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1 Background

In neuroscience, a neural network is a set of neurons that are interconnected by synapses. Together
they form the Central Nervous System in animals, which can be divided in the brain and the spinal
chord. Every neuron can either be in an active state, or in an inactive state. In the brain, whichever
state a neuron is in, depends on the state of the neurons with which it is connected. Whenever two
connected neurons are simultaneously active, the synapse between them, and thus their connection,
is strengthened. This means that it is more likely that if one of them is activated, the other one also
gets activated. This way, certain patterns or clusters of connected neurons can arise. These so called
cell assemblies can represent all kinds of concepts. To illustrate, whenever one thinks about a fork, it
is likely that a spoon also comes to mind, because both concepts have been associated with each other
a lot, their cell assemblies are strongly connected.

In machine learning and cognitive science, artificial neural networks are statistical learning models
that are accurately based on their biological counterparts. An artificial neural network consists of a
set of interconnected neurons that can be either active or inactive, respectively represented by it’s
boolean value 1 or 0. The state of a neuron can be affected by the input of connected neurons and
their connection can be strengthened in a similar way as in a biological neural network and certain cell
assemblies can arise here, too.

These artificial neural networks are a key element in the development of artificial intelligence. An
example of this is Deep Learning. This considers neural models that consist of multiple layers. These
layers each represent a different stage of information processing and thus the information will travel
from the first layer to the last, step-by-step. For example, the first layer represents the retina of the eye,
processing the visual input, and deeper layers represent the semantic translation of this information.
These deep networks learn by means of the backpropagation algorithm, which compares the output of
the model with the desired output and minimizes the difference by adjusting the synaptic weights.

The initial synaptic weights influence the behaviour of a neural network. If a network starts off with
a cluster of strongly connected neurons, then it is likely that these neurons stay connected. In other
words, this gives the network a bias. In this article we consider networks with equal synaptic weights,
in other words, unbiased neural networks. These will then evolve randomly, based on the Pólya urn
model. We will examine the limiting behaviour of these models on the basis of two questions. What
are the equilibria of these models? Are these equilibria stable?
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2 A mathematical model

A graph based model for (artificial) neural networks

To mathematically model the learning process of a neural network, we will use a finite graph.

Definition 2.1 (Finite graph). A finite graph G is a pair (V,E), with V a non-empty, finite set of
points, called vertices and E ⊂ {{vi, vj} : vi, vj ∈ V, vi 6= vj} a finite set of connections between
vertices, called edges. Let n = |V | and m = |E|.

Let G = (V,E) be a finite graph. Every vertex v ∈ V represents a neuron and every edge e ∈ E
between two vertices represents a synapse between two neurons. To represent the strength of the
synapses in the model, let ∆m = {~w ∈ Rm : we ≥ 0,

∑
e∈E we = 1}. The vectors ~w ∈ ∆m represent

the possible ratios of the weights of the edges, relative to the total weight.

For the network to ‘learn’ is to strengthen particular synapses. In the model this translates to increasing
the weight of particular edges relative to others. This process is as follows:

A vertex is picked uniformly at random, say v′. Consider all vertices that are connected to v′, that is
all v ∈ V : ∃ e = {v, v′} ∈ E. Consider also the corresponding edges, that is all e ∈ E : v′ ∈ e. Each
edge e has a weight we. Following a probability distribution, which we will introduce later on, that is
based on the weights of the edges, one vertex v that is connected to v′ and their corresponding edge e
will be picked. The weight of this edge will be increased and thus the weight ratio will change. These
steps are then repeated.

Note that because the initial pick is uniformly distributed, the probability of vertex v being picked
equals 1

|V | = 1
n for all v ∈ V .

We will base the second probability function on the Pólya urn model.

Pólya urn model

Consider an urn with coloured balls. In the basic Pólya urn model one ball is randomly drawn from
the urn and it’s colour is observed, then it and an additional ball of the same colour are placed in the
urn. This increases the number and thus the ratio of the balls of the observed colour. Therefore the
probability that a ball of the same colour is drawn again also increases. One could say that it is a
“the rich get richer”-model, because increasing the number of balls of a certain colour will increase
the probability that this number will keep increasing.

The basic way of applying the Pólya urn model is as follows. For every vertex we have an urn and
for every edge we have a unique colour. If two vertices v1 and v2 share an edge e, then the two
corresponding urns will contain balls of the colour of e. Note that there are no other urns that contain
balls of this colour. Suppose v1 is picked and a ball of colour e is drawn from the urn of v1. It’s colour
is observed, then the ball will be replaced and an additional ball of the same colour will be placed in
v1 and v2. So the probability of drawing a ball of the same colour increases for both urns. In other
words, the synapse between two neurons has been strengthened.

The probability distribution

Consider the finite graph mentioned earlier. Suppose vertex v has been picked uniformly at random
at time t in the learning process. Consider the edges that are incident to v and suppose e is one of
them. Given a weightfunction g : R→ R+, let P(e), the probability that edge e will be picked and it’s
weight will be increased, be
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P(e) =
1

n
·
∑
v∈e

g(we(t))∑
f∈E:f3v

g(wf (t))
.

Assigning this probability to every edge e gives a probability measure. Clearly, P(e) is non-negative
for every e ∈ E. It also holds that

(2.1)

∑
e ∈E

P(e) =
∑
e∈E

1

n
·
∑
v∈e

g(we(t))∑
f∈E:f3v

g(wf (t))

=
∑
v∈V

1

n
·
∑

e∈E:e3v

g(we(t))∑
f∈E:f3v

g(wf (t))

=
∑
v∈V

1

n
·

∑
e∈E:e3v

g(we(t))∑
f∈E:f3v

g(wf (t))

=
∑
v∈V

1

n

= n · 1

n
= 1,

which shows that it is indeed a probability measure.

Equilibria of the model

Let the function F : ∆m → Rm be defined as follows:

(2.2)Fe(~w) = −we + lim
t→∞

1

n
·
∑
v∈e

g(wet)∑
f∈E:f3v

g(wf t)
,

with g a weightfunction. Here we use wet in stead of we(t), because we are looking for equilibria in

the long run and we can be seen as the mean we(t)
t , thus equivalently wet as we(t).

Let we(t) be the weight of edge e at time t, so after t iterations. Lets assume this function is linear in
t. If Fe(~w(t)) is positive, then the probability of e being picked is larger then the weight ratio of e and
if Fe(~w(t)) is negative, then the probability is smaller then the weight ratio. This tells us something
about the expected behaviour of the model. This makes Fe(~w(t)) a derivative of we((t)). Thus if
Fe(~w(t)) = 0, we have a critical point. This is a maximum if the Hessian is negative definite. This is
equivalent with the eigenvalues being negative.

Definition 2.2 (Equilibrium). Let F be as defined above and let m be given. A vector ~w ∈ ∆m is an
equilibrium distribution of the model if F (~w) = ~0.

So an equilibrium is a special case in which the relative weight of edge e equals the probability that
the weight of e increases, for all e ∈ E.

In the sequel we consider weightfunctions g of the form g(we) = wαe t
α, α ∈ R>1. Note that for α = 1

this would give precisely the probability measure that corresponds with the basic Pólya urn model.
By defining g like this, it follows that Fe(~w) = 0 can be reduced to the following:
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(2.3)

we = lim
t→∞

1

n
·
∑
v∈e

g(wet)∑
f∈E:f3v

g(wf t)

= lim
t→∞

1

n
·
∑
v∈e

wαe t
α∑

f∈E:f3v
wαf t

α

= lim
t→∞

1

n
·
∑
v∈e

wαe∑
f∈E:f3v

wαf
· t
α

tα

=
1

n
·
∑
v∈e

wαe∑
f∈E:f3v

wαf

Let the partial derivatives of Fe(~w) be denoted by De,d(~w) = δFe(~w)
δwd

, for edges e and d that are adjacent
or equal. A quick calculation shows that, these partial derivatives are as follows:

De,e(~w) = −1 + αwα−1e · 1

n
·
∑
v∈e

∑
f∈E:f3v

wαf − wαe( ∑
f∈E:f3v

wαf

)2 ,

and for e 6= d:

De,d(~w) = −αwα−1d wαe ·
1

n
·
∑
v∈e∩d

1( ∑
f∈E:f3v

wαf

)2 .
If e and d are not adjacent, then this value is 0, indeed.

Let D(~w) denote the matrix with (e, d) entry De,d(~w). Note that the initial weights are all equal, thus
we = wd for all e, d ∈ E, and thus the same holds for De,d(~w) and Dd,e(~w). It follows that D(~w) is a
symmetric matrix, therefore all eigenvalues are real.

Definition 2.3 (Stable equilibrium). An equilibrium distribution ~w is a (linearly) stable equilibrium
if all eigenvalues of D(~w) have negative real parts. If there exists an eigenvalue of D(~w) that has a
positive real part, then ~w is a (linearly) unstable equilibrium. Otherwise, it is critical.

Definition 2.4 (Adjacency matrix). Let G = (V,E) be a graph with n vertices and m edges. The
adjacency matrix of a graph G is an (m×m)-matrix A, such that

Ai,j =

{
1 if ei ∩ ej 6= 0 and i 6= j

0 otherwise
.

Note that D(~w) can be written as Di,i (~w) I−Di,j (~w) A.

From this point we will assume that α > 1.
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3 Preliminary Considerations

3.1 Step-by-step plan

In each of the following three chapters, a specific kind of graph will be covered. These will be the
circlegraph, the stargraph and the complete graph. Let us denote the uniform vector, that is the
vector with all entries having the same value we, as ( ~we). In each case, the weightvector that we shall

consider is
(
~1
m

)
, i.e. the total weight is evenly distributed. Though each of these cases has it’s own

results, we can use one general method to find those results for each case. The following is a summary
of this method:

First
The first step is to prove that

(
~1
m

)
is indeed an equilibrium. This is done, simply by proving

that F (~1m ) = ~0, (see definition 2.2).

Second
Then we will calculate both Di,i(

~1
m ) and Di,j(

~1
m ). Also we will calculate the adjecency matrix

A of the graph. These values are necessary for the construction of D
(
~1
m

)
.

Third
With the information gained in step 2, D

(
~1
m

)
will be constructed, as D

(
~1
m

)
= Di,i

(
~1
m

)
I −

Di,j

(
~1
m

)
A.

Fourth
Next the eigenvalues of A will be calculated, and therewith the eigenvalues of D

(
~1
m

)
, using a

lemma that will be introduced in the following subsection.

Fifth
Finally, the eigenvalues of D

(
~1
m

)
will be used to determine if, or under which criterion, the

equilibrium is stable.

3.2 Lemmas

In preparation of the following chapters, we state and prove two lemmas.

Lemma 3.1. Let p, q ∈ R. Let M and M′ be n× n matrices such that M′ = pId + qM. If M has an
eigenvalue λ, then M′ has a corresponding eigenvalue λ′ = p+ qλ.

Proof. Let v be the eigenvector of M corresponding to the eigenvalue λ. It holds that Mv = λv. It
follows that:

M′v = (pId + qM)v = pIdv + qMv = pv + qλv = (p+ qλ)v

Thus λ′ = p+ qλ is an eigenvalue of M′.

Using the eigenvalues of A, lemma 3.1 will be used in chapters 4 and 6 to calculate the eigenvalues of
D, which relate to the eigenvalues of A in a such a way as described in lemma 3.1.

Lemma 3.2. Let A be an (n ×m)-matrix. Consider AAT , which is an (n × n)-matrix, and ATA,
which is an (m×m)-matrix. Then the following holds:

AAT has an eigenvalue λ 6= 0⇐⇒ ATA has an eigenvalue λ 6= 0
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Proof. Let λ be an eigenvalue of AAT . Then there is a vector v 6= 0 such that AAT v = λv.

AAT v = λv ⇐⇒ ATAAT v = ATλv ⇐⇒ ATA(AT v) = λ(AT v)

.

Thus, if (AT v) 6= 0, then λ is an eigenvalue of ATA and AT v is the associated/corresponding eigen-
vector.

Claim: (AT v) 6= 0

Proof: Suppose (AT v) = 0. Then AAT v = 0. Given that AAT v = λv, it follows that λv = 0.
However, it holds that λ 6= 0 and v 6= 0, so λv 6= 0. This gives a contradiction. Thus (AT v) 6= 0.

Following this fact, the lemma has been proven.

Lemma 3.2 will be of use in section 6, which covers the complete graph.
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4 Stargraph results

Definition 4.1 (Stargraph). A simple graph G = (V,E) is a stargraph if ∃v ∈ V such that v ∈ e
∀e ∈ E.

Note that in this case m = n− 1 holds.

Theorem 4.2 (Equilibrium and stability for stargraphs). Let G be a stargraph with n ∈ N≥3 vertices

and m = n−1 edges. Then
(
~1
m

)
=
(
~1
n−1

)
is an equilibrium for G and it is stable if and only if α < n.

Proof. First we check that
(
~1
m

)
=
(
~1
n−1

)
is indeed an equilibrium. To this end, we calculate Fi

(
~1
n−1

)
,

according to formula (2.2):

(4.1)

Fi

(
~1
n−1

)
= − 1

n− 1
+

1

n
·
(

(n− 1)−α

(n− 1)(n− 1)−α
+

(n− 1)−α

(n− 1)−α

)
= − 1

n− 1
+

1

n(n− 1)
+

1

n

= − n

n(n− 1)
+

1

n(n− 1)
+

n− 1

n(n− 1)

=
−n+ 1 + n− 1

n(n− 1)

=
0

n(n− 1)
= 0,

which shows that
(
~1
m

)
is indeed an equilibrium.

Next we will calculate Di,i

(
~2
n−1

)
and Di,k

(
~2
n−1

)
.

(4.2)

Di,i

(
~1
n−1

)
= −1 + α

(
1

n− 1

)α−1
· 1

n
·

(
1

n−1
α − 1

n−1
α

1
n−1

2α +
(n− 1) 1

(n−1)α −
1

(n−1)α

(n− 1)2 1
(n−1)2α

)

= −1 + α

(
1

n− 1

)α−1
· 1

n
·

(n− 1) 1
(n−1)α −

1
(n−1)α

(n− 1)2 1
(n−1)2α

= −1 + α

(
1

n− 1

)α−1
· 1

n
·

(n− 2) 1
(n−1)α

(n− 1)2 1
(n−1)2α

= −1 + α

(
1

n− 1

)α−1
· 1

n
· (n− 2)

(n− 1)2 1
(n−1)α

= −1 + α

(
1

n− 1

)−1
· 1

n
· (n− 2)

(n− 1)2

= −1 +
α

n
· (n− 2)

(n− 1)
.
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For i 6= k,

(4.3)

Di,k

(
1

n−1

)
= −α ·

(
1

n− 1

)α−1
·
(

1

n− 1

)α
· 1

n
· 1

(n− 1)2
(

1
n−1

)2α
= −α ·

(
1

n− 1

)2α−1

· 1

n
· 1

(n− 1)2
·
(

1

n− 1

)−2α
= −α

n
·
(

1

n− 1

)−1
·
(

1

n− 1

)2

= −α
n
· 1

n− 1

= − α

n(n− 1)
.

For every edge in a stargraph it holds that it is adjacent to every other edge in the graph, because
there exists a unique vertex to which all edges are incident. Therefore we know that the adjacency
matrix A of a stargraph of n vertices is of the following form:

A =


0 1 . . . 1 1
1 0 . . . 1 1
...

...
. . .

...
...

1 1 . . . 0 1
1 1 . . . 1 0

 .

Here the number of rows and columns of A both equal n− 1.

With Di,i

(
~1
n−1

)
, Di,j

(
~1
n−1

)
and A as given above, we can write the partial derivative matrix D of

F
(
~1
n

)
as

D

(
1

n− 1

)
=

(
−1 +

α

n
· (n− 2)

(n− 1)

)
Id−

(
α

n(n− 1)

)
A.

We will calculate the eigenvalues of A by rewriting it as A = 1−Id, with 1 being the matrix consisting
of ones, namely

1 :=


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 .

First we will determine the eigenvalues and eigenvectors of 1. For every eigenvalue and it’s respective
eigenvector(s) it must hold that


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1



x1
x2
...
xn

 =


x1 + x2 + . . .+ xn
x1 + x2 + . . .+ xn

...
x1 + x2 + . . .+ xn

 =


λx1
λx2

...
λxn

 .

One obvious solution for this equation is the following
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

x1
x2
...
xn

 : x1 = x2 = ... = xn−1 = xn

 , λ = n,

which has dimension 1, since fixing xi for a certain i will fix all others too.

The other solutions are



x1
x2
...
xn

 : x1 + x2 + ...+ xn−1 + xn = 0

 , λ = 0.

Fixing n− 1 elements of the vector will fix the last one too, this last one will be the negative sum of
the first n− 1 elements. Which means that this solution has dimension n− 1.

Now consider the adjacency matrix of the complete graph.

A =


0 1 . . . 1 1
1 0 . . . 1 1
...

...
. . .

...
...

1 1 . . . 0 1
1 1 . . . 1 0

 = 1− Id = −1 · Id + 1 · 1.

Given that 1 has an eigenvalue λ = n with multiplicity 1, it now follows from lemma 3.1 that A has
an eigenvalue λ′ = n− 1, with multiplicity 1.

Similarly, given that 1 has eigenvalue µ = 0 with multiplicity n − 1, it follows that A has eigenvalue
µ′ = −1 with multiplicity n− 1.

Again using lemma 3.1 we can calculate the eigenvalues of D
(

1
n−1

)
. One eigenvalue is

(4.4)

λD =

(
−1 +

α

n
· (n− 2)

(n− 1)

)
−
(

α

n(n− 1)

)
(n− 1)

= −1 +
α(n− 2)

n(n− 1)
− α(n− 1)

n(n− 1)

= −1 +
α(n− 2)− α(n− 1)

n(n− 1)

= −1 +
α(n− 2− n+ 1)

n(n− 1)

= −1− α

n(n− 1)
,

with multiplicity 1. The other eigenvalue is

(4.5)

λD =

(
−1 +

α

n
· (n− 2)

(n− 1)

)
−
(

α

n(n− 1)

)
· −1

= −1 +
α(n− 2) + α

n(n− 1)

=
α(n− 1)

n(n− 1)

= −1 +
α

n
,
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with multiplicity n− 1.

Therefore the stability criterion is as follows:

−1− α

n(n− 1)
< 0 and − 1 +

α

n
< 0.

A quick calculation shows that the first part of the criterion is always true:

−1− α

n(n− 1)
< 0⇐⇒ −1 <

α

n(n− 1)
⇐⇒ −n(n− 1) < α.

This is always true because α > 1 and n ∈ N≥3.

The second part of the criterion gives the following:

−1 +
α

n
< 0⇐⇒ α

n
< 1⇐⇒ α < n.

Thus,
(
~1
n−1

)
is a stable equilibrium for the stargraph of n vectors and n− 1 edges if α < n, otherwise

it is not stable.
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5 Circlegraph results

Definition 5.1 (Circlegraph). Let G = (V,E) be a simple graph. Order the vertices of G, i.e.
v0, v1, . . . , vn−1. G is a circlegraph if there exits an order of the edges of G such that ei = {vi, vi+1}
∀i ∈ {0, . . . , n− 2} and en−1 = {vn−1, v0}. Note that m = n.

Theorem 5.2 (Equilibrium and stability for circlegraphs). Let G be a circlegraph with n ∈ N≥3
vertices and m = n edges. Then

(
~1
m

)
=
(
~1
n

)
is an equilibrium for G and it is stable if and only if n

is odd and α < 2

1+cos(πn )
.

Proof. First we check that
(
~1
m

)
=
(
~1
n

)
is indeed an equilibrium. To this end, we calculate Fi

(
~1
n

)
.

(5.1)

F

(
~1

n

)
i

= − 1

n
+

1

n
·

(
1
n

)α(
1
n

)α
+
(
1
n

)α +
1

n
·

(
1
n

)α(
1
n

)α
+
(
1
n

)α
= − 1

n
+

2

n
·
(
1
n

)α
2 ·
(
1
n

)α
= − 1

n
+

1

n
= 0,

which shows that
(
~1
m

)
is indeed an equilibrium.

Next we will calculate Di,i

(
1
n

)
and Di,j

(
1
n

)
. Note that, because G is a circlegraph, edge ei can be

written as ei = {vi, vi+1} ∀i ∈ {0, . . . , n− 2} and en−1 can be written as en−1 = {vn−1, v0}. Therefore
it suffices to calculate Di,i

(
1
n

)
and, using the symmetry of the circle graph, Di,i+1

(
1
n

)
= Di,i−1

(
1
n

)
.

(5.2)

Di,i

(
~1

n

)
= −1 + α

(
1

n

)α−1
· 1

n
·

(
2 ·
(
1
n

)α − ( 1n)α(
2 ·
(
1
n

)α)2 +
2 ·
(
1
n

)α − ( 1n)α(
2 ·
(
1
n

)α)2
)

= −1 + α

(
1

n

)α−1
· 2

n
·

(
2 ·
(
1
n

)α − ( 1n)α(
2 ·
(
1
n

)α)2
)

= −1 + α

(
1

n

)α
·

2 ·
(
1
n

)α
4 ·
(
1
n

)2α
= −1 + α

(
1

n

)α
· 1

2 ·
(
1
n

)α
= −1 +

α

2
.

(5.3)

Di,i+1

(
~1

n

)
= −α

(
1

n

)α−1
·
(

1

n

)α
· 1

n
· 1(

2 ·
(
1
n

)α)2
= −α

(
1

n

)2α

· 1

4 ·
(
1
n

)2α
= −α

4
.
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We know that edge ei is adjacent to edges ei−1 and ei+1 ∀i ∈ {1, . . . , n− 2}. Edge en−1 is adjacent to
edges en−2 and e0, and edge e0 is adjacent to edges en−1 and e1. From this we can easily derive the
adjacency matrix of the circle graph, namely

A =



0 1 0 0 . . . 0 1
1 0 1 0 . . . 0 0

0 1 0
. . .

...

0 0
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0

0 0 . . . . . .
. . . 0 1

1 0 . . . . . . 0 1 0


.

With Di,i

(
~1
n

)
, Di,i+1

(
~1
n

)
= Di,i−1

(
~1
n

)
and A as given above, we can write the partial derivative

matrix D of F
(
~1
n

)
as

D

(
~1

n

)
=
(
−1 +

α

2

)
Id− α

4
A.

Definition 5.3 (Circulant matrix). An (n×n) matrix C is a circulant matrix if there exist c0, . . . , cn−1
such that the following holds:

C =



c0 c1 . . . . . . cn−2 cn−1
cn−1 c0 c1 . . . . . . cn−2

... cn−1 c0
. . .

...
...

...
. . .

. . .
. . .

...

c2 . . .
. . .

. . . c1
c1 c2 . . . . . . cn−1 c0


.

Properties of circulant matrix

Let φj = e
2πj
n i. The eigenvalues of a circulant matrix are as follows:

λj = c0 + c1φj + c2φ
2
j + · · ·+ cn−1φ

n−1, j = 0, 1, . . . , n− 1,

according to [1, Section 3.1].

The adjacency matrix of a circle graph of n vertices is a circulant matrix with the following values:

c1 = cn−1 = 1 and c2 = c3 = . . . cn−2 = c0 = 0

It follows that

13



D =
(
−1 +

α

2

)
Id− α

4
A =



−1 +
α

2
−α

4
. . . . . . 0 −α

4
−α

4
−1 +

α

2
−α

4
. . . . . . 0

... −α
4

−1 +
α

2

. . .
...

...
...

. . .
. . .

. . .
...

0 . . .
. . .

. . . −α
4

−α
4

0 . . . . . . −α
4
−1 +

α

2


.

So D is a circulant matrix with

c0 = −1 +
α

2
,

c1 = cn−1 = −α
4

,

and c2 = c3 = . . . = cn−2 = 0.

Therefore the eigenvalues of D, with j ∈ Z, are

(5.4)

λj = −1 +
α

2
− α

4
e

2πj
n i − α

4
e

2πj
n i·(n−1)

= −1 +
α

2
− α

4
e

2πj
n i − α

4
e2πj·i−

2πj
n ·i

= −1 +
α

2
− α

4
e

2πj
n i − α

4
e−

2πj
n ·i

= −1 +
α

2
− α

4

(
e

2πj
n i + e−

2πj
n ·i
)

= −1 +
α

2
− α

4

(
cos

(
2πj

n

)
+ i sin

(
2πj

n

)
+ cos

(
−2πj

n

)
+ i sin

(
−2πj

n

))
= −1 +

α

2
− α

4

(
2 · cos

(
2πj

n

))
= −1 +

α

2
− α

2

(
cos

(
2πj

n

))
= −1 +

α

2

(
1− cos

(
2πj

n

))
.

The equilibrium is stable if and only if all eigenvalues are negative, so if

α <
2

1− cos
(
2πj
n

) .

The right hand of the inequality attains it’s minimum precisely when cos
(
2πj
n

)
attains it’s minimum.

As the cosine function attains it’s minimum at π, 3π, . . . , it follows that the minimum of cos
(
2πj
n

)
is attained when j =

n

2
. However, because j ∈ Z this only holds for n even. This minimum is −1,

therefore α < 1. By assumption it holds that α > 1, so the equilibrium
(
~1
n

)
is not a stable one,

for even n in the model. For odd n, the minimum of cos
(
2πj
n

)
is attained when j =

n+ 1

2
. The

equilibrium is then stable if and only if the following holds:

α <
2

1− cos
(
π(n+1)

n

) =
2

1− cos
(
π + π

n

) =
2

1 + cos
(
π
n

) .

It holds that cos
(
π
n

)
< 1, for all n ∈ N, so this upper bound for α is greater than 1. Therefore the

equilibrium
(
~1
n

)
is stable if and only if α satisfies 1 < α < 2

1+cos(πn )
.
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6 Complete graph results

Definition 6.1 (Complete graph). A simple graph G = (V,E) with n vertices is a complete graph if

{vi, vk} ∈ E ∀i, k ∈ {1, . . . , n}, i 6= j. Note that m = n(n−1)
2 .

Theorem 6.2 (Equilibrium and stability for complete graphs). Let G be a complete graph with n ∈ N≥3
vertices and m = (n−1)n

2 edges. Then
(
~1
m

)
=
(

~2
(n−1)n

)
is an equilibrium for G, but it is not stable.

Proof. First we check that
(
~1
m

)
=
(

~2
n(n−1)

)
is indeed an equilibrium. To this end, we calculate

Fi

(
~2

n(n−1)

)
.

(6.1)

Fi

(
~2

n(n− 1)

)
= − 2

n(n− 1)
+

2

n
·

(
2

n(n−1)
α

(n− 1) 2
n(n−1)

α

)
= − 2

n(n− 1)
+

2

n
· 1

n− 1

= − 2

n(n− 1)
+

2

n(n− 1)
= 0,

which shows that
(
~1
m

)
is indeed an equilibrium.

Next we will calculate Di,i

(
~2

n(n−1)

)
and Di,k

(
~2

n(n−1)

)
.

(6.2)

Di,i

(
~2

n (n− 1)

)
= −1 + α

2

n (n− 1)

α−1
· 2

n
·

(n− 2)
(

2
n(n−1)

)α
(n− 1)

2
(

2
n(n−1)

)2α
= −1 + α

(
2

n (n− 1)

)−1
· 2

n
· n− 2

(n− 1)
2

= −1 + α
n (n− 1)

2
· 2

n
· n− 2

(n− 1)
2

= −1 + α
n− 2

n− 1
.

(6.3)

Di,j

(
~2

n (n− 1)

)
= −α

(
2

n (n− 1)

)α−1
·
(

2

n (n− 1)

)α
· 1

n
· 1

(n− 1)
2
(

2
n(n−1)

)2α
= −α

(
2

n (n− 1)

)2α−1

· 1

n
· 1

(n− 1)
2 ·

1(
2

n(n−1)

)2α
= −α

(
2

n (n− 1)

)−1
· 1

n
· 1

(n− 1)
2

= −αn (n− 1)

2
· 1

n
· 1

(n− 1)
2

= − α

2 (n− 1)
.
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As opposed to the last two chapters, we will not be calculating the adjacency matrix A of the complete
graph of n vertices. We will instead find an eigenvalue of A by arguing.

So far we can write the partial derivative matrix D of F
(

~2
n(n−1)

)
as

D

(
~2

n (n− 1)

)
=

(
−1 + α− α

n− 1

)
Id− α

2(n− 1)
A.

We will find an eigenvalue of A using the so called incidence matrix.

Definition 6.3 (Incidence matrix). Let G = (V,E) be a graph with n vertices and m edges. The
incidence matrix of a graph G is an (n×m)-matrix N, such that

Ni,j =

{
1 if vi ∈ ej
0 if vi 6∈ ej

.

So N has a row for each vertex and a column for each edge and an element is equal to 1 if and only if
the corresponding vertex and edge are incident. Otherwise the value of the element is 0.

Consider the (n × n)-matrix NNT , this is the matrix that arises by multiplying the rows of N with
themselves. Thus, the value of NNT

i,j equals the number of edges that vi and vj share. Note that
when i = j, this equals the number of edges to which vi is adjacent.

Now consider the (m×m)-matrix NTN, this is the matrix that arises by multiplying the columns of
N with themselves. Thus, the value of NTNi,j equals the number of vertices that ei and ej share.
Note that for a simple graph, this is 1 when ei and ej are adjacent and 0 when they are not. When
i = j, it equals the number of edges to which ei is adjacent, which is always equal to 2. Also note that
this matrix is very similar to the adjacency matrix, the only difference being that the elements of the
main diagonal equal 2. Thus it holds that A = NTN− 2Id.

NNT has n eigenvalues, of which at most n are non-zero eigenvalues. It follows from Lemma 3.2 that
NNT and NTN have the exact same non-zero eigenvalues, therefore NTN too has at most n non-zero
eigenvalues. However, NTN has m > n eigenvalues, therefore m−n > 0 of those are equal to 0. Thus
we can conclude that NTN has an eigenvalue λ = 0.

Using lemma 3.1 and the equation A = −2Id + NTN, we can find an eigenvalue λA of A:

(6.4)λA = −2 + 1 · λ
= −2 + 1 · 0
= −2.

Using lemma 3.1 and the equation D
(

~2
n(n−1)

)
=
(
−1 + α− α

n−1

)
Id − α

2(n−1)A, we can find an

eigenvalue λD of D
(

~2
n(n−1)

)
:

(6.5)

λD =

(
−1 + α− α

n− 1

)
− α

2(n− 1)
· λA

=

(
−1 + α− α

n− 1

)
− α

2(n− 1)
· −2

= −1 + α− α

n− 1
+

α

(n− 1)
= −1 + α.
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By assumption it holds that α > 1, therefore it follows that −1 + α > 0.

Thus D
(

~2
n(n−1)

)
has an eigenvalue that is greater than 0, therefore the equilibrium is not stable.
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7 Discussion

We have considered three different types of graphs; stargraphs, circlegraphs and complete graphs. In all

three cases we found that
(
~1
n

)
is an equilibrium. We have shown that for stargraphs this equilibrium

is stable if and only if α < n. For circlegraphs it is stable if and only if n is odd and if α < 2

1+cos( pin )
.

Lastly for complete graphs we showed that it is never stable.

There are many problems in this model that remain unsolved. The most obvious next step is looking
for more (stable) equilibria in the graphs that we studied.

Also, there are many other types of graphs that can be studied, such as bipartite graphs and path
graphs. Graphs with a spatial structure would be especially interesting. For example, a two dimensional
lattice-shaped graph could be linked to the retina of the eye, and a three dimensional one could be
linked to a variety of brain areas.
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