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1 Abstract

Boosting is an important concept in machine learning to create classification
algorithms. AdaBoost and NH-Boost.DT are two existing boosting algorithms,
which both use a different online allocation algorithm as subroutine. However,
there is a third online allocation algorithm that has not been used for boosting
yet, named Squint.

In this thesis we have created a new boosting algorithm, SquintBoost, that uses
Squint as online allocation algorithm. The advantage of Squint over the online
allocation algorithms that are used for AdaBoost and NH-Boost.DT is that it has
a better regret bound. By zooming in on the training error, we prove that this
advantage also gives a lower upper bound for the training error of SquintBoost.
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2 Introduction

2.1 Motivation

The main goal of this thesis is to see whether a better boosting algorithm can
be created by using Squint as online allocation algorithm. AdaBoost and NH-
Boost.DT are two boosting algorithms that use respectively Hedge and Normal-
Hedge.DT as online allocation algorithm. We are going to prove what the upper
bound of the training error for the new boosting algorithm is and compare this
to the upper bounds of the existing algorithms. In Vente [7] these algorithms are
tested in experiments to be able to compare their performance in practice.

Before we will zoom in on the existing algorithms, we discuss what the use is of
boosting for classification problems and how it can be used. In Chapter 3 the
technical set up for boosting is discussed and in Chapter 4 the theorems about
the upper bounds of the training error of AdaBoost and NH-Boost.DT will be
proven according to the proofs given in Freund and Schapire [3] and Luo and
Schapire [6]. Then, in Chapter 5, the new boosting algorithm SquintBoost is
introduced and it is proven what the upper bound for the training error of this
new algorithm is.

2.2 Classification

The boosting algorithms that are discussed in this thesis are meant to solve
classification problems. This means that they identify for an input vector to
which of a set of categories Y it belongs. Given a training set containing a set
of observations with corresponding output, the algorithm learns to classify input
correctly. The training set is of the following form:

For i ∈ {1, . . . , N} :

 yi

xi

 with xi ∈ Rd, d ∈ N and yi ∈ Y.

The vector xi consists of d properties and yi is the desired output. A classification
algorithm is used to predict what the output will be given any new input vector
x that is not in the training set.

Example 2.1. Handwritten digit recognition (see also Hastie et al. [4]).

Consider a set letters with handwritten zip codes. Now the algorithm is meant
to decide which digits are written on the basis of the given pixels. This is an
example of a classification problem. In this example yi would be the i-th number
that is used for training and xi would consist of all the characteristics of the
pixels of this number. Some digits are easier than others, since for example the
8 does not really look like any other digit, while the 1 and 7 quite look alike
in certain handwritings. If this classification can be done accurate enough, the
resulting algorithm could be used as part of an automatic sorting procedure
for these letters. Note that it is very important that the error is low for this
algorithm, since it would be a problem if letters were misdirected. An option to
achieve such a low error, is to classify certain digits which are hard to classify to
an extra category that has to be sorted by hand afterwards.
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In this thesis we will mainly address binary classification problems. For these
problems the set of labels Y has only two elements. As discussed in Freund and
Schapire [3], algorithms used for binary classification problems can be generalized
to classification problems with n categories by splitting the problem in 1

2n(n−1)
binary problems. Then the boosting is done separately on each of the binary
problems.

2.3 Boosting

Boosting is a part of machine-learning which uses weak learners to create one
strong learner. A weak learner is a classifier that performs only slightly better
than random guessing. So for binary classification problems, the weak learner
only has to be correct just a little more than half of the time. A good way to
create such a weak learner is described in Hastie et al. [4]. They explain how
decision stumps can be used to create a weak learner. A decision stump is a
binary tree with a single split. So these decision stumps take only one property
of the input into account and classify on the basis of this property. As long as
the error of this decision stump is not equal to 1

2 it is useful for boosting. Note
that if the error is bigger than 1

2 , the weak learner just has to classify the other
way around. The weak learner determines its hypothesis on the basis of weights
that are assigned to each training example. The boosting algorithm uses these
examples to extract the hard cases and assigns a higher weight to those cases
than to the easy examples. By repeating this on the training data, the weights
are updated and so a strong learner, a classifier with much higher accuracy, is
created. For the updating of the weights, an online allocation algorithm is used.
These algorithms will be discussed in the next paragraph.

AdaBoost, as described in Freund and Schapire [3], is a boosting algorithm that
uses Hedge as online allocation algorithm to create a strong learner out of a
weak learner. At first, all the training examples get the same weight and a
weak learning algorithm produces a hypothesis on the basis of these examples,
but then the algorithm determines which examples are harder than others. The
hard examples get a higher weight according to the Hedge algorithm to reduce the
error of the algorithm. After T rounds in which the weak learner has produced T
hypotheses ht for t ∈ {1, . . . , T}, the final classification hypothesis is determined
on the basis of all these T hypotheses.

NH-Boost.DT, as described in Luo and Schapire [6], is a boosting algorithm that
is computationally faster than AdaBoost. This advantage is achieved by ignoring
a large number of easy examples in each round. Since NH-Boost.DT sets multiple
weights to zero, these examples do not have to be taken into account by the weak
learner. As more rounds have been run, the examples with zero weights increase,
so the algorithm gets faster each round. For this boosting algorithm, the online
allocation algorithm NormalHedge.DT is used. As will be proven in Chapter 4,
the training error of NH-Boost.DT has an upper bound which is comparable to
AdaBoost. Since the algorithm is faster, the training error will thus decrease
faster than the training error of AdaBoost.
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2.4 Online allocation algorithm

Assume there are N strategies and T is the number of iterations. An online
allocation algorithm is used to choose for every t ∈ {1, . . . , T} a distribution pt
over these N strategies such that the suffered loss is as small as possible. For an
online allocation algorithm, the loss lt is defined dependent on the “game” it is
used for such that the goal of the algorithm is to minimize its cumulative loss.
The loss can be interpreted as the prediction error. Since pt is a distribution, we
have

∑N
i=1 pt,i = 1, where pt,i ≥ 0 is the amount allocated to strategy i. Now on

iteration t the suffered loss is defined as pt · lt =
∑N
i=1 pt,ilt,i.

The regret RT gives the difference between the loss of the algorithm and the loss
of the best strategy, so RT =

∑T
t=1 pt ·lt−mini

∑T
t=1 lt,i. So when this difference

is small, the algorithm performs well.

Hedge is introduced in 1997 by Freund and Schapire [3]. It is an algorithm used
for online allocation problems. Hedge is nowadays still widely used for multiple
purposes. It updates the given weights such that the suffered loss is small. To
do so, it calculates on every iteration the suffered loss and the weights of the
strategies that have suffered much loss are relatively decreased with respect to the
weights of the strategies that have suffered few loss. Twelve years after Hedge was
introduced, Chaudhuri, Freund and Hsu have invented a new algorithm called
NormalHedge [2] and in 2014 Luo and Shapire introduced NormalHedge.DT in
[6]. With this last algorithm they created a new boosting algorithm, named NH-
Boost.DT. NormalHedge.DT is comparable to Hedge but chooses the weights
in a different manner. Its regret bound is comparable to that of Hedge too.
Finally, Squint, as introduced in Koolen and van Erven [5], is proven to perform
significantly better on easy data, since it has a better regret bound.

As shown in Freund and Schapire [3], for the regret of Hedge the following holds:

RT = O
(√

T lnN
)

(1)

For NormalHedge.DT we consider the upper bound for the ε-regret. The ε-regret
is defined as RεT =

∑T
t=1 pt · lt −

∑T
t=1 lt,iε , where iε is the index of the action

that is the dNεe-th element of the list of actions sorted by their total losses after
T rounds from smallest to largest. For the ε-regret of NormalHedge.DT we have:

RεT = O

(√
T ln

(
1
ε

)
+ T ln(lnT )

)
(2)

For Squint, we consider the regret with respect to a set of strategies K, which
are referred to as “experts” in Koolen and van Erven [5]. The regret is defined as

RiT =
∑T
t=1 pt · lt−

∑T
t=1 lt,i and the regret with respect to a set of strategies as

RKT = ED(i|K)(R
i
T ), with D the prior distribution on the strategies. For K the set

of strategies with index smaller than or equal to iε in combination with a uniform
prior, you get the ε-regret. So this regret RKT is even more general than the ε-

regret. Denote by V iT the variance of the i-th strategy: V iT =
∑T
t=1(pt · lt− lt,i)2.

Now we define V KT = ED(i|K)(V
i
T ). For Squint the regret with respect to a set of

strategies is of the following order:

RKT = O

(√
V KT ln

(
lnT

D(K)

)
+ ln

(
lnT

D(K)

))
(3)
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As is explained in Koolen and van Erven [5], the variance V KT can be much smaller
than T and can not be larger than T , which implies that the upper bound for
Squint is smaller than the upper bounds of the other algorithms. Because of
that we are going to try to create a boosting algorithm with Squint and evaluate
whether this advantage of Squint can be an advantage for boosting too.

Firstly, we have to find a way to convert Squint into a boosting algorithm. Freund
and Schapire [3] do not mention how a boosting algorithm can be created in
general, since AdaBoost has immediately incorporated Hedge in it. Secondly, we
are going to prove what the upper bound will be for the new algorithm that is
created with Squint. To do this, we first take a closer look at the upper bounds
which were found for AdaBoost and NH-Boost.DT.

3 The boosting set up

A boosting algorithm is used for classification problems. Let d be the number
of properties taken into account and let Y be the set of labels. As mentioned
before, the algorithm needs training examples as input. So it needs N labeled
examples, where the training examples are of the following form:

For i ∈ {1, . . . , N} :

 yi

xi

 with xi ∈ Rd and some d ∈ N and yi ∈ Y.

The vector xi consists for every example of d properties and yi is the desired
output. Moreover, the algorithm needs an integer T which denotes the number
of iterations. Now wt,i is the weight assigned to example i on iteration t. For
the first weights w1, distribution D is used. So w1,i = D(i) and since D is a

distribution, it follows that
∑N
i=1 w1,i = 1.

Algorithm 1 Hedge(β)

Require:
β ∈ [0, 1]

initial weight vector w1 ∈ [0, 1]N with
∑N
i=1 w1,i = 1

integer T specifying number of iterations
1: for t = 1, 2, . . . , T do
2: Choose allocation pt = wt∑N

i=1 wt,i

3: Receive loss vector lt ∈ [0, 1]N from environment
4: Suffer loss pt · lt.
5: Set the new weights vector to be

wt+1,i = wt,i · βlt,i

6: end for

For AdaBoost, the online allocation algorithm Hedge is used for updating the
weights on every iteration. The pseudo-code for Hedge, as given in [3], is shown
in Fig. 1. This algorithm needs β ∈ [0, 1] as input and updates the weights on
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the basis of the loss vector. On every iteration of AdaBoost, this β is calculated
dependent on the error εt of the hypothesis for iteration t.

With the weights, the distribution pt is set to pt = wt∑N
i=1 wt,i

. The weak learning

algorithm WeakLearn is provided with this distribution and generates a hy-
pothesis ht : X → [0, 1]. If we have ht(xi) 6= yi, the hypothesis makes a mistake.
Now the loss is set to be lt,i := 1−|ht(xi)−yi| and for every iteration the error is

εt =
∑N
i=1 pt,i|ht(xi)− yi|. Moreover, βt is chosen to be βt = εt/(1− εt) and the

weights are updated according to this βt and loss lt,i. After T iterations, the final
hypothesis is determined on the basis of the T hypotheses ht for t ∈ {1, . . . , T}.
Thus, the AdaBoost algorithm is as shown in Fig. 2.

Algorithm 2 AdaBoost

Require:
sequence of N labeled examples 〈(x1, y1), . . . , (xN , yN )〉, yi ∈ {0, 1}
distribution D over the N examples
weak learning algorithm WeakLearn
integer T specifying number of iterations

1: procedure Boosting
2: Initialize the weight vector w1,i = D(i) for i = 1, . . . , N .
3: for t = 1, 2, . . . , T do
4: Set pt = wt∑N

i=1 wt,i
.

5: Call WeakLearn, providing it with the distribution pt and receive
a hypothesis ht : X → [0, 1].

6: Calculate the error of ht : εt =
∑N
i=1 pt,i|ht(xi)− yi|.

7: Set βt = εt/(1− εt).
8: Update the weights:

wt+1,i = wt,i · β1−|ht(xi)−yi|
t

9: end for
10: return final hypothesis

hf (x) : Rd → {0, 1}, hf (x) :=

 1 if
∑T
t=1(log 1

βt
)ht(x) ≥ 1

2

∑T
t=1 log 1

βt

0 otherwise

11: end procedure

For NH-Boost.DT, the hedging algorithm NormalHedge.DT is used, so the biggest
difference between AdaBoost and NH-Boost.DT is how the weights are updated.

Instead of multiplying the weights by a factor β
1−|ht(xi)−yi|
t on every iteration,

the weights are set proportional to exp
(

[st−1,i−1]2−
3t − 1

)
− exp

(
[st−1,i+1]2−

3t − 1
)

,

where st−1,i is determined according to the algorithm NormalHedge.DT. The
notation [s]− stands for min{0, s}. Moreover, the final hypothesis for Normal-
Hedge.DT is just a majority vote of all the hypotheses ht for t ∈ {1, . . . , T}. Note
that NH-Boost.DT uses label set Y = {−1, 1}, while AdaBoost uses Y = {0, 1},
since this makes in both cases the proof of the upper bound easier. The algorithm
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NH-Boost.DT is thus as shown in Fig. 3.

Algorithm 3 NH-Boost.DT

Require:
sequence of N labeled examples 〈(x1, y1), . . . , (xN , yN )〉, yi ∈ {−1, 1}
weak learning algorithm WeakLearn
integer T specifying number of iterations

1: procedure Boosting
2: Set s0 = 0.
3: for t = 1, 2, . . . , T do
4: Set pt,i ∝ exp([st−1,i − 1]2−/3t)− exp([st−1,i + 1]2−/3t), for all i.
5: Call WeakLearn, providing it with the distribution pt and receive

a hypothesis ht : X → {−1, 1} with edge γt = 1
2

∑N
i=1 pt,iyiht(xi).

6: Set st,i = st−1,i + 1
2yiht(xi)− γt for all i.

7: end for
8: return final hypothesis

hf (x) : Rd → {−1, 1}, hf (x) := sign

(
T∑
t=1

ht(x)

)

9: end procedure

4 Analysis of the existing boosting algorithms

In [3], Freund and Shapire find an upper bound for the training error of the
AdaBoost algorithm. First we are going to prove that this upper bound indeed
holds for AdaBoost. Moreover, we zoom in on the proof of the upper bound of
the training error of NH-Boost.DT. Then we can analyze how to find a way to
create a boosting algorithm with Squint and find an upper bound for the training
error of this new algorithm.

4.1 Upper bound of the error of AdaBoost

For the proof of the upper bound for the training error of AdaBoost, the following
lemma is needed.

Lemma 4.1. For every α ≥ 0 and r ∈ [0, 1] the following holds:

αr ≤ 1− (1− α)r (4)

Proof. When taking the second derivative of the difference, the following is found.

d2

dr2
(αr − 1 + (1− α)r) = αr · ln2(r) ≥ 0 (5)

since α ≥ 0, so the difference is convex. f(r) = αr and g(r) = 1 − (1 − α)r
intersect for r = 0 and r = 1, since f(0) = α0 = 1 = 1 − (1 − α) · 0 = g(0)
and f(1) = α1 = α = 1 − (1 − α) · 1 = g(1). So the difference is 0 for r = 0
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and r = 1 and is convex in between, so αr ≥ 1 − (1 − α)r for r ∈ [0, 1] or
αr ≤ 1 − (1 − α)r for r ∈ [0, 1]. We find that d

drα
r|r=0 = αr ln(r)|r=0 = −∞.

Moreover, d
dr (1 − (1 − α)r)|r=0 = 1 − α, so d

drα
r|r=0 <

d
dr1 − (1 − α)r|r=0, so

αr ≤ 1− (1− α)r for r ∈ [0, 1].

Now we can prove the following theorem, as proven in Freund and Schapire [3],
about the upper bound for the training error of AdaBoost.

Theorem 4.2. Let ε1, . . . , εT be the errors of the generated hypotheses of the
weak learning algorithm WeakLearn, when called by AdaBoost. Then the training
error ε =

∑N
i=1D(i)1{hf (xi) 6= yi} of the final hypothesis hf output by AdaBoost

is bounded above by

ε ≤ 2T
T∏
t=1

√
εt(1− εt) (6)

Proof. Since ht(xi) ∈ [0, 1] and yi ∈ {0, 1} we have that |ht(xi)− yi| ∈ [0, 1], so

1− |ht(xi)− yi| ∈ [0, 1]. Note that
∑N
i=1 pt,i = 1 and

∑N
i=1 pt,i|ht(xi)− yi| = εt

by definition. Moreover, pt,i =
wt,i∑N
j=1 wt,j

, so wt,i = pt,i ·
∑N
j=1 wt,j . Since βt ≥ 0

by definition, Lemma 4.1 can be used and it follows that

N∑
i=1

wt+1,i =

N∑
i=1

wt,iβ
1−|ht(xi)−yi|
t

≤
N∑
i=1

wt,i(1− (1− βt)(1− |ht(xi)− yi|))

=

N∑
i=1

wt,i − (1− βt)
N∑
i=1

pt,i

 N∑
j=1

wt,j

 (1− |ht(xi)− yi|)

=

(
N∑
i=1

wt,i

)
(1− (1− βt)(1− εt)) (7)

Note that βt ∈ [0, 1] for all t ∈ {1, . . . , T} and εt ∈ [0, 1], so 1−(1−βt)(1−εt) ≥ 0
for all t. By repeating this inequality, we get that

N∑
i=1

wT+1,i ≤

(
N∑
i=1

wT,i

)
(1− (1− βT )(1− εt))

≤

(
N∑
i=1

wT−1,i

)
(1− (1− βT−1)(1− εT−1)) (1− (1− βT )(1− εt))

≤ · · · ≤

(
N∑
i=1

w1,i

)
T∏
t=1

(1− (1− βt)(1− εt))

=

T∏
t=1

(1− (1− βt)(1− εt)) (8)

10



First suppose that yi = 0. Then hf makes a mistake on instant i if hf (xi) = 1,
so then, according to the AdaBoost algorithm, the following holds

T∑
t=1

log(1/βt)ht(xi) ≥
1

2

T∑
t=1

log(1/βt)

⇒ −
T∑
t=1

log(βt)ht(xi) ≥ −
1

2

T∑
t=1

log(βt) (9)

Now we get, since ht(xi) ≥ 0, that

T∏
t=1

β
−|ht(xi)−yi|
t =

T∏
t=1

β
−|ht(xi)−0|
t = e−

∑T
t=1 log(βt)ht(xi) (10)

≥ e− 1
2

∑T
t=1 log(βt) =

T∏
t=1

elog(β
− 1

2
t ) =

(
T∏
t=1

βt

)− 1
2

(11)

Now suppose that yi = 1. Then hf makes a mistake on instant i if hf (xi) = 0,
so then, according to the AdaBoost algorithm, the following holds

T∑
t=1

log(1/βt)ht(xi) <
1

2

T∑
t=1

log(1/βt)

⇒
T∑
t=1

log(βt)ht(xi) >
1

2

T∑
t=1

log(βt) (12)

Now we get, since ht(xi) ∈ [0, 1] and thus ht(xi)− 1 ≤ 0, that

T∏
t=1

β
−|ht(xi)−yi|
t =

T∏
t=1

β
−|ht(xi)−1|
t =

T∏
t=1

β
ht(xi)
t ·

T∏
s=1

β−1s

= e
∑T
t=1 log(βt)·ht(xi) ·

T∏
s=1

β−1s > e
1
2

∑T
t=1 log(βt) ·

T∏
s=1

β−1s

=

T∏
t=1

elog(β
1
2
t )

T∏
s=1

β−1s =

(
T∏
t=1

βt

)− 1
2

(13)

Since yi ∈ {0, 1}, we have dealt with all the cases, so hf only makes a mistake
on instance i if

T∏
t=1

β
−|ht(xi)−yi|
t ≥

(
T∏
t=1

βt

)− 1
2

(14)

The fifth step of the algorithm gives us that

wT+1,i = wT,iβ
1−|hT (xi)−yi|
T = wT−1,i · β1−|hT−1(xi)−yi|

T−1 · β1−|hT (xi)−yi|
T

= · · · = w1,i ·
T∏
t=1

β
1−|ht(xi)−yi|
t = D(i)

T∏
t=1

β
1−|ht(xi)−yi|
t (15)
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Combining (14) and (15), we find, since wT+1,i ≥ 0 for all i ∈ {1, . . . , N}, that

N∑
i=1

wT+1,i ≥
∑

i:hf (xi) 6=yi

wT+1,i

=
∑

i:hf (xi) 6=yi

D(i)

T∏
t=1

β
1−|ht(xi)−yi|
t

≥
∑

i:hf (xi) 6=yi

D(i)

T∏
t=1

βt ·

(
T∏
t=1

βt

)− 1
2

= ε ·

(
T∏
t=1

βt

) 1
2

(16)

So, it follows, since
∏T
t=1 βt ≥ 0, that

ε ≤
N∑
i=1

wT+1,i ·

(
T∏
t=1

βt

)− 1
2

≤
T∏
j=1

(1− (1− εj)(1− βj)) ·

(
T∏
t=1

βt

)− 1
2

=

T∏
t=1

1− (1− εt)(1− βt)√
βt

(17)

Now by calculating the derivative of this upper bound, we get

d

dβt

(
1− (1− εt)(1− βt)√

βt

)
= − 1

2β
− 3

2
t · (1− (1− εt)(1− βt)) + β

− 1
2

t (1− εt)

(18)

To find out for which β the upper bound is the smallest, we set the derivative
equal to zero. This gives us the following

β
− 1

2
t (1− εt) = 1

2β
− 3

2
t (1− (1− εt)(1− βt))

⇒ βt =
εt

1− εt
(19)

If this βt is plugged into the upper bound, as done by AdaBoost, it follows that

εt ≤
T∏
t=1

1− (1− εt)(1− εt
1−εt )√

εt
1−εt

= 2T
T∏
t=1

√
(1− εt)εt (20)
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So the upper bound of AdaBoost only depends on T , the number of time steps,
and εt for every t ∈ {1, 2, . . . , T}. Since the error εt lies in the interval [0, 1] for
every t ∈ {1, 2, . . . , T}, we find that εt(1 − εt) ∈ [0, 14 ] and thus

√
εt(1− εt) ∈

[0, 12 ]. So for every extra time step, the upper bound of the error is multiplied

by 2
√

εt(1− εt) ≤ 1. By increasing the number of time steps the upper bound
will already decrease if the error of the hypothesis is only slightly smaller than 1

2 .
Moreover, note that the upper bound of the error does not only depend on the
hypothesis with the biggest error, which is mostly the case for other algorithms,
but depends on all hypotheses.

To find an upper bound that is easier to interpret, we prove the following lemma,
which is also stated and proven in Freund and Schapire [3].

Lemma 4.3. Suppose the setting is the same as in Theorem 4.2. The error
ε =

∑N
i=1D(i)1{hf (xi) 6= yi} of the final hypothesis hf output by AdaBoost is

bounded above by

ε ≤ exp

(
−2

T∑
t=1

γ2t

)
(21)

with γt = 1
2 − εt. In the case that the errors εt of all the hypotheses are smaller

than or equal to 1
2 − γ, Eq. (21) implies that

ε ≤ exp(−2Tγ2) (22)

Proof. As we have proven in Theorem 4.2, we already know that the error is
bounded above by ε ≤ 2T

∏T
t=1

√
εt (1− εt).

We find that

ε ≤ 2T
T∏
t=1

√
εt (1− εt)

= 2T
T∏
t=1

√(
1
2 − γt

) (
1−

(
1
2 − γt

))
=

T∏
t=1

√
1− 4γ2t (23)

Now we use the Kullback-Leibler divergence, so that Pinsker’s inequality can be
used. As described in [1], this divergence is defined as

kl (p, q) = p ln
(
p
q

)
+ (1− p) ln

(
1−p
1−q

)
(24)

By choosing p = 1
2 and q = 1

2 − γt we get

kl
(
1
2 ,

1
2 − γt

)
= 1

2 ln

(
1
2

1
2−γt

)
+
(
1− 1

2

)
ln

(
1− 1

2

1−
(
1
2−γt

)
)

= 1
2 ln

(
1

1−2γt

)
+ 1

2 ln
(

1
1+2γt

)
= − ln

(√
1− 4γ2t

)
(25)
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Now it follows that

ε ≤
T∏
t=1

√
1− 4γ2t

= exp

(
−

T∑
t=1

kl
(
1
2 ,

1
2 − γt

))
(26)

As stated in equation (2.8) in the article of Bubeck and Cesa-Bianchi [1], for
every p, q ∈ R, the following holds:

kl(p, q) ≥ 2(p− q)2.

Plugging in p = 1
2 and q = 1

2 − γt, gives

kl( 1
2 ,

1
2 − γt) ≥ 2( 1

2 − ( 1
2 − γt))

2 = 2γ2t (27)

The following upper bound for ε follows:

ε ≤
T∏
t=1

√
1− 4γ2t = exp

(
−

T∑
t=1

kl
(
1
2 ,

1
2 − γt

))

≤ exp

(
−2

T∑
t=1

γ2t

)
(28)

Note that if the errors εt of all the hypotheses are smaller than or equal to 1
2 −γ,

this implies
ε ≤ exp

(
−2Tγ2

)

4.2 Normal Hedge

Now we consider NH-Boost.DT based on NormalHedge.DT as described by Luo
and Schapire [6]. For t ∈ {1, . . . , T}, we define edge γt = 1

2

∑N
i=1 pt,iyiht(xi).

This edge γt can be interpreted as the advantage of hypothesis ht on iteration t
over random guessing. So hypothesis ht is correct for an example with probability
1
2 + γt. Now NH-Boost.DT guarantees that there exists a small edge γ such that
γ ≤ γt for all t ∈ {1, . . . , T}. Let (xi, yi)i=1,...,N be the set of training examples
where xi ∈ Rd is an example and yi ∈ {−1, 1} its label. Now we can prove
the following theorem, as stated and proven in Luo and Schapire [6], for NH-
Boost.DT.

Theorem 4.4. Let Y = {−1, 1} be the set of labels. After T rounds, the training

error of NH-Boost.DT is at most exp(− 1
3Tγ

2 + ln(lnT
3
2 + 5

2 )), which is up to

logarithmic factors of order Õ(exp(− 1
3Tγ

2)).

Proof. Let (x̃i, ỹi)i=1,2,...,N be the set examples, ordered such that

T∑
t=1

ỹ1ht(x̃1) ≤
T∑
t=1

ỹ2ht(x̃2) ≤ · · · ≤
T∑
t=1

ỹNht(x̃N ) (29)
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Set lt,i = 1{ht(xi) = yi} = 1
2yiht(xi) + 1

2 and denote by l̃t,j the loss on the

sorted examples: l̃t,j = 1{ht(x̃j) = ỹj}. Note that ht(x̃i)ỹi = 1 if and only if
ht(x̃i) = ỹi. Besides, we have ht(x̃i)ỹi = −1 if and only if ht(x̃i) 6= ỹi. Now for
every i ∈ {1, . . . , N} the following holds:

T∑
t=1

ht(x̃i)ỹi =

T∑
t=1

1{ht(x̃i) = ỹi} −
T∑
t=1

1{ht(x̃i) 6= ỹi}

=

T∑
t=1

1{ht(x̃i) = ỹi} −

(
T −

T∑
t=1

1{ht(x̃i) = ỹi}

)

= 2

T∑
t=1

l̃t,i − T (30)

This implies that if i, j ∈ {1, . . . , N} such that j ≤ i, and thus
∑T
t=1 ỹjht(x̃j) ≤∑T

t=1 ỹiht(x̃i), we have

T∑
t=1

ỹjht(x̃j) = 2

T∑
t=1

l̃t,j − T ≤
T∑
t=1

ỹiht(x̃i) = 2

T∑
t=1

l̃t,i − T

So

T∑
t=1

l̃t,j ≤
T∑
t=1

l̃t,i

Now we use for every t ∈ {1, . . . , T}:

γ ≤ γt
So it follows that

1
2 + γ ≤ 1

T

T∑
t=1

1
2 + γt

= 1
2 +

1

T

T∑
t=1

1

2

N∑
i=1

pt,iyiht(xi)

=
1

2
+

1

T

T∑
t=1

(
N∑
i=1

pt,ilt,i −
1

2

)

=
1

T

T∑
t=1

(
N∑
i=1

pt,ilt,i

)

Consider the ε-regret RεT for ε = j/N . Then for all j ∈ {1, . . . , N} the following
holds:

1

T

T∑
t=1

l̃t,j +
R
j/N
T

T
=

1

T

T∑
t=1

l̃t,j +
1

T

(
T∑
t=1

pt · lt −
T∑
t=1

lt,ij/N

)

=
1

T

T∑
t=1

(
l̃t,j +

(
N∑
i=1

pt,i · lt,i

)
− l̃t,j

)

=
1

T

T∑
t=1

(
N∑
i=1

pt,ilt,i

)
(31)
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So for all j ∈ {1, . . . , N} we have:

1
2 + γ ≤ 1

T

T∑
t=1

(
N∑
i=1

pt,ilt,i

)
=

1

T

T∑
i=1

l̃t,j +
R
j/N
T

T
(32)

Note that γt = 1
2

∑
i pt,iyiht(xi) =

∑
i pt,ilt,i−

∑
i
1
2pt,i = pt · lt− 1

2 . For the st,i
of the NH-Boost.DT algorithm we find

st,i = st−1,i + 1
2yiht(xi)− γt = st−1,i + lt,i − pt · lt (33)

for all i ∈ {1, . . . , N} and t ∈ {1, . . . , T}. So the weights in NH-Boost.DT are
updated according to the General Hedge Algorithm described in Algorithm 3
of Luo and Schapire [6], where the loss is set to be lt,i = 1{ht(xi) = yi} and

φT (s) = exp
(

[s]2−
3T

)
, with [s]− = min{0, s}.

In Corollary 2 of Luo and Schapire [6], it is found that the regret now is bounded
above as follows.

Rε
T ≤

√
3T ln

(
1

2ε
(e4/3 − 1)(lnT + 1) + 1

)
(34)

Plugging j
N in for ε, we find

R
j
N

T ≤

√
3T ln

(
1

2j/N
(e4/3 − 1)(lnT + 1) + 1

)

≤

√
3T ln

(
3N

2j
(lnT + 1) + 1

)

≤

√
3T ln

(
N

j
(lnT

3
2 + 5

2 )

)
(35)

Now Eq. (32) gives us that

1
2 + γ ≤ 1

T

T∑
i=1

l̃t,j +
R
j/N
T

T

≤ 1

T

T∑
i=1

l̃t,j +

√√√√3 ln
(
N
j (lnT

3
2 + 5

2 )
)

T
(36)

Suppose j is such that γ >

√
3 ln
(
N
j (lnT

3
2 +

5
2 )
)

T . Then it follows that 1
T

∑T
t=1 l̃t,j =

1
T

∑T
t=1 1{ht(x̃j) = ỹj} > 1

2 . Since the final hypothesis hf (x) is a majority vote,
this means the final hypothesis will be correct for example (x̃j , ỹj). Since we

know for i ≥ j that
∑T
t=1 l̃t,i ≥

∑T
t=1 l̃t,j , the final hypothesis will be correct for

all i ≥ j. So the training error will be at most j−1
N , since the final hypothesis
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can only be wrong for the first j − 1 examples. So we want to find the smallest
j such that

γ >

√√√√3 ln
(
N
j (lnT

3
2 + 5

2 )
)

T
(37)

Now the following must hold:

j > Ne−
1
3Tγ

2

(lnT
3
2 + 5

2 ) (38)

Note that the theorem is vacuous if we have

− 1
3Tγ

2 + ln(lnT
3
2 + 5

2 ) ≥ 0 (39)

so without loss of generality we can assume that the smallest j for which Eq.
(37) holds is smaller than N , so there exists such a j. Since we took the smallest
j for which (37) holds, the training error has the following upper bound:

ε ≤ j − 1

N
< exp(− 1

3Tγ
2 + ln(lnT

3
2 + 5

2 )) (40)

5 Plugging Squint into a boosting algorithm

As stated before, Squint is an online allocation algorithm that is proven to have a
better regret bound than Hedge and NormalHedge.DT. Since it is not mentioned
in Freund and Schapire [3] how online allocation algorithms can be plugged into
a boosting algorithm, we first have to determine how this can be done for Squint.

5.1 SquintBoost

Comparing the NH-Boost.DT algorithm with NormalHedge.DT, we can see how
the online allocation algorithm is plugged into the boosting algorithm. By setting
the weights in this algorithm according to Squint instead of NormalHedge.DT,
we create a new boosting algorithm SquintBoost. The new algorithm is given in
Fig. 4. Note that for SquintBoost we need a prior distribution D. For Theorem
5.2, we choose the uniform distribution as prior distribution.

5.2 Upper bound of the training error of SquintBoost

The regret bound of Squint is given in Theorem 4 of Koolen and van Erven [5].
To make the notation more consistent, we define for Squint wit = pt,i where t
denotes the iteration and i the expert.
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Algorithm 4 Squint-Boost

Require:
sequence of N labeled examples 〈(x1, y1), . . . , (xN , yN )〉, yi ∈ {−1, 1}
weak learning algorithm WeakLearn
integer T specifying number of iterations
prior D over the N examples

1: procedure Boosting
2: for t = 1, 2, . . . , T do

3: Set pt,i ∝ D(i)
∫ 1

2

0
exp

(
η
∑t−1
s=1

(
1
2

∑N
j=1 ps,jyjhs(xj)

)
−ps,iyihs(xi)−

η2
∑t−1
s=1

((
1
2

∑N
j=1 ps,jyjhs(xj)

)
− ps,iyihs(xi)

)2 )
dη for all i.

4: Call WeakLearn, providing it with the distribution pt and receive
a hypothesis ht : X → {−1, 1} with edge γt = 1

2

∑
i pt,iyiht(xi).

5: end for
6: return final hypothesis

hf (x) : Rd → {−1, 1}, hf (x) := sign

(
T∑
t=1

ht(x)

)

7: end procedure

Theorem 5.1. With respect to any subset of experts K, i = |K|, the regret of
Squint with improper prior, which chooses weights

pT+1,i ∝ D(i)

∫ 1/2

0

eηR
i
T−η

2V iT dη

is bounded by

RKT ≤
√

2V KT

1 +

√
2 ln

( 1
2 + ln(T + 1)

D(K)

)+ 5 ln

(
1 +

1 + 2 ln(T + 1)

D(K)

)

Let (xi, yi)i=1,...,N be the set of training examples where xi ∈ Rd is an example
and yi ∈ {−1, 1} its label. Now we can prove the following theorem for Squint-
Boost, which is the main result of this thesis.

Theorem 5.2. Let Y = {−1, 1} be the set of labels. After T rounds, the training
error of Squint-Boost with the uniform distribution as prior distribution is at
most

exp

−1

2

Tγ − 5 ln (2N(1 + ln(T + 1)))√
2V KT

− 1

2

+ ln(1 + 2 ln(T + 1))

 ,

which is up to logarithmic factors of order Õ
(

exp
(
− 1

4
T 2γ2

V KT

))
.
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It is stated in Koolen and van Erven [5] that often the variance is small, so
V KT � T . For large T the upper bound for the training error is of the order

exp

(
−1

4

T 2γ2

V KT

)
� exp

(
−1

4
Tγ2

)
(41)

Proof. Let (x̃i, ỹi)i=1,2,...,N be the set examples, ordered such that

T∑
t=1

ỹ1ht(x̃1) ≤
T∑
t=1

ỹ2ht(x̃2) ≤ · · · ≤
T∑
t=1

ỹNht(x̃N ) (42)

Set lt,i = 1{ht(xi) = yi} = 1
2yiht(xi)+ 1

2 and denote by l̃t,i the loss on the sorted

examples: l̃t,j = 1{ht(x̃j) = ỹj}. Recall from the proof for NH-Boost.DT that if

i, j ∈ {1, . . . , N} such that j ≤ i, and thus
∑T
t=1 ỹjht(x̃j) ≤

∑T
t=1 ỹiht(x̃i), we

have that

T∑
t=1

l̃t,j ≤
T∑
t=1

l̃t,i (43)

In the same way as in the proof for NH-Boost.DT, it can be found that

1
2 + γ ≤ 1

T

T∑
t=1

(
N∑
i=1

pt,ilt,i

)

For all j ∈ {1, . . . , N} we choose K to be the set of experts with loss smaller
or equal to the loss of the j-th ordered example. So l̃t,i ≤ l̃t,j for all i ∈ K. It

follows that ED(k|K)(lt,k) ≤ l̃t,j . This leads to the following result.

1

T

T∑
t=1

l̃t,j +
RKT
T

=
1

T

(
T∑
t=1

l̃t,j + ED(k|K)R
k
T

)

=
1

T

T∑
t=1

(
l̃t,j +

(
N∑
i=1

pt,ilt,i

)
− ED(k|K)(lt,k)

)

≥ 1

T

T∑
t=1

(
l̃t,j +

(
N∑
i=1

pt,ilt,i

)
− l̃t,j

)

=
1

T

T∑
t=1

(
N∑
i=1

pt,ilt,i

)
(44)

Now for all j ∈ {1, . . . , N} with K chosen as before, we have that

1
2 + γ ≤ 1

T

T∑
t=1

(
N∑
i=1

pt,ilt,i

)
≤ 1

T

T∑
t=1

l̃t,j +
RKT
T

(45)

As stated in Theorem 5.1, the regret of Squint, which is used in Squint-Boost, is
bounded from above as follows.

RKT ≤
√

2V KT

1 +

√
2 ln

( 1
2 + ln(T + 1)

D(K)

)+ 5 ln

(
1 +

1 + 2 ln(T + 1)

D(K)

)
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Plugging in the fact that |K| = j and thus D(K) = j
N for D the uniform distri-

bution, this implies

RKT ≤
√

2V KT

1 +

√√√√2 ln

(
1
2 + ln(T + 1)

j
N

)+ 5 ln

(
1 +

1 + 2 ln(T + 1)
j
N

)

≤
√

2V KT

(
1 +

√
2 ln

(
N

j

(
1

2
+ ln(T + 1)

)))
+ 5 ln (2N(1 + ln(T + 1)))

Define α := 5 ln (2N(1 + ln(T + 1))) to make the equation more transparent.
Now Eq. (45) gives us that

1
2 + γ ≤ 1

T

T∑
t=1

l̃t,j +
RKT
T

≤ 1

T

T∑
t=1

l̃t,j +

√
2V KT

T

(
1 +

√
2 ln

(
N

j

(
1

2
+ ln(T + 1)

)))
+
α

T
(46)

Suppose j is such that

γ >

√
2V KT

T

(
1 +

√
2 ln

(
N

j

(
1

2
+ ln(T + 1)

)))
+
α

T
(47)

Then we find that 1
T

∑T
t=1 l̃t,j = 1

T

∑T
t=1 1{ht(x̃j) = ỹj} > 1

2 . Exactly as in the

proof of NH-Boost.DT it follows that the training error will be at most j−1
N . So

we want to find the smallest j for which Eq. (47) holds.

Solving for j, this means that the following must hold:

j > N exp

−1

2

Tγ − α√
2V KT

− 1

2
 (1 + 2 ln(T + 1)) (48)

Note that the theorem is vacuous if we have

−1

2

Tγ − α√
2V KT

− 1

2

+ ln(1 + 2 ln(T + 1)) ≥ 0 (49)

so without loss of generality we can assume that the smallest j for which Eq.
(47) holds is smaller than N , so there exists such a j. Since we took the smallest
j for which (47) holds, the training error has the following upper bound:

ε < exp

−1

2

Tγ − 5 ln (2N(1 + ln(T + 1)))√
2V KT

− 1

2

+ ln(1 + 2 ln(T + 1))
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5.3 Comparing upper bounds

Now we have found the upper bounds for the different algorithms. For large T
the upper bounds are in the order of the values in the table below.

Algorithm Upper bound

AdaBoost exp
(
−2
∑T
t=1 γ

2
t

)
NH-Boost.DT exp

(
− 1

3Tγ
2
)

SquintBoost exp
(
− 1

4
T 2γ2

V KT

)
As is mentioned before, the first two upper bounds are comparable, but since
NH-Boost.DT is faster per iteration, NH-Boost.DT can run more iterations in the
same amount of time. So the training error decreases faster for NH-Boost.DT
than for AdaBoost, which is illustrated in the experiments in appendix G of
Luo and Schapire [6]. After the same number of rounds, the training error of
AdaBoost and NH-Boost.DT do not differ much, but NH-Boost.DT needs less
time, so could have produced a smaller training error in the same amount of
time.

Now we have found an upper bound for SquintBoost, which is significantly lower
than the upper bounds of AdaBoost and NormalHedge if V KT � T . In Vente [7]
it is tested with experiments whether this also means the training error will be
lower in practice too. Surprisingly, these experiments show that the theoretical
lower upper bound for the training error of SquintBoost does not result in an
algorithm with lower generalized error than NH-Boost.DT. The results show
that after the same number of iterations, the generalized error of NH-Boost.DT
is smaller than that of SquintBoost.

6 Summary and future work

We have constructed a new boosting algorithm, SquintBoost, using the online
allocation algorithm Squint. For this algorithm we have proved that if V KT is
significantly smaller than T , the upper bound of the training error is lower than
the known upper bounds of the training errors of the existing boosting algo-
rithms AdaBoost and NH-Boost.DT. However, in Vente [7] it is shown that this
lower upper bound does not result in a lower generalized error in practice. NH-
Boost.DT outperforms SquintBoost in these experiments.

An issue for future work is to find out why SquintBoost does not benefit of this
lower upper bound for the training error in practice. If the cause of this is found,
it could perhaps indicate how the algorithm can be improved. By taking a closer
look at the values of V KT , it could be determined whether the variance indeed
gets much smaller than T in practice, as is assumed in Koolen and van Erven [5].
If this is not the case, the upper bound is not better than the upper bounds of
the other algorithms and this could explain why the performance of SquintBoost
is not better than that of NH-Boost.DT.
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