x, t)). (18)

In section 2.2 we will see that these waves can be very useful when trying to understand the
behaviour of general solutions of the PDE. Substituting the travelling wave in (15) gives us the
ordinary differential equation

cφ′(ξ) = γφ′′(ξ) + f(φ(ξ), α), (19)
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which can be solved easily. Nevertheless we first look at the two-dimensional PDE.

In two dimensions, we have the travelling wave Ansatz u(x, y, t) = φ(k1x + k2y + ct), with
ξ(x, y, t) = k1x + k2y + ct. Here (k1, k2) is the direction of the wave and therefore we set
k21 + k22 = 1, which can be chosen as k1 = cos(θ) and k2 = sin(θ). The wavespeed c is not
direction dependent and substituting φ(ξ(x, y, t)) in (15) gives us

cφ′(ξ) = γ(k21φ
′′(ξ) + k22φ

′′(ξ)) + f(φ(ξ), α).

Since k21 + k21 = 1, we can write above equation as an ordinary differential equation, which is the
same as the ordinary differential equation for one dimension

cφ′(ξ) = γφ′′(ξ) + f(φ(ξ), α). (20)

Notice that the direction disappeared out of the equation. This gives us the same wave profile φ
and speed c for every direction.

We try to verify if the wave profile φ(ξ) = 1
2 + 1

2 tanh(βξ) leads to a travelling wave solution.
Therefore we need the derivative with respect to ξ, the second derivative with respect to ξ and
we need f(φ(ξ), α)

f(φ(ξ), α) = 1
8 −

α
4 + 1

8 tanh(βξ)− 1
8 tanh2(βξ) + 1

4 tanh2(βξ)α− 1
8 tanh3(βξ)

φ′(ξ) = 1
2β −

1
2β tanh2(βξ)

φ′′(ξ) = − tanh(βξ)β2 + tanh3(βξ)β2.

(21)

Substitution of the equations of (21) in ODE (20) gives us

cβ

2
− cβ

2
tanh2(βξ) =

1

8
−α

4
+(

1

8
−γβ2) tanh(βξ)+(

α

4
− 1

8
) tanh2(βξ)+(γβ2− 1

8
) tanh3(βξ). (22)

To satisfy equation (21) we need to solve β and c from the equations

cβ

2
+
α

4
− 1

8
= 0, γβ2 − 1

8
= 0, −cβ

2
− α

4 + 1
8

= 0 and − γβ2 +
1

8
= 0. (23)

Solving gives β =
√

1
8γ and

c(α) = (
1

4
− α

2
)
√

(8γ).

For γ = 0.05, we get β =
√
10
2 and

c(α) =
1√
10

(
1

2
− α). (24)

As shown in Figure (3), our travelling wave solution has the form

φ(ξ) =
1

2
+

1

2
tanh

(√
10

2
ξ

)
. (25)
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The travelling wave solution has two limits, namely

lim
ξ→−∞

φ(ξ) = 0 and lim
ξ→∞

φ(ξ) = 1. (26)

Figure 3: The wave φ(ξ).

In Figure 4(a) we see that for α < 0.50 the speed of the travelling wave is positive, causing the
wave moving in the direction where the solution is 0, see Figure 4(b).

Figure 4: The speed and direction of the travelling wave.

(a) The speed c versus α for the PDE.
(b) Travelling direction of the wave.

2.2 Comparison principle

To get a better idea of the behaviour of the general solution we use the comparison principle.
The comparison principle says that if we can find, a subsolution, and a supersolution, then the
solution to the PDE can be captured between the sub- and supersolution for all t.
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We first introduce the notion of a subsolution:
Definition 1. We say that u−(x, y, t) is a subsolution if

u−t (x, y, t) ≤ ∆u−(x, y, t) + f(u−(x, y, t), α) (27)

holds for all t ≥ 0 and for all (x, y) ∈ R2.

We further introduce the notion of a supersolution:
Definition 2. We say that u+(x, y, t) is a supersolution if

u+t (x, y, t) ≥ ∆u+(x, y, t) + f(u+(x, y, t), α) (28)

holds for all t ≥ 0 and for all (x, y) ∈ R2.

With these definitions we can formulate the comparison principle [4].

Theorem 1. Suppose that u−(x, y, t) is a subsolution and u+(x, y, t) is a supersolution. Fur-
thermore suppose that u−(x, y, 0) ≤ u+(x, y, 0) holds. Then for all (x, y) ∈ R2 we have

u−(x, y, t) ≤ u+(x, y, t) for t ≥ 0.

The above definitions and theorem also holds for a subsolution u−(x, t) and supersolution u+(x, t)
in one dimension.

Examples of sub- and supersolutions are u+ ≡ 1 and u− ≡ 0. Also u+ ≡ 0 and u− ≡ 1 are
respectively super- and subsolutions. Notice that for these examples hold that they are also
solutions of the PDE. Not all sub- and supersolutions are also solutions, however, all solutions
of the PDE are sub- and supersolutions. We construct a specific subsolution, such that we
can say something about the behaviour of a solution, however, this subsolution is not an exact
subsolution.

For a specific α, the waves in all directions have the same shape and speed. So if we want to
construct a subsolution, we only have to construct a subsolution for one direction. We look at
the horizontal wave, where θ = 0 and (k1, k2) = (1, 0).

We know that there exists a u(x, t) = φ(ξ) which satisfies equation (20) upon with ξ = x + ct,
and which is also a subsolution since every solution is a subsolution.

The specific subsolution we want to construct is a subsolution which has the same shape as the
travelling wave solution φ, it only lies lower than the solution and travels slightly slower.

Lemma 1. There exists a K > 0, ε0 > 0, β0 > 0, such that for all 0 < ε ≤ ε0 and 0 ≤ β ≤ β0,
the function

u−(x, t) = φ(x+ ct− Z(t))− z(t)

with z(t) = εe−βt, Z ′(t) = Kz(t) and Z(0) = 0 is a subsolution of u(x, t).

Proof. Since we want to check if u−(x, t) is a subsolution of u(x, t) we need to check if

J = u−t − γ∆u− − f(u−) ≤ 0 (29)

holds. We therefore compute

u−t = (c−Kz(t))φ′(x+ ct− Z(t))− z′(t)
∆u− = φ′′(x+ ct− Z(t))
f(u−) = f (φ(x+ ct− Z(t))− z(t)) .

(30)
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Substitution of (30) in J gives us the expression

J = (c−Kz(t))φ′(x+ ct− Z(t))− z′(t)− cφ′(x+ ct− Z(t)) + f(φ(x+ ct− Z(t))
−f(φ(x+ ct− Z(t))− z(t)).

From this expression the first part and the third part eliminate each other. This gives us a
smaller expression for J , namely

J = −Kz(t)φ′(x+ ct− Z(t))− z′(t) + f(φ(x+ ct− Z(t))− f(φ(x+ ct− Z(t))− z(t)).
(31)

We know that our solution φ(ξ) is a non decreasing function, thus φ′(ξ) ≥ 0. Furthermore
z(t) > 0 and z′(t) = −βz(t) < 0 holds. We need more information to state that J ≤ 0.

We take a closer look at f(φ(x + ct − Z(t)) − f(φ(x + ct − Z(t)) − z(t)). For all continuous
functions we can say that the growth of the function over a distance v, is smaller or equal to
the the largest absolute value of steepness in the interval (u, u+ v) multiplied by the distance v.
This gives us the upper limit

|f(u+ v)− f(u)| ≤
(

sup
0≤t≤1

|f ′(u+ tv)|
)
| v |

in which we set the supremum as sup−1≤u≤2 |f ′(u)| = M . In our case the distance v is z(t),
therefore

f(φ(x+ ct− Z(t)))− f(φ(x+ ct− Z(t))− z(t)) ≤Mz(t).

The expression for J becomes

J ≤ −Kz(t)φ′(x+ ct− Z(t))− z′(t) +Mz(t).

To ensure that J ≤ 0, we need to choose ε0 and β0 carefully. Suppose that φ′(x+ct−Z(t)) ≥ κ0,
with φ′(κ−) = φ′(κ+) = κ0 and κ− < κ+, see Figure 5(a). Then we have the inequality

−Kz(t)φ′(x+ ct− Z(t)) ≤ −Kκ0z(t).

In particular we need to ensure

−Kκ0z(t) + βz(t) +Mz(t) ≤ 0,

which is satisfied provided −Kκ0 ≥ β + M . By choosing Kκ0 ≥ 2M and β0 ≤ M , we satisfy
that inequality. As a result we can conclude that

J ≤ −2Mz(t) +Mz(t) +Mz(t) = 0,

for Kκ0 ≥ 2M and β0 ≤M .

To ensure that u−(x, t) is a subsolution, we also need to check if J ≤ 0 for φ′(x+ct−Z(t)) ≤ κ0,
with φ′(κ−) = φ′(κ+) = κ and κ− < κ+. Therefore we need to set φ(κ−) = u− and φ(κ+) = u+,
see Figure 5(b). We choose κ0 small, such that f ′(u−) < −η and f ′(u+ − ε0) < −η, with
η = 1

2 min(−f ′(0),−f ′(1)).

For φ′(x + ct − Z(t)) ≤ κ0 follows that φ(x + ct − Z(t)) ≤ u− or φ(x + ct − Z(t)) ≥ u+. For
φ(x+ ct−Z(t)) ≤ u− holds that φ(x+ ct−Z(t))− z(t) ≤ u− too. Together with the knowledge
that supx≤u−

f ′(x) = f ′(u−) it provides us with the upper limit

f(φ(x+ ct− Z(t))− f(φ(x+ ct− Z(t))− z(t)) < −ηz(t). (32)
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Figure 5: The choice for κ0.

(a) κ0, κ− and κ+ in φ′(ξ). (b) κ−, κ+, u− and u+ in φ(ξ).

Notice that for φ′(x+ ct+Z(t)) < κ0 the term Kκ0φ
′(x+ ct+Z(t)) is positive, but very small.

For J we get
J ≤ β0z(t)− ηz(t) (33)

Since we need J ≤ 0, we choose β0 < η.

Finally we look at the situation where φ′(x + ct − Z(t)) ≤ κ0, with φ(x + ct − Z(t)) ≥ u+ and
φ(x+ct−Z(t))−z(t) ≥ u+−ε0. Together with the knowledge that supx≥u+−ε0 f

′(x) = f ′(u+−ε0),
it gives us the upper limit (32), which in turn gives

J ≤ β0z(t)− ηz(t). (34)

Since we need J ≤ 0, we choose β0 < η.

So for both φ(x+ ct−Z(t)) ≤ u− and φ(x+ ct−Z(t)) ≥ u+, there exists a ε0 and β0 such that
J ≤ 0. Previously we saw that for φ′(x + ct − Z(t)) ≥ κ0, there exists a ε0 and β0 such that
J ≤ 0. Thus there exists a subsolution of the form u(x, t) = φ(x+ ct− Z(t))− z(t).

In the same way we can find a supersolution.

Lemma 2. There exists a ε0 > 0, β0 > 0, such that for all 0 < ε ≤ ε0 and 0 ≤ β ≤ β0, the
function

u+(x, t) = φ(x+ ct+ Z(t)) + z(t)

with z(t) = εe−βt, Z(t) = Kz(t) and Z(0) = 0 is a supersolution of u(x, t).

Proof. See proof of Lemma 1.

We constructed a subsolution for our solution, which means that our solution always has to be
above the subsolution. Analyzing Figure 6a shows us that when the subsolution moves to the
left, the solution also has to move to the left, otherwise it would not be above the subsolution.

Lemma 3. Consider the PDE (15) and assume that c(α) > 0. Let u(x, 0) = u0(x) be the initial
condition of (15) and let u(x, t) be the solution. Assume that u0(x) ∈ [0, 1] for all x and that
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u0(x) ≥ 1 − δ for all x > 0, for some sufficiently small δ > 0. Then for all x∗ ∈ R we have the
limit

lim
t→∞

u(x∗, t) = 1.

Proof. We use the subsolution u−(x−L, t) from Lemma 1. To ensure that u−(x−L, t) lies under
u0(x) we set ε = 2δ. Since we have u0(x) ∈ [0, 1], we need to choose L large enough to ensure
that u−(0− L, t) = 0. In Figure 4b we have seen the direction of the travelling wave solution of
(15). Since our subsolution has the same characteristics we can conclude that it travels in the
same direction. Thus the subsolution will push u0 to u0(x, t) = 1 − δ for all x, see Figure 6a.
Since

lim
t→∞

z(t) = 0, (35)

we can conclude that the subsolution u−(x− L, t) will push u(x, t) to 1.

Figure 6: Pushing subsolutions.

(a) Solution u(t) is pushed to the left by the subsolution
u−(t).

(b) Solution u(t) is pushed outwards by the subsolution
u−(t).

In the case that the perturbation is not high enough, there will not arise an expansion wave.
This can also be proven with the comparison principle.

Lemma 4. Consider the PDE (15). Let u(x, 0) = u0(x)) be the initial condition of (15) and let
u(x, t) be the solution. Assume that there is ε > 0 so that u0(x) ∈ [0, α − ε] for all x. Then for
all x∗ ∈ R we have

lim
t→∞

u(x∗, t) = 0.

Proof. We use the supersolution u+(x, t) for the solution of (15), with initial conditions
u+(x, 0) = α − ε. For this supersolution we have d

dtu
+(x, t) = f(u+(x, t)) for all x ∈ R, thus

it only depends on the reaction term of (15). The reaction term pushes solutions to zero when
they are smaller than α. Thus the supersolution will be pushed down to zero, and hence

lim
t→∞

u+(x, t) = 0 (36)

for all x ∈ R. Since the supersolution always has to be above the solution, the solution is pushed
down to zero for all x ∈ R.
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When we have a perturbation such that u(x, t) > α for x ∈ [a, b] and for a sufficiently large L we
have a−b > L and c(α) > 0, we get a similar result as in Lemma 3. First the interval [a, b] will be
pushed to 1 by the reaction term of (15), then we can build a subsolution by gluing u−(x, t) to its
reflection u−(−x, t), which pushes the waves outwards, see Figure 6b. This procedure has been
carried out in the classical paper by Aronson and Weinberger [3]. It is the general mechanism
by which the expansion waves we consider in this thesis are pushed outwards.

Consider a perturbation in two dimensions, for which holds that u(x, y, 0) > 1−δ for all x ∈ [a, b]
and y ∈ [c, d]. When b − a and d − c are big enough to let a wave arise, the same result as for
one dimension holds. Namely each direction has its own solution, so for every direction we can
build a subsolution, which pushes the solution to 1. So in two dimensions we have, under above
assumptions

lim
t→∞

u(x, y, t) = 1. (37)

As in the one-dimensional case, when the initial condition has u(x, y, 0) < α−ε, there will not be
an expansion wave. This can be proved by constructing a supersolution with u+(x, y, 0) = α− ε
for every direction, which pushes the solution to zero. This works in exactly the same way as
Lemma 4.

3 Discretizing the Partial Differential Equation

To convert the PDE into an LDE we need the discrete laplacian in one dimension and in two
dimensions. We start with the definition for one dimension.

Definition 3. The discrete laplacian in R is defined by

∆+ui = ui+1 + ui−1 − 2ui (38)

with i ∈ Z.

This can be motivated by using the definition of the derivative of a function f(x). The derivative
is defined by

f ′(x) = lim
h↓0

f(x+ h)− f(x)

h
and f ′(x) = lim

h↑0

f(x− h)− f(x)

−h
.

We can say that 2f ′(x) = limh→0
f(x+h)−f(x−h)

h and thus f ′(x) = limh→0
f(x+h)−f(x−h)

2h . This
means for the second derivative that it can be defined by

f ′′(x) = lim
k→0

f ′(x+ k)− f ′(x− k)

2k
= lim
k→0

lim
h→0

f(x+k+h)−f(x+k−h)
2h − f(x−k+h)−f(x−k−h)

2h

2k
.

Let k = h then f ′′(x) = limh→0
f(x+2h)+f(x−2h)−2f(x)

(2h)2 . Since we can choose the length of h we

can take 2h = h, this gives

f ′′(x) = lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
.
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When we take h = 1 and substitute ui = f(i) we recover the discrete laplacian ∆ui.

In two dimensions we use the following definition.

Definition 4. The discrete laplacian in R2 is defined by

∆+ui,j = ui+1,j + ui−1,j + ui,j−1 + ui,j+1 − 4ui,j (39)

with i, j ∈ Z.

We will show this by using the definition of the partial derivatives of a function f(x, y). In
a two-dimensional space we have two directions, so we have 2 partial derivatives. The partial
second derivative with respect to x is

∂2f

∂x2
= lim
h→0

f(x+ h, y) + f(x− h, y)− 2f(x, y)

h2
.

The partial second derivative with respect to y is

∂2f

∂y2
= lim
h→0

f(x, y + h) + f(x, y − h)− 2f(x, y)

h2
.

When we add the above partial second derivatives we get

∆f(x, y) = lim
h↓0

f(x+ h, y) + f(x− h, y) + f(x, y + h) + f(x, y − h)− 4f(x, y)

h2

When we take h = 1 and substitute ui,j = f(i, j) we recover the discrete laplacian ∆ui,j .

4 Travelling wave of the Lattice Differential Equation

The LDE in one dimension is given by

u̇i = (∆+u)i + f(ui, α), (40)

in which the discrete laplacian is defined in (38). For the PDE we used the travelling wave Ansatz
u(x, t) = φ(x+ ct) to construct a travelling wave solution. For the LDE we also use a travelling
wave Ansatz namely, ui(t) = φ(i+ ct), in which ξ = i+ ct is the travelling wave coordinate with
wavespeed c.

Substitution of the travelling wave Ansatz ui(t) = φ(i+ ct) into (40) yields

cφ′(i+ ct) = φ(i− 1 + ct) + φ(i+ 1 + ct)− 2φ(i+ ct) + f(φ(i+ ct), α).

Substitution of the travelling wave coordinate ξ = i+ ct gives

cφ′(ξ) = φ(ξ − 1) + φ(ξ + 1)− 2φ(ξ) + f(φ(ξ), α) (41)

The two-dimensional LDE is given by

u̇i,j = (∆+u)i,j + f(ui,j , α), (42)
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in which the discrete laplacian is given by (39). For this two-dimensional LDE we use the
travelling wave Ansatz ui,j(t) = φ(k1i+ k2j + ct), in which ξ(t) = k1i+ k2j + ct is the travelling
wave coordinate with wavespeed c and direction coordinates (k1, k2) = (cos(θ), sin(θ)).

Substitution of the travelling wave Ansatz in the two-dimensional LDE gives,

cφ′(k1i+ k2j + ct) = φ(k1(i− 1) + k2j + ct) + φ(k1(i+ 1) + k2j + ct) + φ(k1i+ k2(j − 1) + ct)
+φ(k1i+ k2(j + 1) + ct)− 4φ(k1i+ k2j + ct) + f(φ(1i+ k2j + ct), α)

(43)

Substitution of the travelling wave coordinate ξ(t) gives

cφ′(ξ) = φ (ξ − cos(θ))+φ (ξ + cos(θ))+φ (ξ − sin(θ))+φ (ξ + sin(θ))−4φ(ξ)+f(φ(ξ), α) (44)

Notice that the equation is direction dependent, thus the solution is also direction dependent.
This means that for every direction we have a different solution. And thus for every direction
we have a different relation between c and α, we notate the speed in direction θ by cα(θ). With
a program coded by H.J.Hupkes in Fortran we determined for different values of α the speed
cα(θ), for all θ.

We determined these wavespeeds by solving the boundary value problem

−δφ′′(ξ)+cφ′(ξ) = φ(ξ−cos(θ))+φ(ξ+cos(θ))+φ(ξ−sin(θ))+φ(ξ+sin(θ))−4φ(ξ)+f(φ(ξ), α)
(45)

with the boundary conditions φ(x) = 0 for x ≤ −L and φ(x) = 1 for x ≥ L, with additional
requirements φ(0) = α and c′ = 0. Here we added the term −δφ′′(ξ), with δ = 10−5 for a
smoothening effect.

To get the polar plots of Figure 7 we plotted

cα(θ) cos(θ), cα(θ) sin(θ)). (46)

In these polar plots we see that for different values of α, we get different shapes of the polar
plots. The smaller α the more the shape looks like a circle, and for α close to α = 0.50 the shape
looks more like a flower and has more inlets. We also see that the closer α comes to α = 0.50,
the slower the largest speed becomes.

In Figure 8 we plotted cα(0), here we see that, as for the PDE, the speed c is positive for α < 0.50.
Different than for the PDE we see that for 0.38 ≤ α ≤ 0.50 the value of c is almost zero. Roughly
speaking, this means that horizontal and vertical movement is only possible for α < 0.38.
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Figure 7: cα(θ) polar plot for the LDE.

(a) c0.10(θ) plot. (b) c0.20(θ) polar plot. (c) c0.25(θ) polar plot.

(d) c0.30(θ)polar plot. (e) c0.37(θ) polar plot. (f) c0.40(θ) polar plot.

(g) c0.45(θ) polar plot. (h) c0.49(θ) polar plot.

Figure 8: The speed c versus α for the LDE, at angle θ = 0.
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5 Behaviour of the Lattice Differential Equation

5.1 Comparison principle for the LDE

In discrete spatial domains the same comparison principle as in continuous domains applies. It
says that if we can find a subsolution and a supersolution, then solutions between the sub- and
supersolution can be captured. We first introduce the notion of a subsolution:
Definition 5. We say that u−i,j(t) is a subsolution if

u̇−i,j(t) ≤ (∆+u)−i,j(t) + f(u−i,j(t), α) (47)

holds for all t ≥ 0 and for all (i, j) ∈ Z2.

We also introduce the notion of a supersolution:
Definition 6. We say that u+i,j is a supersolution if

u̇+i,j(t) ≥ (∆+u)+i,j(t) + f(u+i,j(t), α) (48)

holds for all t ≥ 0 and for all (i, j) ∈ Z2.

With these definitions we can formulate the comparison principle [4].

Theorem 2. Suppose that u−(t)i,j is a subsolution and u+i,j(t) is a supersolution. And suppose

that u−i,j(0) ≤ u+i,j(0) holds. Then for all (i, j) ∈ Z2

u−i,j(t) ≤ u
+
i,j(t) for t ≥ 0.

Above definitions and theorem also holds for a subsolution u−i (t) and supersolution u+i (t) in one
dimension.

Examples of sub- and supersolutions for the LDE are u+ ≡ 1 and u− ≡ 0. Also u+ ≡ 0 and
u− ≡ 1 are respectively super- and subsolutions. Notice that for these examples hold that they
are, like for the PDE, solutions of the LDE. Not all sub- and supersolutions are also solutions,
however all solutions of the LDE are sub- and supersolutions. For the PDE we constructed a
specific subsolution, that says something interesting about the behaviour of general solutions. In
exactly the same way such a subsolution for the LDE, can be constructed.

Lemma 9. There exists a K > 0, ε0 > 0, β0 > 0, such that for all 0 < ε ≤ ε0 and 0 ≤ β ≤ β0,
the function

u−i (t) = φ(i+ ct− Z(t))− z(t)
with z(t) = εe−βt, Z(t) = Kz(t) and Z(0) = 0 is a subsolution of ui(t).

Proof. The proof of Lemma 1 also works in the discrete setting. We only need to replace ∆u
by its discrete counterpart ∆+ui. Since this term drops out in the calculations of J , the same
arguments can be used.

Lemma 10. There exists a K > 0, ε0 > 0, β0 > 0, such that for all 0 < ε ≤ ε0 and 0 ≤ β ≤ β0,
the function

u+i (t) = φ(i+ ct+ Z(t)) + z(t)

with z(t) = εe−βt, Z(t) = Kz(t) and Z(0) = 0 is a supersolution of ui(t).

Proof. See the proof of Lemma 9.
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5.2 Numerical calculations to solve the LDE

To get an idea of the behaviour of general solutions we solved the LDE numerically with the
ODE45 function in Matlab, see Appendix.

To solve the two-dimensional LDE, we made a (n + 1) × (n + 1)-matrix u where the elements
u(i + 1, j + 1) for i, j = 0, ..., n − 1 in the matrix corresponds to the values of the points in the
lattice. The elements u(1, j), u(i, 1), u(n + 1, j) and u(i, n + 1) are the same as respectively
u(2, j), u(i, 2), u(n, j), u(i, n). This is necessary to determine all the values of the n× n-matrix
du which corresponds to the time derivatives of the elements of u. Namely to determine the
values, du(i, j) have to be equal to (∆+u)i,j + f(ui,j , α), which is determined by the LDE (17).
So to determine the values of du(i, n) we need to calculate the laplacian, and therefore we need
the values of u(i− 1, n), u(i+ 1, n), u(i, n− 1) and u(i, n+ 1). For the latter we need the n+ 1
column in the matrix u.

In order to obtain expansion waves, we saw in Lemma 7 that we need initial conditions where
we have an area A = (x, y) ∈ R, for which φ(x, t, 0) > α when x ∈ (a, b) and y ∈ (c, d), with
b− a and d− c sufficiently large. So to solve the LDE with ODE45 we made a n× n-matrix Y0
which contains these initial conditions. The elements of Y0 are equal to zero except for a square
with sides of length 20 in the middle. These have values Y0(i, j) > α.

With the above statements we can numerically solve the LDE.

5.3 Numerical simulations

In this section we show the numerical simulations made by the matlab code explained in section
5.2.

The figures of the solutions we made are contour figures. These figures show us a two-dimensional
figure of a three-dimensional solution. They show us the solution from above, so that we see the
(x,y)-surface and it gives isolines of the height differences. This results in figures where we only
see isolines at the place of the travelling wave. These isolines make closed shapes, for which in
the inside of the isolines the solution is approximatly one and on the outside of the isolines the
solution is aprroximatly zero.

In the Figures 10-14 we see the solutions for a specific α after different timesteps. Subfigure a
shows the solution after 100 timesteps, subfigure b shows the solution after 400 timesteps and
subfigure c shows the solution after 600 or 800 timesteps. Comparing the subfigures a we see that
for different α we get little differences in the shape of the expansion waves. For the subfigures b
we see accurate differences. Subfigures c shows us that the shape of the expansion waves is equal
to the shapes of figure b. Those subfigures imply that for every α the expansion wave expands
differently. We will discuss them together with the simulations.

Figure 9 shows the initial conditions for the LDE, these are the same for all α. The initial
conditions are set on (i, j, k) = (i, j, 0), except for a square in the middle, with sides of length 20
and angles of 90 degrees, this square has initial conditions (i, j, k) = (i, j, 1).
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Figure 9: Initial Condition of the simulations.

The simulation for α = 0.10

In Figure 10 we see the expansion wave for α = 0.10. In subfigure a the corners are rounder than
at the initial conditions, but we still see some straight lines at the sides. In the simulation we
saw that the expansion starts at the center of the sides, corresponding roughly to θ = 0, π2 , π,

3π
2

and then proceeds towards the corners, corresponding roughly to θ = π
4 ,

4π
4 ,

5π
4 ,

7π
4 . Before the

corners are reached, the expansion starts again at the center and the previous expansion still
proceeds to the corners. The consequence of this behaviour is that the expansion in the corners
are lagging behind on the expansion in de center of the sides. This results in a rounder expansion
wave.

In subfigure b we see this result, the expansion wave does not have straight lines anymore.
Although the expansion in the center of the sides expands faster than the corners, this does
not result in a different shape after more than 400 timesteps, we see this result in subfigure c.
Subfigure c shows us the shape of the expansion wave after 600 timesteps. The shape of this
expansion wave is equal to the shape of the expansion wave in subfigure b. The only difference
is that the surface is bigger.

Figure 10: The shape of the solution with α = 0.10.

(a) After 100 timesteps. (b) After 400 timesteps. (c) After 600 timesteps.
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The simulation for α = 0.20

In Figure 11 we see the expansion wave for α = 0.20. In subfigure a the corners become a little
bit rounder than the initial condition and we see some straight lines on the sides. Although the
corners are round, they are less round than in subfigure 10a and the straight lines are longer.
In the simulation we saw that, like for α = 0.10, the expansion starts at the center of the sides.
For α = 0.20 we noticed that the expansion waits a little longer at the center of the sides before
expanding again, than for α = 0.10. This can be explained by Figure (8), which shows us that
the expansion expands slower for larger α. In comparison with α = 0.10, this is a more square
expansion wave.

In Figure b we see that the straight lines have disappeared but the expansion wave is not as
round as for α = 0.10. For this solution also holds that the shape after 400 timesteps is the same
shape after more than 400 timesteps, like subfigure c shows.

Figure 11: The shape of the solution for α = 0.20.

(a) After 100 timestep. (b) After 400 timesteps. (c) After 600 timesteps.

The simulation for α = 0.30

In Figure 12 we see the expansion wave for α = 0.30. In subfigure a the corners become a little
bit rounder, but far less rounder than for α = 0.10 and α = 0.20, the straight lines are longer
than for α = 0.10 and α = 0.20. In the simulation we saw that the expansion starts at the center
of the sides too. The difference is that the expansion wave waits almost until the expansion
reaches the corners, but it expands just before that moment at the center of the sides again.
Finally we see an almost square expansion wave.

In Figure b we still see some straight lines but the expansion wave is rounder than subfigure a.
For this solution also holds that the shape after 400 timesteps is the same shape after more than
400 timesteps, this is showed by subfigure c.
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Figure 12: The shape of the solution for α = 0.30.

(a) After 100 timestep. (b) After 400 timesteps. (c) After 800 timesteps.

The simulation for α = 0.37

In Figure 13 we see the expansion wave for α = 0.37, this is a special expansion wave. In
subfigure a we see the solution for t=100, at this point the expansion wave has not expand yet,
the situation is the same as for the initial conditions, except for the fact that there arises a wave
between the squared perturbation and the other part of the domain. The blue marks in the
corner of the Figure are errors of matlab.

In subfigure b we see the same shaped expansion wave as in subfigure a, the only difference is
that this one has a bigger surface, so the expansion wave has expand. For subfigure c holds the
same as for subfigure b.

We see something different at subfigure d. The figure shows that when the expansion wave
expands, the expansion starts at the center of the sides. The expansion has not reached the
corners in this dubfigure. Eventually it will look like subfigure e.

Every time the expansion wave expands, the expansion starts at the center of the side and then
proceeds to the corners. Only when the whole side has expand, then the expansion starts at the
center of the sides agian. This means the shape of the expansion wave will always becomes a
square again.
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Figure 13: The shape of the solution for α = 0.37.

(a) After 100 timesteps. (b) After 300 timesteps. (c) After 500 timesteps.

(d) After 580 timesteps. (e) After 700 timesteps.

The simulation for α = 0.40

In Figure 13 we see the expansion wave for α = 0.40. In subfigure a, b and c, we see the same
figure. This means that the expansion wave does not expand. For every 0.40 ≤ α ≤ 0.49 the
expansion waves do not expand.

Figure 14: The shape of the solution for α = 0.40.

(a) After 1 timesteps.

..

(b) After 100 timesteps (c) After 400 timesteps.

When we compare the simulations of the solutions, two differences stand out. The first one we
already noticed in section 5, the smaller the value of α the faster the expansion wave expands.
The second difference is that the smaller α is, the more round the perturbation becomes, therefore
we make a conjecture in the next section.
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6 The Wulff shape

The Wulff shape is mostly used to determine the equilibrium shape of a crystal. A crystal exists
of surface free energy, if we plot that energy in a polar plot as a function of the orientation angle,
we get a Wulff plot. When we create a shape that minimizes the surface energy of the crystal,
than that shape is the Wulff shape of the crystal. This method is called the Wulff construction
[5].

Conjecture: The final shape of the expansion wave can be found by applying the Wulff con-
struction to the cα(θ) polar plot.

6.1 The Wulff construction

With the Wulff construction we determine the Wulff shape of the cα(θ) polar plots, and compare
these with the shapes found in section 5.3. The method constructs the Wulff shape by the interior
of perpendicular lines that are drawn on lines which connect the origin with a point on the cα(θ)
polar plot, see Figure 15.

To determine the interior of the lines we use the equation Ax ≥ b, where A is a n × 2-matrix,
the first column of A exists of the slopes of the perpendicular lines, and the second column are
ones. b is a n× 1-matrix where the elements of b are the y-coordinates where the perpendicular
lines would cross the y-axis. The size of n is important for the accuracy of the Wulff shape, the
bigger n the more accurate the Wulff shape is.

Figure 15: Creating a wulff shape with the wulff contruction.

(a) Beginning of the construction, where the blue lines
are the perpendicular lines.

(b) The Wulff shape is the interior of the blue perpen-
dicular lines.

We use the notation of Figure (16) to determine the formula for the line L.
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Figure 16: Constructing a Wulff shape.

For the point Q we can say that it is placed at Q = (c(θ) cos(θ), c(θ) sin(θ)). The slope of the
line cα(θ) is equal to

c(θ) sin(θ)

c(θ) cos(θ)
= tan(θ). (49)

This means that the slope of L is equal to

− 1

tan(θ)
= − cot(θ). (50)

Thus the line L has the form cot(θ)x+ y = b.

To determine the value of b, we substitute Q in the line L. This gives the equality
cot(θ)c(θ) cos(θ) + c(θ) sin(θ) = b, so the value for b is

b = c(θ)(cot(θ) cos(θ) + sin(θ)).

With the above calculations we can conclude that the line L has the form

cot(θ)x+ y = c(θ)(cot(θ) cos(θ) + sin(θ)).

Now we can determine the interior of the perpendicular lines by solving the inequalities.



− cot(θ1) 1
− cot(θ2) 1

...
...

− cot(θi) 1
...

...
− cot(θn−1) 1
− cot(θn) 1


(
x
y

)
≥



c(θ1)(cot(θ1) cos(θ1) + sin(θ1))
c(θ2)(cot(θ2) cos(θ2) + sin(θ2))

...
c(θi)(cot(θi) cos(θi) + sin(θi))

...
c(θn−1)(cot(θn−1) cos(θn−1) + sin(θn−1))

c(θn)(cot(θn) cos(θn) + sin(θn))
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With matlab we solved these inequalities with the function plotregion(A,b). This is an external
utility for matlab and visualize solutions of the equation Ax ≥ b. This gave us the Wulff shapes
for different values of α, see Figure (17).

Figure 17: The Wulff shapes of the cα(θ) polar plots (colored in red) and the cα(θ) polar plots themselves.

(a) For a = 0.10. (b) For a = 0.20. (c) For a = 0.30.

(d) For a = 0.37. (e) For a = 0.40. (f) For a = 0.45.

6.2 Comparison of the numeric simulations with the Wulff shapes

In the previous chapters we have seen how the expansion wave expands numerically and we have
found the Wulff shape of the cα(θ) polar plots. The conjecture we made was that the Wulff shape
would be the same shape as the final shape of the expansion wave. In this section we compare
these numerical simulations with the Wulff shapes.

To compare these shapes we need the coordinates of the final shape of the numerical simulations
and of the Wulff shapes. The coordinates of the Wulff shapes are saved in an array, which is
used to made the Wulff shapes. On the other hand, the coordinates of the numerical simulations
are not saved. The coordinates of the final shape were gained by finding for 350 angles the first
points, seen from the origin, where the solution becomes smaller than 0.9. We achieved this by
taking little steps in direction of the angle and checking for every step the value of the solution.
When the value of the solution was smaller than 0.9 we saved the radius and the angle. With
this information we determined the coordinates by calculating the equations

x = r cos(θ) and y = r sin(θ) (51)

and with the radius we determined the angle with the biggest radius. The biggest radius is used
to scale the final shape to a shape where the biggest radius is equal to 1.

Plotting these two shapes together gives the figures of Figure 18. In these figures we see a smooth
shape, the Wulff shape and a rugged shape for the numerical simulation. The shape is rugged,
since we had to determine the coordinates on a grid.
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The figures show that the shapes are almost identical, except for some irregularities in the corners
in the Figures 18(c) and (d). This can be explained by the fact that the numerical simulation
is ran during a fixed amount of timesteps. As seen before in Figure 13d, it can occur that the
middle waves already travelled, but the corners not yet. This makes it possible that the shapes
of these forms eventually will end up in a Wulff shape, but differs in the transition to a bigger
surface.

These comparisons gives us sufficient data to at least believe that the conjecture is credible.

Figure 18: Numeric simulations compared with the Wulff shapes.

(a) For a = 0.10. (b) For a = 0.20.

(c) For a = 0.30. (d) For a = 0.350.

(e) For a = 0.40.
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7 Discussion

In this thesis we focused on the behaviour of the expansion wave in a lattice.

We have seen that with sub- and supersolutions we can make general statements concerning the
behaviour of solutions. Numerically we have analyzed the solution of a LDE, with as initial
condition a perturbation that was big enough to become an expansion wave. We concluded
that when we start with a squared perturbation, the expansion wave expands to a Wulff shape,
made with the Wulff construction. However, we did not measure the time till infinity but to a
finite time. We had to do this because the computer did not have enough memory. It would be
interesting to see if it indeed converges to the Wulff shape found in this thesis, or that it maybe
act differently than we found.

It would also be interesting to know if the expansion wave will always converge to the Wulff
shape, independent of the form of the perturbation and what happens when we start with a
circle or a star.

In this thesis we used a diffusion constant with value of 0.05 which had an influence on the
results. However, if we would change this value, the question is whether this changes the fact
that the expansion wave will converge to the Wulff shape.
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Appendix A Matlab codes

A.1 Lattice differential equation 2D

f unc t i on du1 = eqn2D ( t , u1 , n , a , ax , ap )

du1 = ze ro s (n∗n , 1 ) ;
du = reshape ( du1 , n , n ) ;
u = reshape ( u1 ( 1 : n∗n ) , n , n ) ;
ub = ze ro s (n+2,n+2);

f o r i =1:n
f o r j =1:n

ub( i +1, j +1) = u( i , j ) ;
end
end

f o r i =2:n+1
ub( i ,1)=ub( i , 2 ) ;
ub ( i , n+2)=ub( i , n+1);

end

f o r j =2:n+1
ub (1 , j )=ub (2 , j ) ;
ub (n+2, j )=ub(n+1, j ) ;

end
ub(1 ,1)=ub ( 2 , 2 ) ;
ub (1 , n+2)=ub (2 , n+1);
ub (n+2,1)=ub(n+1 ,2) ;
ub (n+2,n+2)=ub(n+1,n+1);

f o r i =1:n
f o r j =1:n

u b i j=ub( i +1, j +1);
f = u b i j ∗( ubi j −1)∗( ubi j−a ) ;

du ( i , j ) = ap∗(−4∗ u b i j+ub( i +2, j +1)+ub( i , j+1)+ub( i +1, j+2)+ub( i +1, j ))− f ;
end
end

du1 ( 1 : n∗n) = reshape (du ( 1 : n , 1 : n ) , n∗n , 1 ) ;

r e turn

A.2 Code to solve the Lattice differential equation 2D, for α = 0.30.

n=153; %uneven and mod 3 = 0
r =10;
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a =0.30;
ax=0;
ap =0.05;

ce=(n−1)/2+1

%Set I n i t i a l Condit ions
Y01=ze ro s (n∗n , 1 ) ;
Y0=reshape (Y01 , n , n ) ;
f o r i =1:n
f o r j =1:n

va l = max( abs ( i−ce ) , abs ( j−ce ) ) ;
i f va l < r

Y0( i , j )=1;
end

end
end

f o r j =1:n
x a l l ( j )= j ;

end

Y01 ( 1 : n∗n)=reshape (Y0 ( 1 : n , 1 : n ) , n∗n , 1 ) ;
TSPAN=[0 8 0 0 ] ;

opt i ons = odeset ( ’ RelTol ’ , 1 e−6 , ’AbsTol ’ , 1 e−8);
[TOUT,YOUT1] = ode45 (@( t , y ) eqn2D ( t , y , n , a , ax , ap ) ,TSPAN, Y01 , opt ions ) ;
d=s i z e (YOUT1) ;
t s t e p s = max( s i z e (TOUT) ) ;
YOUT=reshape (YOUT1( : , 1 : n∗n ) , d ( 1 ) , n , n ) ;
y f i n a l = squeeze (YOUT( ts t eps , : , : ) ) ;
x s t a r t = ce ;
y s t a r t = ce ;
theta = 0 ;
rv a lu e s = ze ro s ( 2 , 3 5 0 ) ;
findRmax = ze ro s (1 ,350)

%Finding the Fina l Shape
f o r l i j n t j e = 1:350

theta = (2∗ pi ∗ l i j n t j e )/350
r r = 1 ;
whi l e y f i n a l ( round ( x s t a r t + r r ∗ cos ( theta ) ) , . . .

round ( y s t a r t + r r ∗ s i n ( theta ) ) ) > 0 . 9 ;
r r = r r + 0 . 5 ;

end
findRmax (1 , l i j n t j e ) = r r ;
rmax = max( findRmax ) ;
r va lu e s (1 , l i j n t j e )=round ( r r ∗ cos ( theta ) ) ;
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r va lu e s (2 , l i j n t j e )=round ( r r ∗ s i n ( theta ) ) ;
end

f o r i =1:2
j =1:350
r va lu e s ( i , j ) = rv a l u e s ( i , j )/ rmax ;

end

%Saving the Fina l Shape
f i leName = ’ f i na l shape030 t800 . txt ’ ;
T = ar ray2 tab l e ( r va lu e s ) ;
w r i t e t a b l e (T, f i leName ) ;
T2 = readtab l e ( f i leName ) ;
r 2va lue s = tab l e2a r ray (T2 ) ;

%Make Movie
f 1 = f i g u r e ;
hold o f f ;
s e t ( f1 , ’ NextPlot ’ , ’ r e p l a c e c h i l d r e n ’ ) ;
w in s i z e = get ( f1 , ’ Pos i t ion ’ ) ;
w in s i z e ( 1 : 2 ) = [ 0 0 ] ;
numframes = t s t e p s /10+1;
A = moviein ( numframes , f1 , w in s i z e ) ;
A(1 ) = getframe ( f1 , w in s i z e ) ;
f i r s t=ze ro s ( r , r ) ;
t imes=ze ro s ( r , r ) ;
i i =1;
f o r i = 1 : t s t e p s

ystep = squeeze (YOUT( i , : , : ) ) ;
f o r j =1: r

f o r k=1: r
i f ystep ( ce+j −1, ce+r+k−1) > 0 .95 & f i r s t ( j , k)==0

f i r s t ( j , k )=1;
t imes ( j , k)=TOUT( i ) ;

end
end

end
i f mod( i ,10)==0
f i g u r e ( f 1 ) ;
[ c , h ] = contour ( ystep ) ; c o l o rba r
t i t l e ( [ ’ Evolut ion Equation , t = ’ , num2str (TOUT( i ) ) ] )

A( i i +1) = getframe ( f1 , w in s i z e ) ;
i i= i i +1;
end

end

%Play and Save Movie
movie ( f1 ,A, 1 , 3 0 , w in s i z e ) ;
myVideo = VideoWriter ( ’030 t800 . avi ’ ) ;
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open ( myVideo ) ;
wr iteVideo ( myVideo , A) ;
c l o s e ( myVideo ) ;

A.3 cα(θ) for α = 0.30

c l o s e a l l

f i leName = ’ g o l f s n e l h e i d 0 0 5 −030. txt ’ ;
T = readtab l e ( f i leName ) ;
TasArray = tab l e2a r ray (T) ;

[m, n ] = s i z e ( TasArray ) ;

A1 = ze ro s (m, 1 ) ;
A2 = ze ro s (m, 1 ) ;
b = ze ro s (m, 1 ) ;
P1 = ze ro s (1 ,m) ;
P2 = ze ro s (1 ,m) ;
f o r i =1:m

A1( i , 1 ) = −cos ( TasArray ( i , 2 ) ) ;
A2( i , 1 ) = −s i n ( TasArray ( i , 2 ) ) ;
b ( i ) = −abs ( TasArray ( i , 3 ) ) ;
P1 (1 , i ) = abs ( TasArray ( i , 3 ) ) ∗ cos ( TasArray ( i , 2 ) ) ;
P2 (1 , i ) = abs ( TasArray ( i , 3 ) ) ∗ s i n ( TasArray ( i , 2 ) ) ;

end

lb = [−3 , −3];
ub = [ 3 , 3 ] ;

p l o t (P1 , P2 ) ;

A.4 Wulff shape of the cα(θ) for α = 0.30

c l o s e a l l

f i leName = ’ g o l f s n e l h e i d 0 0 5 −030. txt ’ ;
T = readtab l e ( f i leName ) ;
TasArray = tab l e2a r ray (T) ;

[m, n ] = s i z e ( TasArray ) ;

A = ze ro s (m, 2 ) ;
b = ze ro s (m, 1 ) ;
P = ze ro s (2 ,m) ;

f o r i =1:m
A( i , 1 ) = −cos ( TasArray ( i , 2 ) ) ;
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A( i , 2 ) = −s i n ( TasArray ( i , 2 ) ) ;
b ( i ) = −abs ( TasArray ( i , 3 ) ) ;
P(1 , i ) = abs ( TasArray ( i , 3 ) ) ∗ cos ( TasArray ( i , 2 ) ) ;
P(2 , i ) = abs ( TasArray ( i , 3 ) ) ∗ s i n ( TasArray ( i , 2 ) ) ;

end

lb = [−3 , −3];
ub = [ 3 , 3 ] ;

p l o t r e g i o n (A, b , lb , ub , ’w’ , 0 . 5 , P ) ;

A.5 Wulff shape of the cα(θ) compared with the numeric simulations
for α = 0.30

c l o s e a l l

f i leName1 = ’ g o l f s n e l h e i d 0 0 5 −030. txt ’ ;
f i leName2 = ’ f i na l shape030 t600 . txt ’
T1 = readtab l e ( f i leName1 ) ;
T2 = readtab l e ( f i leName2 )
TasArray1 = tab l e2a r ray (T1 ) ;
TasArray2 = tab l e2a r ray (T2 ) ;

[m, n ] = s i z e ( TasArray1 ) ;
[ k , h ] = s i z e ( TasArray2 ) ;

A = ze ro s (m, 2 ) ;
b = ze ro s (m, 1 ) ;
P = ze ro s (2 , h ) ;
wmin = min ( abs ( TasArray1 ( : , 3 ) ) ) ;

f o r i =1:m
TasArray1 ( i ,3)= TasArray1 ( i , 3 ) / wmin ;

end

f o r i =1:m
A( i , 1 ) = −cos ( TasArray1 ( i , 2 ) ) ;
A( i , 2 ) = −s i n ( TasArray1 ( i , 2 ) ) ;
b ( i ) = −abs ( TasArray1 ( i , 3 ) ) ;

end

dNormMin = 10 ;
f o r j =1:h

dNorm =(TasArray2 (1 , j )ˆ2 + TasArray2 (2 , j ) ˆ 2 ) ˆ 0 . 5 ;
i f (dNorm<dNormMin)

dNormMin=dNorm
end

end
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f o r i=m+1:m+h
j=i−m

P(1 , j ) = TasArray2 (1 , j )/dNormMin ;
P(2 , j ) = TasArray2 (2 , j )/dNormMin ;

end

P;

lb = [−3 , −3];
ub = [ 3 , 3 ] ;

f i g u r e ; hold on ;
xlim ([−1.05 1 . 0 5 ] ) ;
yl im ([−1.05 1 . 0 5 ] ) ;
p l o t r e g i o n (A, b , lb , ub , ’ r ’ , 0 . 5 , P ) ;
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