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Introduction

Given a continuous map f : X → X from a topological space to itself it is natural
to ask whether the map has fixed points, and how many. For a certain class
of spaces, which includes compact manifolds, the Lefschetz fixed point theorem
answers these questions. This class of spaces are the simplicial complexes, which
are roughly speaking topological spaces built up from triangles and their higher
dimensional analogues. We start in the first section by constructing singular
homology for any space and simplicial homology for simplicial complexes. Both
are functors from topological spaces to graded groups, so of the form H∗(X) =⊕

iHi(X). Thus we can assign algebraic invariants to a map f . In the case
of simplicial homology computing these amounts purely to linear algebra. By
employing simplicial approximation of continuous maps by simplicial maps we
prove the following.

Theorem 1 (Lefschetz fixed point theorem). Let f : X → X be a continuous
map of a simplicial complex to itself. Define the Lefschetz number

Λ(f) =
∑
i

(−1)itr(f∗|Hi(X)).

If Λ(f) 6= 0 then f has a fixed point.

In fact more is true, if the number of fixed points is finite, then Λ(f) counts
the number of fixed points with certain multiplicities. One would prove this
using cohomology, which is a contravariant functor instead of the covariant
homology functor. This has an added ring structure and some nice theorems
hold, like a Künneth formula and Poincaré duality.

In the second section we look at smooth projective varieties. Even though
we can not use the same constructions from the first section, because the Zariski
topology is too coarse, we can look at would happen if there was a well-behaved
cohomology theory. We look at Weil cohomology, which is a contravariant
functor from smooth, projective varieties to graded commutative K-algebras, for
some field K of characteristic 0, satisfying a list of axioms. Part of the axioms
are inspired by the situation in algebraic topology, we have a Künneth formula
and Poincaré duality holds, in fact for varieties over C singular cohomology is
a Weil cohomology. The other part is so that we get a ring homomorphism
from the Chow ring to the cohomology ring. From these axioms we are able to
deduce an analogous theorem to the one before.

Theorem 2 (Lefschetz fixed point theorem). Let f : X → X be an endomor-
phism of an irreducible, smooth, projective variety. Let ∆,Γf ⊂ X ×X be the
diagonal and the graph of f respectively. Then we have

(∆ · Γf ) =
∑
i

(−1)itr(f∗|Hi(X)).

Here (∆ · Γf ) is the intersection number of the graph and the diagonal,
we recognize the right hand side as the Lefschetz number. So again if f has
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finitely many fixed points then the Lefschetz number counts this with certain
multiplicities.

In the final section we assume a Weil cohomology theory exists for varieties
over a field with non-zero characteristic. Assuming this we can prove some of
the Weil conjectures. Let X be a geometrically connected, smooth, projective
variety defined over Fq, then we are interested in counting the K-valued points,
where Fq ⊂ K is a finite extension of fields. We let Nm be the number of
Fqm -valued points. Then the zeta function of X is defined as follows.

Z(X,T ) = exp

( ∞∑
m=1

Nm
m

Tm

)
.

The Nm turn out to be exactly the number of fixed points of the qm-Frobenius
morphism acting on X = X ×Spec Fq

Spec Fq. By the Lefschetz fixed point
theorem we can thus express them as an alternating sum of traces. It follows
that Z(X,T ) ∈ Q(T ) is a rational function. Further we show using Poincaré
duality that it satisfies the functional equation

Z(X,
1

qnT
) = ±qnE/2TEZ(X,T )

where E = (∆ ·∆) is the self intersection number of the diagonal in X ×X and
n = dim(X).
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1 The classical Lefschetz fixed point theorem

1.1 Singular homology

Definition 1. The standard n-simplex, denoted ∆n, is the convex hull of the
vectors e0, ..., en in Rn, 1 that is the set

{(λ1, ..., λn) ∈ Rn such that

n∑
i=1

λi ≤ 1 and λi ≥ 0 for i = 1, ..., n}.

In general if we have k + 1 affinely independent points v0, ..., vk in Rn their
convex hull is a k-simplex and is denoted [v0, ..., vk].

If we omit one of the vectors ei from the set {e0, ..., en}, then the convex
hull of {e0, ..., en} \ {ei} is an (n− 1)-simplex contained in ∆n, these are called
the faces of ∆n. We can identify a face with ∆n−1 via the linear map fi that
sends ej to ej+1 if j ≥ i, and ej to ej if j < i. Then fi(∆n−1) is precisely the
i-th face of ∆n. The union of the faces of ∆n is called the boundary denoted
∂∆n, and ∆n \ ∂∆n is called the interior of ∆n and is denoted ∆̊n.

For a topological space X we can consider all continuous maps σ : ∆n → X
called n-chains. By considering formal sums of n-chains with coefficients in
an abelian group G we get the chain groups Cn(X;G), or just Cn(X) if the
coefficients are clear from the context. By extending the face maps linearly we
get maps Fni : Cn(X)→ Cn−1(X), given by

∑
j ajσj 7→

∑
j aj(σj◦fni ). Next we

define the boundary operator ∂n : Cn(X) → Cn−1(X) as ∂n :=
∑n
i=1(−1)iFni .

One then checks that ∂n ◦ ∂n+1 = 0, so we have inclusions

Bn(X) := im (∂n+1) ⊂ ker(∂n) =: Zn(X),

hence we can consider the quotients Hn(X) := Zn(X)/Bn(X), these are called
the homology groups of X (with coefficients in G).

Given a continuous map f : X → Y we get induced group homomorphisms
f∗ : Hn(X)→ Hn(Y ) given by

∑
i ai[σi] 7→

∑
i ai[f ◦ σi].

Proposition 1. Let f, g : X → Y and h : Y → Z be continuous maps then:

i. (h ◦ f)∗ = h∗ ◦ f∗,

ii. if f is the identity then f∗ is the identity,

iii. if f and g are homotopic maps then f∗ = g∗.

Proof. The first two are straightforward. For a proof of iii see [1] theorem
2.10.

1e0 here is the origin and the ei are the standard basis vectors
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From (ii) it follows that if f is a homeomorphism then f∗ is an isomorphism,
combining this with (iii) we also see that homotopy equivalences induce isomor-
phisms. In other words the assignment X → Hn(X) is a homotopy-invariant
functor.

1.2 Simplicial homology

We now consider a class of spaces that can be built from n-simplices, the so
called simplicial complexes on which we will define simplicial homology.

Definition 2. A finite simplicial complex is a finite collection K of simplices
in Rn such that:

i. If σ ∈ K then every face of σ is in K.

ii. The intersection of two simplices is either empty or a face of each.

Note that in (ii) the definition of face is taken to be more general, i.e. if
σ = [v0, ..., vn] is an n-simplex then any of the simplices [vi1 , ..., vik ] with vij ∈
{v0, ..., vn} is a face of σ.

Given a simplicial complex K we define the polyhedron |K| of K as the
union of the simplices in K with their inherited topology from Rn. If X is a
topological space homeomorphic to the polyhedron of some simplicial complex
K, then we call X triangulable.

Definition 3. A map f : |K| → |L| of simplicial complexes is called a simplicial
map if for every σ ∈ K we have f(σ) ∈ L.

A map between f : X → Y of triangulable spaces is called simplicial if the
induced map on the polyhedra is simplicial. Note that for a simplicial map f
the 0-simplices are sent to 0-simplices.

Note that if σ is a k-simplex given by points v0, ..., vk we have a homeomor-
phism ∆k → σ given by ei 7→ vi and extending linearly. Thus we can consider
K as a finite collection of n-chains with the properties inherited from definition
3. Note that the maps ∆k → σ define an ordering on {v0, ..., vk}. To keep
things consistent we need the same ordering on the faces of σ so that the face
maps preserve the ordering. It is always possible to choose consistent orderings
since we can take an ordering on all the 0-simplices of K. Now we can consider
the smaller chain groups Csimpl.n (K) ⊂ Cn(|K|) which are formal sums of the
ordered n-chains in K. As before we have boundary operators so we get ho-
mology groups Hsimpl.

n (X) which are called the simplicial homology groups of K.

If f : |K| → |L| is a simplicial map then we get an induced map f∗ on
homology as follows. If σ is an n-chain then f(σ) is either an n-chain or a k-
chain for k < n. In the first case we define f∗[σ] = [f(σ)] in the second case we
define f∗[σ] = 0. We extend this map linearly to f∗ : Hsimpl.

n (K)→ Hsimpl.
n (L).

We now have two homology theories on simplicial complexes and one is led
to wonder if they are the same.
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Figure 1: barycentric subdivision of low-dimensional n-simplices

Theorem 1. For K a simplicial complex we have Hsimpl.
n (K) ∼= Hn(|K|) for

all n. If f : |K| → |L| is a simplicial map then the induced maps on homology
f∗ are the same.

For a proof, see [1] theorem 2.27.

1.3 Simplicial approximation

Given triangulable spaces X,Y and a map f : X → Y , then we know that
if f is simplicial then we get an induced map on simplicial homology. If f is
not simplicial then we still get a map on homology but since the singular and
simplicial homology groups coincide we again get a map on simplicial homology.
If it were possible to find a simplicial map g homotopic to f then we could
compute invariants of f∗ like traces and determinants. In general it is not always
possible to find such a g, however we know that homology does not depend on
the simplicial structure of X. So we might be able to find a simplicial complex
|L| ∼= |K| ∼= X, such that there is a simplicial map g : |L| → Y .

First to get such a complex L we look at the notion of barycentric subdivision
of a complex K. Since each point in an n-simplex σ is the sum

∑
i tivi of some

v0, ..., vn affinely independent, we can consider the barycenter b =
∑
i
vi
n+1 .

Then we can define the barycentric subdivision of σ to be the collection of all
n-simplices [wi1 , ..., win−1

, b] inductively, where the wi are the 0-simplices in the
barycentric subdivision of a face of σ.

Since |K| ⊂ Rn has a metric we have for each σ the diameter

diam(σ) = max
x,y∈σ

d(x, y).

An important consequence of barycentric subdivision is that each of the n-
simplices σi in the barycentric subdivision of σ have

diam(σi) ≤
n

n+ 1
diam(σ) < diam(σ).
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We note that by the triangle inequality for x, y ∈ σ writing y =
∑
i tivi we have

|x− y| ≤
∑
i

|x− tivi| ≤
∑
i

ti|x− vi| ≤ max
i
|x− vi|.

So if [w1, ..., wn, b] is an n-simplex in the barycentric subdivision of σn, then by
the preceding we only need to consider the distances between wi, wj or b and
some wi. In the first case both wi, wj lie on a face of σ hence we are done by
induction. In the second case we may take wi to be some vi. Letting bi be the
barycenter of fni (σ) we have b = vi

n+1 + n
n+1bi. So b lies on the line from vi to

bi which has length bounded by the diameter of σ. Since |b− vi| = n
n+1 |bi − vi|

the result follows.

Theorem 2 (Simplicial approximation). If f : |K| → |L| is a continuous map
then there exists a map g : |K| → |L| which is homotopic to f and simplicial
with respect to a barycentric subdivision of K.

We will need a lemma to prove this theorem. First we define the star St σ
of a simplex σ in a simplicial complex K to be the subcomplex of all simplices
containing σ. We also define the open star st σ to be the union of the interiors
of all simplices containing σ.

Lemma 1. For 0-simplices v1, ..., vn the intersection of the open stars ∩ist vi
is empty unless σ = [v1, ..., vn] is a simplex in K. In this case we have ∩ist vi =
st σ.

Proof. The intersection ∩ist vi is the union of the interiors of all the simplices τ
such that vi ∈ τ for all i. If the intersection is non-empty then such a τ exists,
but then after applying a couple of face maps we see that σ must be a simplex
of K. Since each τ in the union contains σ it follows that ∩ist vi = st σ.

Using this we are able to prove theorem 2. First we note that a complex as
a subset of Rn has an induced metric and is compact as the union of finitely
many simplices, which are in turn compact as closed and bounded subsets of
Rn.

proof of theorem. Note that {f−1(st w) : [w] ∈ L} is an open cover of |K|.
Since |K| is a compact metric space there is a Lebesgue number ε > 0 for this
cover. After barycentric subdivision of K we may assume that each simplex of
K has diameter less than ε

2 . Now the closed star St v of each 0-simplex in K
has diameter less than ε. Hence we find that f(St v) ⊂ st w for a 0-simplex w
of L. We get a map g : K0 → L0, from the collection of 0-simplices of K to the
collection of 0-simplices of L satisfying f(St v) ⊂ st g(v). Now we can extend
g to a simplicial map g : K → L. For this we look at how to extend g on an
n-simplex σ in K which is the convex hull of v0, ..., vn. An interior point p of σ
lies in st vi for each i hence f(p) ∈ st g(vi) for each i. By the lemma we then
know that g(v0), ..., g(vn) define an n-simplex in L. So we can extend g linearly
on σ.
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Since for x ∈ |K| the images f(x) and g(x) lie on the same simplex of L we
know that (1− t)f(x) + tg(x) also lies on the same simplex of L for 0 ≤ t ≤ 1.
So we see that (1− t)f + tg gives a homotopy between f and g.

1.4 Lefschetz fixed point theorem

First we define the Lefschetz number as follows. We assume for simplicity that
G is a field, in this case the homology groups are vector spaces. If f : X → X is
a continuous map and Hn(X) are finite dimensional such that for some m > 0
all groups Hn(X) with n ≥ m are 0, then the f∗ are linear maps between finite
dimensional vector spaces and we can consider

Λ(f) =
∑
n

(−1)ntr(f∗ : Hn(X)→ Hn(X)).

In slightly more generality, when G = Z, then the homology groups are Z-
modules, the f∗ induce maps on the torsion-free part of each Hn(X) and these
have well defined traces.

Theorem 3 (Lefschetz fixed point theorem). If X is a triangulable space, or a
retract of a simplicial complex and if f : X → X is continuous, then if Λ(f) 6= 0,
f has a fixed point.

First we reduce to the case X is a simplicial complex. Suppose r : |K| → X
is a retraction and f : X → X is a continuous map. Then f ◦ r : |K| → |K|
has the same fixed points as f . The group Hn(|K|) splits as a direct sum and
r∗ is the projection onto Hn(X). Hence we find that tr(f∗) = tr(f∗ ◦ r∗), so
Λ(f) = Λ(f ◦ r).

Next we want to show that if a map has no fixed points then the Lefschetz
number must be zero. We do this by calculating the traces of induced maps
on the cellular chain complex and relating these to the traces on the homology
groups.

For a simplicial complex K let Kn be the union of all the m-simplices,
m ≤ n, this is called the n-skeleton of K. Then we have an exact sequence of
chain groups

0→ Cm(Kn−1)→ Cm(Kn)→ Cm(Kn)/Cm(Kn−1)→ 0

for all m,n. Using the zig-zag lemma, see [1] theorem 2.16, we get a natural
long exact sequence

. . . Hm+1(Kn,Kn−1)→ Hm(Kn−1)→ Hm(Kn)→ Hm(Kn,Kn−1)→ Hm−1(Kn−1) . . .

Since Kn is an n-dimensional simplicial complex the homology groups are 0 for
m > n and equal Hm(K) for m < n so the n-th part reads

0→ Hn(Kn)→ Hn(Kn,Kn−1)→ Hn−1(Kn−1)→ Hn−1(K)→ 0.
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By gluing these sequences at the n-th part for every n we get the cellular chain
complex

. . . Hn+1(Kn+1,Kn)→ Hn(Kn,Kn−1)→ Hn−1(Kn−1,Kn−2) . . .

We have Hn(Kn,Kn−1) ∼= Csimpn (K) and the homology groups of the cellular
chain complex equal Hn(K) for all n.

Now we are ready to prove the fixed point theorem. So suppose f has no
fixed points, since |K| is a compact metric space there is an ε > 0 such that
d(x, f(x)) > ε for all x ∈ |K|. Now we let L be a subdivision of K such
that the star of each simplex has diameter less than ε/2. We then can find
a further subdivision L′ and a simplicial approximation g : |L′| → |L| of f .
Since g is a simplicial approximation the image f(σ) is contained in the star
of g(σ) for each simplex σ. We thus have g(σ) ∩ σ = ∅ for every σ ∈ L′ since
for x ∈ σ we have d(x, f(x)) > ε but g(σ) lies within ε/2 of f(x) and σ lies
within ε/2 of x. Since g maps L′n into Ln for each n we get induced maps
Hn(L′n, L

′
n−1)→ Hn(Ln, Ln−1) for each n. Further since L′ is a subdivision of

L we get induced maps gCn : Hn(L′n, L
′
n−1)→ Hn(Ln, Ln−1).

If we denote the boundary maps in the cellular chain complex as follows
dn : Hn(L′n, L

′
n−1) → Hn−1(L′n−1, L

′
n−2) then we have two exact sequences for

each n namely

0→ ker dn → Hn(L′n, L
′
n−1)→ im dn → 0 (1)

0→ im dn+1 → ker dn → Hn(L′)→ 0 (2)

Now let Zn = ker dn, Bn−1 = im dn, Cn = Hn(L′n, L
′
n−1). Denote the induced

maps by g on these groups by gZn
, gBn

and gCn
. By additivity of traces over

short exact sequences we find

trgCn = trgZn + trgBn−1 (3)

trgZn = trgBn + trg∗ (4)

Substituting the second into the first and taking the alternating sum we find∑
i

(−1)itrgCn
=
∑
i

(−1)itrg∗ = Λ(g) = Λ(f),

since the terms trgBn
cancel in pairs and are 0 for n = 0 or n greater than the

dimension of K. The last inequality follows because g is a simplicial approxi-
mation of f . Since g(σ) ∩ σ = ∅ for every σ in L′, we find that trgCn = 0 since
the n-simplices form a basis for Cn. Thus we conclude that Λ(f) = 0 if f has
no fixed points.

As a consequence of the Lefschetz fixed point theorem we can now easily
deduce the famous Brouwer fixed point theorem which is as follows:

Theorem 4. Any continuous map f : Dn → Dn has a fixed point, where Dn is
the unit ball in Rn.

10



Proof. Note that Dn retracts onto a point, a point has 0-th homology group
equal to Z and the rest equal to 0. Each map from a point to itself is a home-
omorphism hence the induced map on homology has non-zero trace, so by the
Lefschetz fixed point theorem it follows that any map f : Dn → Dn must have
a fixed point.

Using singular cohomology instead of singular homology it is also possible to
prove a stronger version of the Lefschetz fixed point theorem for smooth compact
manifolds. In this stronger version the number Λ(f) actually equals the amount
of fixed points counted with certain multiplicities, if f has finitely many fixed
points. We will not pursue this here and instead move on to the category of
non-singular projective varieties, where assuming a suitable cohomology theory
we can also prove an analogue of this strong Lefschetz fixed point theorem.
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2 Lefschetz fixed point theorem for smooth pro-
jective varieties

2.1 Intersection theory

In this section we develop a bit of the intersection theory needed for our dis-
cussion on Weil cohomology. For proofs and more details see [2] chapter 4 and
5.

For an algebraic variety X over an algebraically closed field we define the
cycle group Z(X) as the free abelian group generated by symbols 〈V 〉, where V
is an irreducible closed subvariety of X. It is graded by dimension

Z(X) =
⊕
d

Zd(X)

where Zd(X) is the group of formal sums of d-dimensional subvarieties, its
elements are called d-cycles.

Consider now any closed subscheme Y ⊂ X. We can look at the finitely
many irreducible components Y1, ..., Yr and the local rings OY,Yi . If these have
lengths li respectively then we define 〈Y 〉 =

∑
i li〈Yi〉.

We let Rat(X) be the subgroup of Z(X) generated by cycles of the form
〈V (0)〉−〈V (∞)〉 where V is a subvariety of X×P1 such that the projection onto
the second coordinate is a dominant morphism. We let Ratd(X) = Rat(X) ∩
Zd(X). We are now able to define the Chow groups and the Chow ring.

Definition 4. Suppose dim(X) = n, the chow groups of X are the groups

Ad(X) = Zd(X)/Ratd(X).

Put Ai(X) = An−i(X) the chow ring is

A∗(X) =
⊕
d

Ad(X) = Z(X)/Rat(X).

For a cycle A ∈ Z(X) we denote the image in A∗(X) as [A], in particular if
Y is a subscheme of X then we denote [〈Y 〉] as [Y ].

Now we move on to the ring structure of A∗(X).

Definition 5. 1. Irreducible subschemes A,B of X are called dimensionally
transverse if for every component C of A∩B we have codim C = codim A+
codim B.

2. Subvarieties A,B of X are transverse at a point p ∈ X if X,A and B are
smooth at p and their tangent spaces at p satisfy TpA+ TpB = TpX.

3. Subvarieties A,B of X are generically transverse if every irreducible com-
ponent of A ∩B contains a point at which A and B are transverse.
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For cycles A =
∑
i ni〈Ai〉, B =

∑
jmj〈Bj〉 we say they are dimensionally

transverse respectively generically transverse if each of the pairs Ai, Bj is. Fur-
ther if they are dimensionally transverse then we define

A ∩B =
∑
i,j

nimj〈Ai ∩Bj〉.

Proposition 2. Subvarieties A,B of X are generically transverse if and only
if they are dimensionally transverse and each irreducible component of A∩B is
reduced and contains a smooth point of X.

Theorem 5 (moving lemma). Let X be a smooth (quasi)projective variety.

1. If α ∈ A∗(X), B ∈ Z(X), then there exists a cycle A ∈ Z(X) such that
[A] = α and A,B are generically transverse.

2. If A,B ∈ Z(X) intersect generically transversely then [A∩B] only depends
on [A] and [B].

A consequence of this lemma is the intersection product structure on the
Chow ring.

Theorem 6. If X is a smooth (quasi)projective variety then there is a unique
bilinear product structure on A∗(X) that satisfies

[A][B] = [A ∩B]

whenever A,B are generically transverse subvarieties. The Chow ring with this
product is an associative, commutative graded ring.

For α1, ..., αr ∈ A∗(X) we define the intersection number (α1 · ... · αr) to be
the degree of the grade dim(X) part of α1 · ... ·αr, that is, the part corresponding
to dimension 0 cycles, points. If A,B are generically transverse such that A∩B
is 0-dimensional then ([A] · [B]) is the cardinality of A ∩B.

The assignment X → A∗(X) is functorial. We can define a pushforward as
follows. If f : X → Y is a proper morphism and A ⊂ X a closed subvariety,
then f(A) is closed in Y . We define f∗[A] = deg(A/f(A))[f(A)].

Definition 6. Let f : X → Y be a morphism. A subvariety Z ⊂ Y of codimen-
sion c is generically transverse to f if:

1. f−1(Z) is generically reduced of codimension c.

2. X is smooth at a point q of each irreducible component of f−1(Z), and Y
is smooth in f(q).

Analogous as before we have a moving lemma, and it implies we can define
a pull-back f∗ : A(Y ) → A(X) such that f∗[Z] = [f−1(Z)] whenever Z ⊂ Y is
generically transverse to f .
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2.2 Weil cohomology

In this section we will discuss Weil cohomology mostly following [3]. We let k̄
be an algebraically closed field and suppose all varieties are defined over k̄. Let
K be a field of characteristic zero then a Weil cohomology is defined as follows.
It is given by the following data:

D1 A contravariant functor

H∗ : {non-singular, connected, projective varieties} → {graded commutative K-algebras}.

So for X a variety we have H∗(X) =
⊕

iH
i(X). The product of two

elements α, β ∈ H∗(X) is denoted α ∪ β, and H∗(X) being graded com-
mutative means that α∪β = (−1)deg(α) deg(β)β ∪α for α, β homogeneous.

D2 For every X there is a linear trace map trX : H2 dim(X)(X)→ K.

D3 For every X and every irreducible closed subvariety Z ⊂ X of codimension
c there is a cohomology class cl(Z) ∈ H2c(X).

Note that since H∗(X) is a K-algebra it comes with a ring homomorphism
K → H∗(X). Because K is a field, and because of the graded structure, this is
an inclusion K → H0(X) called the structural morphism, it makes the Hn(X)
into K-vector spaces.

The data must satisfy the following axioms:

A1 For each X all the Hi(X) are finite dimensional over K and are 0 unless
0 ≤ i ≤ 2 dim(X).

A2 (Künneth formula) For every X and Y , if we let pX : X × Y → X
and pY : X × Y → Y be the canonical projections. Then we have an
isomorphism of K-algebras

H∗(X)⊗K H∗(Y )→ H∗(X × Y ), α⊗ β → p∗X(α) ∪ p∗Y (β).

A3 (Poincaré duality) For every X, the trace map in (D2) is an isomorphism
and for every 0 ≤ i ≤ 2 dim(X) we have a perfect pairing

ψi : Hi(X)⊗K H2 dim(X)−i(X)→ K,α⊗ β → trX(α ∪ β).

A4 For every X,Y we have

trX×Y (p∗X(α) ∪ p∗Y (β)) = trX(α)trY (β),

for every α ∈ H2 dim(X)(X), β ∈ H2 dim(Y )(Y ).

A5 For every X,Y and every irreducible closed subvarieties Z ⊂ X,W ⊂ Y
we have

cl(Z ×W ) = p∗X(cl(Z)) ∪ p∗Y (cl(W )).
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A6 (push-forward of cohomology classes) For every morphism f : X → Y ,
and for every closed irreducible subvariety Z ⊂ X, we have for every
α ∈ H2 dim(Z)(Y ) that

trX(cl(Z) ∪ f∗(α)) = deg(Z/f(Z)) · trY (cl(f(Z)) ∪ α).

A7 (pull-back of cohomology classes) For every morphism f : X → Y and
every closed subvariety Z ⊂ Y such that

(a) all the irreducible components W1, ...,Wr of f−1(Z) have dimension
dim(Z) + dim(X)− dim(Y );

(b) either f is flat in a neighbourhood of Z or Z is generically transverse
to f ,

if 〈f−1(Z)〉 =
∑
imi〈Wi〉 as a cycle, then f∗(cl(Z)) =

∑r
i=1micl(Wi).

Note that in the generically transverse case all the mi = 1.

A8 If x = Spec (k̄), then cl(x) = 1 and trx(1) = 1.

Now that we have defined what a Weil cohomology is, it is important to note
some examples. The simplest example is the case when k̄ = C and we may take
K = Q or R. In this case we can look at the euclidian topology on the closed
points of a smooth, projective C variety, which make it into a compact, smooth
C manifold. This again is a real manifold of twice the dimension. Hence we
have the singular and de Rham cohomology theories. In this case the first three
axioms are well known and classical theorems. For the class map we may take
the Poincaré dual of submanifolds, see [5] page 50 onwards on how to define
this.

For varieties over a field with positive characteristic we can not do the same
as above. But there do exist Weil cohomologies for these fields as well, for
example we have `-adic cohomology with K = Q` for ` 6= p = char k̄, for a
definition and some properties see [4] appendix C.

Now assuming a weil cohomology theory over k̄ with coefficients in K we will
deduce some consequences which we will apply to prove the fixed point theorem.

Proposition 3. Let X be a smooth, connected n-dimensional projective variety.

1. The structural morphism K → H0(X) is an isomorphism.

2. We have cl(X) = 1 ∈ H0(X).

3. If x ∈ X is a closed point, then trX(cl(x)) = 1.

4. If f : X → Y is a generically finite surjective morphism of degree d to a
smooth projective variety Y , then

trX(f∗(α)) = d · trY (α)

for all α ∈ H2n(Y ). In particular for Y = X it follows that f∗ is multi-
plication by d on H2n(X).
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Proof. 1. From Poincaré duality (A3) with i = 0 it immediately follows that
dimK(H0(X)) = 1.

2. If we apply (A7) to the morphism X → Spec k̄, combining this with (A8)
proves (2).

3. Given x ∈ X a closed point, then we apply (A6) to the morphism X →
Spec k̄, by taking Z = {x} and α = 1 ∈ H0(Spec k̄). We find that
trX(cl(x)) = trSpec k̄(1) which equals 1 by (A8).

4. Let f : X → Y as in the proposition, take a general point Q in Y . Then
as a cycle we have 〈f−1(Q)〉 =

∑r
i=1mi〈Pi〉, where Pi are the reduced

points of the fiber over Q and
∑r
i=1mi = d. By generic flatness f is flat

around Q so that (A7) and (A6) imply

trX(f∗(cl(Q))) = trX(

r∑
i=1

mi · cl(Pi)) = d · trY (cl(Q)).

Since cl(Q) generates H2 dim(Y )(Y ) by (3), the assertion in (4) follows.

Definition 7. Given a morphism f : X → Y between smooth, connected, pro-
jective varieties with dim(X) = m,dim(Y ) = n. We use Poincaré duality to
define a push-forward f∗ : H∗(X) → H∗(Y ) as follows. Given α ∈ Hi(X),
there is a unique f∗(α) ∈ H2n−2m+i(Y ) such that

trY (f∗(α) ∪ β) = trX(α ∪ f∗(β))

for every β ∈ H2m−i(Y ).

Proposition 4. Let f : X → Y be a morphism as in the definition. The
push-forward of f has the following properties:

1. (projection formula) f∗(α ∪ f∗(γ)) = f∗(α) ∪ γ.

2. If g : Y → Z is another morphism as above, then (g ◦ f)∗ = g∗ ◦ f∗ on
H∗(X).

3. If Z ⊂ X is an irreducible closed subvariety then

f∗(cl(Z)) = deg(Z/f(Z))cl(f(Z)).

Proof.

1. Note that

trY (f∗(α ∪ f∗(γ))) = trY (f∗(α ∪ f∗(γ)) ∪ 1)

= trX(α ∪ f∗(γ) ∪ f∗(1))

= trX(α ∪ f∗(γ))

= trY (f∗(α) ∪ γ),

hence f∗(α ∪ f∗(γ)) = f∗(α) ∪ γ.
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2. Note that

trZ((g ◦ f)∗(α) ∪ β) = trX(α ∪ (g ◦ f)∗(β))

= trX(α ∪ f∗(g∗(β)))

= trY (f∗(α) ∪ g∗(β))

= trZ(g∗(f∗(α)) ∪ β),

hence it follows that (g ◦ f)∗ = g∗ ◦ f∗.
3. Using (A6) we have

trY (f∗(cl(Z)) ∪ α) = trX(cl(Z) ∪ f∗(α)) = deg(Z/f(Z)) · trY (cl(f(Z)) ∪ α),

hence by uniqueness it follows that f∗(cl(Z)) = deg(Z/f(Z)) · cl(f(Z)).

Proposition 5. For X and Y smooth, connected, projective varieties, let pX , pY
be the projections of X×Y onto X,Y respectively. If α ∈ Hi(Y ) then pX∗(p

∗
Y (α)) =

trY (α) if i = 2 dim(Y ) and 0 otherwise.

Proof. Since pX∗(p
∗
Y (α)) ∈ Hi−2 dim(Y )(X) it is clear that this is 0 when i 6=

2 dim(Y ). If i = 2 dim(Y ) and if β ∈ H2 dim(X)(X) then by (A4) we have

trX(pX∗(p
∗
Y (α)) ∪ β) = trX×Y (p∗Y (α) ∪ p∗X(β)) = trY (α) · trX(β),

from which it follows that pX∗(p
∗
Y (α)) = trY (α).

Lemma 2. Given α =
∑r
i=1 ni〈Vi〉 rationally equivalent to zero, then also∑r

i=1 nicl(Vi) = 0 in H∗(X).

For a proof see lemma 4.4 in [3]. Using this lemma we see that cl induces a
cycle class map

cci : Ai(X)→ H2i(X)

from the chow group of codimension i cycles.

Proposition 6. Putting the cci together gives a ring homomorphism

cc : A∗(X)→ H2∗(X)

compatible with f∗ and f∗.

Proof. Compatibility with f∗ follows from proposition 4.3.

For compatibility with f∗ we factor f : X → Y as prY ◦ j where j : X →
X × Y is the embedding of X onto the graph of f and prY : X × Y → Y is the
projection onto the second coordinate. In this case we have

f∗([Z]) = j∗(pr∗Y ([Z])) = j∗([X × Z]).

By the moving lemma [X×Z] is rationally equivalent to a sum
∑
i ni[Wi] where

each Wi is generically transverse to j. By lemma 4.4 we then have cc([X×Z]) =
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∑
i nicc([Wi]). From (A7) it then follows that f∗(cc([Z])) = cc(f∗([Z])).

To see that it is a ring homomorphism, let V,W be irreducible subvarieties
of X and let ∆ : X → X × X be the embedding onto the diagonal. Let
p, q : X × X → X be the projections onto the first and second coordinate
respectively. Compatibility with pull-back and (A5) gives

cc([V ][W ]) = cc(∆∗([V ×W ]))

= ∆∗(cc([V ×W ]))

= ∆∗(cl(V ×W ))

= ∆∗(p∗(cl(V )) ∪ q∗(cl(W )))

= ∆∗(p∗(cl(V )) ∪∆∗(q∗(cl(W ))

= cl(V ) ∪ cl(W )

= cc([V ]) ∪ cc([W ]).

As a consequence of cc being a ring homomorphism we have the following.

Lemma 3. Let X be a smooth projective variety, let αi ∈ Ami(X), i = 1, ..., r
such that

∑
imi = dim(X). Then

(α1 · · ·αr) = trX(cc(α1) ∪ ... ∪ cc(αr)).

Proof. Since cc is a ring homomorphism it is enough to prove that deg(α) =
trX(cc(α)) for α ∈ Z0(X). By additivity we can assume that α is a point, so it
follows from proposition 3.3.

2.3 Lefschetz fixed point theorem

Theorem 7. If f : X → X is an endomorphism, let Γf ,∆ ⊂ X × X be the
graph of f and the diagonal respectively, then

(Γf ·∆) =

2 dim(X)∑
i=0

(−1)itrace(f∗|Hi(X)).

We will need two final lemmas to prove the theorem. To simplify notation
let n = dim(X) and let p, q : X × X → X be the projection on the first and
second coordinate respectively.

Lemma 4. If α ∈ H∗(X) then p∗(cl(Γf ) ∪ q∗(α)) = f∗(α).

Proof. Let j : X → X × X be the embedding of X onto Γf . We then have
p ◦ j = idX and q ◦ j = f . Note that j∗(cl(X)) = cl(Γf ), from the projection
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formula it then follows that

p∗(cl(Γf ) ∪ q∗(α)) = p∗(j∗(cl(X)) ∪ q∗(α))

= p∗(j∗(cl(X) ∪ j∗(q∗(α)))

= p∗(j∗(f
∗(α)))

= f∗(α).

Lemma 5. Let (eri ) be a basis of Hr(X) and (f2n−r
i ) be the dual basis of

H2n−r(X) with respect to Poincaré duality (A3), so that trX(f2n−r
l ∪ eri ) = δi,l.

We then have

cl(Γf ) =
∑
i,r

p∗(f∗(eri )) ∪ q∗(f2n−r
i ) ∈ H2n(X ×X).

Proof. By the Künneth property (A2) we can write

cl(Γf ) =
∑
l,s

p∗(al,s) ∪ q∗(f2n−s
l )

for unique al,s ∈ Hs(X). From the preceding lemma and the projection formula
it follows that

f∗(eri ) =
∑
l,s

p∗(p
∗(al,s) ∪ q∗(f2n−s

l ) ∪ q∗(eri ))

=
∑
l,s

al,s ∪ p∗(q∗(f2n−s
l ∪ eri )).

By proposition 5 we have that p∗(q
∗(f2n−s

l ∪ eri )) = 0, unless r = s, in which
case it equals trX(f2n−r

l ∪ eri ). This again is zero unless i = l, in which case it
equals 1. Hence it follows that f∗(eri ) = ai,r.

proof of theorem. From the previous lemma it follows that

cl(Γf ) =
∑
i,r

p∗(f∗(eri )) ∪ q∗(f2n−r
i ).

Applying the same lemma to the identity morphism and the dual bases (fsl )
and ((−1)se2n−s

l ), we get

cl(∆) =
∑
l,s

(−1)sp∗(fsl ) ∪ q∗(e2n−s
l ).
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Hence it now follows that

(Γf ·∆) = trX×X(cl(Γf ) ∪ cl(∆))

= trX×X

∑
i,j,r,s

(−1)s+s(2n−r)p∗(f∗(eri ) ∪ fsl ) ∪ q∗(f2n−r
i ∪ e2n−s

l )


=
∑
i,r

trX(f∗(eri ) ∪ f2n−r
i ) · trX(f2n−r

i ∪ eri )

=
∑
r

(−1)rtrace(f∗|Hr(X)).
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3 Weil conjectures

3.1 Statement

In this section we consider varieties over a finite field k = Fq. Let X be a variety
over k and let x ∈ X be a closed point with local ring (OX,x,mx). Its residue
field k(x) = OX,x/mx is a finite extension of k. We define the degree of x to be

deg(x) = [k(x) : k].

Let k ⊂ K be a field extension then a K-valued point of X is an element of

X(K) = homSpec k(Spec K,X) =
⋃
x∈X

homk(k(x),K).

Lemma 6. If X is defined over k, and K = Fqm is an extension of degree m,
then

|X(K)| =
∑
d|m

d · |{x ∈ X|x a closed point of degree d}.

Proof. Let x be the image of a K-valued point. Then k(x) embeds into K,
since k ⊂ K is algebraic then also k ⊂ k(x) is algebraic. So x is a closed point
because

dim {x} = trdeg(k(x)/k) = 0.

Letting r = [k(x) : k] then r|m and there are exactly r embeddings of k(x)→ K
fixing k.

If k ⊂ K is a finite extension there are only finitely many points in X(K).
We can see this by taking a finite affine open cover of X. So it is enough to
look at the affine case. If X ⊂ Ank is defined by equations f1, ..., fn then X(K)
is the set of common solutions in Kn. The preceding lemma then implies that
for each m there are only finitely many points with degree dividing m.

Letting Nm = |X(Fqm)| we define the zeta function of X.

Definition 8. The zeta function Z(X,T ) of X is

Z(X,T ) = exp(

∞∑
m=1

Nm · Tm

m
) ∈ Q[[T ]].

We are now ready to state the Weil conjectures, which asserts that this Zeta
function has some nice properties.

Theorem 8 (Weil conjectures). Suppose that X is an n-dimensional, geometri-
cally connected, smooth, projective variety defined over k, then the zeta function
Z(X,T ) has the following properties:

1. It is a rational function of T , that is Z(X,T ) ∈ Q(T ).
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2. Let E be the self-intersection number of the diagonal ∆ of X ×X. Then
Z(X,T ) satisfies the following functional equation:

Z(X,
1

qnT
) = ±qnE/2TEZ(X,T ).

3. It is possible to write

Z(X,T ) =
P1(T )P3(T ) · · ·P2n−1(T )

P0(T )P2(T ) · · ·P2n(T )

where P0(T ) = 1 − t, P2n(T ) = 1 − qnT and for each 1 ≤ i ≤ 2n − 1 we
have

Pi(T ) =
∏

(1− αijT )

where the αij are algebraic integers with absolute value qi/2.

We will prove the first two of these in the final section, the third property is
beyond the scope of this thesis. It was the last to be proved which P. Deligne
did in 1974 for which he was awarded the Fields medal.

3.2 The Frobenius morphism

The idea to prove the first two is to use the Lefschetz fixed point theorem. For
a suitable f we then have (Γfm · ∆) = Nm for each m. The f we need is the
Frobenius morphism which we will define now.

Definition 9. The Frobenius morphism for X over k = Fq is the morphism of
ringed spaces

FrobX,q : X → X

which is the identity on the topological space of X, and the Frobenius morphism
a 7→ aq on the sheaf of rings. It is a morphism of Fq-schemes because aq = a
for any a ∈ Fq.

Now let k̄ be an algebraic closure and let

X = X ×Spec Fq
Spec k̄.

Then X is a variety over k̄ and X(K) = X(K).
We get an induced morphism of schemes over K:

FrobX,q = FrobX,q × id : X → X.

If X is affine, let X → Ank be a closed immersion. Then FrobX,q is induced by
FrobAn

k̄
,q. This corresponds to the morphism of K-algebras

K[X1, ..., Xn]→ K[X1, ..., Xn] : Xi 7→ Xq
i .

22



On K-rational points this is given by

(x1, ..., xn) 7→ (xq1, ..., x
q
n).

It follows that X(Fqm) can be identified with the fixed points of Frobm
X,q

. So

if we let ∆,Γm be the diagonal and the graph of the m-th power of Frobenius
respectively in X ×X, then we have a bijection between ∆ ∩ Γm and X(Fqm).

Proposition 7. If X is smooth, then ∆,Γm intersect generically transverse.

Proof. (idea) We consider the affine caseX = AnFq
. IfR = k̄[X1, ..., Xn, Y1, ..., Yn],

then ∆ is defined by the ideal (Y1 − X1, ..., Yn − Xn) and Γm is defined by
the ideal (Y1 − Xq

1 , ..., Yn − Xq
n). Therefore their intersection is isomorphic to∏n

i=1 Spec k̄[Xi]/(Xi − Xq
i ), which is reduced because all of the polynomials

(Xi − Xq
i ) have no multiple roots. Because X(Fqm) is finite we thus see that

∆ ∩ Γm is a reduced set of points. Generic transversality then follows from
proposition 2.

The general case follows from the affine case, for details see [3] proposition
2.4. In a similar way, as we have seen in the affine case that the FrobAn

k̄
,q

corresponds to the Frobenius morphism on k̄-algebras, we also deduce that
Frobm

X,q
is finite of degree qnm.

3.3 Proof

Let X be a geometrically connected, smooth, projective variety defined over
k = Fq, we keep some of the notation from the previous section. Suppose we
have a Weil cohomology for varieties over k̄ with coefficients in some K (here K
refers to a characteristic 0 field as in the definition of Weil cohomology and not a
finite extension of k). Since the graph of the Frobenius endomorphism intersects
the diagonal transversely we get from the Lefschetz fixed point formula that

Nm = (Γm ·∆) =
∑
i

(−1)itrace((F ∗)m|Hi(X)),

where F ∗ is the pull-back of the Frobenius. It follows that

Z(X,T ) =

2n∏
i=0

[
exp

( ∞∑
m=1

trace((F ∗)m|Hi(X)) ·
Tm

m

)](−1)i

.

From the following lemma it will follow that Z(X,T ) is rational over K.

Lemma 7. Suppose ϕ : V → V is an endomorphism of a finite dimensional
vector space over some field K. Then the following identity holds

exp

( ∞∑
m=1

tr(ϕm) · T
m

m

)
= det(1− ϕT )−1.
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Proof. Recall that the trace of ϕ is the sum of its eigenvalues which lie in some
algebraic closure of K. Then the trace of ϕm is the sum of the m-th powers of
those eigenvalues so we get

exp

( ∞∑
m=1

tr(ϕm) · T
m

m

)
=

dim(V )∏
j=1

exp

( ∞∑
m=1

λmj ·
Tm

m

)
.

By the identity of formal power series
∑∞
m=1 λ

m
j · T

m

m = log(1− λjT ) it follows
that

exp

( ∞∑
m=1

tr(ϕm) · T
m

m

)
=

dim(V )∏
j=1

1

1− λjT
= det(1− ϕT )−1.

From the lemma it follows that

Z(X,T ) =
P1(T )P3(T ) · · ·P2n−1(T )

P0(T )P2(T ) · · ·P2n(T )

where Pi(T ) = det(1 − F ∗T |Hi(X)). Now that we know that Z(X,T ) ∈ K(T )

we still need to show that it is actually in Q(T ). Since we know that it is in
Q[[T ]], it follows from the following proposition that Z(X,T ) ∈ Q(T ).

Proposition 8. Let K be a field and f =
∑
m≥0 amT

m ∈ K[[T ]]. Then f ∈
K(T ) if and only if there are M,N ∈ Z≥0 such that

span{(ai, ai+1, ..., ai+N ) ∈ K⊕(N+1)|i ≥M} ( K⊕(N+1).

If L/K is a field extension, then f ∈ L(T ) if and only if f ∈ K(T ).

Proof. If f ∈ K(T ) then there are M,N and c0, ..., cN ∈ K not all zero such
that

f(T ) ·
N∑
i=0

ciT
i ∈ K[T ]

of degree at most M +N . This means that cNai + cN−1ai+1 + ...+ c0ai+N = 0
for all i ≥M . Thus the span of all the vectors (ai, ..., ai+N ), i ≥M is contained

in the kernel of the linear map (x0, ..., xN ) 7→
∑N
i=0 cN−ixi. But since not all

the ci are zero this is a proper subspace of K⊕(N+1). Conversely we can find
such a non-zero linear map for any proper subspace, so the converse is also clear.

Now if L/K is a field extension, and V is a vector space over K, then
v1, ..., vm are linearly independent if and only if v1 ⊗ 1, ..., vm ⊗ 1 are linearly
independent over L in V ⊗K L. So the second statement also follows.

To show that the functional equation holds we use Poincaré duality and the
following lemma.
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Lemma 8. Let φ : V ×W → K be a perfect pairing of vector spaces of dimension
r over K. Let x ∈ K∗ and let ϕ : V → V, ψ : W → W be endomorphisms such
that

φ(ϕv, ψw) = xφ(v, w)

for all v ∈ V,w ∈W . Then

det(1− ψT ) =
(−1)rxrT r

det(ϕ)
det(1− ϕ

xT
) (5)

and

det(ψ) =
xr

det(ϕ)
. (6)

Proof. After extending scalars we may assume K is algebraically closed. Let
e1, ..., er be a basis of V such that ϕ is represented by a lower triangular matrix.
And let e′1, ..., e

′
r be a dual basis of W with respect to φ. So φ(ei, e

′
j) = δij . Note

that since x is non-zero, ψ must be invertible. Since φ(ϕ(ei), e
′
j) = 0 for j < i,

we find that φ(ei, ψ
−1(e′j)) = 0 for j < i. It follows that the matrix representing

ψ−1 is upper triangular. Now let λ1, ..., λr be the eigenvalues of ϕ ordered with
respect to the basis. Similarly let µ1, ..., µr be the eigenvalues of ψ−1 (by the
preceding these are just the values on the diagonal). We then have

λj = φ(ϕ(ej), e
′
j) = xφ(ej , ψ

−1(e′j)) = xµj .

Note that det(ϕ) =
∏r
j=1 λj and det(ψ) =

∏r
j=1 µ

−1
j so (6) follows. We also

have

det(1− Tψ) = det(ψ) det(ψ−1 − T )

=
xr

det(ϕ)
·
r∏
j=1

(
λj
x
− T )

=
(−1)rxrT r

det(ϕ)

r∏
j=1

(1− λj
xT

)

=
(−1)rxrT r

det(ϕ)
det(1− ϕ

xT
),

so (5) follows.

We now apply this to the perfect pairings φi in (A3) to prove the functional
equation.

Proof of the functional equation. Since the Frobenius morphism is finite of de-
gree qn, proposition 4.3 implies that F ∗ is given by multiplication by qn on
H2n(X). So it follows that

φi(F
∗(α), F ∗(β)) = trX(F ∗(α ∪ β)) = trX(qnα ∪ β) = qnφi(α, β),
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for every α ∈ Hi(X), β ∈ H2n−i(X). The lemma implies that ifBi = dimK H
i(X)

and Pi(T ) = det(1− TF ∗|Hi(X)) then

det(F ∗|H2n−i(X)) =
qnBi

det(F ∗|Hi(X))

and

P2n−i(T ) =
(−1)BiqnBiTBi

det(F ∗|Hi(X))
· Pi(

1

qnT
).

Applying the Lefschetz fixed point formula to the identity morphism it follows
that E :=

∑2n
i=0(−1)iBi = (∆ ·∆). Using the two formulas above it now follows

that

Z(X,
1

qnT
) =

P1( 1
qnT ) · · ·P2n−1( 1

qnT )

P0( 1
qnT ) · · ·P2n( 1

qnT )

=
P2n−1(T ) · · ·P1(T )

P2n(T ) · · ·P0(T )
· (−1)EqnETE∏2n

i=1 det(F ∗|Hi(X))
(−1)i

= ±Z(X,T ) · q
nETE

qnE/2

= ±qnE/2TEZ(X,T ).
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