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Abstract

In this thesis, we will see a criterion for positive operators on a partially ordered
vector space induced by a polyhedral cone with linearly independent extreme
vectors, as well as for block-diagonal maps on a partially ordered vector space
ordered by a norm-induced cone. Finally, we will show that positive operators
on a complete partially ordered vector space ordered by a norm-induced cone
are continuous.

1 Introduction

First, we will define the major components in this setting.

1.1 Set-up

Definition 1.1. Partially ordered vector space
A real vector space equipped with a partial order (V,≤) is called a partially
ordered vector space if it satisfies

• For all u, v, w ∈ V , if u ≤ v, then u+ w ≤ v + w;

• For all u, v ∈ V , if u ≤ v, then for any non-negative scalar λ we have
λu ≤ λv.

Dual to a partially ordered vector space is a vector space V equipped with a
cone.

Definition 1.2. Cone
We call a subset K ⊂ V a cone if

• For all x, y ∈ K, x+ y ∈ K;

• For all x ∈ K and λ a non-negative scalar, we have λx ∈ K;
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• The intersection K ∩ −K is the singleton {0}.

Given a cone K, we can introduce a partial order on V by defining x ≤ y if
and only if y − x ∈ K and given a partially ordered vector space (V,≤), the
subset {v ∈ V : 0 ≤ v} is a cone according to our definition, and called the
positive cone. We can define any partially ordered vector space by equipping
a real vector space V with a cone[1, p. 3-4], and throughout this thesis, we
will consider partially ordered vector spaces within the context of having been
induced by a cone K, which is then also the positive cone of the partial order.

Given a partially ordered vector space V , we are interested in structure-preserving
maps T , thus linear maps T : V → V such that v ≤ w ⇒ Tv ≤ Tw. Due to
linearity, this can be rewritten as 0 ≤ w− v ⇒ 0 ≤ Tw−Tv = T (w− v), which
leaves us with the criterion that x ≥ 0 must imply Tx ≥ 0.

Definition 1.3. Positive linear operator
A linear map T : V → V such that T [K] ⊂ K is called a positive linear operator,
or simply a positive operator. We will also describe this property as T being
positive with regard to K.

1.2 Properties

If two partially ordered vector spaces are isomorphic, we obtain a nice way to
consider positive maps on one of the spaces in terms of what we know about
maps on the other space.

Fact 1.4. Given a partially ordered vector space V , a linear map T and a V -
automorphism A, we find that T is positive with regard to K if and only if
ATA−1 is positive with regard to AK.

Proof. Assuming T [K] ⊂ K, we consider ATA−1[AK], which is equal to AT [K].
Because T [K] ⊂ K, we find that this is contained in AK, so ATA−1 is positive
with regard to AK. The other implication is simply applying what we have just
proven by conjugating with A−1, which is also an automorphism.

Two concepts about partially ordered vector spaces we will use are the following.

Definition 1.5. Directed
We call a partially ordered vector space V directed if any element can be written
as the difference of two positive elements.

Definition 1.6. Monotone
If V is a partially ordered vector space equipped with some norm || · ||, we call
this norm monotone if 0 ≤ u ≤ v implies ||u|| ≤ ||v||.

2 Polyhedral cones in the finite-dimensional case

In finite dimensional real vector spaces, spaces isomorphic to Rd, we consider a
family of cones that can be constructed by drawing lines from the origin through
the vertices of a convex polytope and extending to infinity. Letting these lines
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be the edges of some solid K in Rd, we obtain what is called a polyhedral cone,
named after its finitely many faces. To formalise this, we must first introduce
the notion of positive linear independence.

Definition 2.1. Positively linearly independent
A finite set of vectors v1, ..., vn is called positively linearly independent if, for
non-negative scalars λ1, ..., λn the equation λ1v1 + ... + λnvn = 0 implies that
all λi are 0.

Definition 2.2. Polyhedral cone & edge representation
Let {v1, ..., vn} be a set of vectors in Rd such that all the vi are positively linearly
independent. Then the positive linear span of all these vectors, or Pos(v1, .., vn)
is called a polyhedral cone, and the vectors are an edge representation for this
cone.

An example of a polyhedral cone in Rd would be the positive 2d-tant; simply
Pos(e1, ..., ed) where ei is the i-th standard basis vector, and this cone would
induce the standard order on Rd, where x ≤ y if and only if for all 1 ≤ j ≤ d,
we have xj ≤ yj . It is already well-known that a linear map on this partially
ordered vector space is positive if and only if all the matrix coefficients are
non-negative[2, p. 315].

Theorem 2.3. If K = Pos(v1, ..., vn) is a cone and v1, ..., vn are linearly inde-
pendent, then (v1, ..., vn) is a basis for the linear subspace U = Span(v1, ..., vn) ⊂
Rd and a linear map T : U → U is positive with regard to K if and only if the
coefficients of the matrix T with regard to basis (v1, ..., vn) are non-negative.

Proof. We see that K lies in U and defines a partial order on U . We know
that positive maps on Rd are maps such that the matrix coefficients are non-
negative, and through the basis transformation A, which maps vj to ej , U can
be considered as Rn with the standard basis. The cone is mapped to the cone
belonging to the standard order on Rn, and combining this knowledge with Fact
1.4, we obtain the desired equivalence.

For n < d, we are considering the case where the cone K lies within a proper
subspace of Rd, and through embedding, we can say something about the posi-
tivity of T on all of Rd, as elements in Rd that lie outside this subspace are not
positive to begin with.

For n = d, we are considering the case where U = Rd and we can simplify the
statement by forgetting about subspaces and just talk about the entire space.

However, for n > d, our vectors v1, ..., vn cannot be linearly independent, so
Lemma 2.3 cannot be applied. An example of this would be an upside-down
pyramid in R3, which can also be described with the ∞-norm on R2; this cone
can be described as {(x, y, z) ∈ R3 : ||(x, y)||∞ ≤ z}. The next chapter studies
cones induced by norms in a similar fashion.

3 Norm-induced cones

From now on, we will consider a family of cones which will be constructed as
follows.
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3.1 Construction

Let (X, || · ||) be a real, normed space. Let Y = X × R and define K ⊂ Y
to be {(x, α) : ||x|| ≤ α}. Furthermore, make Y a normed space by defining
||(x, α)||Y = ||x|| + |α|. An example of such a cone would be the upside-down
pyramid we made reference to in the previous chapter, or the famous ice cream
cone in R3. Cones of this type are more commonly studied when defined by an
inner product that makes X a Hilbert space, and are sometimes referred to as
Lorentz cones [3, p. 211, Section 5.1].

If we want to think about linear operators on Y , we can do this in terms of
maps relating to X and R. If we have a linear map T : Y → Y , we can look
at the images of elements (x, 0) and (0, α) and project, and find that we can
consider T as a block matrix in the following way:

T = X
R

X R(
f v
φ c

)
,

where f is a linear map X → X, v a vector in X representing a linear map
R → X, φ an element in the dual space X∗ and c a scalar in R representing a

linear map R→ R. We can thus consider T (x, α) =

(
f(x) + αv
φ(x) + cα

)
.

3.2 Block-diagonal maps on Y

We call T block-diagonal if it is represented as

(
f 0
0 c

)
, thus T (x, α) =

(f(x), cα). For block-diagonal maps, we have a very nice equivalence for posi-
tivity. By || · ||op, we denote the operator norm of X∗, where ||f ||op is defined
to be inf{c ≥ 0 : ||f(v)|| ≤ c||v||, for all v ∈ X}, a notion that only applies to
continuous operators.

Theorem 3.1. A block-diagonal map T =

(
f 0
0 c

)
is positive if and only if

||f ||op ≤ c.

Proof. “⇒” Assuming T is positive, we find that, for (x, α) ∈ Y , ||f(x)|| ≤ cα,
given ||x|| ≤ α. We assume α 6= 0, as otherwise we would just be looking at
the origin which would give no information on the operator norm. We consider
x
α , which lies in the unit ball in X, as ||x|| ≤ α, and each element in the
unit ball can be represented as x

α for some x ∈ X with ||x|| ≤ α. Note that
||f( xα )|| = 1

α ||f(x)||, which is smaller than or equal to c. So for all elements
u ∈ X with ||u|| ≤ 1, we have ||f(u)|| ≤ c, thus ||f ||op ≤ c.
“⇐” Assuming ||f ||op ≤ c, we take an arbitrary element (x, α) in K, and note
that ||f(x)|| ≤ ||f ||op||x|| ≤ c||x|| ≤ cα, thus (f(x), cα) = T (x, α) is contained
in K and so T is positive.
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Not all linear maps on Y are block-diagonal, but some are block-diagonalisable;
there exists some automorphism A such that ATA−1 is block-diagonal, and by
Fact 1.4, we can say something about positivity on isomorphic partially ordered
vector spaces. Sadly, not all maps are block-diagonalisable. If we take (X, ||·||) =
(R, |·|), then Y = R2 with the 1-norm, and our notion of block-diagonal collapses
into simply diagonal, and not all 2 × 2 matrices are diagonalisable; take for

instance

(
0 1
−1 0

)
, which has complex eigenvalues i and −i.

3.3 Continuity of positive maps on Y

Block-diagonal maps on Y that are positive are clearly continuous, as their
operator norm equals c, which raises the question if all positive maps on Y are
continuous.

Theorem 3.2. Let (X, ||·||) be a Banach space, Y , K and ||·||Y be as constructed
before and T : Y → Y positive. Then T is continuous.

The rest of this chapter will be dedicated to proving Theorem 3.2, and we
assume the conditions of that theorem throughout.

Lemma 3.3. There is a k ≥ 0 such that, for all (x, α) ∈ K, ||T (x, α)||Y ≤
k||(x, α)||Y .

Proof. Let (x, 1) ∈ K, so, ||x|| ≤ 1. Note that T (x, 1) again lies in K, so,
considering T (x, 1) = (f(x)+v, φ(x)+ c), we find that ||f(x)+v|| ≤ φ(x)+ c. If
we now take (−x, 1), we find that ||f(x) + v|| ≤ −φ(x) + c, so φ(x) ≤ −||f(x) +
v||+ c ≤ c. This holds for every x such that ||x|| ≤ 1, so φ is continuous on X.

As the map x 7→ φ(x) is continuous, so is (x, α) 7→ φ(x), thus (x, α) 7→ φ(x) +
αc is as well, so there is some k1 ≥ 0 such that, for all (x, α), φ(x) + cα ≤
k1||(x, α)||Y . If (x, α) is in K, then ||f(x) + αv|| ≤ φ(x) + cα ≤ k1||(x, α)||Y ,
and so ||T (x, α)||Y = ||f(x) + αv|| + φ(x) + cα ≤ 2k1||(x, α)||Y , which proves
the lemma.

We will introduce the notion of a regular norm[4, p. 54, Definition 3.39], as it
is vital to the proof.

Definition 3.4. Regular norm
A regular norm on a directed partially ordered vector space V is a norm || · ||r
such that ||v||r = inf{||u||r : −u ≤ v ≤ u}.
A regular norm has the nice property that for all v ∈ V , for all ε > 0, there
exists some u ∈ V with −u ≤ v ≤ u such that ||u||r ≤ ||v||r + ε. This implies a
nice decomposition property.

Lemma 3.5. Let V be a directed partially ordered vector space supplied with a
regular norm || · ||r, then for all v ∈ V , for all ε > 0, there exist x, y ∈ V with
v = x− y such that x, y ≥ 0 and ||x||r, ||y||r ≤ ||v||+ ε.

Proof. Let v ∈ V be given and let ε be greater than 0. Take x = u+v
2 and

y = u−v
2 , where u is such that −u ≤ v ≤ u and ||u||r ≤ ||v||r + ε. The fact that
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−u ≤ v implies that u+v is positive, and v ≤ u implies that u−v is positive, so
both x and y are positive. Their difference, x−y, is clearly equal to v. Checking
the norms, we see that ||x||r ≤ 1

2 ||u||r+ 1
2 ||v||r ≤

1
2 (||v||r+ε)+ 1

2 ||v||r < ||v||r+ε.
Similarly for y. This proves the existence of the desired x and y.

Our next step is to show that our Y -norm is equivalent to a regular norm, but
for this, we will first need to check that || · ||Y is monotone, that Y is complete
and directed, and that K is closed.

Lemma 3.6. || · ||Y is monotone.

Proof. Assume that 0 ≤ (x, α) ≤ (y, β), so ||y− x|| ≤ β − α. Then ||(x, α)||Y =
||x||+ α ≤ ||x− y||+ ||y||+ α ≤ β − α+ α+ ||y|| = ||y||+ β = ||(y, β)||Y .

Remark 3.7. Y is complete.
We assumed X was complete, so Y = X × R is complete with regard to the
norm ||(x, α)||Y = ||x||+ |α|.

Lemma 3.8. Y is directed.

Proof. Let (x, α) ∈ Y be given. For α ≥ 0, we can write (x, α) as the difference

of two elements in K as (x,||x||+2α)
2 − (−x,||x||)

2 . For α < 0, we can write (x, α)

as (x,||x||)
2 − (−x,||x||−2α)

2 , which is the difference of two positive elements.

Lemma 3.9. K is closed.

Proof. Let (xn, αn) be a sequence in K that converges to (x, α) in Y . For all n,
we have ||xn|| ≤ αn, so for the limit we also have ||x|| ≤ α, which means (x, α)
is contained in K.

Having checked that Y is a directed partially ordered vector space with a mono-
tone norm ||.||Y such that K is close, and that Y is norm complete, we find that
|| · ||Y is equivalent to a regular norm || · ||r on Y [4, p. 58, Corollary 3.48].

Knowing this, we can prove Theorem 3.2: If (X, || · ||) is a Banach space and Y ,
K and || · ||Y are as constructed in section 3.1 and T : Y → Y is positive, then
T is continuous.

Proof. Let v ∈ Y and ε > 0 be given, and consider ||Tv||Y . We choose x, y ∈ K
such that v = x − y and ||x||r, ||y||r ≤ ||v|| + ε, which we can do because of
Lemma 3.5. Substituting v by x − y, we find that ||Tv||Y is bounded from
above by ||Tx||Y + ||Ty||Y which is smaller than or equal to k||x||Y + k||y||Y
due to Lemma 3.3. Because || · ||Y and || · ||r are equivalent, there exist m,M > 0
such that, for all χ ∈ Y , m||χ||r ≤ ||χ||Y ≤ M ||χ||Y . We thus conclude that
||Tv||Y ≤Mk||x||r +Mk||y||r. This is smaller than or equal to 2Mk(||v||r + ε)
due to our choice of x and y. Using equivalence of norms again, we find that
this is smaller than or equal to 2kM(m||v||Y + ε).

As this holds for all ε > 0, we see that ||Tv||Y ≤ 2kMm||v||Y , where 2kMm
does not depend on v. Thus T is continuous.
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