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1 Introduction

In this thesis, we will discuss lower bounds of the Mahler measure. First we
examine two lower bounds given by Dobrowolski. Thereafter, we will consider
polynomials which are ‘near’ products of cyclotomic polynomials. We will give
another lower bound for the Mahler measure of such polynomials as well.

1.1 History of the Mahler measure

Lehmer gives a detailed study of a method for finding large primes in [10] in
1933. Suppose α1, . . . , αd ∈ C are the roots of a monic polynomial f with
integer coefficients. Then he defines for all n ≥ 1 the rational integers

∆n(f) =
d∏
i=1

(αni − 1).

These numbers are called Pierce numbers and more information about these
can be found in [15]. The large primes are sought after in the prime fac-
torizations of those integers ∆n(f) that have large absolute value. This
can be done fairly quickly if the absolute values of ∆1(f),∆2(f), . . . do not
increase too rapidly. If f has no roots on the unit circle, then the limit
limn→∞ |∆n+1(f)/∆n(f)| exists and equals

M(f) :=

d∏
i=1

max{1, |αi|}

[10, Theorem 16]. Therefore, Lehmer posed the question of whether for all
ε > 0 there exists a monic polynomial f ∈ Z[X] with 1 < M(f) < 1 + ε.
It is conjectured that the answer is no [19], and this conjecture is known as
Lehmer’s conjecture. In [10], Lehmer finds a monic polynomial L with integer
coefficients with M(L) = 1.176 . . . . Since then, a monic polynomial f with
integer coefficients and with 1 < M(f) < M(L) has not been found. Moreover,
Lehmer’s conjecture remains unsolved.

For a non-zero polynomial f ∈ C[X] with f = a0(X − α1) . . . (X − αd) (again
α1, . . . , αd ∈ C), we define

M(f) = |a0|
d∏
i=1

max{1, |αi|}.

The definition of M(f) for a non-zero polynomial f ∈ C[X] coincides (see [20])
with a definition by Mahler: he defined in [12] in 1962 the quantity

M∗(f) := exp

(∫ 1

0
log
∣∣f(e2πit)

∣∣ dt

)
.

For all non-zero f ∈ C[X] the real number M∗(f) = M(f) is called the Mahler
measure of f .
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1.2 Results on Lehmer’s conjecture

We notice that the Mahler measure of polynomials is multiplicative. So in
order to find an answer on Lehmer’s question, we only need to consider monic
polynomials with coefficients in Z that are irreducible over Q. If α ∈ C is a
zero of such a polynomial f , then α is called an algebraic integer and we define
the Mahler measure of α as M(α) := M(f). In this case, the roots of f in C
are called the conjugates of α, and f is called the monic minimal polynomial
of α. If α is a non-zero algebraic integer, then Kronecker’s theorem asserts
that

M(α) = 1 ⇐⇒ α is a root of unity. (1)

This follows from the work of Kronecker in [8].

We will state the best results obtained concerning Lehmer’s conjecture. For
more results on Lehmer’s conjecture, see [19]. By an irreducible polynomial
with integer coefficients we mean irreducible over Q. The first unconditional
lower bound for M(α) for a non-zero algebraic integer α that is not a root
of unity, was given by A. Schinzel and H. Zassenhaus in 1965 [17]. Namely,
if α is such an algebraic integer, and if it has exactly 2s conjugates that are
complex (i.e., elements of C\R), then

M(α) > 1 + 4−s−2.

In 1979, Dobrowolski proved the following theorem. For all non-zero algebraic
integers α of degree d ≥ 2 that are not a root of unity, the inequality

M(α) ≥ 1 + c(d)

(
log log d

log d

)3

(2)

holds, where c(d) only depends on d and is such that limn→∞ c(n) = 1. A
key ingredient of his proof is the following: if p is a prime and α, αp are
algebraic integers of degree d, then the resultant of fα and fαp is divisible by
pd. Furthermore, he uses Siegel’s lemma to construct an auxiliary function.
This result of Dobrowolski has been improved by Cantor and Straus in 1982 [3].
They proved the same statement with limn→∞ c(n) = 2. However, they used a
different method: they construct a Vandermonde matrix whose determinant is
an integer and has a large factor. Louboutin improved this in 1983 to the result
with limn→∞ c(n) = 9/4, using the same proof as Cantor and Straus [11]. In
1996 Voutier obtained the explicit lower bound

M(f) ≥ 1 +
1

4

(
log log d

log d

)3

for all monic irreducible polynomials f of degree d ≥ 2 with M(f) > 1, also
using the idea of Cantor and Straus [21].

A polynomial f = f0 + f1X + · · · + fdX
d with integer coefficients is called
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reciprocal if f = fd + fd−1X + · · ·+ f0X
d. A polynomial that is not reciprocal

is called non-reciprocal. In 1971, Smyth proves that all monic irreducible
polynomials f ∈ Z[X] satisfying

M(f) < M(X3 −X − 1) ≈ 1.324 . . .

are reciprocal [20]. The constant M(X3−X− 1) is optimal, since X3−X− 1
is non-reciprocal.

In 1999, Amoroso and David showed that Lehmer’s conjecture is true for α
such that the extension Q ⊂ Q(α) is Galois [1]. More precisely, they proved
that there exists an ε > 0 such that for all non-zero algebraic numbers α, not
a root of unity, and Q ⊂ Q(α) a Galois extension, we have M(α) > 1 + ε.
Borwein, Dobrowolski and Mossinghoff proved in [2] in 2007 that for all non-
zero irreducible polynomials f ∈ Z[X] with only odd coefficients and M(f) > 1
we have M(f) > 51/4.

For a positive integer n we denote by ω(n) the number of distinct prime factors
of n. For a polynomial f ∈ C[X], we write ‖f‖ for the sum of the absolute
values of the coefficients of f . For all positive integers n we denote by Φn the
minimal polynomial of a n-th root of unity. In this thesis, we will prove the
following. Let n1, . . . , nk be positive integers, f a monic irreducible polynomial
with integer coefficients and assume that for D := ‖f − Φn1 . . .Φnk

‖ we have
D < ‖f‖. Also assume M(f) > 1. Then s := 2ω(n1) + · · ·+ 2ω(nk) gives

M(f) ≥ 1 +
log 2(

1 + 1
2s

2
)

21+s/2(D + 1)
. (3)

The proof is based on Dobrowolski’s proof of (2). In particular, we use (3) to
show that for a monic irreducible polynomial f ∈ Z[X] with ‖f − Φp‖ ≤ 4 for
some prime p, we have M(f) ≥ 1.0115.

2 Preliminaries

We call α algebraic if α ∈ C and α is algebraic over Q. We denote the set
of algebraic numbers by Q. We will denote the algebraic closure of Q in C
by Q, the set of algebraic numbers. For all α ∈ Q, we will write fα for the
monic minimal polynomial of α over Q. The conjugates of α are the algebraic
numbers α1, . . . , αd such that fα = (X − α1) . . . (X − αd).

2.1 The Mahler measure

Definition 2.1. Let α be algebraic and let a be the smallest positive integer
such that afα ∈ Z[X]. Then the primitive minimal polynomial Fα of α is
defined to be afα.

Definition 2.2. Let f ∈ C[X] be a polynomial of degree d > 0 and let
ad, α1, . . . , αd ∈ C be such that f = ad(X−α1) . . . (X−αd). Then the Mahler
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measure of f is given by

M(f) := |ad|
d∏
i=1

max{1, |αi|}.

Definition 2.3. We define the Mahler measure of an algebraic number α to
be M(α) := M(Fα).

Example 2.4. Let d > 0 be an integer. Consider α := d
√

2. Its minimal poly-
nomial is Xd − 2 and the zeroes of this polynomial over C are exp(2πi/k) d

√
2

for k = 0, . . . , d− 1. Hence, we find

M(α) =
d−1∏
k=0

max
{

1,
∣∣∣exp(2πi/k)

d
√

2
∣∣∣} = 2. �

Notice that the Mahler measure is multiplicative: for two polynomials f1, f2

in C[X] we have M(f1f2) = M(f1)M(f2). Therefore, to understand the be-
haviour of the Mahler measure on Z[X], it suffices to consider only the irre-
ducible polynomials in Z[X]. Because of this, we will only study the Mahler
measure of algebraic numbers. An algebraic number α is called an algebraic
integer if fα ∈ Z[X]. The sums and products of algebraic integers are again
algebraic integers, as stated in the following proposition. A proof is given
in [9, Chapter 1, Proposition 5].

Proposition 2.5. The algebraic integers form a subring of Q.

Corollary 2.6. Let α be an algebraic integer and g ∈ Z[X] a polynomial.
Then the norm and trace

NQ(α)/Q(g(α)) and TrQ(α)/Q(g(α))

are rational integers.

Proof. g(α) is an algebraic integer by Proposition 2.5. Hence, all its conjugates
are algebraic integers. Let Σ be the set of field embeddings of Q(α) into C.
Then we find that

NQ(α)/Q(g(α)) =
∏
σ∈Σ

σ(g(α))

is the product of algebraic integers. Hence, this norm is an algebraic integer.
Since it is also rational, we conclude that it is a rational integer. Similarly,
the trace can be proved to be a rational integer.

Notice that an algebraic number α is an algebraic integer if and only if fα = Fα.
Hence, all algebraic numbers α with M(α) < 2 are algebraic integers. In fact,
then also α−1 is an algebraic integer, which will be proven in Lemma 2.9.

Definition 2.7. An algebraic number α is called an algebraic unit, if α, α−1

are algebraic integers.
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We give a characterization of the algebraic units.

Lemma 2.8. Let α be an algebraic integer. Then α is an algebraic unit if and
only if NQ(α)/Q(α) = ±1.

Proof. If α is an algebraic unit, then NQ(α)/Q(α), NQ(α)/Q(α−1) are rational
integers andNQ(α)/Q(α)NQ(α)/Q(α−1) = 1, so NQ(α)/Q(α) ∈ {±1}. Conversely,
suppose that NQ(α)/Q(α−1) = ±1. Let α1, α2, . . . , αd be the conjugates of α
with α1 = α. Notice that the product of algebraic integers

α−1 = NQ(α)/Q(α−1)α2 . . . αd = ±α2 . . . αd

is itself an algebraic integer by Proposition 2.5.

Lemma 2.9. Let α be an algebraic number and suppose M(α) < 2. Then α
is an algebraic unit.

Proof. We have already seen that α is an algebraic integer. The product
NQ(α)/Q(α) of all conjugates α is a rational integer by Corollary 2.6. Because
M(α) < 2 this norm now equals either 1 or −1. So α is an algebraic unit by
Lemma 2.8.

2.2 The house of an algebraic number

A concept related to the Mahler measure of an algebraic number, is the house
of an algebraic number.

Definition 2.10. Let α be an algebraic number and α1, . . . , αd ∈ C its con-
jugates. Then the house of α is given by α := max{|α1| , . . . , |αd|}.

Notice that for any non-zero algebraic integer α we have α ≥ 1, since the
product of the conjugates of α is a non-zero rational integer. For all non-zero
algebraic integers α we also have

α ≤M(α) ≤ α d. (4)

The first inequality is obvious and the second inequality follows from α ≥ 1
and the fact that M(α) is the product of some conjugates of α.

Lemma 2.11. Let α be an algebraic number. Then αn = α n for all integers
n > 0.

Proof. The Galois group Gal(Q/Q) acts transitively on the conjugates of α, as
well as on the conjugates of αn. By the multiplicativity of the automorphisms,
the set of the conjugates of αn equals the set of n-th powers of the conjugates
of α. Hence αn = α n.

The following theorem follows from the work of Northcott, in which he proves
a similar statement for points in a projective space [14, Theorem 1].

Theorem 2.12 (Northcott). Let C,D > 0 be real numbers. Then there are
only finitely many algebraic integers α such that α ≤ C and degα ≤ D.
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Proof. Consider an algebraic integer α satisfying the inequalities. Write

fα = a0 + · · ·+ ad−1X
d−1 +Xd = (X − α1) . . . (X − αd)

with degα = d and α1, . . . , αd ∈ C. Expanding the product and using the
triangle inequality, we find that the coefficients of f are rational integers whose
absolute values are bounded by (2C)D:

|ad−n| =

∣∣∣∣∣∣
∑

i1≤···≤in

αi1 . . . αin

∣∣∣∣∣∣ ≤
(
d

n

)
α n ≤ (2C)D for n = 1, . . . , d.

We conclude that there are only finitely many possible minimal polynomials
of algebraic numbers satisfying the stated inequalities.

The following theorem, known as Kronecker’s theorem, follows from the work
of Kronecker in [8].

Theorem 2.13 (Kronecker). Let α be an algebraic integer. Then

α = 1 ⇐⇒ α is a root of unity.

Proof. The equivalence is clear for α = 0. So assume α 6= 0. If α is a
root of unity, then all conjugates of α are roots of unity and hence α = 1.
Now suppose α = 1. To show that α is a root of unity, consider the sequence
{αn}∞n=1, which consists of algebraic integers by Proposition 2.5. The elements
of this sequence have degree at most degα and for all n ∈ Z>0 we have
αn = α n = 1 by Lemma 2.11. By Theorem 2.12 the sequence only contains
finitely many distinct elements. Hence, there exist distinct k, l ∈ Z>0 such
that αk = αl. Since α 6= 0, we conclude that α is a root of unity.

Remark 2.14. Not every algebraic number α with α = 1 is a root of unity.
For instance, α = (3 + 4i)/5 is not an algebraic integer and thus not a root of
unity. �

If α is an algebraic integer with M(α) = 1, then it follows from Theorem 2.13
that α is a root of unity. In 1933 Lehmer posed the question whether for
all real ε > 0 there exists a non-zero algebraic number α that is not a root
of unity and is such that M(α) < 1 + ε holds [10]. The following has been
conjectured and this conjecture is known as Lehmer’s conjecture.

Conjecture 2.15. There exists a real number ε > 0 such that for all non-zero
algebraic numbers α which are not a root of unity, we have M(α) > 1 + ε.

Example 2.16. Consider the polynomial

L := X10 +X9 −X7 −X6 −X5 −X4 −X3 +X + 1.

It has exactly 8 roots on the unit circle [13]. The other two roots are real
numbers, of which one has an absolute value larger than 1. Therefore, M(L)
equals the largest real root and we find M(L) ≈ 1.176. To this day, a non-zero
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Figure 1: roots of L in the complex plane. The circle is the unit circle.

polynomial f ∈ Z[X] with 1 < M(f) < M(L) has not been found. �

There are similar results to Conjecture 2.15, but where ε depends on the degree
of α. We will examine such a result in the next section.

2.3 A lower bound for the house

The next result is due to Dobrowolski and can be found in [4]. It provides a
lower bound for the house of a non-zero algebraic number α which is not a
root of unity.

Theorem 2.17 (Dobrowolski). Let α be a non-zero algebraic integer of degree
d. Suppose

α ≤ 1 +
1

4ed2
, where e = 2.718 . . . .

Then α is either zero or a root of unity.

However, Schinzel and Zassenhaus conjectured a stronger bound: there exists
a constant c > 0 such that for all non-zero algebraic integers α that are not
a root of unity, we have α ≥ 1 + c/d where d is the degree of α [17]. This
conjecture is true if Lehmer’s conjecture is true by (4). Also notice that by
(4) this theorem of Dobrowolski gives a lower bound for the Mahler measure
of a non-zero algebraic integer α that is not a root of unity.

To prove Theorem 2.17, we need a few lemmas. The following useful lemma
resembles the linearity of the Frobenius automorphism on finite fields.

Lemma 2.18. Let f ∈ Z[X1, . . . , Xn] be a polynomial and p ∈ Z>0 be prime.
Denote by (p) the prime ideal of Z[X1, . . . , Xn] generated by p. Then

f(X1, . . . , Xn)p ≡ f(Xp
1 , . . . , X

p
n) mod (p).

Proof. We prove this by induction on the number of terms of f . We will
write X = (X1, . . . , Xn) and Xp = (Xp

1 , . . . , X
p
n). If f has only one term, the

statement follows from Fermat’s little theorem: for any a ∈ Z we have

(aX)p = apXp ≡ aXp mod (p).

Now suppose f has at least 2 terms and assume the assertion holds for all
polynomials with fewer terms. Write f = f1 + f2 with f1, f2 ∈ Z[X1, . . . , Xn]
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both having fewer terms than f . Since the ring Z[X1, . . . , Xn]/(p) has charac-
teristic p, the identity (a+ b)p = ap + bp holds for all a, b ∈ Z[X1, . . . , Xn]/(p).
By the induction hypothesis, we find

f(X)p = (f1(X) + f2(X))p ≡ f1(X)p + f2(X)p

= f1(Xp) + f2(Xp) ≡ f(Xp) mod (p).

This proves the induction step.

The prime p with which Lemma 2.18 will be applied to prove Theorem 2.17,
will be chosen by means of Bertrand’s postulate. A proof can be found in [6].

Lemma 2.19 (Bertrand’s postulate). For all real x > 1 there exists a prime
p such that x < p < 2x.

We finish with two other lemmas which are needed for the proof of Theorem
2.17.

Lemma 2.20. Let S0, . . . , Sd ∈ Z[T1, . . . , Td] be the elementary symmetric
polynomials, i.e., such that

(X − T1) . . . (X − Td) = S0X
d − S1X

d−1 ± · · ·+ (−1)dSd.

For all positive integers n, write Σn = Tn1 + · · · + Tnd . Then S0, . . . , Sd are
elements of Q[Σ1, . . . ,Σn].

Proof. This follows inductively from the Newton identities: for all n = 1, . . . , d
we have

ΣnS0 − Σn−1S1 + Σn−2S2 ∓ · · ·+ (−1)n−1Σ1Sn−1 + (−1)nnSn = 0

[18].

We follow the proof of the following lemma of Dobrowolski in [5].

Lemma 2.21. Let α be an algebraic number and suppose there exist distinct
k, l ∈ Z>0 such that αk and αl are conjugate. Then α = 0 or α is a root of
unity.

Proof. Let k, l ∈ Z>0 be distinct and such that αk and αl are conjugate. Let
K ⊂ C be the splitting field of fα, i.e., K is the field extension of Q generated
by the conjugates of α. Let σ ∈ Gal(K/Q) be such that σ(αk) = αl. By
induction it follows that

σn
(
αk

n)
= αl

n
for all n ∈ Z>0. (5)

Indeed, the base case n = 1 is trivial and the induction step follows from the
fact that for all positive integers n we have

σn
(
αk

n)
= σn−1(σ(αk))k

n−1
= σn−1(αl)k

n−1
= σn−1

(
αk

n−1)l
.
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Let N be the order of σ in the finite group Gal(K/Q). From (5) we now find

αk
N

= σN
(
αk

N )
= αl

N
.

From k 6= l we conclude that α is either zero or a root of unity.

Proof of Theorem 2.17. We will show that α is either 0 or a root of unity. Let
α1, . . . , αd be the conjugates of α. By Bertrand’s postulate, there is a prime
p such that 2ed < p < 4ed.

Define σn := αn1 +· · ·+αnd . We will prove σnp = σn for any n ∈ {1, . . . , d}. Con-
sider such an n. We will use the primality of p to prove σnp ≡ σn (mod p) and
use the bounds on p to show that |σnp − σn| < p. Since the trace TrQ(α)/Q(αn)
equals σn, we have σn ∈ Z by Corollary 2.6. By Lemma 2.18, there is a
gn ∈ Z[T1, . . . , Td] such that σpn − σnp = pgn(α1, . . . , αd). Then gn(α1, . . . , αd)
is rational and an algebraic integer, hence it is an element of Z. We conclude
that, using Fermat’s little theorem,

σnp ≡ σpn ≡ σn (mod p), for all n ∈ Z>0. (6)

Using the bounds on p and the assumed upper bound for α , we get

|σnp| =
∣∣αnp1 + · · ·+ αnpd

∣∣ ≤ d α np ≤ d
(

1 +
1

4ed2

)np
≤ d

(
1 +

1

4ed2

)4ed2

≤ de,

|σn| = |αn1 + · · ·+ αnd | ≤ d α n ≤ d
(

1 +
1

4ed2

)n
≤ d

(
1 +

1

4ed2

)4ed2

≤ de.

Hence,

|σnp − σn| ≤ |σnp|+ |σn| ≤ 2de < p. (7)

Combining (6) and (7) we obtain σnp = σn.

We will use the notation of Lemma 2.20. Since for any n ∈ {1, . . . , d},

Σn(αp1, . . . , α
p
d) = σnp = σn = Σn(α1, . . . , αd),

we conclude by Lemma 2.20 that Sn(αp1, . . . , α
p
d) = Sn(α1, . . . , αd) for all n in

{0, . . . , d}. Hence,

(X − αp1) . . . (X − αpd) = (X − α1) . . . (X − αd).

This shows that αp and α are conjugates. Using Lemma 2.21, we conclude
that α = 0 or α is a root of unity.

3 Siegel’s lemma

In the next chapter, we will use an important lemma in the proof of a lower
bound of the Mahler measure for non-zero algebraic integers that are not a
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root of unity. This lemma was for the first time formally stated by Siegel [7].

Consider a system of linear equations

a11x1 + . . . + a1NxN = 0
...

...
...

aM1x1 + . . . + aMNxN = 0,

(8)

where aij are coefficients (1 ≤ i ≤ M, 1 ≤ j ≤ N) and x1, . . . , xN unknowns.
For now, assume the coefficients aij are all rational integers. If N > M , then
there is a non-trivial solution (x1, . . . , xN ) ∈ QN of (8). This also gives an
integer solution of this system of equations: multiply the rational solution by
the product of the denominators of the entries of the solution. Intuitively,
if N −M is large, then there is a non-trivial solution (x1, . . . , xn) ∈ ZN for
which the value maxj |xj | is small, since the dimension of the solution space
over Q is at least N −M . However, the minimal value of maxj |xj | for non-
trivial solutions (x1, . . . , xN ) ∈ ZN also depends on the coefficients of the
linear equations. For instance, if L is an integer, then any non-trivial solution
(x0, x1, . . . , xN ) ∈ ZN of x0 + Lx1 + · · ·+ LNxN = 0 has maxj |xj | ≥ |L|.

Lemma 3.1 (Siegel’s lemma). Let N > M be positive integers and aij ∈ Z for
1 ≤ i ≤M, 1 ≤ j ≤ N . Define A := maxij |aij | (with 1 ≤ i ≤M, 1 ≤ j ≤ N).
Then there exists a solution (x1, . . . , xN ) ∈ ZN\{0} such that

max
1≤j≤N

|xj | ≤ (NA)M/(N−M).

The proof of this lemma makes use of the pigeonhole principle and can be
found in [7]. It is an existence theorem: the proof does not give an efficient
method of finding such a solution (x1, . . . , xN ).

We prove an adaptation of Siegel’s lemma, where the coefficients are algebraic
integers which are not necessarily rational integers. Notice the similarities
with the original lemma.

Lemma 3.2 (Siegel’s Lemma (modified)). Let Q ⊂ K be a finite extension
of degree d, and let aij ∈ K for i = 1, . . . ,M and j = 1, . . . , N be algebraic
integers. Assume that for each i ∈ {1, . . . ,M} there exists a j ∈ {1, . . . , N}
with aij 6= 0. Also suppose N > dM . Let σ1, . . . , σd be the embeddings of K
into C. Then (8) has a non-trivial solution (x1, . . . , xN ) ∈ ZN satisfying

max
1≤i≤N

|xi| ≤

2
√

2N

(
M∏
i=1

d∏
k=1

max
j
|σk(aij)|

)1/(dM)
dM/(N−dM)

.

Remark 3.3. We are given a finite field extension Q ⊂ K of degree d, al-
gebraic integers aij ∈ K and N > dM . Is it clear that (8) has a non-trivial
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solution (x1, . . . , xN ) ∈ ZN at all? Yes: we can choose a basis of K over Q
and express all coefficients aij as Q-linear combinations of this basis. Then we
get an equivalent system of dM linear homogeneous equations over Q. Since
N > dM , this system has a non-trivial solution (x1, . . . , xN ) ∈ ZN . �

Proof of Lemma 3.2. We will use the pigeonhole principle to establish the ex-
istence of a non-trivial tuple (x1, . . . , xN ) ∈ ZN such that maxj |xj | and∣∣∣∣∣∣σk

( N∑
j=1

aijxj

)∣∣∣∣∣∣
are small for all k ∈ {1, . . . , d} and i ∈ {1, . . . ,M}. Then we conclude that
(x1, . . . , xN ) satisfies (8), by showing∣∣∣∣∣∣NK/Q

( N∑
j=1

aijxj

)∣∣∣∣∣∣ < 1

for all i ∈ {1, . . . ,M}.

Write d = r1 + 2r2 where r1 and 2r2 are the numbers of real embeddings
and complex embeddings respectively. Without loss of generality, assume
σ1, . . . , σr1 are the real embeddings and assume that σr1+k = σr1+r2+k for
k = 1, . . . , r2. For k = 1, . . . , d define

τk :=


σk if k ≤ r1,

Reσk if r1 < k ≤ r1 + r2,

Imσk if r1 + r2 < k ≤ r1 + 2r2.

Let Y > 0 be an integer, which we will specify later. For any (y1, . . . , yN ) in
{0, . . . , Y }N and for k ∈ {1, . . . , d}, i ∈ {1, . . . ,M}, the inequalities∣∣∣∣∣∣τk

( N∑
j=1

aijyj

)∣∣∣∣∣∣ ≤ NY max
1≤j≤N

|τk(aij)| =: Ak,i (9)

hold, so
∣∣∣τk(∑N

j=1 aijyj)
∣∣∣ lies in the interval [−Ak,i, Ak,i]. For all k ∈ {1, . . . , d},

i ∈ {1, . . . ,M}, we divide [−Ak,i, Ak,i] in ni > 0 intervals, each with the same
length 2Ak,i/ni, where ni is an integer to be specified later. Suppose the
following inequality holds:

(Y + 1)N >

M∏
i=1

d∏
k=1

ni =

M∏
i=1

ndi . (10)

Then by the pigeonhole principle, there exist (y1, . . . , yN ), (y′1, . . . , y
′
N ) in

12



{0, . . . , Y } satisfying∣∣∣∣∣∣τk
( N∑
j=1

aijyj

)
− τk

( N∑
j=1

aijy
′
j

)∣∣∣∣∣∣ ≤ 2Ak,i
ni

for all k ∈ {1, . . . , d}, i ∈ {1, . . . ,M}.

Take (x1, . . . , xN ) := (y1 − y′1, . . . , yN − y′N ) ∈ {−Y, . . . , Y }N and consider an
i ∈ {1, . . . ,M} Notice that∣∣∣∣∣∣τk

( N∑
j=1

aijxj

)∣∣∣∣∣∣ ≤ 2Ak,i
ni

for all k ∈ {1, . . . , d}, i ∈ {1, . . . ,M}.

Then for k = 1, . . . , r1 we have∣∣∣∣∣∣σk
( N∑
j=1

aijxj

)∣∣∣∣∣∣ =

∣∣∣∣∣∣τk
( N∑
j=1

aijxj

)∣∣∣∣∣∣ ≤ 2Ak,i
ni

=
2NY max1≤j≤N |σk(aij)|

ni
,

while for k = r1 + 1, . . . , r1 + r2 we get∣∣∣∣∣∣σk
( N∑
j=1

aijxj

)∣∣∣∣∣∣ =

√√√√√
(Reσk)

( N∑
j=1

aijxj

)2

+

(Imσk)
( N∑
j=1

aijxj

)2

≤

√(
2Ak,i
ni

)2

+

(
2Ak+r1,i

ni

)2

≤

√
2

(
2NY max1≤j≤N |σk(aij)|

ni

)2

=
2
√

2NY max1≤j≤N |σk(aij)|
ni

.

This leads to∣∣∣∣∣∣σk
( N∑
j=1

aijxj

)∣∣∣∣∣∣ ≤ 2
√

2NY max1≤j≤N |σk(aij)|
ni

for k = 1, . . . , d. (11)

Again, consider an i ∈ {1, . . . ,M}. We will choose ni such that∣∣∣∣∣∣NK/Q

( N∑
j=1

aijxj

)∣∣∣∣∣∣ < 1.

Then it follows that
∑N

j=1 aijxj = 0 since this sum is an algebraic integer, and

13



thus its norm is a rational integer by Corollary 2.6. By (11), we have∣∣∣∣∣∣NK/Q

( N∑
j=1

aijxj

)∣∣∣∣∣∣ =

d∏
k=1

∣∣∣∣∣∣σk
( N∑
j=1

aijxj

)∣∣∣∣∣∣ ≤
d∏

k=1

2
√

2NY max1≤j≤N |σk(aij)|
ni

=

(
2
√

2NY

ni

d∏
k=1

max
1≤j≤N

|σk(aij)|1/d
)d

.

So by taking

ni :=

⌊
1 + 2

√
2NY

d∏
k=1

max
1≤j≤N

|σk(aij)|1/d
⌋
,

we ensure that
∣∣∣NK/Q(

∑N
j=1 aijxj)

∣∣∣ < 1. Since this norm is a rational integer,

we find
∑N

j=1 aijxj = 0.

It remains to verify (10). Notice that

M∏
i=1

ndi =

M∏
i=1

⌊
1 + 2

√
2NY

d∏
k=1

max
1≤j≤N

|σk(aij)|1/d
⌋d

≤
M∏
i=1

(
1 + 2

√
2NY

d∏
k=1

max
1≤j≤N

|σk(aij)|1/d
)d

<
M∏
i=1

(
2
√

2N(Y + 1)
d∏

k=1

max
1≤j≤N

|σk(aij)|1/d
)d

=
(

2
√

2N(Y + 1)
)dM M∏

i=1

d∏
k=1

max
1≤j≤N

|σk(aij)| ,

where the strict inequality holds because for all i ∈ {1, . . . ,M} there exists an
` ∈ {1, . . . , N} such that ai` 6= 0 and thus

2
√

2N
d∏

k=1

max
1≤j≤N

|σk(aij)|1/d >

(
d∏

k=1

|σk(ai`)|

)1/d

=
∣∣NK/Q(ai`)

∣∣ ≥ 1.

So (10) is satisfied if

(Y + 1)N−dM ≥ (2
√

2N)dM
M∏
i=1

d∏
k=1

max
1≤j≤N

|σkaij | . (12)

Now take

Y :=

((2
√

2N)dM
M∏
i=1

d∏
k=1

max
1≤j≤N

|σkaij |

)1/(N−dM)

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and notice that (12) (and thus (10)) is satisfied. These choices of n1, . . . , nM
and Y result in a solution (x1, . . . , xN ) ∈ {−Y, . . . , Y }N of (8) with maxj |xj |
bounded as desired.

4 Dobrowolski’s Theorem

We prove a slightly weaker version of a theorem of Dobrowolski [5].

Theorem 4.1. Let α be a non-zero algebraic number of degree d ≥ 2 that is
not a root of unity. Then

M(α) ≥ 1 +
1

11700

(
log log d

log d

)3

.

We follow the proof given by Dobrowolski of this theorem. It relies on the
construction of a polynomial with small length.

Definition 4.2. The length of a polynomial f = f0 +f1X+ · · ·+fdXd ∈ C[X]
is defined as

‖f‖ := |f0|+ |f1|+ · · ·+ |fd| .

The idea of the proof of the theorem is constructing a multiple F of a power
fMα of fα with M > 0 an integer, such that the length ‖F‖ of F is small. We
subsequently choose a prime p for which NQ(α)/Q(F (αp)) is non-zero. Then

pdM will be a lower bound for the absolute value of this norm, and an upper
bound will be obtained in terms of M(α) and ‖F‖. Comparing the bounds
will yield the result.

Remark 4.3. The length ‖·‖ clearly is a norm on the C-vector space C[X].
Moreover, for f, g ∈ C[X] we have ‖fg‖ ≤ ‖f‖ ‖g‖. Namely, if we write
f = f0 + · · ·+ fnX

m, then we have

‖fg‖ ≤
m∑
i=0

‖fig‖ =
m∑
i=0

|fi| ‖g‖ = ‖f‖ ‖g‖ . �

The following lemma is a consequence of Lemma 2.18 and plays a key role
in the proof of Theorem 4.1: it will eventually provide a lower bound for the
quantity

∣∣NQ(α)/Q(F (αp))
∣∣.

Lemma 4.4. Let α be an algebraic integer of degree d and let p be a prime.
Then NQ(α)/Q(fα(αp)) is a rational integer divisible by pd.

Proof. By Lemma 2.18 there exists g ∈ Z[X] such that

fα(Xp)− fα(X)p = pg(X).
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Then we have
fα(αp) = fα(α)p + pg(α) = pg(α).

Hence,

NQ(α)/Q(fα(αp)) = NQ(α)/Q(pg(α)) = pdNQ(α)/Q(g(α)). (13)

NQ(α)/Q(g(α)) is a rational integer by Corollary 2.6. Now (13) proves the
lemma.

The prime counting function π : R≥1 → Z is defined by x 7→ #{p ≤ x | p is prime}.
The following result is stated in [16, Corollary 3].

Lemma 4.5. π(2x)− π(x) > 3x/(5 log x) for all real x ≥ 41/2.

Before we give the proof of Theorem 4.1, we finish with three lemmas.

Lemma 4.6. Let α be an algebraic number of degree d, not a root of unity,
and suppose deg(αn) = d for all integers n ≥ 1. Let F ∈ Z[X] be a non-zero
polynomial of degree N and assume N/d ≥ 13. Define x := 3(N/d) log(N/d).
Then there exists a prime p such that

F (αp) 6= 0 and x < p ≤ 2x.

Proof. Lemma 2.21 implies that if n,m are distinct positive integers, then
αn, αm are not conjugate. Let ζ be the number of primes p ∈ (x, 2x] such
that F (αp) = 0. Then we have N = degF ≥ dζ, since deg(αn) = d for all
integers n ≥ 1 and because F is non-zero. Hence, ζ ≤ N/d, so it suffices to
show π(2x) − π(x) > N/d. Write y := N/d and notice that x ≥ 41/2 since
y ≥ 13. By Lemma 4.5,

π(2x)− π(x) >
3x

5 log x
=

9y log y

5 log(3y log y)
> y = N/d,

where the last inequality holds because y ≥ 10. We find π(2x)−π(x) > ζ and
this proves the lemma.

Lemma 4.7. Let α be an algebraic number of degree d and suppose there exists
a positive integer n such that deg(αn) < d. Then there exists an algebraic
number β such that deg β < d and 1 < M(β) ≤M(α).

Proof. Let f ∈ (Q(αn))[X] be the monic minimal polynomial of α over the
field Q(αn) and consider β := f(0) ∈ Q(αn). Let ζn be a n-th root of unity.
Then f divides the polynomial

g := Xn − αn =
n∏
k=1

(X − ζknα)

since g(α) = 0. So β is the product of deg f zeroes of g. Therefore, for some
integer m we have β = f(0) = ζmn α

r with r := deg f = [Q(α) : Q(αn)]. Since
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β ∈ Q(αn) and deg(αn) < degα, we have deg β < degα.

Let Σ be the set of embeddings of Q(α) into C. Notice that ζmn ∈ Q(α), so for
all σ ∈ Σ we have

|σ(β)| = |σ(ζmn )| |σ(αr)| = |σ(α)r| = |σ(α)|r . (14)

Moreover, all conjugates of β appear exactly [Q(α) : Q(β)] times in the se-
quence (σ(α))σ∈Σ. Hence,

M(β) =

(∏
σ∈Σ

max{1, |σ(β)|}

)1/[Q(α):Q(β)]

=

(∏
σ∈Σ

max{1, |σ(α)|}

)r/[Q(α):Q(β)]

≤
∏
σ∈Σ

max{1, |σ(α)|} = M(α),

where we have used

r = [Q(α) : Q(αn)] ≤ [Q(α) : Q(β)].

Finally, (14) also shows that M(β) > 1 since M(α) > 1.

Lemma 4.8. Let α be an algebraic integer of degree d. Let N,M be positive
integers satisfying

M ≥ 3, N ≥ 10, dM < 1
2N. (15)

Then there exists a non-zero polynomial F ∈ Z[X] with degF ≤ N , such that
α is a zero of F of multiplicity M and

max
0≤i≤N

|Fi| ≤ N2dM2/NM(α)2M . (16)

Proof. Let σ1, . . . , σd be the embeddings of Q(α) into C. Define
(
n
k

)
:= 0 for

all integers n, k with k < 0. Consider the equations in (F0, . . . , FN ) ∈ ZN
given by

N∑
j=0

(
j

j − i

)
Fkα

j−i = 0, 0 ≤ i ≤M − 1. (17)

By Lemma 3.2 there exists a non-trivial solution (F0, . . . , FN ) ∈ ZN of (17)
such that

max
0≤i≤N

|Fi| ≤

((
2
√

2(N + 1)
)dM ( d∏

k=1

M−1∏
i=0

max
0≤j≤N

∣∣∣∣( j

j − i

)
σk(α

j−i)

∣∣∣∣
))1/(N−dM)

≤

((
2
√

2(N + 1)
)dM ( d∏

k=1

M−1∏
i=0

N i max{1, σk(α)}N
))1/(N−dM)

≤
((

2
√

2(N + 1)
)dM

NdM2/2M(α)MN

)1/(N−dM)

(18)
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Now consider the polynomial F = F0 + F1X + · · ·+ FNX
N . Then α is a zero

of F with multiplicity M , since for all integers i ∈ {0, . . . ,M − 1}, the i-th
derivative F (i) of F satisfies

F (i)(α) = i!

N∑
j=0

(
j

j − i

)
Fkα

j−i = 0.

By the assumed inequalities involving M ≥ 3 and N ≥ 10, we have

2
√

2(N + 1) ≤ 2
√

2 · 11

10
N ≤ N1/2 ·N ≤ NM/2.

Since also dM ≤ 1
2N by assumption, inequality (18) simplifies to

max
0≤i≤N

|Fi| ≤
(
NdM2

M(α)MN
)2/N

= N2dM2/NM(α)2M .

Proof of Theorem 4.1. Let α be a non-zero algebraic integer that is not a root
of unity and of degree d. First notice that the theorem holds for d ≤ 20 by
Theorem 2.17. Now suppose d ≥ 21. Consider integers N,M satisfying (15)
and N/d ≥ 13. By Lemma 4.8 there exists a non-zero polynomial F ∈ Z[X]
with degF ≤ N , such that α is a zero of F of multiplicity M , and such that
(16) holds. Suppose deg(αn) = d holds for all positive integers n, otherwise we
finish the proof by an inductive argument using Lemma 4.7. By Lemma 4.6,
there is a prime p ∈ (3(N/d) log(N/d), 6(N/d) log(N/d)] such that F (αp) 6= 0.
Write F = F0 + · · ·+ FNX

N . Then we have∣∣NQ(α)/Q(F (αp))
∣∣ =

d∏
k=1

|F (σkα
p)| ≤

d∏
k=1

‖F‖max{1, |σkα|}pN

≤ ‖F‖dM(α)pN . (19)

On the other hand, we have that fMα divides F in Z[X] since α is a zero of
F with multiplicity M and fα is monic. Thus we can write fMα g = F with
g ∈ Z[X]. Then

NQ(α)/Q(F (αp)) = NQ(α)/Q(fα(αp))M ·NQ(α)/Q(g(αp))

is a rational integer divisible by pdM by Lemma 4.4. Since F (αp) 6= 0, we
conclude that ∣∣NQ(α)/Q(F (αp))

∣∣ ≥ pdM . (20)

From (19) and (20) we get

pdM ≤
∣∣NQ(α)/Q(F (αp))

∣∣ ≤ ‖F‖dM(α)pN . (21)

We now use ‖F‖ ≤ N · max0≤i≤N |Fi| and (16) to give an upper bound for
‖F‖. Together with (21) this gives

pM ≤ ‖F‖M(α)pN/d ≤ N1+2dM2/NM(α)2M+pN/d.
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Hence, (
2M +

pN

d

)
logM(α) ≥M log p−

(
1 +

2dM2

N

)
logN. (22)

By (15) we have

2M +
pN

d
=

2dM + pN

d
≤ (p+ 1)N

d
≤ 3pN

2d
,

so (22) gives

logM(α) ≥ 2d

3pN

(
M log p−

(
1 +

2dM2

N

)
logN

)
. (23)

We take M,N such that they satisfy assumptions (15) and maximize the lower
bound

min
x∈I

2d

3xN

(
M log x−

(
1 +

2dM2

N

)
logN

)
(24)

for logM(α), where I := (3(N/d) log(N/d), 6(N/d) log(N/d)]. We take

M :=

⌈
7

log d

log log d

⌉
, and N := dM2,

which turns out in Remark 4.9 to be an almost optimal choice. Notice that
the assumptions N/d ≥ 13 and (15) are satisfied.

We find (
1 +

2dM2

N

)
logN = 3(log d+ 2 logM) ≤ 9 log d, (25)

where the inequality holds because d ≥ 21. Moreover, log p ≥ log(N/d) =
2 logM , and this gives

M log p ≥ 2M logM = 14 log d

(
1 +

log 7− log log log d

log log d

)
≥ 13 log d. (26)

The last inequality can be obtained by substituting c := 7/ log log d and ob-
serving that c log c ≥ −1/e for all c > 0. From (23), (25) and (26) we get

logM(α) ≥ 2d

3pN
· 4

13
M log p =

8

39
· dM
N
· log p

p
≥ 8

39
·M−1 · 2 logM

6M2 log(M2)

=
4

117M3
≥ 1

11700

(
log log d

log d

)3

,

where we used d ≥ 21 for the last inequality. M(α) ≥ 1 + logM(α) completes
the proof.

Remark 4.9. We will use the notation of the proof of Theorem 4.1. From the
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lower bound (24) for logM(α), it is only possible to improve the lower bound

1

11700

(
log log d

log d

)3

for logM(α) by a constant factor. We will show this. Define

µ(M,N) := min
x∈I

2d

3xN

(
M log x−

(
1 +

2dM2

N

)
logN

)
and assume that M,N are such that

µ(M,N) ≥
(

log log d

log d

)3

. (27)

Also assume that N > dM and d ≥ 3. From d ≥ 3 and (27) it follows that
µ(M,N) ≥ 0. In order to show the bound cannot be much improved, we can
make these assumptions.

For functions f1(M,N), f2(M,N) depending on integers N,M , we will write
f1(M,N)� f2(M,N) if there exists a constant c > 0 such that the inequality
f1(M,N) ≤ cf2(M,N) holds for all integers M,N that satisfy assumptions
(27) and N > dM . Similarly we write f1(M,N) � f2(M,N) if we have
f2(M,N)� f1(M,N).

We will prove three inequalities:

(i) µ(M,N)� d2M

N2

(ii) M � log d

log log d

(iii)
N

dM
� log d

log log d
.

Assuming these inequalities, we have

µ(M,N)�
(
N

dM

)−2

M−1 �
(

log log d

log d

)3

,

which is what we want to show. Now we prove (i), (ii) and (iii).

(i) Using that I = [3(N/d) log(N/d), 6(N/d) log(N/d)], we find

µ(M,N) ≤ min
x∈I

dM log x

xN
�

dM log(Nd log N
d )

N2

d log N
d

�� d2M

N2
.

(ii), (iii) From (i) and assumption (27) it follows that

d2M

N2
� µ(M,N)� (log d)−3.
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Using this and the inequality N > dM shows that

N

d
≤ N

d
· N
dM
� (log d)3.

Hence,

log
N

d
� log log d.

By the non-negativity of µ(M,N), we now find

M log log d�
(

1 +
2dM2

N

)
logN ≥

(
1 +

2dM2

N

)
log d.

Hence

M log log d� log d, and M log log d� dM2 log d

N
.

These two inequalities prove (ii) and (iii) respectively. �

Example 4.10. Consider Lehmer’s polynomial

L := X10 +X9 −X7 −X6 −X5 −X4 −X3 +X + 1.

We will follow the proof of Theorem 4.1 and consider the inequalities in (21):

pdM ≤
∣∣NQ/Q(α)F (αp)

∣∣ ≤ ‖F‖dM (α)pN . (28)

Which of the two bounds is the closest to the value of
∣∣NQ/Q(α)F (αp)

∣∣? We
will investigate this.

L has exactly 8 roots on the unit circle [13]. The other two roots are real. Let
α be the real root larger than 1. Then M(α) ≈ 1.176. It is of degree d := 10.
As in the proof of Theorem 4.1, we take

M :=

⌈
7

log d

log log d

⌉
= 20, N := dM2 = 4000.

We search for a polynomial F such that fMα divides it, degF ≤ N and such
that

‖F‖ ≤ N2dM2/NM(α)2M .

This is possible by Lemma 4.8. We take F := (Φ6L)M where Φ6 := X2−X+1.
Then ‖F‖ = 1996907431 ≈ 1.997 · 109 and this is smaller than

N2dM2/NM(α)2M = 40002M(α)40 ≈ 1.058 · 1010.

The degree of F is 240. We also choose a prime p such that

3
N

d
log

N

d
≤ p ≤ 6

N

d
log

N

d
.

Since (N/d) log(N/d) ≈ 2396.6, we can take the prime p := 10007.

The following upper bound for
∣∣NQ(α)/QF (αp)

∣∣ is better than the one given in
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(28): ∣∣NQ(α)/QF (αp)
∣∣ ≤ ‖F‖dM(α)p deg(F ) = ‖F‖dM M(α)240p. (29)

Therefore, the upper bound for
∣∣NQ(α)/QF (αp)

∣∣ in (28) is not a good approxi-
mation of its actual value. This can occur because the polynomial constructed
in the proof of Theorem 4.1 with Lemma 3.2, can have a degree smaller than
N .

We calculate

pdM ≈ 1.150217 · 10800,

‖F‖dM ≈ 1.166200 · 10186,

M(α)pN ≈ 8.091289 · 102822414,∣∣NQ(α)/Q(F (αp))
∣∣ ≈ 2.165338 · 10169368.

We see that the absolute value of the norm is neither close to the lower bound,
nor to the upper bound in (28). However, the bound in (29) is much sharper:

M(α)240p ≈ 7.842979 · 10169344.

In general the first inequality in (29) is expected to be quite sharp: if the
prime p is large enough, than the modulus of a p-th power of a conjugate of α
is either approximately 0, or equal to 1, or very large. If the conjugates of αp

are not unreasonably close to zeroes of F , then
∣∣NQ(α)/Q(F (αp))

∣∣ is roughly

of the order M(α)p deg(F ). �

5 Polynomials near cyclotomic polynomials

In this chapter, we investigate whether irreducible polynomials with small
Mahler measure are close to polynomials with a Mahler measure equal to
1. Furthermore, we will give a lower bound for the Mahler measure of a
polynomial in terms of the distance to a product of cyclotomic polynomials.
To do this, we introduce self-inversive polynomials.

5.1 Self-inversive polynomials

Definition 5.1. Let f = a0 + a1X + · · ·+ anX
n ∈ C[X]. Then

f∗ = an + an−1X + · · ·+ a0X
n

is called the conjugate reciprocal of f . The polynomial f is called self-inversive
if there exists a u ∈ C such that |u| = 1 and f∗ = uf .

For any f = a0 + · · · + anX
n ∈ C[X] we write f = a0 + · · · + anX

m. Notice
that for all f ∈ C[X] of degree n we have f∗(X) = Xnf(1/X).
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Remark 5.2. Let f1, f2 ∈ C[X] be polynomials of degree d1, d2 respectively.
Then (f1f2)∗ = f∗1 f

∗
2 :

(f1f2)∗ = Xd1+d2f1f2(1/X) = Xd1f1(1/X) ·Xd2f2(1/X) = f∗1 f
∗
2 .

We conclude that the product of self-inversive polynomials is again self-inversive:
let u1, u2 ∈ C on the unit circle be such that f∗i = ufi for i = 1, 2, then we
find

(f1f2)∗ = f∗1 f
∗
2 = (u1u2)f1f2. �

Definition 5.3. A non-zero algebraic number α is called reciprocal, if α, α−1

are conjugates.

Lemma 5.4. Let α be a non-zero algebraic number. Then α is reciprocal if
and only if the primitive mimimal polynomial Fα of α is self-inversive (i.e.,
F ∗α = ±Fα).

Proof. If F ∗α = ±Fα, then

Fα(α−1) = ±F ∗α(α−1) = ±αdFα(α) = 0,

so indeed α is reciprocal.

Now assume α is reciprocal. We will prove F ∗α = ±Fα. We have

F ∗α(α) = α−dFα(α−1) = 0,

so there exists a non-zero x ∈ Q such that F ∗α = xFα. Write x = a/b with
a, b ∈ Z coprime and b non-zero. Then bF ∗α = aFα. By definition of Fα, there
is no common divisor d ∈ Z with |d| > 1 of all coefficients of Fα. Hence,
|a| = |b| = 1 and we find x ∈ {±1}.

Remark 5.5. All reciprocal algebraic units except ±1 are of even degree. To
show this, suppose α is a non-zero algebraic unit which is reciprocal and of
odd degree 2n+ 1. By the previous lemma, the monic minimal polynomial fα
of α satisfies fα = ±f∗α. Notice that

f∗α(−1) = (−1)2n+1fα(1/(−1)) = −fα(−1) and f∗α(1) = fα(1).

So if fα = f∗α, we find 2fα(−1) = fα(−1) + f∗α(−1) = 0. In this case, we thus
have α = −1 and fα = X + 1. Similarly, if fα = −f∗α, we find fα(1) = 0 and
thus α = 1, fα = X − 1.

In addition, this argument shows that for all non-zero reciprocal algebraic
units α 6= 1, we have fα = f∗α (this does not depend on the parity of the
degree). �

Corollary 5.6. Let α be reciprocal and ‖Fα‖ ≤ 4. Then α is a root of unity.

Proof. By Lemma 5.4 we have F ∗α = ±Fα. By Remark 5.5 we can assume
degFα = 2n for some positive integer n. Clearly, ‖Fα‖ ≥ 2. If ‖Fα‖ = 2, we
find Fα = X2n ± 1, and then α is a 2n-th or 4n-th root of unity. If ‖Fα‖ = 3,
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we find Fα = X2n ± Xn + 1, and this implies α is a 3n-th or 6n-th root of
unity. If ‖Fα‖ = 4, then there exist ε1, ε2 ∈ {±1} such that

Fα = X2n + ε1ε2X
n+m + ε1X

n−m + ε2.

But this gives Fα = (Xn+m + ε1)(Xn−m + ε1ε2), which is reducible. Hence,
‖Fα‖ = 4 cannot occur at all.

5.2 Polynomials near cyclotomic polynomials

We will investigate whether for monic irreducible polynomials f ∈ Z[X] with
small Mahler measure there exists a g ∈ Z[X] such that M(g) = 1 and ‖f − g‖
is small. We will denote the n-th cyclotomic polynomial by Φn for all positive
integers n.

Example 5.7. Consider Lehmer’s polynomial

L := X10 +X9 −X7 −X6 −X5 −X4 −X3 +X + 1.

We find that M(L+X5) = 1. In fact,

L = Φ2
1Φ2

2Φ2
3Φ6 −X5.

Since M(L−X5) ≈ 1.845 we find that L−X5 is not the product of cyclotomic
polynomials. �

Remark 5.8. For monic irreducible polynomials f ∈ Z[X] with small Mahler
measure yet greater than 1, and of even degree 2n, often exactly one of the
polynomials f ±Xn is the product of cyclotomic polynomials. However, this
is not always the case, as we will show. We will consider monic irreducible
polynomials with the smallest known Mahler measures. If f ∈ Z[X] is of
degree 2n and reciprocal and f = a0 + a1X + · · · + a2nX

2n, then we denote
its coefficients by [a0, . . . , an]. For a non-zero polynomial f ∈ Z[X], we write
ν(f) := #{z ∈ C | |z| > 1, f(z) = 0} for the number of roots of f outside the
unit disk.

For a polynomial f ∈ Z[X], we define

CyclDist(f) := min{‖f − g‖ | g ∈ Z[X]\{0}, M(g) = 1},
CyclDist∗(f) := min{‖f − g‖ | g ∈ Z[X]\{0}, M(g) = 1, deg g = deg f}.

CyclDist(f) = 1 does not hold for all monic irreducible polynomials f with
integer coefficients, despite the results in Table 1. For example, f given by

[1, 2, 2, 2, 1, 0,−1,−2,−2,−1, 0, 1, 1, 1, 1, 1]

gives CyclDist(f) = 7. Its Mahler measure is approximately M(f) ≈ 1.285.

We use a list of Mossinghoff in [13]: it contains all polynomials f ∈ Z[X] with
1 < M(f) < 1.30 and deg f ≤ 44. For computational reasons, we do not
compute CyclDist but CyclDist∗ for polynomials. A scatter plot of CyclDist∗
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coefficients f 2n M(f) ν(f) cycl. prod.

[1, 1, 0,−1,−1,−1] 10 1.176 1 f +X5

[1, 1, 1, 1, 0, 0,−1,−1,−1,−1] 18 1.188 1 f −X9

[1, 0, 0, 1,−1, 0, 0,−1] 14 1.200 1 f −X7

[1, 1, 1, 0, 0,−1, 0,−1, 0,−1] 18 1.201 2 none
[1, 0,−1, 0, 0, 0, 0, 1] 14 1.202 1 f −X7

[1, 0, 1, 0, 0, 1,−1, 1, 0, 0, 1,−1] 22 1.205 2 none
[1, 1, 1, 1, 0, 0, 0,−1,−1,−1,−1, 0, 0, 0, 1] 28 1.208 2 f −X14

[1, 1, 0, 0, 1, 1, 0,−1,−1,−1,−1] 20 1.213 2 none
[1, 1, 1, 1, 1, 0,−1,−1,−1,−1,−1] 20 1.215 2 f −X10

[1, 0, 0, 0,−1, 1] 10 1.216 1 f −X5

Table 1: the ten monic irreducible polynomials with the smallest known Mahler mea-
sures [13]. For such a polynomial f of even degree 2n, the table shows which of the
polynomials f ±Xn is the product of cyclotomic polynomials. The Mahler measures
are rounded.

of the non-zero polynomials f ∈ Z[X] with

1 < M(f) < 1.30, deg f ≤ 32, ν(f) = 1

is given in Figure 2.

1.18 1.2 1.22 1.24 1.26 1.28 1.3

−1

0

1

2

3

4

5

Mahler measure

CyclDist∗

Figure 2: For all monic irreducible polynomials f ∈ Z[X] with M(f) < 1.30, ν(f) = 1
and deg f ≤ 32, we calculated CyclDist∗(f) if CyclDist∗(f) ≤ 6. If CyclDist∗(f) > 6,
then −1 is plotted.

We see that not for all monic irreducible polynomials f ∈ Z[X] with ν(f) = 1
we have CyclDist(f) = 1. However, it appears that of these polynomials
the ones with small Mahler measures also have a small value for CyclDist∗.
In Figure 3 the requirement ν(f) = 1 of the polynomials f is dropped. In
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this figure the polynomials with small Mahler measure also tend to have a
smaller value for CyclDist∗. These results seem to indicate that polynomials
with small Mahler measure and integer coefficients are close to products of
cyclotomic polynomials. In Figure 3, it also appears that CyclDist∗ tends to
be odd.

1.18 1.2 1.22 1.24 1.26 1.28 1.3

−1

0

1

2

3

4

5

6

Mahler measure

distance

Figure 3: For all monic irreducible polynomials f ∈ Z[X] with 1 < M(f) < 1.30 and
deg f ≤ 32, we calculated CyclDist∗(f) if CyclDist∗(f) ≤ 6. If CyclDist∗(f) > 6,
then −1 is plotted.

�

Conversely, it might also be interesting to investigate the following. If M(g)
equals 1 for some monic polynomial g ∈ Z[X], then what is the Mahler measure
of polynomials f ∈ Z[X] with ‖f − g‖ = 1? If we consider g = Φ5p for
primes p 6= 5 and denote its degree by d := 4(p − 1), then it appears that
M(Φ5p −Xd/2) is not very large: see Table 2.

p 7 11 13 17 19 23 29 31

M(Φ5p −X2(p−1)) 1.29 1.31 1.29 1.30 1.29 1.30 1.29 1.29

Table 2: The approximated Mahler measure of M(Φ5p − X2(p−1)) for some prime
numbers p.

5.3 A lower bound for the Mahler measure

We will now prove a Proposition which gives a lower bound for the Mahler
measure of certain polynomials close to products of cyclotomic polynomials.
First, we prove a few lemmas. For all positive integers n, let ω(n) denote the
number of distinct prime divisors of n. An integer n is called squarefree if
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p2 - n for all primes p. Let µ : Z>0 → Z be the Möbius-function:

µ(n) =

{
(−1)ω(n) if n is squarefree

0 if n is not squarefree.

By applying the Möbius inversion formula [6, Theorem 266] to the identity

Xn − 1 =
∏
d|n

Φd

we obtain

Φn =
∏
d|n

(
Xn/d − 1

)µ(d)
. (30)

for all integers n > 0.

Lemma 5.9. Let n be a positive integer. Then there exists a product of cy-
clotomic polynomials h ∈ Z[X]\{0} such that

‖hΦn‖ ≤ 22ω(n)−1
, ‖h‖ ≤ 22ω(n)−1

and deg h ≤ n2ω(n)−2.

Proof. We take h to be equal to the denominator of the right hand side of
(30):

h :=
∏
d|n

µ(d)=−1

(
Xn/d − 1

)−µ(d)
.

All roots of h are roots of unity, so h is a product of cyclotomic polynomials.
By (30) this choice of h gives

hΦn =
∏
d|n

µ(d)=1

(
Xn/d − 1

)µ(d)
.

Notice that there is a bijection between the subsets of {1, . . . , ω(n)} of even
cardinality and the subsets of {1, . . . , ω(n)} of odd cardinality: send any subset
S of even cardinality to {1} ∪ S if it did not contain S, and otherwise send it
to S\{1}. Since there are 2ω(n) subsets in total, the number of odd subsets
equals 2ω(n)−1 and this equals also the number of even subsets. The number
of positive divisors d | n with µ(d) = −1 equals the number of subsets of
{1, . . . , ω(n)} of odd cardinality, and thus it equals 2ω(n)−1. We conclude that

‖h‖ ≤ 22ω(n)−1
.

Similarly, we also have

‖hΦn‖ ≤ 22ω(n)−1
.
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Finally, we notice that the degree of h satisfies

deg h =
∑
d|n

µ(d)=−1

n

d
≤

∑
d|n

µ(d)=−1

n

2
=
n

2
· 2ω(n)−1 = n2ω(n)−2.

Lemma 5.10. Let f, g ∈ C[X] be polynomials and suppose that g is self-
inversive and that deg g > 2 deg f . Then ‖f − g‖ ≥ ‖f‖.

Proof. Define m := deg f and n := deg g and write g = g0 + · · ·+ gnX
n. Let

g1 := g0+· · ·+gmXm and g2 := gn−mX
n−m+· · ·+gnXn. Since deg g > 2 deg f ,

we have ‖g − f‖ ≥ ‖g1 − f‖ + ‖g2‖. Moreover, because g is self-inversive we
find ‖g2‖ = ‖g1‖. Hence, using the triangle inequality, we conclude that

‖f‖ = ‖f − g1‖+ ‖g1‖ = ‖g1 − f‖+ ‖g2‖ ≤ ‖g − f‖ .

Let ϕ : Z≥1 → Z≥1 defined by n 7→ #(Z/nZ)× be the Euler totient function.

Proposition 5.11. Let n1, . . . , nk be positive integers and let α be a non-zero
algebraic integer that is not a root of unity. Define

D := ‖fα − Φn1 . . .Φnk
‖ and s := 2ω(n1) + · · ·+ 2ω(nk).

Suppose D < ‖fα‖. Then

M(α) ≥ 1 +
log 2(

1 + 1
2s

2
)

21+s/2(D + 1)
.

Proof. Write d := degα. By Lemma 5.9 there exists products of cyclotomic
polynomials h1, . . . , hk ∈ Z[X] such that

‖hiΦni‖ ≤ 22ω(ni)−1
, ‖hi‖ ≤ 22ω(ni)−1

, deg hi ≤ ni2ω(ni)−2

for all 1 ≤ i ≤ k. Define h := h1 . . . hk. Then we have

‖hΦn1 . . .Φn1‖ ≤
k∏
i=1

‖hiΦni‖ ≤ 2s/2, (31)

‖h‖ ≤
k∏
i=1

‖hi‖ ≤ 2s/2. (32)

Define F := hfα. From (32) and (31) we find

‖F‖ = ‖hΦn1 . . .Φnk
+ h(fα − Φn1 . . .Φnk

)‖
≤ ‖hΦn1 . . .Φnk

‖+ ‖h‖ ‖fα − Φn1 . . .Φnk
‖

≤ 2s/2(D + 1). (33)

Consider a prime p. Since α is not a root of unity, neither is αp, and thus
we find h(αp) 6= 0. Moreover, by Lemma 2.21 we have fα(αp) 6= 0. Hence,
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F (αp) 6= 0. Lemma 4.4 now gives∣∣NQ(α)/Q(F (αp))
∣∣ ≥ pd, (34)

and by equation (33) we also have∣∣NQ(α)/Q(F (αp))
∣∣ ≤ (2s/2(D + 1)

)d
M(α)p deg(F ). (35)

Write N := degF . By (34) and (35) we have

M(α) ≥
(

p

2s/2(D + 1)

)d/(pN)

. (36)

By Bertrand’s postulate (Lemma 2.19) there exists a prime p such that

2 · 2s/2(D + 1) ≤ p ≤ 4 · 2s/2(D + 1).

Now let p satisfy these inequalities. Then we find by (36) (and since the
function [2, 4]→ R, x 7→ x1/x attains its global minima in 2 and in 4),

logM(α) ≥ d log 2

21+s/2(D + 1)N
. (37)

We will now give an upper bound for N = degF . For any positive integer n
we have (where p ranges over the prime numbers):

ϕ(n) = n
∏
p|n

(
1− 1

p

)
≥ n2−ω(n). (38)

Let j ∈ {1, . . . , k} be such that ω(nj) is maximal among ω(n1), . . . , ω(nk).
Then we have

deg h =
k∑
i=1

deg hi ≤
k∑
i=1

ni2
ω(ni)−2 ≤

k∑
i=1

ϕ(ni)2
2ω(ni)−2 ≤ 22ω(nj)−2

k∑
i=1

ϕ(ni),

(39)

where the second inequality holds by (38). By Lemma 5.4 and Remark 5.2 we
find that Φn1 . . .Φnk

is self-inversive. Since also D < ‖fα‖, we have by Lemma
5.10,

ϕ(n1) + · · ·+ ϕ(nk) = deg(Φn1 . . .Φnk
) ≤ 2 · deg fα = 2d.

So from (39) we get

deg h ≤ 22ω(nj)−2
k∑
i=1

ϕ(ni) ≤ 22ω(nj)−1d.

Hence,

N = degF = deg h+ deg fα ≤
(

22ω(nj)−1 + 1
)
d ≤

(
1
2s

2 + 1
)
d. (40)
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We conclude by (37) and (40) that

logM(α) ≥ log 2(
1 + 1

2s
2
)

21+s/2(D + 1)
.

We examine a specific case of the previous proposition, namely k = 1 and
ω(n1) ≤ 2.

Corollary 5.12. Let α be a non-zero reciprocal algebraic integer and not a
root of unity. Let n ∈ Z>0 be such that ω(n) ≤ 2. Suppose that

‖fα − Φn‖ ≤ 4.

Then M(α) ≥ 1.0019. If n is prime, then M(α) ≥ 1.0115.

Proof. LetD := 4. By Corollary 5.6 we haveD < ‖fα‖. The result now follows
from Proposition 5.11 with s = 4 if ω(n) = 2 and s = 2 if ω(n) = 1.
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