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Abstract

In this thesis we are interested in constructing an efficient algorithm for solving
the closest vector problem (CVP) in the cyclotomic lattices and their duals. We
will show that every cyclotomic lattice can be constructed by direct sums and
tensor products from the lattices A∗

n (n ≥ 1). For the prime power cases this
results in a linear CVP algorithm for the cyclotomic lattice and its dual. For
the composite case n = p · q with p and q prime we will construct a sub-
exponential CVP algorithm and for its dual a polynomial CVP algorithm. Both
of these algorithms can efficiently be extended to the n = pkql case.

Table of Contents

1. Introduction 3

2. Preliminaries 4

2.1. Lattices and the closest vector problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Composition of lattices and duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. The cyclotomic lattice 7

3.1. Cyclotomic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2. Embedding the cyclotomic lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. Solving the closest vector problem in Am and A∗
m 12

4.1. The closest vector problem in Am . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2. The closest vector problem in A∗
m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5. General techniques for solving the closest vector problem 15

5.1. Composed lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2. Using the Voronoi region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6. Solving the closest vector problem in A∗
m ⊗ A∗

n 19

7. Solving the closest vector problem in Am ⊗ An 21

7.1. Characterizing the Voronoi relevant vectors . . . . . . . . . . . . . . . . . . . . . . . 21

7.2. Finding the closest vector in Am ⊗ An . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8. Conclusions and further work 29

References 30

2



1. Introduction

A lattice is a discrete additive subgroup of Fn generated over Z by some F-
linearly independent (lattice) basis, where F is the field Q or R. A central problem
in the theory of lattices is the closest vector problem (CVP). Given a lattice and a
target point in the F-linear span of that lattice, find a closest lattice point to the
target. It is often seen as one of the hardest computational lattice problems as
many lattice problems polynomially reduce to it. For example the shortest vector
problem (SVP) [1], and more generally finding all successive minima of a lattice
[2].

Furthermore it was already proven in 1981 that for general lattices CVP was NP-
hard under deterministic reductions [3]. In comparison a weaker result for SVP
came almost two decades later when in 1998 SVP was proven to be NP-hard
under randomized reductions [4]. A deterministic reduction that SVP is NP-hard
hasn’t been discovered yet. Although CVP is an NP-hard problem for general
lattices, it is interesting to design lattices for which CVP can be solved efficiently
while at the same time optimizing other lattice properties like the packing density.
Special lattices are for example An(n ≥ 1), Dn(n ≥ 2), En(n = 6, 7, 8), their duals
and the Leech lattice [5].

Applications of CVP can be found in error correction for transmission over ana-
logue channels [6] and in cryptography [7, 8]. Recent attempts to create lattice-
based cryptographic schemes are promising and are mostly based on removing
some added error to a lattice vector using a CVP algorithm [9, 10]. At the mo-
ment exact CVP algorithms are only used for trivial lattices like Zn that have an
orthogonal basis. For nontrivial lattices we resort to approximation algorithms
that undermine the efficiency of the scheme. To prevent this it would be helpful
to find efficient exact CVP algorithms for some nontrivial lattices.

For efficient cryptographic schemes, we are interested in the ring of integers of
certain number fields viewed as lattices. In particular the ring of integers of
cyclotomic number fields (together with an inner product) and their duals are
interesting. Mostly cyclotomic number fields with parameter 2m are used as the
induced lattice has an orthogonal basis which makes CVP trivial. The problem is
that this gives us a sparse parameter set and not much variation.

In this thesis we first notice in section 3 that every prime case cyclotomic lattice is
in fact equal to some case of A∗n, the dual of the root lattice An. For these lattices
efficient CVP algorithms already exist which we will detail in section 4. We will
also see that the prime power cases reduce to the prime case in an efficient way
using some general CVP techniques in section 5. After this we try to generalize
to other cyclotomic lattices and their duals with parameters of the form n = p · q
with p and q prime. For these lattices we will find CVP algorithms that work
respectively in sub-exponential and polynomial time in sections 6 and 7.
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2. Preliminaries

2.1. Lattices and the closest vector problem.

We will start with defining a lattice and some basic properties. In this thesis F

can be the field Q or R as long as its use is consistent locally.

Definition 1 (Lattice). A lattice Λ with F-linearly independent (lattice) basis b1, . . . , bm ∈
Fn is the discrete additive subgroup

Λ :=

{
m

∑
i=1

zibi : zi ∈ Z

}
of Fn. Let B ∈ Fm×n be the matrix with rows b1, . . . , bm. We say that Λ has rank
m and generator matrix B.

Another equivalent way of defining a lattice, which we will use informally, is as
a finitely generated free Z-module M with positive-definite symmetric bilinear
form M × M → F. We can embed M inside Fn for some n ∈ N such that
the given positive-definite symmetric bilinear form corresponds to the canonical
inner product (dot product) on Fn. In this way we get a lattice by our formal
definition.

The matrix G ∈ Fm×m consisting of the canonical inner products of basis vectors
for a given basis, i.e. G = BB>, is called the Gram matrix of Λ. Let span(Λ) be the
linear subspace of Fn spanned by the elements of Λ over F. The Voronoi region of
Λ is

V(Λ) = {x ∈ span(Λ) : ‖x‖ ≤ ‖x− v‖ for all v ∈ Λ}
where ‖.‖ : Fn → R is the canonical norm induced by the canonical inner product
on Fn. So the Voronoi region consists of all points of span(Λ) that are at least as
close to 0 ∈ Λ as to any other point of Λ. We define the determinant of Λ, denoted
det(Λ), as the m-dimensional volume of V(Λ). This can equivalently be defined
as det(Λ) :=

√
det(BB>) =

√
det(G) which is independent of the chosen basis.

The shortest vectors of Λ are the nonzero points of Λ with minimal norm. If v ∈ Λ
is a shortest vector then ρ = ‖v‖

2 is the packing radius of Λ. The covering radius R
is the minimal distance such that any point in span(Λ) is at distance at most R
to a lattice point. Another lattice Λ′ ⊂ Fn of rank m such that Λ′ ⊂ Λ is called a
sublattice of Λ. [5]

There exist a lot of problems in the theory of lattices and for general lattices
these problems are often NP-hard in the lattice rank m. For example we have
the Shortest Vector Problem (SVP) where we want to find the shortest vectors
of a lattice given a basis. SVP is proven to be NP-hard to solve exactly under
randomized reductions [4] and even proven to be NP-hard to approximate within
any constant factor under randomized reductions [11].

The lattice problem we will study is the Closest Vector Problem (CVP).

Definition 2 (Closest Vector Problem). Let Λ ⊂ Fn be a lattice. Given an arbitrary
point t ∈ span(Λ), the goal is to find a closest lattice point of Λ to t, i.e., an
x ∈ Λ that minimizes the distance ‖t− x‖ :=

√
〈t− x, t− x〉. Such an x is also

called a closest vector to t. Note that this is equivalent to finding an x ∈ Λ such
that t− x ∈ V(Λ) as V(Λ) consists of all points that have 0 as a closest vector.
Furthermore the covering radius gives a tight bound on the distance between t
and a closest vector to t.
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For general lattices CVP is NP-hard (under deterministic reductions) to solve
exactly [3]. It is also known to be NP-hard to approximate for factors as large as
m1/O(log log m) [12]. Even if exponential space and time preprocessing is allowed
(CVPP) it is still NP-hard to approximate within a factor of (log(m))1/(2−ε) for
any ε > 0 [13].

Although this problem is hard for general lattices there exist classes of lattices for
which a more efficient algorithm can be found. A trivial example for instance is
CVP in the lattice Zn ⊂ Rn in which case given a t ∈ span(Zn) = Rn we can just
round each coefficient of t individually to obtain a closest vector to t in Zn.

2.2. Composition of lattices and duality.

In case we want to construct new lattices from other lattices we can use the direct
sum, orthogonal sum or tensor product.

Definition 3 (Direct sum and orthogonal sum). We will define two different notions
of summation of two lattices. First, let Λ1 ⊂ Fn1 and Λ2 ⊂ Fn2 be lattices of rank
m1 and m2 respectively. Then we define the direct sum Λ1⊕Λ2 ⊂ Fn1+n2 between
Λ1 and Λ2 as

Λ1 ⊕Λ2 = {x1 ⊕ x2 ∈ Fn1+n2 : x1 ∈ Λ1, x2 ∈ Λ2}
where x1 ⊕ x2 is just the concatenation of the two vectors. Note that the inner
product between elements in Λ1 or Λ2 (embedded as x1 7→ x1 ⊕ 0 and x2 7→
0 ⊕ x2) stays the same and that each two elements x1 ∈ Λ1 and x2 ∈ Λ2 are
orthogonal in Λ1 ⊕Λ2.

For the second notion, let Λ1, Λ2 ⊂ Fn be lattices. Suppose Λ1 has basis a1, . . . , am1
and Λ2 has basis b1, . . . , bm2 . In the case that 〈ai, bj〉 = 0 for all i = 1, . . . , m1 and
j = 1, . . . , m2 we call Λ1 and Λ2 orthogonal and we define the orthogonal sum

Λ1 ⊥ Λ2 ⊂ Fn

between Λ1 and Λ2 as the lattice with basis a1, . . . , am1 , b1, . . . , bm2 .

The tensor product is known to make hard problems often even harder. For
example it is used in [14] to boost the hardness-factor for approximating SVP.

Definition 4 (Tensor product lattices). Let Λ1 ⊂ Fn1 and Λ2 ⊂ Fn2 with basis
a1, . . . , am1 ∈ Fn1 and b1, . . . , bm2 ∈ Fn2 be lattices of rank m1 and m2 respectively.
We define Λ1 ⊗Λ2 ⊂ Fn1n2 as the lattice with basis {ai ⊗ bj : i ∈ {1, . . . , m1}, j ∈
{1, . . . , m2}}. Here c⊗ d = (c1, . . . , cn1)⊗ (d1, . . . , dn1) with c ∈ Fn1 and d ∈ Fn2

is defined as the natural embedding in Fn1n2 as follows:

c⊗ d := (c1d1, c1d2, . . . , c1dn2 , c2d1, . . . , cn1 dn2) ∈ Fn1n2 .

Note that for a, c ∈ Fn1 and b, d ∈ Fn2 we have for the canonical inner product
that:

〈a⊗ b, c⊗ d〉 =
n1

∑
i=1

n2

∑
j=1

aibj · cidj =
n1

∑
i=1

aici

n2

∑
j=1

bjdj = 〈a, c〉 · 〈b, d〉.

This has as a result that if A and B are the Gram matrices of Λ1 and Λ2 respec-
tively, that then A⊗ B (the Kronecker product) is the Gram matrix of Λ1 ⊗ Λ2.
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Then we have that

det(Λ1 ⊗Λ2) =
√

det(A⊗ B) =
√

det((A⊗ Im2) · (Im1 ⊗ B))

=
√

det(A)m2 · det(B)m1 = det(Λ1)
m2 · det(Λ2)

m1 .

We will now introduce the notion of duality in lattices.

Definition 5 (Dual Lattice). For a lattice Λ ⊂ Fn we define its dual lattice Λ∗ ⊂
Fn as

Λ∗ := {y ∈ span(Λ) : ∀x ∈ Λ, 〈x, y〉 ∈ Z}.
Furthermore for every basis b1, . . . , bm of Λ there exists a unique dual basis
d1, . . . , dm that satisfies Span(b1, . . . , bm) = Span(d1, . . . , dm) and

〈bi, dj〉 =
{

1 , if i = j
0 , if i 6= j

for all i, j ∈ {1, . . . , m}. Then d1, . . . , dm is a basis for Λ∗. In fact if B and D are the
generator matrices corresponding to b1, . . . , bm and d1, . . . , dm respectively, then
D> = B>(BB>)−1. [15]

This makes it immediately clear that (Λ∗)∗ = Λ as b1, . . . , bm is again the dual
basis to d1, . . . , dm. Also we have that:

det(Λ∗) =
√

det(DD>) =
√

det(((BB>)−1)>B · B>(BB>)−1)

=
√

det((BB>)−1) =
1√

det(BB>)
=

1
det(Λ)

Note that the dual and the direct sum commute as clearly c ⊕ d ∈ (Λ1 ⊕ Λ2)
∗

iff 〈c⊕ d, a⊕ 0〉 = 〈c, a〉 ∈ Z and 〈c⊕ d, 0⊕ b〉 = 〈d, b〉 ∈ Z for all a ∈ Λ1 and
b ∈ Λ2. So (Λ1 ⊕Λ2)

∗ = Λ∗1 ⊕Λ∗2 . The same is also true for the tensor product.

Lemma 6 (Dual and tensor product commute). Let Λ1 and Λ2 be lattices with dual Λ∗1
and Λ∗2 respectively. Then the dual of Λ1 ⊗Λ2 is given by (Λ1 ⊗Λ2)

∗ = Λ∗1 ⊗Λ∗2 .

Proof. Let a1, . . . , am1 ∈ Λ1 and b1, . . . , bm2 ∈ Λ2 be a basis of Λ1 and Λ2 respec-
tively. Let a∗1 , . . . , a∗m1

∈ Λ∗1 and b∗1 , . . . , b∗m2
∈ Λ∗2 be their respective dual basis.

Then B∗ := {a∗i ⊗ b∗j : i ∈ {1, . . . , m1}, j ∈ {1, . . . , m2}} is a basis of Λ∗1 ⊗Λ∗2 . But
we also have that

〈ai ⊗ bj, a∗k ⊗ b∗l 〉 = 〈ai, a∗k 〉 · 〈bj, b∗l 〉 =
{

1 , if (i, j) = (k, l)
0 , else

and thus B∗ is the dual basis to {ai ⊗ bj : i ∈ {1, . . . , m1}, j ∈ {1, . . . , m2}} and
therefore Λ∗1 ⊗Λ∗2 must be the dual of Λ1 ⊗Λ2. �
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3. The cyclotomic lattice

The motivation for this thesis comes from the cyclotomic fields. To be more
precise using a (later defined) canonical inner product on cyclotomic fields, the
ring of integers of these fields form a lattice by the more abstract definition. Later
we will embed these lattices inside of a Euclidean space and see that they can all
be constructed from the prime case lattices with the use of the tensor product and
orthogonal direct sum.

3.1. Cyclotomic field.

First we recall some facts about the cyclotomic fields.

Definition 7 (Trace). Let K ⊂ L be a finite Galois extension. Then the Trace
TrL/K : L→ L of L over K of α ∈ L is given by:

TrL/K(α) = ∑
σ∈Gal(L/K)

σ(α)

Because K ⊂ L is a finite Galois extension we have that TrL/K(α) ∈ K for all α ∈ L
[16].

Definition 8 (Cyclotomic field). Let n > 1 and let ζn ∈ C be an n-th primitive root
of unity, i.e. ζn

n = 1 and ζk
n 6= 1 for 0 < k < n. The n-th cyclotomic field Q(ζn) is

obtained by adjoining ζn to Q. It is known that Q ⊂ Q(ζn) is a Galois extension.
Indeed, Q(ζn) ⊂ C is the splitting field of the n-th cyclotomic polynomial

Φn(X) = ∏
1≤k≤n:gcd(k,n)=1

(
X− e2iπ k

n

)
,

over Q which is the unique irreducible monic polynomial of Q[X] with an n-
th primitive root of unity as a root. So Q(ζn) ∼= Q[X]/Φn(X) =: Cn. It is
also known that Gal(Q(ζn)/Q) ∼= Gal(Cn/Q) is isomorphic to the multiplica-
tive group (Z/nZ)∗ by mapping k ∈ (Z/nZ)∗ to the field automorphism of
Q(ζn) generated by mapping ζn to ζk

n. [16]

Let φ(n) := deg (Φn(X)) = # (Z/nZ)∗ which is also called Euler’s totient func-
tion. Note that we can also view Q(ζn) and Cn as a Q-vector space with basis
1, ζn, . . . , ζ

φ(n)−1
n and 1, X, . . . , Xφ(n)−1 respectively. We define an inner product

〈 . , . 〉 : Q(ζn) ×Q(ζn) → Q by 〈a, b〉 := 1
n TrQ(ζn)/Q(ab) where b is the com-

plex conjugate of b. That this function is indeed an inner product is proved in
Lemma 9. Note that for Cn the equivalent inner product is the bilinear extension
of 〈Xi, X j〉 = 1

n TrCn/Q(Xi−j) as ζ i
n = ζ−i

n .

Let n =
k

∏
l=1

nl be the prime power factorization of n. An important property of

the cyclotomic field is that it is isomorphic to the tensor product of prime power
cyclotomic fields:

Cn ∼=
k⊗

l=1

Cnl
∼= Q[X1, . . . Xk]/

(
Φnl (X1), . . . , Φnk (Xk)

)
via the correspondence X

∏
l 6=s

nl
↔ Xs. This correspondence is very natural as

X
∏
l 6=s

nl
is a ns-th primitive root in Cn.
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This decomposition is compatible with the trace and thus the inner product. By
the Chinese remainder theorem we have that (Z/nZ)∗ ∼= (Z/n1Z)∗ × · · · ×
(Z/nkZ)∗ which in turn implies that

TrCn/Q(a) = ∏
l

TrCnl /Q(al)

where a ∈ Cn corresponds to ⊗lal ∈
k⊗

l=1
Cnl [10]. As a corollary we get for

⊗lcl ,⊗ldl ∈
k⊗

l=1
Cnl that:

〈⊗lcl ,⊗ldl〉 =
1
n
· TrCn/Q(⊗lcldl) = ∏

l

1
nl

TrCnl /Q(cldl) = ∏
l
〈cl , dl〉

which corresponds to the behaviour of the canonical inner product on Fn.

Lemma 9. The function 〈 . , . 〉 : Q(ζn) × Q(ζn) → Q defined by 〈a, b〉 7→
1
n TrQ(ζn)/Q(ab) is bilinear, symmetric and positive-definite and thus an inner product
on Q(ζn).

Proof. Denote Gn := Gal(Q(ζn)/Q) and Trn := TrQ(ζn)/Q. The bilinearity follows
directly from the fact that Trn is a Q-homomorphism.

Note that −1 ∈ (Z/nZ)∗ and thus the field automorphism τ : Q(ζn) → Q(ζn)
generated by ζn 7→ ζ−1

n which acts as the identity on Q is in Gn. We use the fact
that ζn = ζ−1

n = τ(ζn) which gives us that a = τ(a) for all a ∈ Q(ζn). Note that
every element of Gn acts transitively on Gn by composition because it is a Galois
group. But then for a, b ∈ Q(ζn) we have

〈a, b〉 = 1
n ∑

σ∈Gn

σ(ab) =
1
n ∑

σ∈Gn

(σ ◦ τ)(ab) =
1
n ∑

σ∈Gn

σ(ba) = 〈b, a〉

and thus 〈 . , . 〉 is symmetric.

For the positive-definiteness, let a ∈ Q(ζn) ⊂ C. Note that all σ ∈ Gn are field au-
tomorphisms and thus σ(aa) = σ(a)σ(a) = |σ(a)|2 where |.| denotes the absolute
value on C. This gives us that:

〈a, a〉 = 1
n

Trn(aa) =
1
n ∑

σ∈Gn

σ(aa) =
1
n ∑

σ∈Gn

|σ(a)|2 ≥ 0

with equality iff σ(a) = 0 for all σ ∈ Gn and thus iff a = 0. �

Before we can know which values this inner product on Cn takes we first need to
know what values TrCn/Q takes on Cn. Let us quickly recall those values for n a
power of prime.

Lemma 10 (Trace values). For n = pk with p prime and k > 0 we have

TrCn/Q(Xi) =

(p− 1)pk−1 = φ(n) , if i ≡ 0 mod pk

−pk−1 , if i 6≡ 0 mod pk and i ≡ 0 mod pk−1

0 , else.

Proof. We have that φ(pk) = (p− 1)pk−1 as gcd(pk, i) = 1 iff p - i. Then it is clear
from the degree that Φp(Y) = Yp−1

Y−1 = 1 + Y + . . . + Yp−1. Also because x is a
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primitive pk-th root op unity iff xpk−1
is a primitive p-th root of unity we have that

Φpk (Y) = Φp(Ypk−1
) = 1 + Ypk−1

+ . . . + Y(p−1)pk−1
.

Now first note that TrCn/Q(1) = φ(n) = (p − 1)pk−1 as #Gal(Cn/Q) = φ(n)
and all homomorphisms of Gal(Cn/Q) act as the identity on 1. Secondly note
that −TrCn/Q(X) is the coefficient before Yφ(n)−1 = Y(p−1)pk−1−1 in Φn(Y) = 1 +

Ypk−1
+ . . . + Y(p−1)pk−1

which is clearly 1 if k = 1 and 0 if k > 1. So TrCn/Q(X) =

−1 if k = 1 and 0 if k > 1. Also TrCn/Q(Xi) = TrCn/Q(X) for all i ∈ (Z/pkZ)∗ by
transitivity of the Galois group on itself.

If K ⊂ L is a Galois extension and if K ⊂ K(x) is also a Galois extension for x ∈ L
(only needed for our less general definition of the Trace) we have that [16]:

TrL/K(x) = [L : K(x)] · TrK(x)/K(x).

Using this and the fact that Xi·pj
is a pk−jth primitive root of unity for all i ∈

(Z/pkZ)∗ we get for i ∈ (Z/pkZ)∗ and j = 1, . . . , k− 1 that:

TrCn/Q(Xi·pj
) = [Cn : Q(Xi·pj

)] · TrC
pk−j /Q(Xi·pk

)

=

{
pj · −1 , if j = k− 1
pj · 0 , else

which proves the lemma. �

Note that the values for the trace when n is not a power of a prime follow from
TrCn/Q(⊗lal) = ∏l TrCnl /Q(al) where n = ∏l nl is the prime power decomposi-
tion of n.

3.2. Embedding the cyclotomic lattice.

The lattice (by the more abstract definition) we will look at is the ring of inte-
gers Z[X]/Φn(X) of Cn with the canonical inner product on Cn. Note that the
decomposition into prime power cases for Cn also holds for Z[X]/Φn(X). To
get a lattice by our formal definition we will define an embedding Ln ⊂ Qn of
Z[X]/Φn(X) such that the canonical inner product on Cn corresponds with the
canonical inner product on Qn. Because of the decomposition into prime powers
we only need to define the embedding for the prime power case as the general
case follows from this by the tensor product.

Definition 11 (Embedding in Qn). For n > 1, the (cyclotomic) lattice Ln ⊂ Qn of
rank φ(n) is recursively defined as:

(1) If n = pk let Ln be the lattice with basis b1, . . . , bφ(n) ∈ Qn where the
coefficients bij, 1 ≤ j ≤ n, of bi are given by:

bij :=


p−1

p , if i = j
−1/p , if i 6= j, i ≡ j mod pk−1

0 , else

We call this basis the powerful basis [10] and it corresponds to the basis
1, X, X2, . . . , Xφ(n)−1 of Z[X]/Φn(X) by bi ↔ Xi−1 in this case.

(2) If n = c · d with gcd(c, d) = 1. Let a1, . . . , aφ(c) be the powerful basis
of Lc and b1, . . . , bφ(d) the powerful basis of Ld. Then Ln := Lc ⊗ Ld ⊂
Qcd = Qn is the lattice with powerful basis {ai ⊗ bj : 1 ≤ i ≤ φ(c), 1 ≤
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j ≤ φ(d)}. Note that this powerful basis doesn’t correspond to the basis
1, X, . . . , Xφ(n)−1 of Z[X]/Φn(X). Also note that Ln has rank φ(c) · φ(d) =
φ(n) because c and d are coprime.

By the associativity of the tensor product this recursive definition of Ln defines
Ln uniquely up to the permutation of coordinates. For n = pk it is easy to check
that the Euclidean inner product between the basis vectors b1, . . . , bφ(n) corre-
sponds to the defined inner product between the basis elements 1, X, . . . , Xφ(n)−1

of Z[X]/Φn(X). Namely for 1 ≤ i, j ≤ φ(n) we have by Lemma 10

〈bi, bj〉 =


(p−1)2+(p−1)·(−1)2

p2 = p−1
p , if i = 0

(p−1)·−1−1·(p−1)+(p−2)·(−1)2

p2 = −1
p , if i 6= j and i ≡ j mod pk−1

0 , else

=
1
pk TrCn/Q(Xi−j) = 〈Xi−1, X j−1〉,

so for n = pk the defined embedding is correct. For general n > 1 the correctness
follows from the identical behaviour with tensor products of the canonical inner
product on Cn and that of the canonical inner product on Fn.

Note that for n = pk we can group the basis 1, X, . . . , Xφ(n)−1 in pk−1 groups of
the form Xi, Xi+pk−1

, . . . , Xi+(p−2)pk−1
of p − 1 elements for i = 0, . . . , pk−1 − 1.

By Lemma 10 we have that 〈Xi+c1 pk−1
, X j+c2 pk−1〉 = 1

n TrCn/Q(Xi−j+(c1−c2)pk−1
= 0

iff i 6= j mod pk−1, so all these groups are orthogonal. As each such orthogonal
group is in fact the same as Lp when looking at the values of its embedding we

get that Lpk =
pk−1⊕
i=1

Lp after reordering some coordinates.

In fact when using this embedding the prime case lattice Lp is identical to the
well known lattice A∗p−1 which is the dual of the lattice Ap−1.

Definition 12 (Root lattice Am). Let m ≥ 1. The lattice Am ⊂ Rm+1 of rank m is
defined as

Am := {(x1, . . . , xm+1) ∈ Zm+1 :
m+1

∑
i=1

xi = 0},

i.e., all integer vectors of Zm+1 that sum up to zero. It has determinant m + 1 and
the shortest vectors are all permutations of (1,−1, 0, . . . , 0). Its packing radius is
1
2

√
2 and its covering radius

√
a(m+1−a)

m+1 where a = b(m + 1)/2c [5].

Definition 13 (Dual lattice A∗m). Let m ≥ 1. The lattice A∗m dual to Am has
m× (m + 1) generator matrix:

M =
1

m + 1


m −1 . . . −1 −1
−1 m . . . −1 −1

...
. . .

...
...

−1 −1 . . . m −1


with m

m+1 on the diagonal and −1
m+1 everywhere else. It has packing radius 1

2

√
m

m+1

and covering radius
√

m(m+2)
12(m+1) . Note that when m = p− 1 for p prime we have

that A∗p−1 = Lp as they have the same generator matrix. [5]
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A small technicality is that Lp is defined in Qp and A∗p−1 in Rp. For Cn it was im-
portant that we worked over Q instead of R as the extension R ⊂ R(ζn) wouldn’t
make much sense. Now we have embedded Cn inside of Qn however there arise
no problems (certainly no practical problems) when further embedding Ln in Rn.
Therefore from now on we will assume that Ln is a lattice in Rn just like we
defined the embedding in Qn such that A∗p−1 = Lp makes sense.

So for n = pq with p and q prime we have that Ln = A∗p−1⊗ A∗q−1 and by Lemma
6 its dual is Ap−1 ⊗ Aq−1. This encourages us to look at Am ⊗ An and A∗m ⊗ A∗n
for general m, n ≥ 1. For Am ⊗ An we will construct a polynomial CVP algorithm
and for A∗m ⊗ A∗n we will construct a sub-exponential CVP algorithm in the rank
mn.

11



4. Solving the closest vector problem in Am and A∗
m

In this section we will fix m ≥ 1 and let m′ := m + 1. In this thesis all (time)
complexity is given in the number of basic operations on reals, i.e., arithmetic
operation with arbitrary precision count as O(1).

We will show CVP algorithms for Am and A∗m, both in O(m log(m)) operations.
For A∗m there exists a linear time algorithm [17], but the general idea lies already
in the here presented algorithm.

4.1. The closest vector problem in Am.

Note that for t ∈ span(Am) = {(t1, . . . , tm′) ∈ Rm′ :
m′

∑
i=1

xi = 0} we want to find a

closest integer vector x to t such that the coefficients of x sum to zero.

Algorithm 14. Given t = (t1, . . . , tm′) ∈ span(Am), this algorithm finds a closest
vector x to t in Am [18].

(1) Let x′ := (dt1c , . . . , dtm′c) ∈ Am where d.c means rounding to a nearest

integer. It is clear that x′ is a closest vector to t in Zm′ . Let ∆ =
m′

∑
i=1

x′i be

the deficiency of x′. Note that x′ ∈ Am iff ∆ = 0.

(2) Let δ(xi) = xi − dxic. We sort the x′i on non-decreasing order of δ(xi). So
we get i1, . . . , im′ such that:

−1
2
≤ δ(xi1) ≤ δ(xi2) ≤ . . . ≤ δ(xim′ ) ≤

1
2

(3) If ∆ = 0, x = x′ is a closest vector to t.
If ∆ > 0, a closest vector x to t is obtained from x′ by subtracting 1 from
x′i1 , . . . , x′i∆ .
If ∆ < 0, a closest vector x to t is obtained from x′ by adding 1 to
x′im′ , . . . , x′im′+∆+1

.

This algorithm is correct because it makes the smallest possible changes to the
norm of x′ − t (which is minimal after step (1)) to make sure x′ lies in Am. Note
that every part of the algorithm can be done in time and space O(m) except for
the sorting in step (2) which takes time O(m log(m)).

4.2. The closest vector problem in A∗
m.

For A∗m we first need to narrow our search space. In this section when taking a

point x = (x1, . . . , xm) ∈ span(A∗m) we mean the point
m
∑

i=1
xibi where b1, . . . , bm

corresponds to the generator matrix given in Definition 13. Note that for this
basis 〈bi, bj〉 = m

m+1 if i = j and −1
m+1 if i 6= j. This means that

‖x‖2 = 〈
m

∑
i=1

xibi,
m

∑
i=1

xibi〉 =
m

∑
i=1

x2
i −

1
m′

m

∑
i=1

m

∑
j=1

xixj

Lemma 15. Let t = (t1, . . . , tm) ∈ span(A∗m)) be an arbitrary point. Suppose that
x = (x1, . . . , xm) ∈ A∗m is a closest vector to t, i.e. ‖t− x‖ ≤ ‖t− x′‖ for all x′ ∈ A∗m.
Then |ti − xi| ≤ m

m+1 for all i = 1, . . . , m.
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Proof. Suppose that there exists an i ∈ {1, . . . , m} such that |ti − xi| > m
m+1 . Be-

cause all basis elements are interchangeable with regard to the values of the inner
product we can assume that i = 1 as the proof is identical for the other cases. We
can also assume that t1 − x1 > m

m+1 as x is a closest vector to t iff −x is a closest
vector to −t. Let y := t− x. We will show that there exists a point x′ of the lattice
A∗m that is strictly closer to t than x is. This will we proven in two cases.

First suppose that y2 + . . . + ym < m(m−1)
2(m+1) . Let x′ := x + (1, 0, . . . , 0). Then we

have ∥∥t− x′
∥∥2 − ‖t− x‖2 = ‖(y1 − 1, y2, . . . , ym)‖2 − ‖(y1, y2, . . . , ym)‖2

=
1

m′
(−2my1 + m + 2(y2 + . . . + ym))

<
1

m′

(
−2m · m

m + 1
+ m + 2 · m(m− 1)

2(m + 1)

)
= 0

and thus ‖t− x′‖ < ‖t− x‖ which contradicts the assumption that x is a closest
vector to t.

Secondly suppose that y2 + . . . + ym ≥ m(m−1)
2(m+1) . Then y1 + . . . + ym > m(m−1)

2(m+1) +
m

m+1 = m
2 . Let x′ := x + (1, . . . , 1). Then we have∥∥t− x′
∥∥2 − ‖t− x‖2 = ‖(y1 − 1, y2 − 1, . . . , ym − 1)‖2 − ‖(y1, y2, . . . , ym)‖2

=
1

m′

(
−2m(y1 + . . . + ym) + m2 − 2

(
−(m− 1)(y1 + . . . + ym) +

m(m− 1)
2

))
=

1
m′

(−2(y1 + . . . + ym) + m)

<
1

m′
(
−2 · m

2
+ m

)
= 0

and thus ‖t− x′‖ < ‖t− x‖ which also contradicts the assumption that x is a
closest vector to t. So we have that |ti − xi| ≤ m

m+1 for all i = 1, . . . , m. �

Because m
m+1 < 1 the consequence of Lemma 15 is that a closest vector to a point

t = (t1, . . . , tm) ∈ span(A∗m) must be in the following set:

S = {(x1, . . . , xm) ∈ A∗m : |ti − xi| < 1 ∀i = 1, . . . , m} ⊂ A∗m
Note that:

S ⊂ S′ := {(bt1c+ s1, . . . , btmc+ sm) : s ∈ {0, 1}m}
and the closest vector problem is thus reduced to finding the x ∈ S ⊂ S′ ⊂ A∗m
that minimizes ‖t− x‖. Let y = t − btc = (t1 − bt1c , . . . , tm − btmc). For each
s ∈ {0, 1}m we get a corresponding x = btc+ s ∈ S′ such that:

‖t− x‖2 = ‖y− s‖2 =
m

∑
i=1

m

∑
j=1

qijyiyj − 2
m

∑
i=1

m

∑
j=1

qijsiyj +
m

∑
i=1

m

∑
j=1

qijsisj

where qij := 〈bi, bj〉. Note that the first summation doesn’t depend on s ∈ {0, 1}m,
so we want to minimize:

Q(s) =
m

∑
i=1

cisi +
m

∑
i=1

m

∑
j=1

qijsisj
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with ci = −2 ·
m
∑

j=1
qijyj = −2yi +

2
m′

m
∑

j=1
yj. Also note that with T :=

m
∑

i=1
si, the

number of 1’s we get that:
m

∑
i=1

m

∑
j=1

qijsisj =
m
m′
·

m

∑
i=1

s2
i −

1
m′

m

∑
i=1

m

∑
j=1

sisj =
m
m′

T − 1
m′

T(T − 1)

So the second summation of Q(s) only depends on T.

Now suppose T = τ ∈ {0, . . . , m} is fixed, then we want to minimize
m
∑

i=1
cisi

under the condition
m
∑

i=1
si = τ for s ∈ {0, 1}m. It is clear that we just have to take

si = 1 for the τ smallest ci’s. So let i1, . . . , im be an ordering of 1, . . . , m such that
ci1 ≤ . . . ≤ cim . Then si1 = . . . = siτ = 1 and sij = 0 for all j > τ gives a minimal
value of Q(s) for fixed T = τ. As T can only take m′ values this gives an efficient
way to find a s ∈ {0, 1}m such that Q(s) is minimal. Then a closest vector to t
is given by x = btc+ s as in that case ‖t− x‖2 is minimal by construction. This
gives us the following algorithm.

Algorithm 16. Given a target t = (t1, . . . , tm) ∈ span(A∗m) this algorithm finds a
closest vector x ∈ A∗m to t in A∗m.

(1) First calculate y := t− btc. Also calculate Y :=
m
∑

j=1
yj and ci = −2yi +

2
m′Y

for i = 1, . . . , m.

(2) Find different i1, . . . , im such that ci1 ≤ ci2 ≤ . . . ≤ cim .

(3) Let Q := 0, Q′ := 0, minT := 0. For τ = 1, . . . , m :

(a) Let Q := Q + ciτ +
m

m+1 + 2−2τ
m+1 .

(b) If Q < Q′ : Let Q′ := Q and minT := τ.

(4) Let s ∈ A∗m be given by si1 = . . . = siminT = 1 and 0 else. Then x := btc+ s
is a closest vector to y.

Note that ciτ +
m

m+1 + 2−2τ
m+1 is just the difference between the minimal Q(s) with

T = τ − 1 and the minimal Q(s) with T = τ. Every iteration in step 3 can
be calculated in a constant amount of operations. So it is clear that steps 1, 3
and 4 can all be done in O(m) operations. Only in step 2 we need to sort m
elements which brings the number of operations of the whole algorithm up to
O(m log(m)).

We discovered this algorithm independently for the lattice Lp. Later we dis-
covered that Lp = A∗p−1 and that the same algorithm was already presented
in 2008 in [19] for general A∗m. Later that year this was improved to a linear
time algorithm in [17]. This algorithm is essentially the same except for the
change that the ci’s don’t need to be sorted perfectly but only in the buckets
[0, 1

m′ ), [
1

m′ ,
2

m′ ), . . . , [ m
m′ , 1] which can be done in a linear time.
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5. General techniques for solving the closest vector problem

5.1. Composed lattices.

First we will cover two lemmas that relate the closest vector problem in different
lattices to each other. To state these lemmas we will first need a definition of the
cost of solving CVP in a lattice.

Definition 17. For a lattice Λ, let C(Λ) be the maximum number of operations
needed to find a closest vector in Λ to any target point in span(Λ).

We will start with a very natural lemma when relating CVP in composed lattices
to its components.

Lemma 18 (Direct sum and orthogonal sum). Let Λ be a lattice and let Λ1, . . . , Λk ⊂
Λ be orthogonal lattices such that

Λ = Λ1 ⊥ . . . ⊥ Λk

Then:

(1) C(Λ) ≤
k
∑

i=1
C(Λi) + pi.

(2) C(Λi) ≤ C(Λ) for all i = 1, . . . , k.

where pi is the number of operations needed to project an element x ∈ span(Λ) to
span(Λi) and to add a vector xi to the already computed x1 + . . . + xi−1 where xj ∈ Λj
for all j = 1, . . . , i. If Λ and Λ1, . . . , Λk are lattices such that

Λ = Λ1 ⊕ . . .⊕Λk,

then we have the same inequalities but with pi = 0 for all i = 1, . . . , k.

Proof. We will first consider the case with the orthogonal sum. For (1), sup-
pose that t ∈ span(Λ) is the target and t1, . . . , tk are the projections onto
span(Λ1), . . . , span(Λk) of t. For each ti we can calculate a closest vector xi ∈ Λi
in C(Λi) operations. Then x = x1 + . . . + xk ∈ Λ is clearly a closest vector to t by
the orthogonality. The projection and last summation take pi operations for each
i = 1, . . . , k.

For (2) suppose ti ∈ span(Λi) ⊂ span(Λ) is our target. Suppose x ∈ Λ is a
closest vector to ti which can be obtained in C(Λ) operations. Then x ∈ Λi by the
orthogonality because ti ∈ span(Λi) and thus x is a closest vector to ti in Λi.

For the direct sum the proof is identical by using the embedding Λ′i = 0⊕ . . .⊕
Λi ⊕ . . .⊕ 0 ⊂ Λ such that Λ = Λ′1 ⊥ . . . ⊥ Λ′k. In this case the projections are
along the coordinates and the summation is just concatenation and thus we can
assume that pi = 0 for all i = 1, . . . , k as no arithmetic operations are needed. �

Because there exists an algorithm for the prime case lattice Lp = A∗p−1 that solves

CVP in O(p) operations [17], we get by Lpk =
pk−1⊕
i=1

Lp and (1) a CVP algorithm

for Lpk in pk−1 ·O(p) = O(pk) operations. So we can also solve the prime power

case n = pk of the cyclotomic lattice in linear time in n. Using the same technique
for the dual of Lpk we get a practically linear algorithm in n = pk as we can solve
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it in pk−1 ·O(p log(p)) = O(pk log(p)) operations with the algorithm for Ap−1
showed in section 4.

Because of (2) an idea would be to add some orthogonal components to the lattice
for which we are trying to solve CVP to obtain a much nicer lattice for solving
CVP. This is exactly what we are going to do for A∗m ⊗ A∗n.

If a lattice consists of multiple translated copies of another lattice we get the
following lemma.

Lemma 19 (Gluing Lemma). Let Λ ⊂ Fn be a lattice and let Λ′ ⊂ Λ be a sublattice.
Note that Λ consists of multiple translated copies of Λ′. To be more precise, we can see
Λ′ as a subgroup of Λ, and then let G = Λ/Λ′ be the so called glue group consisting of
cosets. Let [Λ : Λ′] =: |G| be the index of Λ′ in Λ and let G ⊂ Λ be a set consisting of
a single representative for each coset in G, so called glue vectors. Then

Λ =
⋃

g∈G

(
g + Λ′

)
and we have that

C(Λ) ≤ |G|(O(n) + C(Λ′)).

Proof. We make use of the fact that if x ∈ Λ is a closest vector to t ∈ span(Λ)
that then x ∈ g + Λ′ for some g ∈ G. This is equivalent to the fact that x− g is a
closest vector to t− g in Λ′. So for all g ∈ G we find the closest vector xg to t− g
in Λ′ in C(Λ′) operations and we remember the h = g for which which xg has
the minimal distance to their respective t− g. Then xh + h is a closest vector to t
in Λ. Because we are calculating a distance and adding and subtracting vectors
of length n for each g ∈ G we get the extra O(n) operations on top of C(Λ′). �

We will use the two lemmas to later find a sub-exponential time CVP algorithm
for the lattice A∗m ⊗ A∗n. Now we will consider a method to solve CVP for general
lattices which we will later use to find a polynomial CVP algorithm for the lattice
Am ⊗ An.

5.2. Using the Voronoi region.

Although in 2015 there was found a general algorithm for solving CVP in 2n+O(n)

time and space with another technique [20], promising attempts to achieve a
single time exponential complexity of 2O(n) before that were driven by the use of
a description of the Voronoi region of the lattice [21, 22]. We will quickly repeat
the definition of the Voronoi region of a lattice.

Definition 20 (Voronoi region). The Voronoi region (around 0) of a lattice Λ is
defined by:

V(Λ) := {x ∈ span(Λ) : ‖x‖ ≤ ‖x− v‖ ∀v ∈ Λ}
= {x ∈ span(Λ) : 2〈x, v〉 ≤ 〈v, v〉 ∀v ∈ Λ}

consisting of all points in span(Λ) that have 0 as a closest vector. It is known
that the Voronoi region is a convex polytope which is symmetric by reflection in
0 [5].
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The Voronoi region is just the intersection of half spaces Hv := {x ∈ span(Λ) :
2〈x, v〉 ≤ 〈v, v〉} for all v ∈ Λ \ {0}. Note that the only half spaces Hv in this inter-
section that matter are those corresponding to a facet (rank(Λ)− 1 dimensional
face of V(Λ)) {x ∈ span(Λ) : ‖x‖ = ‖x− v‖} ∩ V(Λ) of the Voronoi region.
Such v ∈ Λ are called Voronoi relevant vectors.

Definition 21 (Voronoi Relevant vectors). Let Λ be a lattice. The Voronoi relevant
vectors are the minimal set RV(Λ) ⊂ Λ of vectors such that

V(Λ) =
⋂

v∈RV(Λ)

Hv.

Voronoi showed that for v ∈ Λ \ {0} we have that v is a Voronoi relevant vector
iff 0 and v are the only closest vectors to 1

2 v in Λ [23].

It was proved by Minkowski in 1897 that a lattice of rank m can only have at most
2(2m − 1) Voronoi relevant vectors [24]. Voronoi showed that almost all general
lattices have this number of Voronoi relevant vectors [23]. We will use a slightly
different but equivalent definition for the Voronoi relevant vectors of a lattice.

Lemma 22. Let Λ be a lattice. v ∈ Λ \ {0} is a Voronoi relevant vector iff

〈v, x〉 < 〈x, x〉
for all x ∈ Λ \ {0, v}.

Proof. Note that
∥∥∥ 1

2 v− x
∥∥∥2
−
∥∥∥ 1

2 v
∥∥∥2

= 〈x, x〉 − 〈v, x〉 and thus for a v ∈ Λ \

{0} and all x ∈ Λ \ {0, v} we have that
∥∥∥ 1

2 v− x
∥∥∥2

>
∥∥∥ 1

2 v
∥∥∥2

iff 〈v, x〉 < 〈x, x〉.

Note that both 0 and v have exactly distance
∥∥∥ 1

2 v
∥∥∥ to 1

2 v and therefore the first
statement is that of the definition, while the latter statement is that of the lemma.

�

What makes the Voronoi relevant vectors relevant for CVP algorithms is the fol-
lowing lemma.

Lemma 23. Let t ∈ span(Λ) and x ∈ Λ. There exists a vector y ∈ Λ such that
‖(x + y)− t‖ < ‖x− t‖ iff there exists a Voronoi relevant vector v ∈ RV(Λ) such that
‖(x + v)− t‖ < ‖x− t‖.

Proof. The implication from right to left is trivial by taking y = v. Now suppose
there exists a vector y ∈ Λ such that ‖t− x− y‖ = ‖(x + y)− t‖ < ‖x− t‖ =
‖t− x‖. Then by definition t− x 6∈ V(Λ). So there exists a v ∈ RV(Λ) such that
‖t− x‖ > ‖(t− x)− v‖, i.e., such that ‖x + v− t‖ < ‖x− t‖. �

Because of Lemma 23 a basic iterative CVP algorithm can be constructed if the
Voronoi relevant vectors are known. Given a target t ∈ span(Λ) we can start the
iterative algorithm with an arbitrary lattice point x. In each iteration if the current
approximation x isn’t yet a closest vector to t then by Lemma 23 there exists a
Voronoi relevant vector v (which we can all check) such that x ← x + v is strictly
closer to t. We can repeat this until such a Voronoi relevant vector doesn’t exist
any more and Lemma 23 says that x is then a closest vector to t. This algorithm
always concludes in a finite number of iterations because there are only a finite
number of lattice points in the sphere around t with radius ‖t− x‖ and in the
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worst case the algorithm can only visit all those points a single time because of
the strict improvement.

The just described algorithm is known as the Iterative Slicer (2007, [25]) and the
main problem is that there isn’t a nice bound on the number of iterations for
general lattices except for the number of points with distance at most ‖t− x‖
from t. But the number of such points can even lie above nO(n) for general lattices
of rank n. In 2010 Micciancio and Voulgaris were able to compute the relevant
vectors of a lattice in deterministic 2O(n) time and space. Using these relevant
vectors they were able to construct an algorithm that finds a closest point in
deterministic O(4n) time by reducing (in polynomial time) the problem to a CVPP
instance where the target is guaranteed to belong to 2V(Λ) [21]. In 2014 this was
improved to a Las Vegas O(2n) expected time and space algorithm to find a
closest vector by Dadush and Bonifas [22].

Although all these algorithms take exponential time and space to solve CVPP
and thus also CVP for general lattice it may be possible that this isn’t the case for
special classes of lattices. In 2014 it was for example shown that a variant of the
Iterative Slicer can be implemented in polynomial time for lattices of Voronoi’s
first kind (lattices which admit a set of r + 1 generators whose Gram matrix is
the Laplacian of a non-negatively weighted graph) [26]. We will try to achieve a
similar result for the lattice Am ⊗ An for general m, n ≥ 1.

18



6. Solving the closest vector problem in A∗
m ⊗ A∗

n

Fix m, n ≥ 1 and let m′ = m + 1 and n′ = n + 1. Before using Lemmas 18 and 19

for the lattice A∗m⊗ A∗n we will first demonstrate their use for the lattice A∗n which
will also give the inspiration for solving CVP in A∗m⊗ A∗n in sub-exponential time.
Note that A∗n has a generator matrix of the following form:

M =
1
n′


n −1 . . . −1 −1
−1 n . . . −1 −1

...
. . .

...
...

−1 −1 . . . n −1

 .

Let 1n′ = (1, . . . , 1) ∈ Zn′ . Let In′ be the lattice 1
n′ 1 ·Z ⊂

1
n′Z

n′ with basis 1
n′ 1.

Note that In′ is orthogonal to A∗n. Therefore let A∗n := A∗n ⊥ In′ . Note that A∗n has
generator matrix

M =
1
n′


n −1 . . . −1 −1
−1 n . . . −1 −1

...
. . .

...
...

−1 −1 . . . n −1
1 1 . . . 1 1

 .

But we can just add the last row to all previous rows to get the following generator
matrix of A∗n:

M =
1
n′


n′ 0 . . . 0 0
0 n′ . . . 0 0
...

. . .
...

...
0 0 . . . n′ 0
1 1 . . . 1 1

 .

It is clear that then A∗n = Zn′ + In′ (all possible a + b such that a ∈ Zn′ and
b ∈ In′ ). Because n′ · In′ ⊂ Zn′ we even have that

A∗n = Zn′ + In′ =
n⋃

i=0

i
n′

1 + Zn′

where the glue group G of Zn′ + In′ in Zn′ has glue vectors G = { i
n′ 1 : i =

0, . . . , n}. Note that by Lemmas 18 and 19 we have that

C(A∗n) ≤ C(A∗n) = C(Zn′ + In′) = C(
n⋃

i=0

i
n′

1 + Zn′)

≤ n′(O(n′) + C(Zn′)) = O((n′)2).

So these two lemmas already give a quadratic algorithm for A∗n. There already
exists a linear time algorithm for A∗n, so this seems useless, but it gives inspiration
for a CVP algorithm in A∗m ⊗ A∗n.

Lemma 24. Given t ∈ span(A∗m ⊗ A∗n) we can find a closest vector x ∈ A∗m ⊗ A∗n to
t in O(n(m + 1)n+1) operations.

Proof. For A∗m ⊗ A∗n we consider the lattice A∗m ⊗ A∗n ⊃ A∗m ⊗ A∗n. We get that:

A∗m ⊗ A∗n = (A∗m ⊗ A∗n) ⊥ (Im′ ⊗ A∗n)
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such that C(A∗m ⊗ A∗n) ≤ C(A∗m ⊗ A∗n) by Lemma 18. Now instead of considering
the sublattice Zm′ ⊂ A∗m as before we consider the sublattice Zm′ ⊗ A∗n ⊂ A∗m ⊗
A∗n. Note that Zm′ ⊗ A∗n =

⊕m′
i=1 A∗n and thus C(Zm′ ⊗ A∗n) = m′ ·C(A∗n) ∈ O(mn)

by Lemma 18 and the linear time algorithm for A∗n [17].

The glue group G := (A∗m ⊗ A∗n)/(Zm′ ⊗ A∗n) consists of (m′)n cosets represented

by glue vectors
n
∑

i=1
(bi ⊗

aj
m′ 1) for all a = (a1, . . . , an) ∈ {0, . . . , m}n where the basis

b1, . . . , bn is the basis corresponding to the generator matrix M of A∗n. Summariz-
ing we get a time complexity of:

C(A∗m ⊗ A∗n) ≤ C(A∗m ⊗ A∗n) = C(
⋃

g∈G
g + (Zm′ ⊗ A∗n))

≤ (m′)n · (O(m′n′) + C(Zm′ ⊗ A∗n)) ∈ O(m′n′(m′)n) = O(n(m′)n′)

�

Assuming m ≥ n, which we can do as A∗m ⊗ A∗n is the same as A∗n ⊗ A∗m after
permuting some coordinates, we then get in the rank r = mn of A∗m ⊗ A∗n a sub-
exponential time complexity of O(r · r

√
r) = O(e(

√
r+1) log(r)).

We tried several different techniques to construct a CVP algorithm for A∗m ⊗ A∗n
but they all delivered at best the same complexity as the stated algorithm.

Note that this gives a time O(q · pq) complexity to solve CVP for the lattice Ln =
Lp ⊗ Lq = A∗p−1 ⊗ A∗q−1 with n = p · q and p and q prime. For the case n = pk · ql

we then get that Ln is the direct sum of pk−1 · ql−1 times the lattice Lp ⊗ Lq and
thus by Lemma 18 we get a time complexity of pk−1ql−1 ·O(qpq) = O(npq−1).
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7. Solving the closest vector problem in Am ⊗ An

Again let m, n ≥ 1, m′ = m + 1 and n′ = n + 1. We consider the lattice
Am ⊗ An ⊂ Zm′ ·n′ of rank mn. Note that this lattice consists of all elements
x = (x11, . . . , x1n′ , x21 . . . , xm′n′) ∈ Zm′ ·n′ which satisfy the following conditions:

(1)
m′

∑
i=1

xij = 0 for all j = 1, . . . , n′

(2)
n′

∑
j=1

xij = 0 for all i = 1, . . . , m′.

These indices will be used throughout this section.

7.1. Characterizing the Voronoi relevant vectors.

As announced we will try to construct a polynomial CVP algorithm for the lattice
Am ⊗ An inspired by the Iterative Slicer algorithm. For this we will try to char-
acterize the Voronoi relevant vectors of Am ⊗ An. First we will limit our search
space.

Lemma 25. For all Voronoi relevant vectors v ∈ Am ⊗ An we have that |vij| < 2 for
all i = 1, . . . , m′ and j = 1, . . . , n′.

Proof. Let v ∈ Am ⊗ An be a Voronoi relevant vector. Because of symmetry we
can assume without loss of generality that |v11| ≥ 2. Because v is a Voronoi
relevant vector if and only if −v is a Voronoi relevant vector we can also assume
that v11 ≥ 2. Let xij ∈ Am ⊗ An for all i = 2, . . . , m′ and j = 2, . . . , n′ be given by
x11 = 1, xi1 = −1, x1j = −1, xij = 1 and 0 otherwise. Note that this is indeed
a lattice point of Am ⊗ An and that it is not the same as 0 or v. Also note that
〈xij, xij〉 = 4 for all i, j. Then by Lemma 22 we get

v11 − v1j − vi1 + vij = 〈v, xij〉 < 〈xij, xij〉 = 4

for all i = 2, . . . , m′ and j = 2, . . . , n′. Also note that because these are all integers
we even have that v11 − v1j − vi1 + vij ≤ 3. Summing multiple of these relations
for a fixed i = 2, . . . , m′ gives

n · v11 − n · vi1 −
n′

∑
j=2

v1j +
n′

∑
j=2

vij =
n′

∑
j=2

(
v11 − v1j − vi1 + vij

)
≤ 3(n′ − 1)

but we have that −
n′

∑
j=2

v1j = v11 and
n′

∑
j=2

vij = vi1 and thus this gives us

n′ · v11 − n′ · vi1 ≤ 3(n′ − 1).

As a result of v11 ≥ 2 we now get that n′ · vi1 ≥ −n′ + 3 and thus vi1 ≥ −1+ 3
n′ >

−1, which again means that vi1 ≥ 0 because it is an integer. So vi1 ≥ 0 for all
i = 2, . . . , m′ and v11 ≥ 2. But in that case:

0 =
m′

∑
i=1

vi1 ≥ 2 + 0 + . . . + 0 = 2

which gives a contradiction. So |v11| < 2. �
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As a result all Voronoi relevant vectors of Am⊗An must lie in X := {−1, 0, 1}m′ ·n′ ∩
(Am ⊗ An). To be able to describe the Voronoi relevant vectors in a nice way and
to later construct the CVP algorithm we will show that there is a correspondence
between the elements of X and certain subgraphs of the complete directed bipar-
tite labelled graph Km′ ,n′ = (V, E). We label the m′ nodes V1 := {v1, . . . , vm′} and
the n′ nodes V2 := {w1, . . . , wn′}. Let V := V1 ∪ V2. Next we let a coefficient
tij ∈ X correspond to the pair (vi, wj) of nodes of Km′ ,n′ . We can even go further
and let the value of tij correspond with an edge from vi to wi, no edge, or an edge
from wi to vi. We will now make this more formal.

Definition 26. Let t ∈ {−1, 0, 1}m′ ·n′ be given. We will define the subgraph
Gt = (Vt, Et) ⊂ Km′ ,n′ = (V, E) corresponding to t. Let Et consist of the following
directed edges:

• The edge (vi, wj) for each tij that has value −1.

• The edge (wj, vi) for each tij that has value 1.

and let Vt consist of all nodes with nonzero in- or outdegree.

It is clear that all Gt are different for t ∈ {−1, 0, 1}m′ ·n′ . Also note that the condi-
tions for t ∈ {−1, 0, 1}m′ ·n′ to be part of Am ⊗ An correspond exactly to the fact
that for every node of Gt the indegree must equal the outdegree. I.e., every node
of Gt has exactly as much incoming edges as outgoing edges if and only if t ∈ X.
An example is shown in Figure 7.1.

Figure 1. Example graph Gt corresponding to t =
(0, 0, 0, 0, 0, 1, 0,−1, 0, 0,−1, 0, 1,−1, 1, 0, 0, 0, 1,−1) ∈ A3 ⊗ A4

It is also clear that for every subgraph H ⊂ Km′ ,n′ that has at most one edge
between any pair of nodes, no nodes without incoming or outgoing edges, and
such that every node has indegree equal to its outdegree, we can construct an
x ∈ X such that H = Gx.

Proposition 27 (Voronoi relevant vectors of Am ⊗ An). The Voronoi relevant vectors
of Am ⊗ An are precisely all v ∈ X \ {0} such that Gv is connected and the indegree and
outdegree of every node is exactly 1.

Proof. Let v ∈ X \ {0} be given. Note that we already have

〈v, x〉 ≤∑
i,j
|xi| ≤∑

i,j
|xi|2 = 〈x, x〉

for all x ∈ Am ⊗ An because v ∈ X ⊂ {−1, 0, 1}m′n′ . The second inequality can
only be an equality if also x ∈ X. The first inequality then becomes an equality
iff vijxij = |xij| for all i = 1, . . . , m′ and j = 1, . . . , n′. So xij = 0 or xij = vij. This
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makes it clear that the only candidates such that 〈v, x〉 = 〈x, x〉 are those x ∈ X
such that Gx ⊂ Gv. By Lemma 22 we get that v ∈ RV(Am ⊗ An) iff G0 and Gv are
the only subgraphs of that form of Gv.

In fact note that each Gx with x ∈ X consists of a union of disconnected Eulerian
graphs and thus a union of disconnected cycles. Furthermore note that every
cycle in Gx corresponds to a subgraph H ⊂ Gx for which there exists an x′ ∈ X
such that H = Gx′ . But that means that Gv is a Voronoi relevant vector iff Gv
contains only the trivial cycles G0 and Gv and no other cycles. We will show that
this is only the case when Gv is a simple cycle.

Because Gv is a union of disconnected cycles we must have that Gv is connected
as otherwise taking one of those disconnected cycles would give a nontrivial
subgraph Gx ( Gv. So Gv must be connected and thus consist of a single cycle.
In the case Gv contains a node w that has degree at least 2 we know that the single
cycle that Gv consists of, must contain a nontrivial cycle, the one when starting in
w and returning to w for the first time. So Gv must be connected and the indegree
and outdegree of every node must be 1. But in that case Gv is a simple cycle and
it is clear that Gv only has the trivial cycles corresponding to G0 and Gv. So v is
a Voronoi relevant vector in that case. �

The notion that Gv is connected and that the indegree and outdegree of each node
is equal to 1 means just that the whole graph consists of a single directed simple
cycle. Furthermore note that every simple cycle of more than 2 nodes (only a
simple cycle with 2 nodes has two edges between a pair of nodes which isn’t
allowed) corresponds to a Voronoi relevant vector of Am ⊗ An.

Lemma 28. The number of Voronoi relevant vectors of Am ⊗ An is equal to
min{m′ ,n′}

∑
i=2

(
m′

i

)(
n′

i

)
· i! · (i− 1)!.

Proof. The number of Voronoi relevant vectors of Am ⊗ An is by proposition 27

equal to the number of simple cycles of the directed labelled complete bipartite
graph Km′ ,n′ of more than 2 nodes. Note that a simple cycle of 2 < 2i ≤ 2(m′+ n′)
nodes of this bipartite graph must consist of i nodes from V1 and i nodes from V2.
Which nodes will be used for fixed i can be chosen in (m′

i )(
n′
i ) ways as |V1| = m′

and |V2| = n′.

After these nodes are fixed the problem is reduced to the number of Hamiltonian
cycles in the directed complete bipartite graph Ki,i. Let W1 and W2 be the two
sets of nodes of Ki,i. Because every Hamiltonian cycle must visit every node once
we can just fix our starting node in W1. From this node we can visit i nodes of
W2. After this choice is made we can visit i − 1 nodes of W1. After this i − 1
nodes of W2, etc... So in the end we have i · (i − 1) · · · 1 ways to go from W1
to W2 and (i − 1)(i − 2) · · · 1 = (i − 1)! ways to go from W2 to W1. So in total
there are i! · (i − 1)! Hamiltonian cycles in Ki,i. So there are (m′

i )(
n′
i ) · i! · (i − 1)!

simple cycles in Km′ ,n′ of 2i nodes. Summing over i = 2, . . . , min{m′, n′} gives
the result. �

So the Voronoi relevant vectors of Am ⊗ An correspond with directed simple cy-
cles in Km′ ,n′ of at least 4 nodes.
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7.2. Finding the closest vector in Am ⊗ An.

For constructing an efficient iterative CVP algorithm we need to find, if one exists,
a Voronoi relevant vector that improves our current approximation in an efficient
way. By Lemma 28 it is clear that we can’t just check all Voronoi relevant vectors
as there are too many of them. To find such a Voronoi relevant vector efficiently
we will use the correspondence found in the previous subsection.

For the algorithm we will need to detect negative simple cycles in a directed
graph and we can use the Bellman-Ford algorithm to do so [27]. The main goal
of this algorithm is to find the shortest path from a single source node to all other
nodes of a weighted graph. The algorithm does this by remembering for each
node i the shortest distance d(i) known to the source node (initialized on ∞ for
all nodes except the source node itself) and to check if any edge between nodes
i and j can improve this distance to j. This is the case iff d(i) + cij < d(j) where
cij is the (possibly negative) cost for travelling by the edge (i, j). In each iteration
we do this check for every edge (i, j) and we update d(j) to d(i) + cij if needed.

If there are no negative weight cycles all shortest paths have at most length k for
k the number of nodes and thus after k iterations all d(i) are minimal. If there
does exist a negative cycle and assuming the graph is connected there will still
be improvements made to some d(j) in the (k + 1)-th iteration. So in this way
we can detect negative weight cycles in the graph. If we also remember for each
node j the last node i that improved d(j) by the edge (i, j) we are also able to
find such a simple negative weight cycle. Note however that there can’t be made
any guarantees about how negative the found simple negative weight cycle is
compared to others that may exist in the graph. Finding the most negative cycle
is in fact NP-hard for most types of graphs [28].

Lemma 29. Let x ∈ Am ⊗ An and let t ∈ Span(Am ⊗ An) be our target. If there
exists a Voronoi relevant vector v ∈ RV(Am ⊗ An) such that ‖(x + v)− t‖ < ‖x− t‖
we can find such a Voronoi relevant vector in O((m + n)mn) operations. If it doesn’t
exist this will also be detected by the algorithm.

Proof. Let u := x− t be the difference vector of t and x. We construct the weighted
directed complete bipartite graph Km′ ,n′ with weight function W defined as fol-
lows for i = 1, . . . , m′ and j = 1, . . . , n′:

W(vi, wj) = (uij − 1)2 − u2
ij = 1− 2uij

W(wj, vi) = (uij + 1)2 − u2
ij = 1 + 2uij.

Now consider a Gv ⊂ Km′ ,n′ with the same weights for an arbitrary v ∈ RV(Am ⊗
An). Then by construction

W(Gv) = ∑
i,j:vij 6=0

1 + 2vij · uij = 〈v, v〉+ 2〈v, u〉 = ‖u + v‖2 − ‖u‖2 .

So ‖(x + v)− t‖ < ‖x− t‖ for a v ∈ RV(Am ⊗ An) iff Gv ⊂ Km′ ,n′ has negative
weight. By Lemma 27 every simple cycle of length at least 4 in Km′ ,n′ corresponds
to a Voronoi relevant vector. So the problem of finding a v ∈ RV(Am ⊗ An) such
that ‖(x + v)− t‖ < ‖x− t‖ is equivalent to finding a simple cycle of length at
least 4 with negative weight in Km′ ,n′ . Note that because W(vi, wj) + W(wj, vi) =

2 ≥ 0 for all i = 1, . . . , m′ and j = 1, . . . , n′ there exist no simple cycles of length
2. So we just need to find a simple cycle of negative weight. This can be done by
the Bellman-Ford algorithm in O(|V| · |E|) = O((m′ + n′)m′n′) = O((m + n)mn)
operations. The construction of the graph itself can easily be done in O((m +
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n)mn) operations and thus adds nothing to the complexity. The Bellman-Ford
algorithm also detects if simple negative weight cycles exist or not. �

Before we move on we will introduce a basis of Am ⊗ An that has some nice
properties. First let bij ∈ Am ⊗ An be given by bij

ij = 1, bij
i+1,j = −1, bij

i,j+1 =

−1, bij
i+1,j+1 = 1 and 0 otherwise for all i = 1, . . . , m and j = 1, . . . , n. Note that

B := {bij : i = 1, . . . , m and j = 1, . . . , n} is a basis of Am ⊗ An. Because the basis
B is so sparse we can efficiently encode and decode elements in this basis.

Lemma 30. For any t ∈ span(Am ⊗ An) we can find an x ∈ Am ⊗ An such that
‖x− t‖ ≤ 2

√
m′n′ in O(mn) operations.

Proof. Suppose that t′ := t = ∑
i,j

aijbij. Then we have that a11 = t′11 as all other basis

elements have coefficient 0 there. Then let t′ ← t′ − a11 · b11 and consider a12. We
again have that a12 = t′12 and after this we set t′ ← t′ − a12 · b12. This equality will
be the case for all basis elements if we continue b13, . . . , b1n, b2m, . . . , bmn. Note
that calculating t′ ← t′ − aijbij can be done in a constant amount of operations as
bij always has only 4 nonzero coefficients. In total calculating all aij can thus be
done in O(mn) operations. So we now have aij ∈ R such that t = ∑

i,j
aijbij.

Let x := ∑
i,j
baijebij ∈ Am ⊗ An. Again it is clear that x can be calculated in O(mn)

operations as every bij has only 4 nonzero coefficients. Now note that

‖x− t‖ =
∥∥∥∥∥∑i,j (baije − aij)bij

∥∥∥∥∥ ≤
√

m′n′ · (4 · 1
2
)2 = 2

√
m′n′

which is the case because the (kl)-th coefficient is nonzero in at most 4 basis
vectors bij and combining this with the fact that |baije − aij| ≤ 1

2 gives us that
the (kl)-th coefficient of x − t is bounded in absolute value by 4 · 1

2 = 2 for all
k = 1, . . . , m′ and l = 1, . . . , n′. �

Now we have enough to construct a polynomial time CVP algorithm for the lattice

Am⊗ An. Given a target t = ∑
i,j

aijbij ∈ span (Am ⊗ An)∩
(

2−dZm′n′
)

we will find

a closest vector to t in O(d · (mn)2(m + n)) operations. From the transformation
in the proof of Lemma 30 it is clear that then also all aij ∈ 2−dZ. Note that we
only need to find a way to bound the number of iterations of the iterative slicer.
We use the fact that Am⊗ An has only integer vectors and thus if t ∈ 2−iZm′n′ the
squared distance to the target will in each iteration improve with at least 2−i+1

which is exactly what we need to bound the number of iterations.
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Algorithm 31. A polynomial CVP algorithm for the lattice Am ⊗ An.

Input : m, n, d ≥ 1 and t = ∑
i,j

aijbij ∈ span(Am ⊗ An) with aij ∈ 2−dZ

Output: a closest vector to t in Am ⊗ An
1 (akl)k,l = EmbedtoBasis( t );
2 a = ∑

k,l
baklebkl ;

3 for i = 0, . . . , d do
// Outer loop

4 ti = ∑
k,l

2−ib2i · aklebkl ;

5 while true do
// Inner loop

6 Construct weighted Km′ ,n′ ; (as in Lemma 29 with u = a− ti )
7 if Km′ ,n′ has a negative cycle Gv then
8 a = a + v;
9 else

10 break;
11 xi = a;
12 return xd;

Theorem 32. Given a target t = ∑
i,j

aijbij ∈ span (Am ⊗ An) with all aij ∈ 2−dZ

and with d ≥ 1 we can find a closest vector to t in Am ⊗ An in O(d · (mn)2(m + n))
operations using Algorithm 31.

Proof. First note that by Lemmas 23 and 29 it is clear that after each outer loop
xi is a closest vector to ti. Therefore we will focus on the complexity. First let
akl ∈ 2−dZ such that t = ∑

k,l
aklbkl ∈ 2−dZm′n′ . Recall that this can be done in time

O(mn). Let ti := ∑
k,l

2−id2i · aklcbkl for i = 0, . . . , d, so td = t. Recall that these can

also be calculated in time O(mn) each as each bkl has only 4 nonzero coefficients.
Let xi be the closest vector to ti as obtained by the algorithm for i = 0, . . . , d. Let
ei = ∑

k,l
a′klb

kl := ti − ti−1 and note that ‖ti − ti−1‖ = ‖ei‖ ≤ 4 · 2−i
√

m′n′ as every

|a′kl | ≤ 2−i and for every coefficient there are at most 4 basis elements that are
nonzero there.

Note that if our current target is ti and our current best approximation is a ∈
Am ⊗ An we will improve in every iteration with at least 2−i+1 between squared
distances if we improve at all as for a relevant vector v ∈ RV(Am ⊗ An) we have

‖a + v− ti‖2 − ‖a− ti‖2 = 2〈a− ti, v〉+ 〈v, v〉 ∈ 2−i+1Zm′n′

because a and v are integer vectors and ti ∈ 2−iZm′n′ .

When searching a closest vector to ti we start with the approximation xi−1. To
bound the number of iterations of the inner loop to get to xi we need the following
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bound for i ≥ 1:

‖ti − xi−1‖2 − ‖ti − xi‖2

= (‖ti − xi−1‖+ ‖ti − xi‖)(‖ti − xi−1‖ − ‖ti − xi‖)
≤ (‖ti−1 − xi−1‖+ ‖ei‖+ ‖ti − xi‖) (‖ti−1 − xi−1‖+ ‖ei‖ − ‖ti − xi‖)

Note that by Lemma 30 be have that ‖ti − xi‖ ≤ 2
√

m′n′ for all i ≥ 0. Therefore:

≤
(

4 + 2−i+2
)√

m′n′
(

2−i+2
√

m′n′ + dist(ti−1, Am ⊗ An)− dist(ti, Am ⊗ An)
)

≤
(

4 + 2−i+2
)√

m′n′
(

2−i+2
√

m′n′ + ‖ti−1 − ti‖
)

≤
(

4 + 2−i+2
)√

m′n′
(

2−i+2
√

m′n′ + 2−i
√

m′n′
)
= 10 · 2−i+1

(
1 + 2−i

)
m′n′

So for fixed i the inner loop starts with a = xi−1 and improves this approximation
until ‖ti − al‖ = ‖ti − xi‖. So we get the following

‖ti − xi−1‖2 = ‖ti − a‖2 < ‖ti − a1‖2 < . . . < ‖ti − al‖2 = ‖ti − xi‖2

and because ‖ti − xi−1‖2−‖ti − xi‖2 ≤ 10 · 2−i+1 (1 + 2−i)m′n′ and in every iter-
ation this decreases with at least 2−i+1 there can be at most 10 ·

(
1 + 2−i)m′n′ + 1

iterations (+1 for the final check) for every i ≥ 1. So given a closest vector xi−1 to
ti−1 we can find a closest vector xi to ti in O(mn) iterations. By Lemma 29 each it-
eration takes O(mn(m + n)) operations. So in total we need O((mn)2(m + n))
operations to go from xi−1 to xi for i ≥ 1. So given x0 we can find xd in
O(d · (mn)2(m + n)) operations. By Lemma 30 we can find an a ∈ Am ⊗ An

such that ‖t0 − a‖2 ≤ 4m′n′ and thus

‖t0 − a‖2 − ‖t0 − x0‖2 ≤ 4m′n′

and as this difference decreases with at least 2−0+1 = 2 every iteration the number
of iterations to obtain x0 from the first approximation is also in O(mn) and thus
the total number of operations to find x0 is in O((mn)2(m + n)). This changes
nothing to the total complexity and thus we can find a closest vector to td = t in
Am ⊗ An in O(d · (mn)2(m + n)) operations. �

Note that the used technique of turning a polynomial time algorithm for finding,
if it exists, a Voronoi relevant vector that improves the current approximation into
a polynomial CVP algorithm can be used for any lattice type with only integer
vectors for which the covering radius is polynomially bounded in the rank. Such
lattices with basis in Qn that can be scaled by a polynomial factor to be in Zn of
course also qualify.

For all practical purposes this algorithm gives a polynomial algorithm for solving
CVP in Am⊗ An. For theoretic purposes we can find a really good approximation
in polynomial time.

Corollary 33. Given a target t = ∑
i,j

aijbij ∈ span(Am ⊗ An) and a closest vector

c = Am ⊗ An to t and d ≥ 1 we can find an x ∈ Am ⊗ An such that ‖t− x‖ −
‖t− c‖ ≤ 2−d+2

√
m′n′ in O(d · (mn)2(m + n)) operations.

Proof. Use Algorithm 31 with input t′ = ∑
i,j

2−d · b2d · aijebij and let x be a closest

vector to t′ as returned by the algorithm. Let e = t− t′, then ‖e‖ ≤ 2−d+1
√

m′n′.
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We now have that

‖t− x‖ − ‖t− c‖ ≤
∥∥t′ − x

∥∥+ ‖e‖ − ‖t− c‖+ ‖e‖ ≤ 2 ‖e‖ ≤ 2−d+2
√

m′n′

and the result follows from Theorem 32. �

It isn’t clear if with some alterations it is possible to bound the number of itera-
tions when going directly to the given target instead of this successive rounding
technique. There exist ways to obtain simple negative weight cycles in a graph
which weight is guaranteed to be in some factor of the most negative weighted
cycle (there is a polynomial algorithm that finds the minimal mean weight cycle,
where the weight of a cycle is divided by its length). Maybe this could help to
give some lower bound on the improvement made in each iteration such that we
can bound the number of iterations when going directly to the target.

So for n = pq with p and q prime we have found a polynomial algorithm for
the dual lattice L∗n = L∗p ⊗ L∗q = Ap−1 ⊗ Aq−1 of Ln. Note that, just as for Ln
itself, with the use of Lemma 18 this polynomial algorithm extends trivially to a
polynomial algorithm for the case n = pkql .
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8. Conclusions and further work

We have shown that every cyclotomic lattice can be constructed by direct sums
and tensor products from the lattices A∗n (n ≥ 1). For the prime power cases
this resulted in a linear CVP algorithm for the cyclotomic lattice and an almost
linear algorithm for its dual. For the composite case n = p · q with p and q
prime the cyclotomic lattice became a lot more complex and we were able to
construct a sub-exponential CVP algorithm. For its dual we were able to construct
a polynomial CVP algorithm. Furthermore these algorithms extend trivially to
the case n = pkql .

Unfortunately the polynomial CVP algorithm for Am⊗ An doesn’t seem to extend
trivially to a polynomial CVP algorithm for general

⊗k
i=1 Ani when k > 2. It

seems however that it wouldn’t be too hard to characterize the Voronoi relevant
vectors of this more general lattice and an open problem is if this could again
result in a polynomial CVP algorithm.

It isn’t hard to see that the technique used to construct a sub-exponential CVP
algorithm for the lattice A∗m⊗ A∗n can be extended inductively to the more general
lattice

⊗k
i=1 A∗ni

. Further research could explore the resulting complexity of this.
It is still an open problem if there exists a polynomial CVP algorithm for the
lattice A∗m ⊗ A∗n and thus for the non power of prime cases of the cyclotomic
lattice. An interesting start and result on its own would be to characterize the
Voronoi relevant vectors of A∗m ⊗ A∗n.
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