
Solving an arbitrary permutation puzzle
Brouwer, T.C.

Citation
Brouwer, T. C. (2016). Solving an arbitrary permutation puzzle.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in the
Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3596456

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3596456

T.C. Brouwer

Solving an arbitrary permutation puzzle

Bachelor thesis, June 18, 2016

Supervisor: Dr. R.M. van Luijk

Mathematisch Instituut, Universiteit Leiden

Contents

1 Introduction 4

2 Mathematical formulation 4

3 Lower limit in n 4

4 Upper limit in group order 5

5 An example for Sym(n) 6

6 Basic concepts of Schreier-Sims 10

7 The Schreier-Sims Algorithm 14

8 Complexity of the Schreier-Sims algorithm 16

9 The extended Schreier-Sims algorithm and the extended mem-
bership testing algorithm 17

10 Output word length 19

11 Complexity analysis 21

12 Concluding remarks 23

1 Introduction

This Bachelor thesis is inspired by Rubik’s cube, a famous permutation puzzle
on the solving of which some mathematical research has been conducted, for
example see [4].

The initial set-up was to consider a four-dimensional Rubik’s cube and writ-
ing a general solution for it. However in the process, we have shifted to a more
general problem setting. As we make more precise in the next section, in this
paper we suggest an algorithm for writing a general solution for an arbitrary
permutation puzzle. Our result is summarized in section 12.

2 Mathematical formulation

Notation. Throughout this paper Sym(n) will denote the permutation group on
n elements.

Definition 2.1. Let T be a subset of Sym(n). We define the inverse closure
of T as T̂ = T

⋃
{t−1 : t ∈ T}. A subset T of Sym(n) is called inversely closed

if T = T̂ .

Definition 2.2. Let T be a subset of Sym(n). The word group of T is the
free group on T̂ .

Any element t in the word group of T can be represented by a sequence
t = (t1, q1, t2, q2, . . . , tk, qk) with ti in T̂ and qi in {−1, 1}. Let s be in Sym(n).
An element of the word group of T is called a word in T . For a word t =
(t1, q1, t2, q2, . . . , tk, qk) in the word group of T with

∏k
i=1 t

qi
i = s, we say s can

be written as tq11 t
q2
2 · · · t

qk
k and that t writes s. The tqii are called letters. If

t = (t1, q1, . . . , tm, qm) and u = (u1, p1, . . . , un, pn) are two words in T , then tu
is the word

(t1, q1, . . . , tm, qm, u1, p1, . . . , un, pn)

In a permutation puzzle we are given a subset T of Sym(n) and an s ∈ 〈T 〉.
The goal of the permutation puzzle is find a word for s in T that is as short as
possible. In this paper we will do the following:

• In sections 3 through 5 we will examine what the minimum possible length
for writing an arbitrary s ∈ 〈T 〉 as a word in T for arbitrary subsets T of
Sym(n) is.

• In sections 6 through 11 we will construct an algorithm that, for an arbi-
trary subset T of Sym(n), enables us to write an arbitrary s ∈ 〈T 〉 as a
word in T .

3 Lower limit in n

In this section we will show that writing an arbitrary s ∈ 〈T 〉 as a word in T
for an arbitrary subset T of Sym(n), cannot be done in polynomial length in n.

4

Theorem 3.1. There exists a sequence (T1, T2, . . . , Tn, . . .) where, for each n,
Tn is a subset of Sym(n), and a sequence of elements (s1, s2, . . . , sn, . . .), where
each sn is in 〈Tn〉, such that sn can not be written as a word in Tn of length
bounded by a polynomial in n.

Proof. Let p1 < p2 < p3 < . . . be the primes. Let in be the largest natural
number such that

∑in
j=1 pj ≤ n.

Let qn in Sym(n) be the product of disjoint cycles of length p1, p2, . . . , pin .

We take Tn = {qn}. We choose sn = (qn)
|〈Tn〉|

2 .

To write sn as word in Tn we need at least |〈Tn〉|
2 letters from Tn. The order

of qn is |〈Tn〉|, which is equal to
∏in
j=1 pj . For all i we have pi ≥ 2, therefore we

have that the order of qn is larger than 2in .
We will now prove that pin is at least the largest prime p such that p ≤√

n. Suppose pin is smaller than p ≤
√
n. Then in is not maximal, because

pin+1 ≤
√
n and therefore also in + 1 ≤

√
n, thus

∑in+1
j=1 pj ≤

∑b√nc
j=1

√
n ≤ n.

We conclude that pin ≥ p and thus that in is larger than or equal to the number
of primes smaller than or equal to

√
n.

By the prime number theorem we know that for n large enough in ≥
1
2

√
n

log(
√
n)

, see page 9 of [1]. Therefore |〈Tn〉| ≥ 2
1
2

√
n

log(
√

n) , and we need at least

2
1
2

√
n

log(
√

n) letters from Tn to write sn, which is not bounded by a polynomial in
n.

4 Upper limit in group order

In this section we will prove an upper limit in terms of the group order. We will
use the concept of the Cayley-graph of a group as described in paragraph 3.1 of
[2].

Definition 4.1. The Cayley-graph WT = (〈T 〉, E) of a subset T of Sym(n)
is an undirected graph with the set of vertices equal to the set of elements of
〈T 〉. Two vertices g1 and g2 are connected if and only if there exists an element
t in T̂ such that g1t = g2.

The following lemma is deduced from theory on the Cayley-graph, and will
help us to put an upper limit on the word length in terms of the group order.

Lemma 4.1. Given an inversely closed subset T of Sym(n), any element s of

〈T 〉 can be written as a word in T of length at most #〈T 〉
2 .

Proof. Without loss of generality we may assume 1 /∈ T . If T is empty then the
empty word suffices to show the statement is true.

If #T is 1 then the element in T is has to be of order 2 since T is inversely
closed. Now the only non-trivial element in 〈T 〉 can be written as a word of one
letter and the statement is true.

Now assume #T ≥ 2. Then the degree of the Cayley-graph is at least 2. Let
d denote the degree of the Cayley-graph. From Cayley-graph theory we know

5

the vertex-connectivity of the Cayley-graph is at least 2(d+1)
3 , see Theorem 3.7

of [2], so in this case at least 2. Let W i
T denote the set of vertices of WT that

are connected to the vertex corresponding to the identity by a path of length at
most i. Equivalently, W i

T contains those elements of 〈T 〉 which can be written as
a word in T of length at most i. We will prove by induction that #W i

T ≥ 2i+ 1

for i < #〈T 〉
2 .

We have #W 0
T = 1. Now for a natural number i with i + 1 < 〈T 〉

2 assume
#W i

T ≥ 2i + 1. If W i
T = 〈T 〉 there is nothing to prove. If #W i

T = #〈T 〉 − 1
the missing vertex is in W i+1

T = 〈T 〉 and the statement holds. So assume there
are at least two vertices outside of W i

T . Since W i
T is connected to at least one

of the vertices, say v1, this v1 in W i+1
T . Because the vertex-connectivity of WT

is at least 2, also WT with v1 removed is connected, so there is another vertex
v2 outside W i

T in W i+1
T and hence #W i+1

T ≥ #W i
T + 2 ≥ 2(i+ 1) + 1.

We now discern two cases.

• 〈T 〉 is divisible by 2. For j = 〈T 〉
2 − 1 it holds that #W j

T ≥ #〈T 〉 − 1. So

there is at most one element in 〈T 〉 not in W j
T . But if this element exists,

because the Cayley-graph is connected, it can be written using one more
letter. So we see that any element of 〈T 〉 can be written as a word in T

of length at most 〈T 〉2 , so the statement holds.

• 〈T 〉 is not divisible by 2. Now let k be the integer 〈T 〉−12 . It holds that
#W k

T = 〈T 〉. So the statement holds.

This concludes the proof.

Concluding this section we will show this is the lowest upper limit possible
in terms of group order.

Theorem 4.2. Let T be a subset of Sym(n). Any element of 〈T 〉 can be written

as a word in T of length at most |〈T 〉|2 . Also for every n there exists a subset
Tn of Sym(n) with |〈Tn〉| ≥ n and an element s in 〈Tn〉 such that s can not be

written as a word in Tn of length less than |〈Tn〉|
2 − 1.

Proof. The first statement is exactly Lemma 4.1. To prove the second statement
take s = (1 · · ·n) ∈ Sym(n) and Tn = {s}. We have that |〈Tn〉| = n, and writing
the element sb

n
2 c takes at least n

2 − 1 letters.

5 An example for Sym(n)

In this section we will give an example for writing elements of Sym(n) as words
in T = {(12), (1 · · ·n)}.

We need the following definition.

Definition 5.1. Given a permutation s ∈ Sym(n), for each m ∈ {1, . . . , n} we
define the distance to the original position of m to be

min(|s(m)−m|, n− |s(m)−m|).

6

The total disposition of s, denoted by d(s), is the sum of the distances to
original position, i.e.

d(s) =

n∑
m=1

min(|s(m)−m|, n− |s(m)−m|).

Let t be the permutation (1 · · ·n). The cyclic disposition of s is minj∈Z(d(tjs)).

In the next proof we use the following fact. If x, t and n are natural numbers
with 0 ≤ x < n and 0 ≤ t < n, then it holds that

min(|x− t|, n− |x− t|) = min(x− t mod n, n− (x− t) mod n)

where a mod n is the representative in {0, . . . , n− 1} of the residue class of
a in Z/nZ.

Lemma 5.1. Given a permutation s ∈ Sym(n) the cyclic disposition of s is at

most n2

4 . Also for every n with n odd, there exists an s ∈ Sym(n) such that the

cyclic disposition of s is at least n2−1
4 .

Proof. We write

n∑
j=1

d(tjs) =

n∑
j=1

n∑
m=1

min(|tjs(m)−m|, n− |tjs(m)−m|)

=

n∑
m=1

n∑
j=1

min(|tjs(m)−m|, n− |tjs(m)−m|)

=

n∑
m=1

n∑
i=1

min(i, n− i)

This last sum is n3−n
4 if n is odd, and n3

4 if n is even. It follows that there exists

a j such that d(tjs) is at most n2

4 .

Let n be odd and consider the function f : Z/nZ −→ Z/nZ defined by
f(m) = 2m − 1 mod n. Since n is odd, multiplication by 2 is a bijection and
so is the composition with the map x 7→ x− 1.

Because f is bijective it defines a permutation sf in Sym(n). The permuta-

7

tion sf maps m to f(m). We now calculate the total disposition of sf .

d(sf) =

n∑
m=1

min(|sf (m)−m|, n− |sf (m)−m|)

=

n∑
m=1

min(|f(m)−m|, n− |f(m)−m|)

=

n∑
m=1

min(|((2m− 1) mod n)−m|, n− |((2m− 1) mod n)−m|)

=

n∑
m=1

min(m− 1, n− (m− 1))

=
n2 − 1

4

We will now show that the cyclic disposition of sf is equal to the total disposition
of sf . Let j be in Z. Let t be the permutation (1 · · ·n). The permutation tjsf
is characterized by the map fj which maps m to fj(m) = f(m) + j mod n =
2m− 1 + j mod n. We now calculate the total disposition of tjs.

d(tjs) =

n∑
m=1

min(|sfj (m)−m|, n− |sfj (m)−m|)

=

n∑
m=1

min((|(2m− 1 + j) mod n)−m|, n− |((2m− 1 + j) mod n)−m|)

=

n∑
m=1

min(|m− 1 + j| mod n, n− (|m− 1 + j| mod n))

=

n∑
m=1

min(m,n−m)

=
n2 − 1

4

Thus we see that for every n with n odd, there exists an s ∈ Sym(n) such

that the cyclic disposition of s is at least n2−1
4 .

Definition 5.2. For a subset T of Sym(n) the minimum word length function
γT is the function on 〈T 〉 such that for an s in 〈T 〉 we have that γT (s) is the
minimum length of a word in T that writes s.

Definition 5.3. Let f and g be two functions from a domain D to the natural
numbers. The function f is said to be Ω(g) if for some constant c it holds that
c · f(d) > g(d) for all d ∈ D.

Theorem 5.2. Given the sequence (T2, T3 . . . , Tn, . . .) with Tn = {(12), (1 . . . n)} ⊂
Sym(n), there exists a sequence (s2, s3, . . . , sn, . . .) with sn ∈ Sym(n) such that

8

the function
Γ : {3, 4, . . .} → N

n 7→ γTn(sn)

is Ω(n2).

Proof. By lemma 5.1 for every n with n odd, there exists an sn ∈ Sym(n) such

that the cyclic disposition of sn is at least n2−1
4 . We consider the sequence

(s3, . . . , s2n+1, . . .). Let n be in N. Let (t1, . . . , tk) be a word for sn in Tn.

Define di =
∏i
j=1 ti. Consider the sequence (d1, d2, . . . , dk). Let ai be the cyclic

disposition of di. Since dk = sn we have that ak ≥ n2−1
4 . If ti+1 = (1 · · ·n)

or its inverse, then ai+1 = ai. If ti+1 = (12) then, since only two elements
are moved and their distance to their original position increases only by one
at most, ai+1 ≤ ai + 2. If both ti and ti+1 are equal to (12) then ai+2 = ai.
Therefore ai+2 ≤ ai+2. Since a0 = 0 and a1 ≤ 2 we have that ak at most k+1,

and thus k is at least n2−1
4 − 1.

For n ≥ 4 with n even we have that sn−1 ∈ Sym(n) and since n − 1 is odd

by the above a word for sn−1 has length at least (n−1)2
4 − 1 = n2−2n

4 − 3
4 . Thus

Γ is Ω(n2).

Theorem 5.3. Let n > 1 be in N and let T be the set {(12), (1 . . . n)} ⊂ Sym(n).
Now every s ∈ Sym(n) can be written as a word in T using less than 3

2n
2 letters.

Before giving the proof of this theorem, we will give a sketch of an algorithm
which writes s ∈ Sym(n) as a word in T using the stated number of letters.
The algorithm starts with s and then sorts 2,3,. . .,n relative to 1. At each stage
the algorithm outputs the permutations used to sort, and after the sorting has
finished, the inverses of the elements in the output, in reverse order, are a word
for s in T .

Essential to the algorithm is that it sorts relative to 1. So starting with 2 the
algorithm outputs letters that will move 2 next to 1. Continuing the algorithm
outputs letters that will move 3 next to 2 etcetera. When n is moved next to
n − 1 all numbers are sorted relative to 1. Depending on the position of 1 a
sequence consisting only of the letter (1 . . . n) will move all numbers to their
original position and the algorithm finishes.

We will now show how a single number i is sorted relative to 1. By definition
of the algorithm we assume that all numbers smaller than i are already sorted
relative to 1. First the algorithm outputs the letter (1 . . . n) until i is at the
orginal position of 2. Now the algorithm outputs alternatingly the letters (12)
and (1 . . . n) until i is sorted relative to 1. The letters smaller than i all have
not been in the original position of 1 and 2 when a letter (12) was applied, so all
numbers smaller than i are still sorted relative to 1, so now all numbers smaller
then i+ 1 are sorted relative to 1.

The complexity of the algorithm is given in the proof of Theorem 5.3 below.

Proof. The algorithm consists of two parts we will analyse separately.

9

1. Sorting all numbers 2, . . ., n relative to 1.

2. Returning 1, and thus all numbers, to their original position.

The two parts are analysed below.

1. For sorting a number i with 1 ≤ i < n the algorithm does the following.
By outputting up to n

2 times either (1 . . . n) or (n . . . 1) the number i is
moved to the original position of 2. The algorithm now outputs up to
n− i times the combination of the letters (12) and (1 . . . n). For sorting i
the algorithms thus outputs at most n

2 + 2(n − i) letters. For sorting all
numbers up to n relative to 1 the algorithm outputs at most

Σni=2(
n

2
+ 2n− 2i) ≤ 5n2

2
− n2 − n =

3n2

2
− n

letters.

2. For returning 1 and thus all numbers to their original position the algo-
rithm outputs up to n

2 times either (1 . . . n) or (n . . . 1).

Combing the two parts we see that the algorithm outputs less than 3n2

2 letters.

Remark 5.1. The algorithm as described above is not optimal.

6 Basic concepts of Schreier-Sims

The next two sections are based on the Schreier-Sims algorithm as described
in paragraphs 1 and 2 in chapter 4 of [3]. Some of the proofs given here come
from the excellent book of Seress, and only minor adaptations have been made.
For example, we allow an element of the base to be any subset of {1, . . . , n},
whereas Seress allows only singletons. Further optimization of the Schreier-Sims
algorithm is described in chapter 4 paragraphs 3 and onwards of the book.

In this section we will introduce the basic concepts of the Schreier-Sims
algorithm. Later on we will use the Schreier-Sims algorithm in an extended
Schreier-Sims algorithm. This last algorithm will create a data structure
that enables us to use an extended membership testing algorithm. This
extended membership testing algorithm will decide whether a given permutation
can be written as a word in a given subset T of Sym(n), and if so will output a
word in T for the permutation.

We will consider a group G ⊂ Sym(n).

Definition 6.1. A base for G is a sequence B = (β1, · · · , βm), with βi a subset
of {1, . . . , n} such that the only element of G that fixes B is the identity.

Let B = (β1, · · · , βm) be a base. Let G[i] := G(β1,··· ,βi−1) be the pointwise
stabilizer of (β1, · · · , βi−1). Now B defines a subgroup chain:

G = G[1] ≥ G[2] ≥ · · · ≥ G[m] ≥ G[m+1] = 1.

10

Definition 6.2. A base B is called non-redundant if all subgroups in the
above defined subgroup chain are proper subgroups of their predecessor.

Definition 6.3. A strong generating set for G relative to a base B =
(β1, · · · , βm) is a generating set S for G such that for 1 ≥ i ≥ m + 1 we
have:

〈S ∩G[i]〉 = G[i]. (1)

Definition 6.4. Let H be a subgroup of G. A (left) transversal R for G mod
H is a subset of G containing exactly one element of each left coset of H. We
also require that 1 is in R. For any g in G we denote the element in gH ∩R as
g.

Definition 6.5. A directed rooted labeled tree is a triple (T, S, f); here
T is a directed graph for which the underlying undirected graph contains no
cycles and such that there exists a vertex from which each other vertex can be
reached. It follows that this vertex is unique and this vertex is called the root
of the tree. Also f is a map from the set of edges of T to S. We call S the label
set of the directed rooted labeled tree.

Let B = (β1, . . . , βm) be a base for G. Let i be a natural number with
1 ≤ i ≤ m and let s be in G(β1,...,βi−1) and let v be a left coset of G(β1,...,βi) in
G(β1,...,βi−1). The natural action of G(β1,...,βi−1) on the left cosets of G(β1,...,βi)

is defined by s(v) = sv, where the multipliction is the multiplication induced
by the group law of G.

Definition 6.6. Given a subset T of Sym(n), a Schreier tree data structure
∆ for T consist of

• a base B = (β1, . . . , βm) for 〈T 〉, and

• m directed rooted labeled trees (Ti, Si, fi) with i ∈ {1 · · ·m},

such that

• Si is a subset of G(β1,...,βi−1),

• each Ti is a directed tree with as vertices the left cosets of G(β1,...,βi) in
G(β1,...,βi−1).

• the vertex G(β1,··· ,βi) is the root of the tree,

• every edge e in Ti pointing from a vertex γ to a vertex δ and with f(e) = s
has the property that s(γ) = δ.

The directed rooted labeled trees in a Schreier tree data structure are called
Schreier trees.

11

Theorem 6.1. Let G be a subgroup of Sym(n) and let B = (β1, β2, . . . , βm) be
a base for G. Let i be a natural number with 1 ≤ i ≤ m. Let C be the set of left
cosets of G(β1,...,βi) in G(β1,...,βi−1). Let A be the orbit of βi under G(β1,...,βi−1).
For each g in C and g1 be in g we define the map f by f(g) = g1(βi). Then f
is a well-defined bijective map f from C to A.

Proof. We will first show that f is well defined. Let g2 also be in g. Then there
exists an h1 in G(β1,...,βi) such that g1h1 = g2. We see that

g2(βi) = g1h1(βi) = g1(h1(βi)) = g1(βi).

For every element α ∈ A in the orbit of βi in G(β1,...,βi−1) there exists a g3 in
G(β1,...,βi−1) such that g3(βi) = α. By definition f maps the coset of G(β1,...,βi)

in G(β1,...,βi−1) containing g3 to α, and therefore f is surjective.
Let g′ be in C such that f(g′) = f(g) = g1(βi). Let g′1 be in g′. Then

g′1(βi) = g1(βi), so they are in the same left coset of G(β1,...,βi) in G(β1,...,βi−1).
Therefore g′ = g. This shows f is injective.

We conclude f is bijective.

Remark 6.1. By the above theorem we will identify the cosets of G(β1,...,βi) in
G(β1,...,βi−1) with the elements in the orbit of βi under G(β1,...,βi−1).

Lemma 6.2. Let T be a subset of Sym(n) and ∆ be a Schreier tree data struc-
ture for T . Let |Ti| denote the number of vertices in Ti. Then

∏m
i=1 |Ti| = |〈T 〉|.

Proof. The number of vertices in Ti is equal to the number of cosets of G(β1,...,βi)

in G(β1,...,βi−1). This is equal to the index of G(β1,...,βi) in G(β1,...,βi−1). So we
have iteratively

|〈T 〉| = |T1| · |G(β1)| = |T1| · |T2| · |G(β1,β2)| = . . . =

m∏
i=1

|Ti|.

Definition 6.7. For a Schreier tree data structure ∆ with baseB = (β1, . . . , βm),
the cardinality of ∆ is the largest cardinality of the βi in B.

Let B = (β1, β2, . . . , βm) be a base for G. If we have a strong generating
set S for G relative to B, we can compute the orbits G[i]βi and the transversals
for G[i] mod G[i+1] as follows. We will store the data in a Schreier tree data
structure. Let Si denote S ∩G[i]. For i with 1 ≤ i ≤ m, the computation is as
follows:

1. We start with Ti empty and add a vertex βi.

2. For each newly added vertex t in Ti and for every s in Si we compute s(t),
and if s(t) is not in Ti we add it to Ti and we add an edge from t to s(t)
labeled s.

12

3. If no new vertices were added, we stop. Otherwise we repeat step 2.

Note that each vertex γ corresponds to the left coset of G[i+1] in G[i] consist-
ing of elements of G[i] that move βi to γ. Now let γ be such a vertex in Ti. There
is a unique path from βi to γ. If (s1, s2, . . . , st) are the labels along this path
starting from βi, then stst−1 · · · s1 is an element of G[i], that by definition of the
Schreier tree moves βi to γ. We construct the transversal Ri for G[i] mod G[i+1]

by taking this element as the unique element in Ri that is contained in the left
coset corresponding to γ. By doing this for all vertices, we obtain a complete
transversal Ri.

Algorithm 6.1. Using the Schreier tree data structure ∆ as created above we
can write every g in G as g = r1r2 · · · rm with ri in Ri. This procedure is called
sifting through ∆ and is done as follows:

1. Set i = 1 and g1 = g.

2. There is a unique path from βi to gi(βi). If (s1, s2, . . . , st) are the labels
along this path starting from βi, then we set ri = stst−1 · · · s1.

3. If i is m we stop. Otherwise we set gi+1 = r−1i gi. Note that gi+1 is in
G(β1,...,βi). Add one to i and repeat step 2.

Now r−1m gm is in G(β1,...,βm) = {1}, and therefore r1r2 · · · rm = g. To illustrate
why this algorithm works, consider the following. The element r1 moves β1 to
g(β1) and the element r2 moves β2 to g2(β2) = r−11 g(β2) without moving β1.
Hence the element r1r2 moves β1 and β2 to g(β1) and g(β2) respectively.

Remark 6.2. During the sifting process we construct an ri for 1 ≤ i ≤ m. We
construct ri by multiplying labels of edges in the Schreier trees of a Schreier
tree data structure.

Remark 6.3. We can also use sifting to test g in Sym(n) for membership of G.
In this case we apply the above procedure. The element g is not in G if and
only if either for some i we have gi(βi) is not a vertex in Ti, or g−1r1r2 · · · rm is
not the identity.

Definition 6.8. For g in Sym(n) the gi that we can calculate and that has the
highest index i among the indices we can calculate is called the siftee of g.

For the Schreier-Sims Algorithm, we will need the following two lemmas.

Lemma 6.3. Let H ≤ G = 〈S〉 and let R be a left transversal for G mod H,
with 1 in R. Now the set

T = {(sr)−1sr|s ∈ S, r ∈ R}

generates H. The elements of T are called the Schreier generators of H.

13

Proof. By definition the elements of T are in H, so it is enough to show that
the set T ∪ T−1 generates H. Note that T−1 = {(sr)−1sr|s ∈ S−1, r ∈ R}. Let
h ∈ H be arbitrary. Since H ≤ G, h can be written in the form h = sksk−1 · · · s1
with si ∈ S ∪ S−1. We define a sequence h0, h1, . . . , hk of group elements such
that

hj = sk · · · sj+2sj+1rj+1tj · · · t2t1
with ti ∈ T ∪T−1, rj+1 ∈ R and hj = h. We set h0 to be sk · · · s2s1r1 with r1 =
1. Recursively, if hj is already defined then let tj+1 be (sj+1rj+1)−1sj+1rj+1

and set rj+2 to be sj+1rj+1. Clearly hj+1 = hj = h, and it has the required
form.

We have h = hk = rk+1tk · · · t2t1. Since h ∈ H and tk · · · t2t1 ∈ 〈T 〉 ≤ H,
we must have rk+1 ∈ H ∩R = {1}. Hence h ∈ 〈T 〉.

Lemma 6.4. Let (β1, . . . , βk) be a sequence of subsets of {1, . . . , n}, and G a
subgroup of Sym(n). For 1 ≤ j ≤ k + 1 let Sj be a subset of the stabilizer
G(β1,...,βj−1) such that we have 〈Sj〉 ≥ 〈Sj+1〉 for all j ≤ k. If G = 〈S1〉 and
Sk+1 = ∅ and

〈Sj〉βj
= 〈Sj+1〉 (2)

for all 1 ≤ j ≤ k, then B = (β1, . . . , βk) is a base for G and S =
⋃

1≤j≤k Sj is
a strong generating set for G relative to B.

Proof. We use induction on k. Our inductive hypothesis is that S∗ = ∪2≤j≤kSj
is a strong generating set for 〈S2〉, relative to the baseB∗ = (β2, . . . , βk). LetG[i]

denote G(β1,...,βi−1). By definition (1) holds for i = 1. We have to check that (1)
holds for 2 ≤ i ≤ k+1. For i = 2 we have that (1) holds since applying (2) with
j = 1, we obtain Gβ1

= 〈S2〉 ≤ 〈S ∩Gβ1
〉. The reverse containment is obvious.

For i > 2 we have that (1) follows from the fact that S∗∩G(β1,...,βi−1) generates

〈S2〉(β2,...,βi−1)by the inductive hypothesis, and so G[i] ≥ 〈S ∩ G(β1,...,βi−1)〉 ≥
〈S∗ ∩G(β1,...,βi−1)〉 = 〈S2〉(β2,...,βi−1) = (Gβ1

)(β2,...,βi−1) = G[i].

7 The Schreier-Sims Algorithm

In this section we will explain the Schreier-Sims algorithm. The input of the
algorithm will be a subset T of Sym(n) for some n. The output will be a Schreier
tree data structure ∆.

Using lemma 6.3 we can create a set of generators for each G[i+1] ≤ G[i] and
thus a strong generating set for G relative to B. However we might be using
more generators than necessary. Therefore when adding a new generator, we
will first test wether this generator is redundant. This can be done by sifting as
described below. Note that to sift in a group we need a strong generating set
for that group.

Given is a subset T of Sym(n). Let G be 〈T 〉. We maintain a list B =
(β1, . . . , βm′) of already known elements of a non-redundant base for G. We
also maintain a list (S1, S2, . . . , Si, . . . Sm′), where each Si is an approximation

14

for a generator set of the stabilizer G(β1,...,βi−1) for 1 ≤ i ≤ m′. We always
maintain for 1 ≤ i ≤ m′ that:

〈Si+1〉 ≤ 〈Sj〉βi
≤ 〈Sj〉

We say the data structure is up to date below level k if equation (2) holds
for all j with k < j ≤ m′.

The following diagram sketches the situation;

〈S1〉 ⊂ G
∪ ∪
〈S2〉 ⊂ G(β1)

∪ ∪
...

...
...

〈Sj〉 ⊂ G(β1,...,βj−1) = G[j]

∪ ∪ ∪
〈Sj+1〉 ⊂ G(β1,...,βj) = G[j+1]

Remark 7.1. During the algorithm we will choose new base points. In this
section we will not elaborate on how to choose these base points. However,
we do note one can choose a base such that the resulting Schreier tree data
structure has cardinality r = 1.

Remark 7.2. The base we construct in the algorithm will be non-redundant.

We will now describe the algorithm.
Given is a subset T of Sym(n) and a positive integer r. Let G be 〈T 〉.

We maintain a list B = (β1, . . . , βm′) of already known elements of a non-
redundant base for G and an approximation Si for a generator set of the stabi-
lizer G(β1,...,βi−1) for 1 ≤ i ≤ m′. We always maintain the property that for all
i we have 〈Si〉 ≥ 〈Si+1〉. We say the data structure is up to date below level j if
equation (2) holds for all i with j < i ≤ m′.

We execute the Schreier-Sims algorithm as follows:

1. We set S1 = T and for j ≥ 2 we set Sj = ∅. We start the algorithm by
choosing a subset β1 of {1, · · · , n} of cardinality at most r that is moved
by a generator in T , and we set m′ = 1. Now, the data structure is up to
date below level j = 1.

2. If the data structure is up to date below level j, we compute the Schreier
tree (Tj , Sj , fj) for 〈Sj〉 mod 〈Sj〉βj

.

3. We test whether equation (2) in Lemma 6.4 holds for j. This can be
done by sifting the Schreier generators (see Lemma 6.3) obtained using
the elements in the transversal encoded by the Schreier tree (Tj , Sj , fj)
and the elements in Sj , and applying Lemma 6.3 yielding generators for
〈Sj〉βj

. We sift in the group 〈Sj+1〉. This is possible because the data
structure is up to date below level j and thus by 6.4 we have a strong
generating set for 〈Sj+1〉.

15

4. We now discern two cases.

• If equation (2) holds for j, the data structure is up to date below
level j − 1.

• Otherwise there is a Schreier generator s that has a non-trivial siftee.
We add this Schreier generator to Sj+1. If j = m′ we also choose
βj+1 to be a new subset of {1, · · · , n} of cardinality at most r that
is moved by s and we increase m′ by one. The data structure is now
up to date below level j + 1.

5. If the data structure is up to date below level 0, we are done. Lemma 6.4
implies correctness. Otherwise we go to step 2.

Remark 7.3. In the implementation of the algorithm, we do not recompute the
entire Schreier tree (Tj , Sj , fj) in step 2. Instead, we store the already computed
Schreier trees and for a new element in Sj , we apply this element to each of the
vertices in the previous Schreier tree. This yields an updated Schreier tree
(Tj , Sj , fj).

8 Complexity of the Schreier-Sims algorithm

We will now analyse the complexity of the Schreier-Sims algorithm as described
above. This analysis is analogous to [3], but we have introduced the cardinality
of the base, r, which we will use in our analysis.

Notation. Throughout this paper log will denote the log in base 2.

Theorem 8.1. The Schreier-Sims algorithm taking input T and a natural num-
ber r ≥ 1 constructs a Schreier tree data structure ∆ of cardinality at most r in
O(n(nr)2 log3 |G|+n(nr)2|T | log |G|) time using O(n log2 |G|+(nr) log |G|+ |T |n)
memory.

Proof. The length of the base is at most log |G|. In computing the Schreier
tree (T1, S1, f1) for step 2 as above, we apply each element of T to each of at
most (nr) vertices in T1. This takes O((nr)|T |). For a fixed βk in the base with
k > 1, the set Sk changes at most log |G| times during the algorithm, since the
group 〈Sk〉 increases every time we add an element to it. After a change of
〈Sk〉 we have to update the Schreier tree (Tk, Sk, fk). There are at most (nr)
vertices in Tk. When an element s is added to 〈Sk〉, to update the Schreier
tree in step 2 as above, we have to calculate the image of each vertex in Tk
under s only once. Calculating the image of a point under a permutation is
O(1). This calculation thus costs us O((nr)|B|) = O((nr) log |G|). So for all
base points together constructing all Schreier trees as in step 2 as above takes
O((nr)|B| log |G|+ (nr)|T |), which is

O((nr) log2 |G|+ (nr)|T |). (3)

Now we estimate the time it takes to sift all Schreier generators for step 3 as
above. Every element of the transversal Rk has to be combined with an element

16

of Sk only once. So the total number of Schreier generators is
∑
k |Rk||Sk|,

where |Rk| and |Sk| are considered after the algorithm finishes. Then we have
for any k that |Rk| = O((nr)). We have that S1 = T and for k > 1 we have that
|Sk| = O(log |G|). Therefore it holds that∑

k

|Rk||Sk| = O((nr) log2 |G|+ (nr)|T |).

To retrieve an element of Rk from the Schreier tree, we have to multiply
all labels along a path in a Schreier tree; this means at most (nr) permutation
multiplications costing O(n) each. We have to retrieve at most log |G| of these
elements, so the cost of one sift is

O(n(nr) log |G|).

The total cost for sifting all Schreier generators is the cost of one sift, mul-
tiplied by the number of Schreier generators. This is

O(n(nr)2 log3 |G|+ n(nr)2|T | log |G|). (4)

By (3) and (4) we conclude the total time cost of the algorithm is

O(n(nr)2 log3 |G|+ n(nr)2|T | log |G|).

We have to store
∑
k |Sk| strong generators which is at most O(log2 |G|),

therefore requiring O(n log2 |G|) memory. Storing the Schreier trees requires
O((nr) log |G|) memory. Storing the base costs mr which is O(r log |G|), but
since r ≤ n this is dominated by the O(n log2 |G|) above. Counting the |T |n
memory used to store the initial generators, we conclude there is a total memory
cost of

O(n log2 |G|+ (nr) log |G|+ |T |n).

9 The extended Schreier-Sims algorithm and the
extended membership testing algorithm

In this section we will describe an adaptation of the Schreier-Sims algorithm that
creates a data structure with which an extended memberschip testing algorithm,
given as input a permutation, will output a word for this permutation.

Definition 9.1. Let T be a subset of Sym(n). Given a Schreier tree data struc-
ture ∆ for T with base B = (β1, . . . , βm). We define three types of Schreier
pointers for ∆:

• Type 1: a sequence p = (p1, q1, 1, p̃) where p1 is in T , q1 ∈ {1,−1} and
p̃ = pq11 .

17

• Type 2: a sequence p = (p1, q1, . . . , pc, qc, i, p̃) with 2 ≤ i ≤ m and such
that pk is another Schreier pointer, either p′k = (p′1, q

′
1 . . . , p

′
c′ , q

′
c′ , i
′, j′) or

p′k = (p′1, q
′
1 . . . , p

′
c′ , q

′
c′ , i
′, p̃′) , with i′ < i and j′ ∈ G[i]βi and qk is in

{−1, 1} for all k and p̃ =
∏c
k=1 p̃k

qk .

• Type 3: either

– a sequence p = (p1, q1, i, j) where p1 is in T , q1 ∈ {1,−1}, 1 ≤ i ≤ m
and j ∈ G[i]βi or

– a sequence p = (p1, q1, . . . , pc, qc, i, j) with 2 ≤ i ≤ m and such that
pk is another Schreier pointer, either p′k = (p′1, q

′
1 . . . , p

′
c′ , q

′
c′ , i
′, j′) or

p′k = (p′1, q
′
1 . . . , p

′
c′ , q

′
c′ , i
′) , with i′ < i and such that j ∈ G[i]βi. Also

qk is in {−1, 1} for all k.

For a type 3 Schreier pointer we define p̃ =
∏c
k=1 p̃k

qk .

A type 1 Schreier pointer and a type 3 Schreier pointer of the first form is
said to be of length 1; a type 2 Schreier pointer and a type 3 Schreier pointer
of the second form is said to be of length c. A Schreier pointer is said to
point at each of its pi’s. A Schreier pointer p = (p1, q1, . . . , pc, qc, i, j) or p =
(p1, q1, . . . , pc, qc, i, p̃) is said to be in the i-th Schreier tree.

Definition 9.2. Given a Schreier tree data structure ∆, a pointer structure
for ∆ is a set P of Schreier pointers such that the map from

{p ∈ P |p is a type 3 Schreier pointer} → {(i, j) : 1 ≤ i ≤ m, j ∈ G[i]βi , j 6= βi}

(p1, q1, . . . , pc, qc, i, j) 7→ (i, j)

is bijective and such that for every p in P we have that p is equal to the label
of the unique last edge in the path from the root of Ti to the vertex j. The
Schreier pointer p is said to correspond to this unique last edge.

The extended Schreier-Sims algorithm takes as input a subset T of
Sym(n) and an integer r and outputs both a Schreier tree data structure ∆ of
cardinality at most r and a pointer structure P for ∆. The algorithm executes
the Schreier-Sims algorithm. The following Schreier pointers are added to P :

• At initialization we add a type 1 Schreier pointer (t, 1, 1, t) to P for each
t ∈ T .

• In step 4 of the Schreier-Sims algorithm, if a new Schreier generator s
is added to Sj+1 we add a type 2 Schreier pointer to P . The Schreier
generator s has been constructed as (s′r)−1s′r with s′ ∈ Sj and r ∈ Rj .
The added Schreier pointer p = (p1, q1, . . . , pc, qc, i, p̃) is constructed as
follows.

– There is a unique path in the j-th Schreier tree from the root to
s′r(βi) with Schreier pointers (a1, . . . , an) corresponding to the edges
of this path such that ãn · · · ã1 = s′r and thus ã1

−1 · · · ãn−1 =
(s′r)−1.

18

– There is a Schreier pointer b in the j-th Schreier tree with b̃ = s′.

– There is a unique path in the j-th Schreier tree from the root to r(βi)
with Schreier pointers (c1, . . . , cm) corresponding to the edges of this
path such that c̃m · · · c̃1 = r.

– We set the Schreier pointer we add to

p = (a1,−1, . . . , an,−1, b, 1, cm, 1, . . . c1, 1, j + 1, p̃).

It holds that p̃ = (s′r)−1s′r = s

• In step 2 of the Schreier-Sims algorithm we update the i-th Schreier tree.
For each Schreier generator s that is newly added to Si we apply this s
to each vertex in the existing Schreier tree. For each vertex v for which
applying s results in a new vertex v′ in the updated Schreier tree, the
extended Schreier-Sims algorithm adds a type 3 Schreier pointer p to P .

If i = 1 then s is equal to a t ∈ T . We set the Schreier pointer we add to
(t, 1, 1, v′).

If i ≥ 2 then we have added a type 2 Schreier pointer p = (p1, q1, . . . , pc, qc, i, p̃)
with p̃ = s to the i-th Schreier tree. We add the Schreier pointer p′ =
(p1, q1, . . . , pc, qc, i, v

′).

Note that in the implementation we can maintain a list of type 2 Schreier
pointers instead of a list of the strong generators since the type 2 Schreier
pointers contain the strong generators.

The extended membership testing algorithm for a Schreier tree data
structure ∆ for a subset T of Sym(n) and a pointer structure P for ∆ takes as
input a permutation g ∈ Sym(n). If s is in 〈T 〉 it will output a word in T for
g. This is done by sifting g through ∆. By Remark 6.2 we write g during the
sifting process by multiplying labels of edges in the Schreier trees of ∆. The
pointer stucture P by definition encodes a word for every label of every edge in
the Schreier trees of ∆.

When sifting through the i-th Schreier tree there is a unique path from βi to
gi(βi) with edges (e1, . . . , en). We first output the word encoded by the Schreier
pointer corresponding to en, then the word encoded by the Schreier pointer
corresponding to en−1 etcetera. Algorithm 6.1 shows that the resulting output
is a word for g in T .

10 Output word length

Notation. Given a Schreier tree Ti we define the height of a Schreier tree as the
longest path from the root towards a vertex of the tree. For example a tree with
one vertex has height 0. We will denote the height of the tree as h(Ti). We
define h(T0) = 0.

In this section we will prove an upper limit for the word length for words that
are output of the extended membership algorithm. We will use the following
lemma.

19

Lemma 10.1. In a pointer structure constructed by the extended Schreier-Sims
algorithm, a Schreier pointer for the i-th Schreier tree is of length at most

2 · h(Ti−1) + 1

for i ≥ 2 and exactly 1 for i = 1.

Proof. A Schreier pointer in the i-th tree consists of three parts. The length
of the parts corresponding to (sr)−1 and r can be at most equal to the longest
path in Ti−1 i.e. at most h(Ti−1). The part corresponding to s is of length 1.
Thus the Schreier pointer is of length at most 2 ·h(Ti−1)+1. The length of each
Schreier pointer in the first Schreier tree is 1 by definition.

Theorem 10.2. Given input T ⊂ Sym(n), s ∈ 〈T 〉 = G and a Schreier tree
data structure ∆ and a pointer structure P for ∆, constructed by the extended
Schreier-Sims algorithm. Then the extended membership testing algorithm will
output a word for s with letters in T that is no longer than |G|2 letters.

Proof. Let m denote the length of the base used. By Lemma 10.1 we know that
the maximal length of a Schreier pointer in the i-th Schreier tree is

2 · h(Ti−1) + 1.

In the extended membership testing algorithm we sift s in ∆. When sifting
through the i-th Schreier tree, at most h(Ti) Schreier pointers are used to output
the word for s. the Schreier pointer only points to pointers in (i−1)-th Schreier
tree. We output a letter if the Schreier pointer is in the first Schreier tree. So
to write a Schreier pointer corresponding to an edge in the i-th Schreier tree
explicitly at most

i−1∏
k=1

(2 · h(Tk) + 1)

letters are output. Therefore during the sifting through the i-th Schreier tree
at most

h(Ti)
i−1∏
k=1

(2 · h(Tk) + 1)

letters are output. During the whole sifting process, there are at most

m∑
i=1

[
h(Ti)

i−1∏
k=1

(2 · h(Tk) + 1)
]

letters output. This is smaller than

m∑
i=1

[
2i−1 ·

i∏
k=1

(h(Tk) + 1)
]
.

Now h(Tk) + 1 is at most the number of vertices in Tk. By Lemma 6.2 we
have that

∏
i |Ti| = |G|. So this is at most

20

m∑
i=1

2i−1 · |G| < 2m|G|.

The length of the base m is at most log |G|, therefore the length of the word
we output is at most

|G|2.

11 Complexity analysis

We will now calculate the complexity of the extended Schreier-Sims algorithm
and the extended membership testing algorithm.

The cost of storing a permutation in Sym(n) is n.

Theorem 11.1. Given a subset T of Sym(n) and a natural number r ≥ 1, the
extended Schreier-Sims algorithm will output a Schreier tree data structure ∆
for T and a pointer structure P for ∆ of cardinality r requiring

O((nr) log2 |G|+ (nr)2 log |G|) + |T |n)

memory, and in
O(n(nr)2 log3 |G|+ n(nr)2|T | log |G|)

time.

Proof. By Theorem 8.1 the Schreier-Sims algorithm has a memory requirement
of

O(n log2 |G|+ (nr) log |G|+ |T |n).

In the extended Schreier-Sims algorithm, for each edge in each Schreier tree
we also store a Schreier pointer. Also for each strong generator we store a
Schreier pointer.

By Lemma 10.1 we know that the length of a Schreier pointer in the i-th
Schreier tree is at most 2 · h(Ti−1) + 1. The height of the Schreier trees is at
most (nr). Thus the length of a Schreier pointer is at most 2 · (nr) + 1. If i ≥ 2
storing the Schreier pointer has a memory requirement equal to the length of
the Schreier pointer. For i = 1 the cost for storing a Schreier pointer is equal
to the cost of storing a permutation of Sym(n) which is n ≤ (nr) < 2 · (nr) + 1.

A Schreier tree contains at most (nr) vertices. There are at most log |G|
Schreier trees. As we have seen in the proof of Theorem 8.1 we store O(log2 |G|)
strong generators. Therefore the cost of storing all Schreier pointers is at most

O((2 · (nr) + 1)(log2 |G|+ (nr) log |G|)) = O((nr) log2 |G|+ (nr)2 log |G|)

Total memory requirement is

21

O(n log2 |G|+ (nr) log |G|+ |T |n+ (nr) log2 |G|+ (nr)2 log |G|)

which is

O((nr) log2 |G|+ (nr)2 log |G|+ |T |n).

By Theorem 8.1 the Schreier-Sims algorithm has a time requirement of

O(n(nr)2 log3 |G|+ n(nr)2|T | log |G|).

Adding a Schreier pointer has a time requirement equal to the length of that
Schreier pointer. Therefore, analogous to above, adding the Schreier pointers
takes

O((nr) log2 |G|+ (nr)2 log |G|)

We conclude there is a total time requirement of

O(n(nr)2 log3 |G|+ n(nr)2|T | log |G|+ (nr) log2 |G|+ (nr)2 log |G|)

which is equal to

O(n(nr)2 log3 |G|+ n(nr)2|T | log |G|).

Theorem 11.2. Let T be a subset of Sym(n) and let ∆ and P be a Schreier
tree data structure for T and a pointer structure for ∆, both created by the
extended Schreier-Sims algorithm. The extended membership algorithm, given
input s ∈ Sym(n), outputs a word for s in T requiring at most

O(n · |G|2 + n(nr) log |G|)

time.

Proof. As we have seen in the proof of Theorem 8.1, the cost of one sift in the
Schreier-Sims algorithm is O(n(nr) log |G|)

The extended membership testing algorithm also uses the pointer structure.
For every edge label used in membership testing, we have to explicitly write the
Schreier pointer corresponding to that edge. By Lemma 10.1 a pointer in the
i-th Schreier tree has length at most

2 · h(Ti−1) + 1.

Such a pointer points only to pointers in i-th Schreier tree. Writing a Schreier
pointer in the first Schreier tree explicitly costs n. Therefore writing such a
pointer explicitly will cost at most

22

n ·
i−1∏
k=1

(2 · h(Tk) + 1)

time. Therefore the sifting through the i-th Schreier tree takes at most

n · h(Ti)

i−1∏
k=1

(2 · h(Tk) + 1).

Sifting through all Schreier trees takes at most

n ·
m∑
i=1

[
h(Ti)

i−1∏
k=1

(2 · h(Tk) + 1)
]
.

This is smaller than

n ·
m∑
i=1

[
2i−1 ·

i∏
k=1

(h(Tk) + 1)
]
.

Now h(Tk) + 1 is at most the number of vertices in Tk. By Lemma 6.2 we
have that

∏
i |Ti| = |G|. So this is at most

n ·
m∑
i=1

2i−1 · |G| < n · 2m|G|.

The length of the base m is at most log |G|, therefore the added time re-
quirement for sifting is

O(n · |G|2).

The total time requirement becomes

O(n · |G|2 + n(nr) log |G|).

12 Concluding remarks

In this paper we set out to describe an algorithm for writing a general solution
for an arbitrary permutation puzzle. In section 3 we saw that the length of the
output of such an algorithm can not be polynomial in the number of elements
that are permuted. In section 4 we saw that the length of the output can be
linear in the group order.

As we have seen in Theorem 11.1 the algorithm we have suggested has, for
a fixed size of the elements of the base and taking the length of the input into
account, a polynomial time and memory requirement for setup (the extended
Schreier-Sims algorithm) and using this setup to solve the permutation puzzle

23

(the extended membership testing algorithm) is has a polynomial time require-
ment in the group order, as we saw in Theorem 11.2. In Theorem 10.2 we proved
that the length of the output is quadratic in the group order.

This leaves the challenge to find an algorithm with polynomial setup require-
ments, that has a linear output length.

24

References

[1] Apostol, Tom M. Introduction to Analytic Number Theory. New York:
Springer-Verlag, 1976.

[2] Babai, László. “Chapter 27: Automorphism groups, isomorphism, recon-
struction”. In Graham, R. L.; Grötschel, M.; Lovász, L.. Handbook of
Combinatorics. Amsterdam: Elsevier, 1995. pp, 1447-1540.

[3] Seress, Ákos. Permutation Group Algorithms. 1st ed. Cambridge: Cam-
bridge University Press, 2003.

[4] Turner, Edward C.; Gold, Karen F. “Rubik’s Groups” in The American
Mathematical Monthly, Vol 92, No 9 (Nov., 1985), pp. 617-629.

25

