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Chapter 1

Introduction

If we let Z, the group of integers, act on R, the set of real numbers, by translation, the resulting
orbit space is homeomorphic to S1, a circle. There are (at least) two interesting ‘coincidences’ to
note in this example. The first is a purely topological observation: R and S1 locally look the same.
In other words, the original space and the orbit space are (in this case) locally homeomorphic.
The second is an algebraic observation: it so happens that Z is isomorphic to the fundamental
group of S1. In other words, the group acting on the original space is (in this case) isomorphic
to the fundamental group of the orbit space.

Do these phenomena always occur when we let a group act on a topological space? Certainly not,
even if we stipulate that the action of the group be a continuous one. If we replace Z with Q in
the example above, the orbit space is a uncountable space with trivial topology and certainly not
locally homeomorphic to R. But we will see that under a certain reasonable condition, the first
observation will hold. The second observation is less robust, but will hold under the additional
condition that the original space is simply connected.

The action of Z on R and the induced map R → S1 is a motivating example for the study of
G-bundles. These objects, which will be defined formally in chapter 2, are often mentioned in
books on algebraic topology, but usually as examples of more general structures like covering
spaces or fiber bundles, and rarely studied as objects per se. In the literature, G-bundles are
sometimes known as G-covers, G-coverings or principal bundles, depending on the context.

In this thesis, we will study G-bundles from an algebraic-topological viewpoint, elucidating a
connection between G-bundles over a fixed well-behaved topological space on one hand and C̆ech
cohomology and its fundamental groupoid on the other. In the last chapters we specialize to
connected base spaces to set up a Galois connection between G-bundles and normal subgroups
of the fundamental groups. Besides these results, we also give some applications of this theory
to construct for example the orientation bundle over manifolds and the universal cover over well-
behaved spaces. In the last chapter, we use the theory of G-bundles to give an alternative proof
of the Seifert-van Kampen theorem, due to Grothendieck.

The contents of this thesis are meant to be understandable to an undergraduate mathematics
student. In terms of preliminary knowledge, the text assumes familiarity with basic point-set
topology and concepts like compactness and local connectedness. From algebraic topology, the
concept of the fundamental group will often be used. We will also need some group theory, but
this will be limited to some basic facts about actions and normal subgroups. In fact, if one has
no problems understanding the first two paragraphs of this introduction, then one will probably
have no problem with the rest of this thesis either. The main exception is chapter 4, in which
we will consider manifolds. However, the later chapters are largely independent from the results
in this chapter, and readers who are not familiar with manifolds may skip this chapter without
loss of continuity. Another exception is chapter 5, where we will borrow some language from
category theory.
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Chapter 2

G-bundles: Definition and First Properties

We begin by defining G-bundles over a given topological space. For this we need the notion of
an even action of a group on a space.

All groups are assumed to be equipped with the discrete topology.

Definition 2.1. Let G be a group and Y a topological space. An even action1 on Y is an action
of G on Y such that the map G × Y → Y given by (g, y) 7→ g · y is continuous, and such that
every point y ∈ Y has an open neighbourhood y ∈ U ⊂ Y such that U ∩ gU = ∅ for every g ∈ G
with g 6= e.

Examples 2.2. 1. The action of Z on R by translation is even: for every point y ∈ R the
neighbourhood U = (y − 1

2 , y + 1
2 ) satisfies the above criterium. Likewise, we get an even

action of the cyclic group Cn of n elements on C∗ by identifying Cn with the nth roots of
unity and multiplying.

2. The action of Q on R by translation is not even, since every non-empty open U ⊂ R
intersects q+U for some q ∈ Q. Also, the action of Cn on C by multiplication by nth roots
of unity is not even (assuming n > 1): since 0 is a fixed point, no neighbourhood of 0 can
satisfy the criterium in the definition.

Now that we have defined an even action, we can define the concept of a G-bundle.

Definition 2.3. Let G be a group and X be a topological space. A G-bundle over X is a
topological space Y , an even action of G on Y and a map p : Y → X such that there exists a
homeomorphism ϕ : X

∼−→ G \ Y such that the composition ϕ ◦ p maps each y ∈ Y to its orbit
y. We call X the base space, Y the covering space and p the projection map.

A few examples:

Examples 2.4. 1. A rather trivial example is given by Y = X ×G for any topological space
X and any discrete group G. We let G act on Y by g ·(x, h) = (x, gh) and define p : Y → X
by (x, g) 7→ x. This example (and any G-bundle isomorphic to it, see definition 2.6) is called
a trivial G-bundle over X.

2. The prototypical G-cover is the case where G = Z is the addition group of the integers,
Y = R is the real line, X = S1 is the circle, and the projection map p : Y → X is given by
x 7→ exp(2πi ·x). The reader is invited to check that this does indeed satisfy the definition
of a G-bundle.

3. Using the same group, we can extend the previous example to an annulus X = {z ∈ C :

1The word ‘even’ was introduced by Fulton in [Ful95], and is used in [Sza09] as well. The traditional term
‘properly discontinuous’ is also still common.
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1
2 ≤ |z| ≤ 2} if we use

Y =

{
z ∈ C : − ln(2)

2π
≤ =(z) ≤ ln(2)

2π

}
as covering space and x 7→ exp(2πi · x) as projection map.

4. In the same way we can construct Z-bundles over various different annuli in C using the
exponent map. But we should note the importance of the role played by the hole in the
centre. In fact, we will soon show that there are no non-trivial Z-bundles (or any non-trivial
G-bundles for any G) over the disk D = {z ∈ C : |z| ≤ 1}, for example.

A few easy consequences follow from this definition:

Lemma 2.5. Let G be a group and p : Y → X be a G-bundle over X.

1. The projection map p is open (meaning that open sets are mapped to open sets) and sur-
jective.

2. Let A ⊂ X be a subset, and define B = p−1(A). Then the restriction p|B : B → A again
defines a G-bundle, called the restriction of the bundle to A.

3. For each x ∈ X, there exists an open neighbourhood U ⊂ X of x such that the restriction
of p : Y → X to U is a trivial G-bundle (thus, any G-bundle is locally trivial).

4. For each x ∈ X the action of G on Y restricts to the set p−1(x) (called the fiber over x),
and the restricted action is both transitive (meaning that for each y, y′ ∈ p−1(x) there is
some g ∈ G such that y′ = gy) and free (meaning that gy 6= hy whenever g 6= h, for each
y ∈ p−1(x)).

Proof. Property 1 clearly holds for the map Y → G \Y and therefore also for Y → X. Property
2 follows from noting that p−1(A) is the union of orbits and therefore closed under action of
G on Y . Property 3 is a direct consequence of the definition of an even action. In property
4 transitivity follows from the definition of an orbit and freedom follows from evenness of the
action.

Note that property 1 and 3 together imply that the projection is a local homeomorphism (i.e.
every point y ∈ Y has an open neighbourhood U such that p(U) is open in X, and that p is an
homeomorphism between U and p(U)). Therefore X and Y have the same local properties.

Now that we have defined G-bundles, a natural next step is to define morphisms of G-bundles.

Definition 2.6. Let p : Y → X and p′ : Y ′ → X be G-bundles over X. A continuous map
ϕ : Y → Y ′ is called a morphism of G-bundles over X if p = p′ ◦ ϕ, and ϕ(gy) = gϕ(y) for each
g ∈ G and each y ∈ Y . If ϕ is an homeomorphism, then ϕ is called an isomorphism of G-bundles
over X.

Example 2.7. Let p : Y → X be a G-bundle, and suppose G is abelian. Then the map
λg : Y → Y given by y 7→ g ·y is a morphism, since it is continuous by definition 2.1 and satisfies
λg(hy) = ghy = hgy = hλg(y). More generally, when G is not abelian, then λg is a morphism if
and only if g is an element of the center of G.

This definition turns the collection of G-bundles over a base space X into a category, which we
will denote Bun(G,X). A rather surprising consequence of the definition of the morphisms is
that every morphism is an isomorphism:
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Proposition 2.8. Let ϕ : (Y, p) → (Y ′, p′) be a morphism of G-bundles over X. Then ϕ is an
isomorphism.
Proof. Let a, b ∈ Y be such that ϕ(a) = ϕ(b). Then we must have p(a) = p(b), so a and b are in
the same fiber of the bundle. Therefore there is some g ∈ G such that b = g · a, and therefore
ϕ(b) = g · ϕ(a). Since the action of G on Y ′ is free, this implies that g = e, and therefore a = b,
so ϕ is injective. On the other hand, let y′ ∈ Y ′ be given. Let y be any point in the fiber
p−1(p′(y′)). Then ϕ(y) and y′ must be in the same fiber, so again there is some g ∈ G such that
y′ = g · ϕ(y). But then y′ = ϕ(gy), so ϕ is surjective as well.

To show that ϕ is open, we note that this is clearly the case when Y and Y ′ are equal to the
trivial G-bundle X ×G. Since any G-bundle is locally trivial, this means that ϕ is locally open.
But being open is a local property, so ϕ is open. Therefore, ϕ is a homeomorphism, and thus a
isomorphism of G-bundles.

We saw in lemma 2.5 that every G-bundle is locally trivial. A reverse of this assertion is also
true:

Lemma 2.9. Let G be a group, Y be a G-space, X be a topological space and p : Y → X be
a continuous map such that every point x ∈ X has an open neighbourhood U ⊂ X such that
p−1(U)→ U defines a trivial G-bundle over U . Then p : Y → X is a G-bundle over X.
Proof. Let x ∈ X be a point and U ⊂ X an open neighbourhood of x as above. Then there is
some isomorphism ϕ : U ×G→ p−1(U) such that p ◦ ϕ is the projection on the first coordinate.
Since ϕ is by assumption an isomorphism of G-bundles, it is a G-map, and therefore we find
ϕ(y, g) = g · ϕ(y, e) for every y ∈ U and g ∈ G.

Assume that there is some g ∈ G with gU ∩ U 6= ∅. Let y ∈ gU ∩ U , we then have y ∈ U and
g−1y ∈ U . But since p(g−1 ◦ ϕ(y, e)) = p(ϕ(y, g−1)) = y it follows that g · y = y. But p−1(U) is
isomorphic to U ×G, and in the latter the action of G is free, so it should be free in p−1(U) as
well. Therefore, from g · y = y it follows that g = e. Thus we only have gU ∩ U 6= ∅ in the case
g = e, and since x ∈ X was arbitrary, this proves that the action of G on Y is even.

Now we define ϕ : X → G \ Y by x 7→ p−1(x). This map is well-defined since it is locally
well-defined: for every x ∈ X we can find an open neighbourhood U of x as in the lemma and
an isomorphism ϕ : U ×G → p−1(U) as above. Then for every y ∈ p−1(x) we have y = ϕ(x, g)
for some g ∈ G, and therefore, y′ is in the same orbit as y if and only if p(y′) = x, for in that
case we have y′ = ϕ(x, h) for some h ∈ G. This shows that p−1(x) is exactly the orbit of y, so ϕ
is well-defined. As similar argument shows that ϕ is both continuous and open, since it locally
has those properties. Also, ϕ is bijective, since it is easily checked that ȳ 7→ p(y) is the inverse
of ϕ. Therefore, ϕ is a homeomorphism between X and G \ Y with ϕ ◦ p equal to the canonical
projection Y → G \ Y . Thus p : Y → X is an G-bundle.

Suppose we have a G-bundle p : Y → X. Then by definition, the projection map induces a
homeomorphism G \Y → X, but as we have seen in the examples, this does not generally imply
that Y is homeomorphic to G×X. This situation is somewhat similar to a short exact sequence
in group theory. If we have a short exact sequence 0 → A

f→ B
g→ C → 0 of groups, then by

the isomorphism theorems, this implies that g induces a isomorphism B/f [A] → C, but not in
general that B is isomorphic to A × C. However, the short exact sequence of groups is split if
and only if g has a right inverse. In the case of G-bundles, the analogous statement is true as
well.
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Proposition 2.10. Let G be a group, X be a topological space and p : Y → X a G-bundle. Then
Y is trivial if and only if there exists an continuous map s : X → Y such that p ◦ s = idX (such
a map is called a section).
Proof. If Y is trivial, then there is a G-bundle isomorphism ϕ : X×G→ Y . The map s : X → Y
defined by x 7→ ϕ(x, e) is then as we wanted.

Now assume we are given a continuous map s : X → Y satisfying p ◦ s = idX . Then the map
ϕ : X × G → Y defined by (x, g) 7→ g · s(x) is continuous, since it is the composition of the
continuous map (x, g) 7→ (s(x), g) with the continuous map (y, g) 7→ g · y. Also, for each x ∈ X
and g, h ∈ G we have g · ϕ(x, h) = gh · s(x) = ϕ(x, gh), so ϕ is G-equivariant. Thus ϕ is a
morphism of G-bundles, and by proposition 2.8 ϕ is an isomorphism.

The idea underlying the previous proposition is the following: G acts freely and transitively on
each fiber. If we would choose some base point y0 in some fiber p−1(x), then that would give us
a canonical bijection G→ p−1(x) by g ↔ g · y0. However, this bijection depends on the choice of
base point. A section s : X → Y as in the proposition essentially defines a choice of base point
for each fiber. The continuity of s then makes sure that the bijections between G and each fiber
are ‘aligned’, in the sense that we can regard Y as a product of G with X.
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Chapter 3

Construction and Classification of G-bundles1

Assume we are given a group G and a base space X. We would like to know which spaces Y
and which maps p : Y → X can occur as G-bundles over X (up to isomorphism, of course). In
general questions like these are rather hard to answer, but in this case we are lucky, as long as
the topology of X is nice enough. In this chapter, we will show a classification of G-bundles
using so-called C̆ech cocycles. This approach uses the fact that the G-bundles over X are easily
classified if X happens to be simply connected.

In this chapter and in the rest of the thesis, we take simply connected to mean ‘non-empty, path-
connected, and every loop is homotopic (with fixed endpoints) to a constant loop’. In particular,
our notion of simple connectedness assumes path connectedness.

Theorem 3.1. Let G be a group and X be a simply connected and locally path-connected topo-
logical space. Then every G-bundle over X is trivial.

The proof of this theorem relies on the following lemma on lifting paths and homotopies, which
we will quote without proof (lemma 2.3.2 in [Sza09]).

Lemma 3.2. Let p : Y → X be a G-bundle, let y ∈ Y and let x = p(y).

1. Given a path γ : [0, 1] → X with γ(0) = x, there is a unique path γ̃ : [0, 1] → Y with
γ̃(0) = y and p ◦ γ̃ = γ called the lifting of γ.

2. Homotopic paths in X have homotopic liftings in Y . In particular, the endpoints of the
lifting are the same.

Proof of theorem 3.1. Suppose p : Y → X is a G-bundle. Let y0 ∈ Y be any point, and define
x0 = p(y0). For each x ∈ X we let s(x) be the endpoint in Y of the lifting of any path from
x0 to x. The lemma guarantees that s(x) does not depend on the path chosen, since any path
from x0 to x is homotopic to any other path from x0 to x. This defines a map s : X → Y which
clearly satisfies p ◦ s = idX . Notice that the image of s equals the path-connected component of
Y containing y0: every point in Y that can be connected to y0 by some path γ is the endpoint
of the unique lift of the path p ◦ γ in X, and a point that can not be connected to y0 by any
path in Y can not be the endpoint of the lifting of a path in X if this lifting starts at y0. In
particular this implies that the image of s is open, since X is locally path-connected. Now, let
V ⊂ Y be any open set. Then we have s−1(V ) = p(V ∩ s(X)). Since s(X) is open, V ∩ s(X) is
open as well. Since p is an open map, this means that s−1(V ) is open, so s is continuous. The
claim now follows from proposition 2.10.

Another ingredient we will need is the following classification of the automorphisms of a trivial
bundle.

1This chapter follows the lines of [Ful95], paragraph 15
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Lemma 3.3. Let G be a group and X a topological space. Let Y = X ×G be the trivial bundle
and let ϕ : Y → Y be a morphism of G-bundles. Then there is a unique locally constant function
f : X → G such that ϕ(x, g) = (x, g · f(x)).
Proof. It is clear that there is at most one such f , so it suffices to give one. Define s : X → Y
by x 7→ (x, e) and π : Y → G by (x, g) 7→ g, and let f = π ◦ ϕ ◦ s. Since each of these maps
is continuous, it follows that f is also continuous, and since G is discrete, f must be locally
constant. Now, for each (x, g) ∈ Y we have

π(ϕ(x, g)) = π(g · ϕ(x, e)) = g · (π ◦ ϕ ◦ s)(x) = g · f(x),

and since ϕ must preserve the first coordinate, we find that ϕ(x, g) = (x, g · f(x)).

The following definition will be instrumental in what follows. Recall that an open cover U of
some topological space X is a collection of open subsets of X such that X is the union of these
subsets.

Definition 3.4. Let X be a topological space and U be an open cover of X. Then U is called
good if each element of U is simply connected and locally simply connected. Notice that X has
a good cover if and only if it is locally simply connected.

Now, if X is covered by a good cover U = {Uα}α∈A, then any G-bundle over X must be trivial
over each Uα by theorem 3.1. Therefore, we can think of Y as a union of spaces G × Uα for
α ∈ A, pasted together in some way. This pasting is based on the behaviour of the bundle on
the overlaps Uα ∩ Uβ , and can be descriped nicely using so-called C̆ech cocycles.

Definition 3.5. Let X be a locally simply connected space and U = {Uα}α∈A be a good cover of
X. Then a C̆ech cocycle on U with coefficients in G is a collection (cαβ)α,β∈A of locally constant
functions cα,β : Uα ∩ Uβ → G satisfying the so-called cocycle condition:

cαγ(x) = cαβ(x) · cβγ(x) (3.1)

for every x ∈ Uα ∩ Uβ ∩ Uγ .

Two C̆ech cocycles (cαβ) and (dαβ) are called cohomologous if for each α ∈ A there is a locally
constant function hα : Uα → G such that

hα(x) · dαβ(x) = cαβ(x) · hβ(x) (3.2)

holds for every x ∈ Uα ∩ Uβ and every α, β ∈ A.

Note that ‘being cohomologous’ defines a equivalence relation on the set of C̆ech cocycles. The
equivalence classes are called C̆ech cohomology classes and the set of these classes is denoted
H1(U ;G). Also note that from equation 3.1 it follows that cαα(x) = e for each α ∈ A and each
x ∈ Uα, and that cαβ(x) = cβα(x)−1 for every α, β ∈ A and every x ∈ Uα ∩ Uβ .

At first, these definitions may seem a bit bewildering and the reader may feel that these cocycles
have little to do with G-bundles. However, the opposite is true. As it turns out, these cohomology
classes can be used to perfectly describe G-bundles. The rest of this chapter will be devoted to
two constructions. First, we show how we can use C̆ech cocycles as ‘pasting data’ to glue together
a G-bundle, and then we show how to reverse the process.

Construction 3.6 (From C̆ech cocycle to G-bundle). Let G be a group, let X be a locally
simply connected space with a good cover {Uα}α∈A and let (cαβ) be a C̆ech cocycle on U with
coefficients in G. We define the space Y ′ as

Y ′ = {(x, g, α) ∈ X ×G×A : x ∈ Uα},
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where we give both G and A the trivial topology and Y ′ the induced topology. Now we define a
relation ∼ on Y ′ as follows:

(x, g, α) ∼ (y, h, β) iff x = y and g = h · cβα(x).

The cocycle condition guarantees that ∼ is an equivalence relation. We let Y = Y ′/∼, and define
p : Y → X by (x, g, α) 7→ x. Furthermore, we let G act on Y by left multiplication on the second
coordinate: g · (x, h, α) = (x, gh, α). It is easily checked that both p and the action of G on Y
are well-defined: choosing different representatives in both definitions still results in the same
equivalence classes.

We claim that p : Y → X is a G-bundle. For this, we first note that p is continuous. Now,
let x ∈ X be given, and let α ∈ A be such that x ∈ Uα. Then the inverse image of Uα under
p consists the equivalence classes of points (y, g, β) ∈ Y ′ for each y ∈ Uα, each g ∈ G and
each β such that y ∈ Uβ . But such a (y, g, β) is equivalent to the point (y, g · cβα(x), α), so
every equivalence class in p−1(Uα) contains a point labeled with α as third coordinate. On the
other hand, (y, g, α) and (y, h, α) can only be equivalent if g = h, so every equivalence class in
p−1(Uα) contains exactly one point with α as third coordinate. In particular, we can define a
map ϕ : p−1(Uα) → Uα ×G by mapping the equivalence class of (y, g, α) to (y, g). This map is
easily seen to be a homeomorphism, and this shows that the restriction of p to p−1(Uα) gives a
trivial G-bundle over Uα. Since x ∈ X was arbitrary, we can invoke lemma 2.9, and find that
p : Y → X is a G-bundle.

And now for the reverse:

Construction 3.7 (From G-bundle to cohomology class). Let G be a group, let X be a locally
simply connected space with a good cover {Uα}α∈A and let p : Y → X be a G-bundle over X.
By theorem 3.1, the restriction of the G-bundle to each Uα is trivial, since each Uα is simply
connected by assumption. Therefore, we can for each α ∈ A find a G-bundle isomorphism
ϕα : Uα ×G→ p−1(Uα). For α, β ∈ A the restrictions of ϕα and ϕβ to the overlap Uα ∩Uβ give
rise to a transition isomorphism

(Uα ∩ Uβ)×G ϕα−→ p−1(Uα ∩ Uβ)
ϕ−1
β−→ (Uα ∩ Uβ)×G

of trivial G-bundles. Applying lemma 3.3 on this isomorphism gives a unique locally constant
function cαβ : Uα∩Uβ → G such that the transition map can be written as (x, g) 7→ (x, g ·cαβ(x)).
Doing this for all α, β ∈ A gives a collection (cαβ) of locally constant functions. The cocycle
condition follows from the identity ϕ−1γ ◦ ϕα = ϕ−1γ ◦ ϕβ ◦ ϕ−1β ◦ ϕα, which holds on all of
Uα ∩ Uβ ∩ Uγ . Therefore, (cαβ) defines a C̆ech cocycle on U .

But this cocycle is not uniquely determined: it depends on our choice of trivialisations ϕα. If
we had chosen another set {ϕ′α} of isomorphisms ϕ′α : Uα ×G→ p−1(Uα), we would have found
other transition maps on the overlaps, and we would have ended up with another cocycle (dαβ).
We claim now, however, that (cαβ) is cohomologous to (dαβ). To see this, we note that for each
α ∈ A the composition ϕ′−1α ◦ϕα defines an isomorphism Uα×G→ Uα×G. Applying lemma 3.3
again gives us a locally constant function hα : Uα → G for each α ∈ A, such that ϕ′α−1 ◦ ϕα is
given by (x, g) 7→ (x, g ·hα(x)). It is quickly checked that for each α, β ∈ A and each x ∈ Uα∩Uβ
these functions satisfy hα(x) · dαβ(x) = cαβ(x) · hβ(x), showing that the two cocycles are indeed
cohomologous.

We now know how to build a G-bundle from a C̆ech cocycle, but creating a C̆ech cocycle from a
G-bundle works only up to cohomology. But the situation is not as bad as it may seem: cocycles
in the same cohomology class give isomorphic G-bundles.
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Lemma 3.8. Let (cαβ) and (dαβ) be cohomologous C̆ech cocycles on some good cover U =
(Uα)α∈A of some locally simply connected space X with coefficients in some group G. Then the
G-bundles constructed from (cαβ) and (dαβ) using construction 3.6 are isomorphic.
Proof. Let p : Y → X and p′ : Y ′ → X be the G-bundles we construct from (cαβ) and (dαβ),
respectively. We will show that Y and Y ′ are isomorphic.

For each α ∈ A we let hα : Uα → G be a locally constant function such that hα(x) · dαβ(x) =
cαβ(x) · hβ(x) holds for each x ∈ Uα ∩ Uβ . Then we define a map ϕ : Y → Y ′ by sending the
equivalence class of a point (x, g, α) to the class of (x, g · hα(x), α). To check that this map is
well-defined, let (x, g, α) and (x, h, β) elements of the same equivalence class in Y . Then we must
have h = g · cαβ(x). Then we have

ϕ(x, h, β) = (x, h · hβ(x), β)

= (x, g · cαβ(x)hβ(x), β)

= (x, g · hα(x)dαβ(x), β)

= (x, ghα(x), α) = ϕ(x, g, α),

so ϕ is well-defined. It is clear that ϕ is continuous, since each hα is locally constant. Also, ϕ is
G-equivariant, as a quick verification shows. Therefore, ϕ is a morphism of G-bundles, and by
proposition 2.8 it is an isomorphism.

So now we can convert G-bundles over locally simply connected spaces to C̆ech cohomology
classes, and in the other direction we can build G-bundles from cohomology classes. The follow-
ing theorem, which is the main result of this chapter, gives us the relation between these two
constructions.

Theorem 3.9. 1. Let Y → X be a G-bundle, and construct a new G-bundle Y ′ → X by
first applying construction 3.7 and then applying construction 3.6. Then Y ′ and Y are
isomorphic as G-bundles.

2. Let (cαβ) be a C̆ech cohomology class, and construct a new class (dαβ) by applying con-
struction 3.6 and 3.7. Then (cαβ) and (dαβ) are cohomologous.

Proof. 1. Let p : Y → X be a G-bundle, let ϕα : Uα × G → p−1(Uα) be as in construction
3.7, and let (cαβ) be the resulting C̆ech cocycle. Then by construction we have

ϕα(x, g) = ϕβ(x, g · cαβ(x)) (3.3)

for each g ∈ G and each x ∈ Uα ∩ Uβ .

Let Y ′ be the G-bundle constructed from (cαβ). Then we define a map ψ : Y ′ → Y by

(x, g, α) 7−→ ϕα(x, g).

This is well-defined exactly because of identity 3.3. It is continuous because it is con-
tinuous on p−1(Uα) for each α ∈ A, it is G-equivariant because every ϕα is, and it is
clearly compatible with the projections, so ψ is a morphism of G-bundles, and therefore an
isomorphism.

2. Let (cαβ) be a C̆ech cocycle, and let p : Y → X be the G-bundle constructed from it. For
each α ∈ A we define ϕα : Uα ×G→ p−1(Uα) by

(x, g) 7−→ (x, g, α)
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This map is clearly continuous, G-equivariant and compatible with the projection maps,
so ϕα is a isomorphism of G-bundles over Uα, for each α ∈ A.

For every α, β ∈ A and every x ∈ Uα ∩ Uβ we have

ϕα(x, g) = (x, g, α) = (x, g · cαβ(x), β) = ϕβ(x, g · cαβ(x)),

so (cαβ) is the cocycle that we construct by using the ϕα as trivialisations in construction
3.7. In particular, every other trivialisation leads to a C̆ech cocycle that is cohomologous
to (cαβ), by the last paragraph of construction 3.7.

Corollary 3.10. For a group G and a locally simply connected space X with good cover U ,
constructions 3.6 and 3.7 define bijections between the set of isomorphism classes of G-bundles
over X and the set H1(U ;G) of C̆ech cohomology classes on U with coefficients in G.

Corollary 3.11. Let G be a group and X a locally simply connected space. Let U and U ′ be
good covers. Then there is a canonical bijection between H1(U ;G) and H1(U ′;G).

It has been some work, but we’ve got what we came for: theorem 3.9 gives a complete classifica-
tion of G-bundles over spaces that are locally simply connected, in terms of simpler objects. But
what if some space X isn’t locally simply connected? Well, if U is any cover of any space X, we
can still apply construction 3.6 to any cocycle on U , and that will still give us a G-bundle over
X. On the other hand, we can also apply construction 3.7 to any G-bundle over X, provided it
is trivial over each open in U . In fact, with some minor adjustments much of the work done in
the last few pages can be applied in this case as well to construct a bijection between H1(U ;G)
and isomorphism classes of G-bundles over X that are trivial over each U ∈ U .

But we know from lemma 2.5 that every G-bundle must be trivial over some open cover U ,
and then also over each refinement of U . By taking more and more refined open covers, we
can describe G-bundles that are trivial over smaller and smaller opens. We can restrict C̆ech
cocycles on open covers to more refined open covers, and these restriction maps define a so-
called direct system, allowing us to take a direct limit. In this limiting process, we finally obtain
a correspondence between G-bundles and C̆ech cohomology. However, this correspondence lacks
some of the elegance and calculability of the situation with locally simply connected spaces.
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Chapter 4

G-bundles and Manifolds

In the previous chapter we have seen a connection between G-bundles and C̆ech cocycles. To
obtain this connection, we made use of what we called good covers of X: a covering of X by
simply connected and locally simply connected opens. In this chapter, we study an application
of this theory to manifolds. By definition, a manifold comes with an atlas consisting of charts,
and these charts have domains that are already locally simply connected and can be shrunk to
be simply connected. In other words, each manifold comes with a natural good cover.

In this chapter by manifolds we will mean smooth second-countable Hausdorff manifolds. Readers
not familiar with the ideas and concepts of smooth manifolds can find the necessary background
in the first few chapters of the excellent book of Jänich [Jän01].

Definition 4.1. Given a manifold M , a good atlas for M will be an atlas for M where every
chart domain is simply connected.

Clearly, a good atlas is an example of a good cover in the sense of definition 3.4. The next lemma
shows that every manifold has such an atlas.

Lemma 4.2. Every manifold has a good atlas.
Proof. We only need to show that we can cover chart domains with simply connected subdomains.
Since every chart domain is by definition homeomorphic to an open subset of Euclidean space,
it is enough to show that every open subset of Euclidean is the union of simply connected opens.
But a subset of Euclidean space is open exactly when it is a union of open balls, and open balls
are simply connected.

Given a G-bundle p : Y → X, we know from Chapter 2 that p is a local homeomorphism. Since
being a manifold is mainly a local property, a manifold structure on X can often be lifted to Y .
The only catch is that Y will not be second countable if G is too big.

Proposition 4.3. Let X be a manifold and let p : Y → X be a G-bundle over X. If G is
countable, then the manifold structure of X lifts to Y .
Proof. First, we prove that Y is Hausdorff and second-countable. Let x, y ∈ Y with x 6= y. If x
and y are in the same fiber, then we can find a neighbourhood U of p(x) over which the bundle
is trivial. Then x and y are in different components of p−1(U), and these components separate x
and y. If p(x) 6= p(y), then p(x) and p(y) can be separated by opens (since X is Hausdorff), and
lifting these opens separates x and y. Thus, Y is Hausdorff. Furthermore, the topology of X has
a countable base U = {Ui}∞i=1. We can assume that the bundle is trivial over each Ui. Then for
each i, p−1(Ui) has countably many connected components, and it is easily checked that the set
of all the connected components of all the Ui form a countable base for the topology of Y .

The rest is rather straightforward. Let AX be a good atlas for X. If (U,ϕ) is a chart in AX , then
the bundle is trivial over U , since we assumed that U is simply connected. Therefore p−1(U) is
homeomorphic to U × G. Thus every connected component of p−1(U) is homeomorphic to U ,
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which is homeomorphic to some open subset of Rn via ϕ. Therefore we let AY consist of all
pairs (U ′, ϕ′) where U ′ is a connected component of p−1(U) for some chart (U,ϕ) ∈ AX , and
ϕ′ = ϕ ◦ p|U ′ . Then clearly this defines a differentiable structure on Y , and p is differentiable
and of full rank relative to these charts.

A particular G-bundle we will investigate is the so-called orientation bundle. This is a C2-
bundle that can be constructed over any manifold, and as the name suggests, it has to do with
orientations.

Construction 4.4 (Orientation bundle). Let X be a smooth manifold with a good atlas A =
{(Uα, ϕα)}α∈A. We define a C̆ech cocycle on A with coefficients in C2 = {±1} as follows. Let
α, β ∈ A and x ∈ Uα ∩ Uβ . We set cαβ(x) equal to the sign of the determinant of the Jacobian
of the transition map ϕ−1β ◦ ϕα at ϕa(x). That is, if we let Jf(p) denote the Jacobian matrix
of a function f at a point p, then we let cαβ(x) = +1 if

∣∣J(ϕβ ◦ ϕ−1α )(ϕα(x))
∣∣ is positive, and

cαβ(x) = −1 if it is negative. Note that ϕα and ϕβ are by assumption diffeomorphisms, so the
determinant is never zero. Since the determinant of the Jacobian depends continuously on x and
can never by zero, we find (by the intermediate value theorem) that cαβ is locally constant.

We only need to check the cocycle condition. But this is quickly checked: if α, β, γ ∈ A and
x ∈ Uα ∩ Uβ ∩ Uγ are given, then

J(ϕγ ◦ ϕ−1α ) = J(ϕγ ◦ ϕ−1β ◦ ϕβ ◦ ϕ
−1
α ) = J(ϕγ ◦ ϕ−1β ) · J(ϕβ ◦ ϕ−1α ),

implying cαγ(x) = cαβ(x) · cβγ(x).

Definition 4.5. The C2-bundle constructed from the above cocycle by construction 3.6 will be
called the orientation bundle over X.

Of course, we would like the orientation bundle to only depend on the differentiable structure
for X, and be independent of the actual choice of atlas.

Lemma 4.6. If two good atlases A and B for X are differentiably related, they induce the same
orientation bundle.
Proof. Without loss of generality, we may assume that B is the maximal good atlas. Then every
chart in A is also a chart in B. In particular, the overlaps between charts in A are also overlaps
between charts in B, and therefore the cocycle we obtain above using B as an atlas will agree
with the cocycle obtained by using A on all charts in A. Since X is already covered by the
charts in A, we see that the orientation bundles we construct using construction 3.6 must agree
as well.

Theorem 4.7. Let X be a connected manifold, and let p : Y → X be the orientation bundle
over X. Then Y is connected if and only if X is not orientable.
Proof. Suppose X is orientable, and that A is an oriented good atlas for X. Lemma 4.6 tells us
that we can freely choose any good atlas from which to construct the orientation bundle, so we
might as well choose A. But since A is oriented, every transition map has a positive Jacobian
determinant, and so the cocycle in construction 4.4 is trivial. Thus, the orientation bundle over
X is trivial, and a trivial C2-bundle is not connected.

Now, suppose Y is not connected. We claim that for y ∈ Y , the points y and −y are not
connected by a path. To see this, let x ∈ Y be arbitrary. Then there is a path γ connecting p(x)
with p(y), and its lift γ̃ to Y starting at x must terminate at either y or −y. If y and −y are
connected by a path, then this shows that there is some path connecting x and y. But x ∈ Y was
arbitrary, so this contradicts the fact that Y is not connected. So we see that Y is the disjoint
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union of two connected components U1 and U2, with the property that x ∈ U1 ⇐⇒ −x ∈ U2,
thus that U1 = −U2. Therefore, Y is the trivial C2-bundle over X.

Let A = {(Uα, ϕα)}α∈A be the maximal good atlas for X, and let (cαβ) be the C̆ech cocycle
constructed in 4.4. Since the bundle corresponding to this C̆ech cocycle is trivial by the previous
paragraph, the cocycle itself must be cohomologous to the trivial cocycle. Therefore, let hα :
Uα → C2 be locally constant functions such that hα(x) = cαβ(x) · hβ(x) for all x ∈ Uα ∩ Uβ .
Note that the hα are in fact constant functions. Removing all charts (Uα, ϕα) with hα = −1,
we obtain a collection A′ of charts. This is an atlas for X, since for every map (Uα, ϕα) that
we remove, there is another chart (Uα, ϕβ) in A with the same chart domain such that the
transition map between them has negative determinant. Since hα = −1 and cαβ(x) = −1 for all
x ∈ Uα, we find that hβ = +1. Thus, A′ is an atlas for X that is compatible with the maximal
atlas A′. Moreover, one quickly checks that A′ is in fact an oriented atlas, implying that X is
orientable.

In fact, more can be said about the structure of the orientation bundle. For example, the
orientation bundle over a manifold is always orientable (given the natural manifold structure
from proposition 4.3), independent of the orientability of the original manifold. The proof,
which mainly consists of lifting chart domains and and studying their behaviour relative to the
overlapping chart domains and their lifts, is easier to visualise than to describe, and will be left
as an exercise to the reader. Another fact to note is that choosing a section of the orientation
bundle (which exists if and only if the original manifold is orientable, by proposition 2.10) is the
same as choosing an orientation of the manifold. In fact, one might even take this as a definition
of an orientation.

As a consequence of 4.7, we have the following, somewhat surprising result, which has very little
to do with G-bundles or C̆ech cohomology per se.

Corollary 4.8. A simply connected manifold is orientable.
Proof. If X is simply connected, then every C2-bundle over X is trivial by theorem 3.1. In
particular, its orientation bundle is trivial and hence not connected.

In fact, in corollary 7.7 we will strengthen this result by showing that the fundamental group of
any connected non-orientable manifold has a normal subgroup of index 2.
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Chapter 5

G-bundles and the Fundamental Group

In chapter 3 we showed that we can think of G-bundles over some locally simply connected space
X in terms of C̆ech cocycles and their cohomology relation. In fact, when one looks at the
definition of this relation (equation 3.2), then one might notice the similarity with the definition
of natural isomorphisms between functors in category theory. Therefore, we might suspect that
C̆ech cocycles are in fact disguised functors from some category to another. In this chapter, we
will show that this is indeed the case. The C̆ech cocycles turn out to be functors on the so-
called fundamental groupoid, which contains informations of all paths through X, modulo path
homotopy. As the name suggests, there is some relation between the fundamental groupoid of a
space and its fundamental group, and in the case that X is connected, we will show that C̆ech
cocycles define group morphisms from π1(X) to G. These results can also be found in [Ful95],
paragraph 14. The use of groupoids in this chapter is inspired by the book of R. Brown on the
use of groupoids in topology, see [Bro06].

Definition 5.1. A groupoid is a small category (i.e. a category in which the class of objects
form a set) in which every morphism is invertible. A group is a groupoid with exactly one object.

Note that this definition coincides with the traditional definition of a group: every group can
be interpreted as a groupoid with one object, and vice versa. From now on, we will view every
group as a one-point groupoid.

Definition 5.2. Let X be a topological space, and B ⊂ X a non-empty subset of X. The
fundamental groupoid of X with base B (notation: Π1(X,B)) is the category with as its objects
the elements of B, and as morphisms the homotopy classes of paths between the elements of B,
with natural composition1.

Since any path can be inverted, the above indeed is a groupoid. In the case that B = X, we
usually write Π1(X) instead of Π1(X,X). Note that we have π1(X,x0) = Π1(X, {x0}) for every
x0 ∈ X, so we can view the fundamental groupoid as a generalisation of the fundamental group,
where we allow for a set of base points instead of just one.

We will fix some notation to avoid repeatedly declaring the same objects over and over again.

Notation 5.3. In the rest of this chapter use the following notation. Let G be a discrete group,
let X be a locally simply connected space with a good cover U = {Uα}α∈A and let (cαβ) be a
C̆ech cocycle on U with coefficients in G. Let p : Y → X be the G-bundle defined by applying
construction 3.6 to (cαβ). For each α ∈ A we choose an xα ∈ Uα, and define B = {xα}.

1To clarify, the composition of two classes [γ1] and [γ2] is defined to be [γ1 ⊕ γ2], where γ1 ⊕ γ2 is defined
to be the path that first traverses γ1, and then traverses γ2. This seems to be the usual convention in algebraic
topology, but it contrasts with the composition rules in category theory, where f ◦ g usually means ’first g, then
f ’. So to fit paths and homotopy classes into the framework of category theory, each class of paths from x to y
should actually correspond to a morphism y → x in the fundamental groupoid. However, this subtle point will
not be of importance in the following discussion.
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We will show in the rest of this chapter that a C̆ech cocycle essentially defines a functor from
Π1(X,B) to G (remember, every group is a category now, so it makes sense to speak of functors
to G).

Construction 5.4. (From C̆ech cocycle to functor). Let notation be as in 5.3. For each pair
xα, xβ ∈ B and every path γ : I → X from xα to xβ we define Fc([γ]) as follows. We let γ̃ be
the lift of γ to Y that starts at (xα, e, α), which exists and is unique by lemma 3.2. Then γ̃(1)
is of the form (xβ , g, β) for a unique g ∈ G. Define Fc([γ]) = g. We will show that this defines a
well-defined functor Fc : Π1(X,B)→ G.

If γ, γ′ : I → X are path-homotopic paths from xα to xβ , then their lifts have the same endpoint
by lemma 3.2, so we have Fc([γ]) = Fc([γ

′]), which means that Fc is well-defined.

Suppose γ1 : I → X is a path from xα to xβ , and γ2 : I → X is a path from xβ to xγ . Let γ̃1 and
γ̃2 be the lifts of γ1 and γ2 starting at (xα, e, α) and (xβ , e, β), respectively. Note that we cannot
compose γ̃1 and γ̃2 directly if Fc([γ1]) 6= e. But if we define γ′2 to be the path s 7→ Fc([γ1]) · γ̃2(s),
then we can compose γ̃1 and γ̃′2, and we easily see that γ̃1 ⊕ γ̃′2 is the lift of γ1 ⊕ γ2. Since the
endpoint of this lift is Fc([γ1]) · Fc([γ2]), we get Fc([γ1 ⊕ γ2]) = Fc([γ1]) · Fc([γ2]).

So Fc is a functor Π1(X,B)→ G.

Although the construction of this functor is quite direct, it is a little hard to work with. In the
lemma below, we give a more verbose but equivalent definition.

Lemma 5.5. With notation as in 5.3, let γ : I → X be a path from xα to xβ. Then there are
n ∈ N, reals 0 = r0 < . . . < rn+1 = 1 and indices α0, . . . , αn ∈ A such that α0 = α, αn = β, and
γ([rk, rk+1]) ⊂ Uαk for k = 0, . . . , n. Moreover, if Fc is the functor Π1(X,B) → G constructed
from (cαβ) in 5.4, we have

Fc([γ]) = cα0α1
(γ(r1)) · . . . · cαn−1αn(γ(rn)).

Proof. Let V be the set of connected components of all sets γ−1(Uα) for α ∈ A. Then V is
a cover of I. Since I is compact, V has some finite subcover V ′. Define n = #V ′ − 1. Since
the elements of V ′ are open intervals, there are numbers ai and bi with i = 0, . . . , n such that
V ′ = {(ai, bi)}. We can assume without loss of generality that both the ai and bi are strictly
increasing by rearranging indices and assuming that V ′ is a minimal subcover of V. Define r0 = 0,
rn+1 = 1 and ri = 1

2 (ai + bi−1) for i = 1, . . . , n. Then it is clear to see that [ri, ri+1] ⊂ (ai, bi)
for each i, so for every i there is some αi such that [ri, ri+1] ⊂ γ−1(Uαi).

For the second part of the statement, we first consider the case where we have n ≤ 1. Then
there is some r ∈ [0, 1] such that γ([0, r]) ⊂ Uα and γ([r, 1]) ⊂ Uβ . Now, let p : Y → X be the
G-bundle we get from applying construction 3.6 to (cαβ). We let γ̃ be the lift of γ starting at
the point (xα, e, α). Then it is immediate that

γ̃(r) = (γ(r), e, α) = (γ(r), cαβ(γ(r)), β).

Therefore, we have γ̃(1) = (xβ , cαβ(γ(r)), β), so Fc([γ]) = cαβ(γ(r)).

Now, suppose n > 1. Because of the first part of the lemma, we can think of γ as the concate-
nation of n paths, for all of which we can take n = 1 and apply the previous case (note that to
do so, we actually require that γ passes through each xαk somewhere between rk−1 and rk, but
since each Uαk is simply connected, this is no loss of generality). The statement follows.
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In the last part of the proof, we made use of the fact that any path is the concatenation of
‘simpler’ paths, namely, those paths for which we can choose n = 1 in the lemma. We will call
such paths primitive paths, and any homotopy class in the fundamental groupoid that contains
at least one primitive path will be called a primitive class. The previous lemma shows that every
path in X from any xα to any xβ is homotopic to a composition of primitive homotopic paths,
or in other words, that the primitive classes generate the fundamental groupoid.

Lemma 5.6. Every class in Π1(X,B) is the product of primitive classes.

Next, we show how to construct a cocycle from a functor.

Construction 5.7. (From functor to cocycle). With notation as in 5.3, let F : Π1(X,B) → G
be a functor. Let α, β ∈ A be such that Uα ∩Uβ 6= ∅. Let x ∈ Uα ∩Uβ be given, let γ1 : I → Uα
be a path in Uα from xα to x, and let γ2 : I → Uβ be a path in Uβ from x to xβ . Define
cαβ(x) = F ([γ1 ⊕ γ2]). Since Uα and Uβ are by assumption simply connected, the homotopy
class of γ1 ⊕ γ2 does not depend on the particular paths chosen.

This defines a set of functions cαβ : Uα ∩ Uβ → G. We claim that it is in fact a cocycle. For
this, we need two check two things: firstly, that every map is locally constant; secondly, that the
collection satisfies the cocycle condition, whenever applicable.

Let x, y ∈ Uα ∩ Uβ be in the same path-connected component of Uα ∩ Uβ . Let γ1 : I → Uα be a
path from xα to x, let γ2 : I → Uα ∩ Uβ be a path in Uα ∩ Uβ from x to y, and let γ3 : I → Uβ
be a path from y to xβ . Then γ1 ⊕ γ2 is a path in Uα from xα to y and γ2 ⊕ γ3 is a path in Uβ
from x to xβ , so we have

cαβ(y) = F ([(γ1 ⊕ γ2)⊕ γ3]) = F ([γ1 ⊕ (γ2 ⊕ γ3)]) = cαβ(x).

So each cαβ is constant on path-connected components (and therefore on connected components,
by local path-connectedness), so each cαβ is locally constant.

Let x ∈ Uα ∩ Uβ ∩ Uγ be given. Let γ1 : I → Uα be a path from xα to x, let γ2 : I → Uβ be a
path form xβ to x, and let γ3 : I → Uγ be a path from xγ to x. Then we have

cαγ(x) = F ([γ1⊕γ−13 ]) = F ([γ1⊕γ−12 ⊕γ2⊕γ
−1
3 ]) = F ([γ1⊕γ−12 ])·F ([γ2⊕γ−13 ]) = cαβ(x)·cβγ(x).

So (cαβ)α,β∈A is indeed a C̆ech cocycle.

Of course, these constructions are only interesting if they are each other’s inverse.

Proposition 5.8. Let the notation be as in 5.3.

1. Let F : Π1(X,B) → G be a functor, (cαβ) be the C̆ech cocycle obtained by applying con-
struction 5.7 and let Fc : Π1(X,B) → G be the functor obtained by applying construction
5.4 on (cαβ). Then Fc = F .

2. Let (cαβ) be a C̆ech cocycle on U with coefficients in G, let Fc be the functor obtained by
applying 5.4 to (cαβ), and let (dαβ) be the cocycle obtained by applying construction 5.7 to
Fc. Then (cαβ) = (dαβ).

Proof. 1. Since by lemma 5.6 the primitive classes generate Π1(X,B), a functor is completely
determined by its values on the primitive classes. Let γ be a primitive path from xα to
xβ . Then there is some r ∈ [0, 1] with γ([0, r]) ⊂ Uα and γ([r, 1]) ⊂ Uβ . Now, from
lemma 5.5 we see that Fc([γ]) = cαβ(r). But from construction 5.7 we have by definition
cαβ(r) = F ([γ]). Therefore, we have Fc([γ]) = F ([γ]), which proves the claim.
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2. Let x ∈ Uα ∩ Uβ be given. Let γ1 be a path in Uα from xα to x, and let γ2 be a path
in Uβ from x to xβ . By definition, we then have dαβ(x) = Fc([γ1 ⊕ γ2]). Now, applying
lemma 5.5 to the path γ1 ⊕ γ2 with n = 1 and r1 = 1

2 , we find Fc([γ1 ⊕ γ2]) = cαβ(x), so
cαβ(x) = dαβ(x).

To relate this result to the previous chapters, we should look not only at cocycles, but also at
cohomology. We have the following:

Lemma 5.9. Let (cαβ) and (dαβ) be two C̆ech cocycles, and let Fc and Fd be the functors
Π1(X,B) → G constructed from these cycles using construction 5.4. Then Fc and Fd are iso-
morphic as functors if and only if (cαβ) and (dαβ) are cohomologous.
Proof. If (cαβ) and (dαβ) are cohomologous, there are hα ∈ G such that hα ·dαβ(x) = cαβ(x) ·hβ .
We will prove that we have hα · Fd(γ) = Fc(γ) · hβ for each homotopy class γ : xα → xβ , which
proves that the collection (hα) defines a natural transformation. As usual, we are done if we
prove this for the primitive classes. Let γ be a primitive path in X from xα to xβ , and let
r ∈ [0, 1] be such that γ([0, r]) ⊂ Uα and γ([r, 1]) ⊂ Uβ . Then applying lemma 5.5, we have

hα · Fd([γ]) = hα · dαβ(γ(r)) = cαβ(γ(r)) · hβ = Fc([γ]) · hβ ,

which shows that the collection (hα) defines a natural transformation. Since each hα is invertible,
this is an isomorphism of functors.

The proof for the other implication is analogous.

We can combine the correspondence between functors and C̆ech cohomology with the relationship
between C̆ech cohomology and G-bundles obtained in chapter 3, and obtain the following. We
let Fun(Π1(X,B), G) be the category of functors from Π1(X,B) to G.

Corollary 5.10. The constructions 3.6, 3.7, 5.4 and 5.7 gives rise to bijections

Bun(G,X)/isomorphism ←→ H1(U ;G) ←→ Fun(Π1(X,B), G)/isomorphism

If X is connected, then there is a close connection between functors on the fundamental groupoid
and homomorphisms from the fundamental group.

Lemma 5.11. Let notation be as in 5.3, and assume that X is connected. For each x0 ∈ B the
inclusion π1(X,x0) ↪→ Π1(X,B) induces a isomorphism

Fun(Π1(X,B), G)/isomorphism←→ Hom(π1(X,x0), G)/conjugacy.

Proof. For each functor F : Π1(X,B)→ G, we define Φ(F ) to be the restriction of F to π1(X,x0).
From the definition of a functor, we get that Φ(F ) is a group homomorphism. Now, suppose
F1, F2 : Π1(X,B)→ G are two isomorphic functors. Then for each α ∈ A there is some gα ∈ G
such that gα · F1([γ]) = F2([γ]) · gβ holds for each γ from xα to xβ . Then in particular, we have
g0 ·F1(c) = F2(c) · g0 for each c ∈ π1(X,x0). In other words, we have Φ(F1) = g−10 ·Φ(F2) · g0, so
Φ induces a map Φ from Fun(Π1(X,B), G) modulo isomorphism to Hom(π1(X,x0), G) modulo
conjugacy.

Now, assume f : π1(X,x0)→ G is a homomorphism. Choose for each α ∈ A a path γα from x0
to xα. For each path γ from xα to xβ we define F ([γ]) = f([γα] · [γ] · [γ−1β ]). One easily checks
that this gives a well-defined functor F : Π1(X,B) → G with Φ(F ) = f , so Φ is surjective, and
therefore Φ is surjective as well. Now, assume we have functors F1, F2 : Π1(X,B)→ G and some
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g ∈ G such that Φ(F1) = g−1 · Φ(F2) · g. For each α ∈ A we choose a path γα from x0 to xα,
and define gα = F1([γα]−1) · g · F2([γα]). We claim that this gives an isomorphism of functors.
To see this, let γ be a path from xα to xβ . Then we have

F2([γ]) = F2([γ−1α ⊕ γα ⊕ γ ⊕ γ−1β ⊕ γβ ])

= F2([γα]−1) · F2([γα ⊕ γ ⊕ γ−1β ]) · F2([γβ ])

= F2([γα]−1) · g−1 · F1([γα ⊕ γ ⊕ γ−1β ]) · g · F2([γβ ])

= g−1α · F1([γ]) · gβ ,

which proves the claim. This proves that Φ is also injective, and therefore a bijection.

This result, together with corollary 5.10, gives a nice classification of G-bundles over connected
and locally simply connected spaces.

Corollary 5.12. Let X be a connected and locally simply connected space, G a group and
x0 ∈ X a base point. Then there is a canonical bijection between the G-bundles over X up to
isomorphism, and the homomorphisms from π1(X,x0) to G up to inner automorphisms of G.
Proof. Let notation be as in 5.3, and assume without loss of generality that x0 ∈ B. Then apply
lemmas 5.10 and 5.11.
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Chapter 6

Associated Morphisms and the Universal Cover

In this chapter, we will let G be a group, and X a connected and locally simply connected space
with a base point x0 ∈ X. Also, we will simply write π1(X) for π1(X,x0).

The previous chapters have set up a chain of bijections between various sets. At the endpoints
of this chain is a correspondence between G-bundles over X, up to isomorphism, and homomor-
phisms π1(X)→ G, up to inner automorphisms (corollary 5.12). In contrast to the C̆ech cocycles
and the functors we considered in the previous chapters, these sets do not depend on the choice
of a good cover of X, but only on the data at hand, that is, the group G and the connected and
locally simply connected space X (admittedly, with a given base point). One purpose of this
chapter is to further investigate this connection.

As it stands, we know that there is a correspondence between Bun(G,X) and Hom(π1(X), G).
However, the precise nature of this bijection is fogged by the details of the various constructions
we needed to establish it. The first proposition sheds some light on the interpretation of the
correspondence.

Proposition 6.1. Let f : π1(X) → G be a morphism of groups, and let p : Y → X be the
G-bundle over X corresponding to f by corollary 5.12. Then there is some y0 ∈ p−1(x0) such
that for each loop γ : x0 → x0 the lift of γ starting at y0 has terminal point f([γ]) · y0.
Proof. Let U = {Uα}α∈A be a good cover of X, and let B = (xα)α∈A be a set of base points
with xα ∈ Uα. We can assume without loss of generality that x0 = xα0

for some α0 ∈ A.
Let F : Π1(X,B) → G be an extension of f , and let (cαβ) be the cocycle corresponding to F
by construction 5.7. Let Y ′ be the G-bundle constructed from (cαβ) in 3.6, and define y′0 =

(x0, e, α0).

Let γ be a loop in X, and lift it to Y ′. Then by construction 5.4 and proposition 5.8, its endpoint
is

(x0, F ([γ]), α0) = F ([γ]) · y′0 = f([γ]) · y′0
Since Y and Y ′ are isomorphic, we can take an isomorphism ϕ : Y ′ → Y . Then y0 = ϕ(y′0) will
work.

Proposition 6.1 suggests that we consider G-bundles with some choice of base point in the cover
space. Therefore, the following definition more or less suggests itself:

Definition 6.2. Let (X,x0) be a pointed space and G a group. A pointed G-bundle over X is
simply a G-bundle p : Y → X, where Y has a distinguished base point y0 and p maps y0 to
x0. A morphism of pointed G-bundles is a morphism of G-bundles that maps base point to base
point.

Many results from chapter 2 about the basic properties of G-bundles have direct analogs for
pointed G-bundles. For example, every pointed G-bundle morphism is an isomorphism.
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Now, lemma 6.1 not only tells us that we should choose a base point. It also suggest that the
maps f ∈ Hom(π1(X), G) can best be understood in terms of the endpoints of lifts of elements
of π1(X). Therefore, we introduce another definition.

Definition 6.3. Let p : (Y, y0) → (X,x0) be a pointed G-bundle. The induced map fp :
π1(X)→ G such that for each [γ] ∈ π1(X) the lift of γ to y0 ends in f([γ]) · y0 will be called the
associated homomorphism of p : (Y, y0)→ (X,x0).

Of course, calling something a homomorphism doesn’t make it one, so we should check that fp
is indeed a homomorphism. Also, we would like for fp to be the same if we started with an
isomorphic pointed G-bundle.

Lemma 6.4. The associated homomorphism of a pointed G-bundle p : (Y, y0) → (X,x0) is a
homomorphism. Moreover, if p′ : Y ′ → X is an isomorphic pointed G-bundle, then the associated
homomorphisms are equal.
Proof. By lemma 3.2, the endpoint of a lift of a path γ only depends on the path homotopy of
γ, so fp is well-defined. For [γ1], [γ2] ∈ π1(X), let γ̃1 and γ̃2 be the lifts to y0. Then the endpoint
of γ̃1 is then fp([γ1]), so γ̃1 ⊕ (fp([γ1]) · γ̃2) is the lift of γ1 ⊕ γ2. The endpoint of the lift is then
fp([γ1]) · γ̃2(1) = fp([γ1]) · fp([γ2]) · y0, which proves that fp is a homomorphism.

Now, let p′ : Y ′ → X be another pointed G-bundle and fp′ its associated homomorphism, with
Y and Y ′ isomorphic. Let ϕ : Y → Y ′ be an isomorphism. Let γ be a path in X, let γ̃ be its
lift to Y and let γ̃′ be its lift to Y ′. Then ϕ ◦ γ̃ is also a lift of γ to Y ′, so by uniqueness we
have γ̃′ = ϕ ◦ γ̃. In particular, we have ϕ(γ̃(1)) = γ̃′(1), so ϕ(fp([γ])y0) = fp′([γ])y′0. Since ϕ is
G-equivariant and ϕ(y0) = y′0, this gives fp([γ]) = fp′([γ]).

Lemma 6.1 can now be restated as follows:

Lemma 6.5 (Lemma 6.1 restated). Let f ∈ Hom(π1(X), G), and let p : Y → X be the G-bundle
that corollary 5.12 assigns to it. Then there is a choice of base point in Y such that f equals the
associated morphism. �

A natural question to ask is in how far fp depends on the choice of base point in Y . The next
lemma shows that choosing another base point in Y changes the associated morphism by an
inner automorphism of G.

Lemma 6.6 (Change of base point). Let p : Y → X be a G-bundle. Let y0, y′0 ∈ p−1(x0)
with y′0 = gy0, and let fp and f ′p be the associated homomorphisms obtained from the pointed
G-bundles (Y, y0) → X and (Y, y′0) → X. Then f ′p = g · fp · g−1. In particular, fp = f ′p if and
only if g commutes with every element in the image of fp.
Proof. Let [γ] ∈ π1(X) be fixed. As usual, let γ̃ and γ̃′ be the lifts starting in y0 and y′0,
respectively. Then γ̃′(1) = gγ̃(1), so f ′p([γ])y′0 = gf ′p([γ])y0. Substituting y′0 = gy0 and using
freeness gives fp([γ]) · g = g · fp([γ]). The statement follows.

Now we are in the position to state a reverse of 6.5:

Lemma 6.7. Let p : Y → X be a pointed G-bundle, and let fp be its associated morphism.
Also, let C ∈ Hom(π1(X), G)/Inn(G) be the class of morphisms that corollary 5.12 assigns to
this G-bundle. Then fp ∈ C.
Proof. Let y0 be the base point of Y , and let f ∈ C be given. By lemma 6.5, there is some point
y′0 ∈ p−1(x) such that f is the associated morphism of the bundle (Y, y′0)→ X (notice that this
is the same G-bundle over X, but with a possibly different choise of base point in Y ). By lemma
6.6, f and fp differ by an element of Inn(G), thus fp ∈ C.
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By lemma 6.4 we know that the associated morphisms of isomorphic pointed G-bundles are the
same. A converse of this statement is true if the associated morphisms under consideration are
surjective.

Lemma 6.8. Let p : (Y, y0) → X and p′ : (Y ′, y′0) → X be pointed G-bundles with associated
morphisms fp and fp′ . Suppose fp is surjective. If fp = fp′ , then the bundles are isomorphic.
Proof. Assume that fp = fp′ . With lemma 6.7 and lemma 5.12 we find that Y and Y ′ are isomor-
phic as (non-pointed)G-bundles, since fp and fp′ are in the same class in Hom(π1(X), G)/Inn(G).
Therefore, without loss of generality, we may assume that Y = Y ′ and p = p′, since only the
base points of Y and Y ′ are relevant. Let y0 and y′0 be the base points corresponding to fp and
f ′p, and let g ∈ G be such that y′0 = gy0. By lemma 6.6, g commutes with every element of G,
since fp is surjective. Now, by example 2.7, the map y 7→ g · y is an automorphism of G-bundles
that maps y0 to y′0. In particular, it is an isomorphism of pointed G-bundles.

The same statement holds if the associated morphisms are not surjective, but the proof does not:
multiplication with g is a G-bundle morphism if and only if g is central, but lemma 6.6 can only
guarantee that g above commutes with every element in the image of the associated morphism.
As a consequence, the proof for the case of a non-surjective associated morphism is a bit more
involved. The main observation is that every homomorphism (and in fact any map) becomes
surjective when its codomain is restricted to its image.

Proposition 6.9. If two pointed G-bundles over X have the same associated morphism, then
they are isomorphic.
Proof. Let p : Y → X and p′ : Y ′ → X be two pointed G-bundles over X with basepoints y0
and y′0 respectively, and with the same associated morphism fp. If fp is surjective we are done
by lemma 6.8, so assume fp is not surjective. Set H = imfp, and let U ⊂ Y be the connected
component of Y containing y0. Then by the definition of the associated morphism, we see that
g · y0 is an element of U if and only if g is an element of H. Moreover, if y ∈ U is arbitrary, then
there is some path γ from y to y0. Then for all g ∈ G we see that g · γ connects gy with gy0.
Therefore, for all y ∈ U we have gy ∈ U if and only if g ∈ H. Thus the restriction p|U : U → X
is an H-bundle. Likewise, if we let U ′ be the the connected component of Y ′ containing y′0,
then p′|U ′ : U ′ → X is an H-bundle. The associated morphisms of these H-bundles are equal
to fp, but with the codomain restricted to H. Thus, these H-bundles have the same associated
morphism, and moreover, this morphism is surjective by definition of H. Thus, we can apply
lemma 6.8, and obtain an isomorphism ϕ1 : U → U ′ of H-bundles over X.

We now only need to extend ϕ1 to an isomorphism from Y to Y ′. To to this, we take an index
set I and for each i ∈ I a gi ∈ G such that these gi form a complete set of representatives of the
right cosets H \G. In other words, for every g ∈ G these is an unique i ∈ I such that Hg = Hgi.
Now, we claim that for each y ∈ Y , there is a unique gi such that gi · y ∈ U . To see this, let γ be
any path from p(y) to x0, and lift this path to γ̃ with initial point y. Then γ̃(1) is in the fiber
over x0, and therefore there is a g ∈ G such that g · γ̃(1) = y0. Then the image of g · γ̃ lies in g,
and in particular we have gy ∈ U . Now, let i ∈ I be such that Hgi = Hg. Then gi · g−1 ∈ H,
and since U is closed under the action of H we find giy = gig

−1gy ∈ U . So there is al least one
gi such that giy ∈ U . Now, suppose that gjy ∈ U as well. Then we have gig−1j ∈ H, and this
gives Hgi = Hgj , and therefore i = j.

So this induces a map f : Y → G such that for every y ∈ Y there is some i ∈ I with f(y) = gi,
and such that f(y) ·y ∈ U . Notice that f is locally constant, since the G-bundle is locally trivial.
We now define ϕ : Y → Y by setting ϕ(y) = (f(y))−1 · ϕ1(f(y)y). Then ϕ is continuous since
ϕ1 and f are. We claim that ϕ is a G-bundle morphism. Clearly we have p′(ϕ(y)) = p(y), so we
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only need to check that ϕ(gy) = gϕ(y). To this end we calculate

ϕ(gy) = (f(gy))−1 · ϕ1(f(gy) · gy).

It is tempting to take the factors f(gy) and g out of ϕ1, but since ϕ1 is an H-bundle isomorphism
and not a G-bundle isomorphism, we can only take out elements of H. But f(gy)g · y is an
element of U , so f(gy)g · (f(y))−1 is an element of H. Thus, there is some h ∈ H such that
h · f(y) = f(gy) · g. Substituting gives

ϕ(gy) = (f(gy))−1 · ϕ1(f(gy) · gy)

= (h · f(y) · g−1)−1 · ϕ1(h · f(y) · g−1 · gy)

= g · (f(y))−1 · h−1 · ϕ1(h · f(y) · y)

= g · (f(y))−1 · ϕ1(f(y) · y)

= g · ϕ(y).

Thus, ϕ is aG-bundle morphism and thus anG-bundle isomorphism. Moreover, we have ϕ1(y0) =
y′0, so Y and Y ′ are isomorphic as pointed G-bundles.

The previous lemmas and propositions give us a more concrete way of viewing the correspondence
between pointed G-bundles and homomorphism π1(X)→ G.

Theorem 6.10. For every homomorphism f : π1(X) → G, there is up to isomorphism exactly
one pointed G-bundle on X having f as its associated morphism.
Proof. By proposition 6.5 there is at least one such G-bundle. By proposition 6.9 every pair of
such G-bundles is isomorphic.

So to give a pointed G-bundle is the same as giving a homomorphism from the fundamental group
of X to G. The trivial morphism that sends every element of π1(X) to e ∈ G corresponds to the
trivial G-bundle. But if G = π1(X), then Hom(π1(X), G) has another distinguished element,
namely the identity morphism.

Definition 6.11. Let G = π1(X). The pointed G-bundle with the identity as its associated
morphism is called the universal cover of X, and denoted X̃.

Examples 6.12. 1. If X is simply connected, then we have G = π1(X) = 1 and X̃ = X.
In this case the trivial G-bundle and the universal cover of X coincide. In fact, this is
the only case where this happens: the trivial π1(X)-cover corresponds to the constant
endomorphism on π1(X), while the universal cover corresponds to the identity morphism.

2. Let X = S1 ⊂ C be the unit circle in the complex plane, and x0 = 1. Define a pointed
Z-cover p : (R, 0) → X by x 7→ exp(2πix). We identify Z with π1(X) in the usual way
using the (counterclockwise) winding number around the center of the circle, and we let
Z act on R by translation. Then this Z-bundle gives us the universal cover of S1. This is
easily seen: if γ is some path from x0 to x0 that winds k times around the circle, then the
endpoint of a lift that starts at 0 is exactly k + 0 = k.

The ‘universality’ of the universal cover will be further investigated in the next chapter, but for
now we note that X̃ is always simply connected.

Lemma 6.13. Let p : Y → X be a pointed morphism, and let fp be the associated morphism.

1. Y is connected if and only if fp is surjective.
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2. Every connected component of Y is simply connected if and only if fp is injective.

3. The universal cover of X is simply connected.
Proof. Let y0 be the base point of Y .

1. If Y is connected, then for any g ∈ G there is some path γ from y0 to gy0. By definition of
the associated morphism, this implies that fp([p ◦ γ]) = g, so fp is surjective. On the other
hand, if fp is surjective, then for each g ∈ G there is some path γ with fp([γ]) = g. The lift
of this path to y0 ends in gy0, so the complete fiber of p−1(x) lies in the same connected
component. Now, let y ∈ Y be arbitrary. Let γ be a path from x0 to p(y). Then the
lift γ̃ of γ to y0 must end in the same fiber as y. In particular, there is some g ∈ G with
g · γ̃(1) = y. Then g · γ(1) connects y and g · y0, so y lies in the same connected component
as the fiber p−1(x). Thus, Y is connected.

2. If every component of Y is simply connected, then every loop from y0 to itself is homotopic
to a constant path. Thus, the kernel of fp is trivial, and fp is injective. On the other
hand, assume fp is injective. Let y′0 ∈ p−1(x), and let g ∈ G such that y′0 = gy0. Let
γ̃ be a loop in Y from y′0 to itself, and γ its projection to X. Then fp([γ]) = e, so γ is
homotopic to a constant loop, and therefore γ̃ is homotopic to a constant loop as well.
We see that the component of Y containing y′0 is simply connected. Analogous to the
previous paragraph, we can show that any connected component of Y contains some point
of p−1(x0), so therefore every connected component of Y is simply connected.

3. The universal cover has by definition the identity on π1(X) as its associated morphism,
which is injective and surjective, so the universal cover of X is simply connected.

Corollary 6.14. Let p : Y → X be a pointed G-bundle, and suppose that Y is simply connected.
Then π1(X) is isomorphic to G.
Proof. The associated morphism fp : π1(X)→ G is both injective and surjective.

This corollary can be useful to calculate the fundamental groups of some often occuring spaces.
If Y is a locally simply connected space (a manifold, for example) that is simply connected on
which G acts evenly, then the canonical map Y → G \ Y is by definition a G-bundle. By the
corollary we see that in this case the orbit space has fundamental group isomorphic to G. So
for example, Z acts evenly on R by translation. Since R is simply connected and the orbit space
is S1, we find that π1(S1) = Z. Likewise, the fundamental groups of the real projective spaces
RPn = Sn/{±Id} are isomorphic to C2, for n > 1, since Sn is simply connected for n > 1.
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Chapter 7

A Galois Connection

As in the previous chapter, we let X be a connected and locally simply connected pointed space
with base point x0, and write π1(X) for π1(X,x0).

Up to now, we have mainly taken fixed X and G and looked in various ways at the G-bundles
over X. In this chapter, we will take a broader view: we will still keep X fixed, but we will
allow G to vary. In other words, we will look to general group bundles over X. We will exhibit
a correspondence between connected pointed group bundles over X and the normal subgroups
of π1(X) that turns out to be a Galois connection: bigger subgroups correspond to ‘smaller’
group bundles. This chapter is inspired by the exposition in [Sza09], Chapter 2, where a similar
connection is established between the Galois covering maps over X and the subgroups of the
fundamental group.

To formalize the setting, we will introduce some terminology.

Definition 7.1. A group bundle over X is a triple (Y, p,G) such that p : Y → X is a connected,
pointed G-bundle. A morphism of group bundles between (Y, p,G) and (Z, q,H) is a pair (f, ϕ)
where f : G → H is a homomorphism and ϕ : Y → Z is a continuous map such that q = p ◦ ϕ,
ϕ(g · y) = f(g) · ϕ(y), and ϕ maps the base point of Y to the base point of Z.

Note that what we call group bundles should more precisely called connected, pointed group
bundles. However, in this chapter we will have no need to consider group bundles without a base
point or with a disconnected covering space, so will dispense with the adjectives connected and
pointed, and just call them group bundles.

In the case of G-bundles, we had a proposition asserting that every morphism is an isomorphism.
In the more general setting of group bundles, this is no longer the case. Still, our choice to only
allow connected group bundles puts some restraint on the morphisms.

Proposition 7.2. Let (f, ϕ) be a group bundle morphism between the group bundles (Y, p,G)
and (Z, q,H) over X, and let fp and fq be the associated morphisms. Then

1. f ◦ fp = fq.

2. f and ϕ are both surjective.

3. f is injective if and only if ϕ is injective.

4. If (f ′, ϕ′) is another group bundle morphism from (Y, p,G) to (Z, q,H), then f = f ′ and
ϕ = ϕ′.

Proof. 1. Let y0 and z0 be the base points of Y and Z. Let [γ] ∈ π1(X) be given. Let γ̃ be
the lift to Y and γ̃′ be the lift to Z. By uniqueness, we have γ̃′ = ϕ ◦ γ̃. Thus,

fq([γ]) · z0 = γ̃′(1) = ϕ(γ̃(1)) = ϕ(fp([γ]) · y0) = f(fp[γ]) · z0.

By freeness, we get fq = f ◦ fp.
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2. Since Y and Z are connected, fp and fq are surjective. Since fq = f ◦ fp, this implies that
f is surjective.

Now, let z ∈ Z be given. Let x = q(z), and let y ∈ p−1(x). Then ϕ(y) and z are both
elements of q−1(x), so there is some h ∈ H such that z = h · ϕ(y). Since f is surjective,
there is some g ∈ G such that f(g) = h. In particular, ϕ(gy) = f(g)ϕ(y) = hϕ(y) = z. So
ϕ is surjective.

3. Suppose f(g) = e. Then ϕ(gy) = f(g)ϕ(y) = ϕ(y). Therefore, if f is not injective, then
ϕ is not injective eighter. On the other hand, assume ϕ(y) = ϕ(y′). Then in particular
p(y) = p(y′), so there is some g ∈ G with y′ = g · y. Thus, ϕ(y) = ϕ(y′) = f(g)ϕ(y). In
particular, f(g) = e. Therefore, if ϕ is not injective, then f is not injective eighter.

4. From part 1. we know that f ◦ fp = fq = f ′ ◦ fp, and since fp is surjective, this means that
f = f ′. Now let y ∈ Y , and let γ be a path in Y from y0 to y. Then both ϕ ◦ γ and ϕ′ ◦ γ
are lifts of p ◦ γ to Z. Moreover, (ϕ ◦ γ)(0) = ϕ(y0) = z0 = ϕ′(y0) = (ϕ′ ◦ γ)(0), so ϕ ◦ γ
and ϕ′ ◦ γ start at the same point. By unicity of lifts, we find that (ϕ ◦ γ)(1) = (ϕ′ ◦ γ)(1),
thus ϕ(y) = ϕ′(y). Since y ∈ Y was arbitrary, this implies ϕ = ϕ′.

Somewhat surprisingly, group bundle morphisms turn out to be group bundles themselves.

Proposition 7.3. Let (f, ϕ) be a morphism from (Y, p,G) to (Z, q,H), and let N = ker f . The
restriction of the action of G on Y to N turns the map ϕ : Y → Z into an N -bundle, with f as
its associated morphism.
Proof. We will apply lemma 2.9. To do so, we only need to check that every point z ∈ Z has an
open neighbourhood U such that ϕ−1(U)→ U gives a trivial N -bundle.

So let z ∈ Z, and let x = q(z). Since group bundles are locally trivial, there is some open
neighbourhood U ′ ⊂ X such that both bundles are trivial over U ′. Let U be the connected
component of q−1(U ′) containing z. We claim that the restriction of ϕ to ϕ−1(U) → U defines
a trivial N -bundle. For this, choose y ∈ ϕ−1(z) (note that ϕ is surjective by proposition 7.2),
and let V be the connected component of ϕ−1(U) containing y. By construction, q maps U
homeomorphically to U ′, and p maps V homeomorphically to U ′. Since p = q ◦ ϕ, this means
that ϕ maps V homeomorphically to U . Now, for every g ∈ G such that ϕ(gV ) = U we have
ϕ(gy) = z, so z = ϕ(gy) = f(g)ϕ(y) = f(g)z, so g ∈ ker f . On the other hand, if n ∈ N , then
ϕ(ny) = ϕ(y) = z, so ϕ(nV ) = U . We see that ϕ−1(U) =

∐
n∈N nV , so ϕ−1(U)→ U is a trivial

N -bundle. Therefore, with lemma 2.9, ϕ : Y → Z is a N -bundle.

The statement on the associated morphism follows from the fact that fp = f ◦ fp, and the
observation that lifting a path from X to Y gives the same result as lifting a path from X to Z,
and then lifting the lift from Z to Y .

Proposition 7.2 states that a morphism from a G-bundle to an H-bundle implies that H is a
factor group of G. The other way works as well.

Lemma 7.4. Let p : Y → X be a pointed G-bundle with associated morphism fp, and N ⊂ G
be normal. Then the induced map q : N \ Y → X is a G/N -bundle over X. The natural maps
f : G→ G/N and ϕ : Y → N \ Y form a group bundle morphism, and the associated morphism
is f ◦ fp.
Proof. The proof is similar to the proof of proposition 7.3, so we will only give a sketch. We
choose any point x ∈ X, and any y ∈ p−1(x). Then there is some open neighbourhood U of x
such that p−1(U) is a trivial bundle over U . We let V be the component of p−1(U) containing
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y. Then one checks that q−1(U) equals
∐
g∈G gNU , where gNU = {g · nu, n ∈ N, u ∈ U}. This

shows by lemma 2.9 that N \ Y has the structure of a G/N -bundle over X.

That (f, ϕ) is a morphism between these group bundles follows directly from the definitions. The
associated morphism is then f ◦ fp by proposition 7.2.1.

If we apply the preceding lemma to the universal cover of X, we see that every normal subgroup
of π1(X) gives rise to a group bundle over X. On the other hand, given a group bundle, the
kernel of the associated morphism is a normal subgroup of π1(X). This correspondence is the
core of the following theorem, which has some similarities to the main theorem of Galois theory.

Theorem 7.5. Let X be a connected and locally simply connected space with base point x0 and
universal cover X̃. Let G = π1(X) be the fundamental group, G = {N E G} be the set of normal
subgroups of G, and let Bun(X) be the category of group bundles over X, up to isomorphism.
Then

1. There is a canonical map T : G → Bun(X) sending N to the G/N -bundle N \ X̃ → X,
and a canonical map S : Bun(X)→ G sending a group bundle Y → X to the kernel of the
associated morphism. These maps are each others inverse.

2. If K,N ∈ G are subgroups satisfying K ⊂ N , then there is a unique morphism from T (K)
to T (N).

3. If (Y, p,H1) and (Z, q,H2) are group bundles over X such that there is a morphism (f, ϕ)
from the former to the latter, then S(Y ) is a subgroup of S(Z).

Proof. 1. Let N ∈ G. From lemma 7.4, we know that N \ X̃ → X has the structure of a
G/N -bundle, with associated morphism the canonical map G → G/N . In particular, the
kernel of the associated morphism is N . This shows that S ◦ T is the identity on G.

On the other hand, let p : Y → X be a H-bundle, with associated morphism fp. Let
N = ker fp. Then T (S(Y )) is the natural G/N -bundle N \ X̃ → X, with associated bundle
the map G → G/N . By the isomorphism theorem and the surjectivity of fp, we get an
isomorphism H ∼= G/N . By using this isomorphism to identify H with G/N , we can view
our original H-bundle as an G/N -bundle, and the associated bundle then becomes the
canonical map G → G/N . Therefore, Y and T (S(Y )) are G/N -bundles with the same
surjective associated morphism. By lemma 6.8, Y and T (S(Y )) are isomorphic.

2. Let K,N ∈ G such that K ⊂ N . Then in particular, K is normal in N . Therefore, we
can apply lemma 7.4 to the G/N -bundle N \ X̃ → X. This lemma shows that the natural
maps f : G/K → G/N and ϕ : K \ X̃ → N \ X̃ define a morphism of group bundles from
T (K) to T (N). This morphism is unique by proposition 7.2.4

3. Let (Y, p,H1) and (Z, q,H2) be group bundles over X, and (f, ϕ) a morphism from the
former to the latter. Let fp and fq be the associated morphisms. Then fq = f ◦ fp, so
S(Y ) = ker fp ⊂ ker fq = S(Z).

The above shows the universality of the universal cover of X.

Corollary 7.6. For every group bundle Y → X there is a unique group bundle morphism from
the universal cover of X to Y . Moreover, any other group bundle with this property is isomorphic
to the universal cover of X, and this isomorphism is unique.
Proof. The normal subgroup corresponding to the universal cover is the trivial subgroup 1 ⊂
π1(X). With the correspondence in theorem 7.5, the statement we want to prove translates to
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the statement that the trivial subgroup is the only normal subgroup of π1(X) that is contained
in every normal subgroup of π1(X), which is clearly true.

We also obtain the promised result on the fundamental group of non-orientable manifolds.

Corollary 7.7. The fundamental group of any connected non-orientable manifold has a normal
subgroup of index 2.
Proof. Let X be a connected non-orientable manifold and x0 ∈ X be fixed. Then the orientation
cover over X is connected by theorem 4.7. Therefore, the associated morphism π1(X,x0)→ C2

is surjective, and the kernel of this morphism is a normal subgroup of index 2.
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Chapter 8

The Seifert-van Kampen Theorem

The well-known Seifert-van Kampen theorem relates the fundamental group of a space to the
fundamental groups of two connected open subsets and their connected intersection, provided
they cover the original space. A proof of this theorem for locally simply connected spaces, which
goes back to Grothendieck, can be given using the ideas we have developed so far. The exposition
in this chapter is can also be found in [Ful95], paragraph 14.

We will begin by fixing some notation that we will use in the rest of this chapter.

Notation 8.1. Let X be a connected and locally simply connected space, and let U, V ⊂ X be
connected open subsets with connected intersection W such that X = U ∪ V . Let x0 ∈ W be
the basepoint of these spaces. Let i1 : U → X, i2 : V → X, j1 : W → U and j2 : W → V be the
inclusion maps, and let i1∗ : π1(U) → π1(X), i2∗ : π1(V ) → π1(X), j1∗ : π1(W ) → π1(U) and
j2∗ : π1(W )→ π1(V ) be the maps induced by the inclusions.

W U π1(W ) π1(U)

V X π1(V ) π1(X)

j2

j1

i2

i1 j2∗

j1∗

i2∗

i1∗

Theorem 8.2 (Seifert-van Kampen). Let G be a group and f1 : π1(U)→ G and f2 : π1(V )→ G
be homomorphisms satisfying f1 ◦ j1∗ = f2 ◦ j2∗. Then there is a unique homomorphism f :
π1(X)→ G satisfying f1 = f ◦ i1∗ and f2 = f ◦ i2∗.

π1(W ) π1(U)

π1(V ) π1(X)

G

j2∗

j1∗

i2∗

f2

i1∗

f1

f

The Seifert-van Kampen theorem states that the commutative square above is a pushout. For
the proof, we will need a few lemma’s relating G-bundles to their restriction. The first one
establishes how restricting a G-bundle interacts with the associated morphisms.
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Lemma 8.3. With notation as in 8.1, let p : Y → X a pointed G-bundle, and let p′ : U ′ → U be
the restriction of the bundle to U , where U ′ = p−1(U). Let fp : π1(X)→ G and f ′p : π1(U)→ G
be the respective associated morphisms. Then f ′p = fp ◦ i∗.
Proof. Let [γ] ∈ π1(U) be arbitrary, and let γ̃ be the lifting to U ′ starting at y0. Then g := f ′p([γ])
is the element of G such that γ̃(1) = g · y0. But γ̃ is also a lift in Y of γ considered as a path in
X, and thus from γ̃(1) = g · y0 we also obtain g = fp(i∗([γ])). The statement follows.

The next lemma we need shows that we can patch a G-bundle over U to a G-bundle over V ,
provided they agree over W .

Lemma 8.4. Let notation be as in 8.1, and let p1 : Y1 → U and p2 : Y2 → V be pointed
G-bundles. If the restrictions of the bundles are isomorphic over W , then they induce a pointed
G-bundle over X.
Proof. Suppose ϕ : p−11 (W ) → p−12 (W ) is an isomorphism of pointed G-bundles. The idea is to
use ϕ to glue Y1 and Y2 together. To make this formal, let Y ′ = Y1 t Y2 be the disjoint union of
Y1 and Y2, and call y1 ∈ Y1 and y2 ∈ Y2 equivalent if y1 is an element of p−11 (W ) and ϕ(y1) = y2.
Then let Y be Y ′ modulo this equivalence. Now we can set p : Y → X as p(y) = p1(y) if y ∈ Y1
and p(y) = p2(y) if y ∈ Y2 (note that this is well-defined because ϕ is a G-bundle isomorphism),
and we let G act on Y in the natural way. To check that p : Y → X is a G-bundle, we note that
Y is locally a trivial G-bundle and apply lemma 2.9.

The previous lemma gives us a way to glue together G-bundles over U and V , provided they
agree on W . The next lemma shows that this patching is unique up to isomorphism.

Lemma 8.5. Let p : Y → X and q : Y ′ → X be pointed G-bundles such that the restriction of
p to U is isomorphic to the restriction of q to U , and the restriction of p to V is isomorphic to
the restriction of q to V . Then Y and Y ′ are isomorphic.
Proof. Let ϕ1 : p−1(U) → q−1(U) and ϕ2 : p−1(V ) → q−1(V ) be the isomorphisms. We want
to glue ϕ1 and ϕ2 together to construct an isomorphism Y → Y ′. We claim that ϕ1(y) = ϕ2(y)
when p(y) ∈W . To see this, we first note that ϕ1(y) and ϕ2(y) are in the same fiber over X, so
there is a unique g ∈ G such that ϕ1(y) = g · ϕ2(y). This induces a function f : p−1(W ) → G
such that ϕ1(y) = f(y) · ϕ2(y) for all y ∈ p−1(W ). Since any G-bundle is locally trivial, we find
that f is locally constant. Moreover, for y ∈ p−1(W ) and g ∈ G we have

ϕ1(gy) = gϕ1(y) = g · f(y) · ϕ2(y) = g · f(y) · g−1ϕ2(gy),

which shows that f(gy) = g · f(y) · g−1.

Now, let y0 and y′0 be the base points of Y and Y ′, then we have ϕ1(y0) = y′0 = ϕ2(y0). So
f(y0) = e, and therefore f(gy0) = e. Thus the value of f is equal to e on the fiber p−1(x0). Now,
let y ∈ p−1(W ) be arbitrary. Since W is connected, there is a path γ from p(y) to x0. Then the
lift of γ to y connects y to some point in p−1(x0). Since f is locally constant and has value e on
the endpoint of the lift of γ, this implies that f(y) = e. Since y ∈ p−1(W ) was arbitrary, we find
that ϕ1(y) = ϕ2(y) for all y ∈ p−1(W ).

Thus, we can define ϕ : Y → Y ′ by setting ϕ(y) = ϕ1(y) if p(y) ∈ U and ϕ(y) = ϕ2(y) if
p(y) ∈ V . The above shows exactly that this is well-defined. Moreover, ϕ is a morphism of
G-bundles because it locally is. Therefore, Y and Y ′ are isomorphic.

With these lemmas, we have enough to prove the theorem.
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Proof of theorem 8.2. We will first prove existence. Let p1 : Y1 → U be the pointed G-bundle
over U with f1 as associated morphism, and p2 : Y2 → V the pointed G-bundle over V with f2
as associated morphism. We claim that the restrictions over W are isomorphic. For this, note
that the restriction of p1 to W has f1 ◦ j1∗ as associated morphism by lemma 8.3. Similarily, the
restriction of p2 toW has f2◦j2∗ as associated morphism. But these are the same by assumption,
and therefore the restrictions of the bundles to W are isomorphic. Now we apply 8.4 to glue Y1
and Y2 together to a pointed G-bundle p : Y → X over X. Finally, we let f be the associated
morphism of this bundle. Applying 8.3 again, we find that f1 = f ◦ i1∗ and f2 = f ◦ i2∗.

So it only remains to show that f is unique. To this end, suppose there is another f ′ : π1(X)→ G
such that f1 = f ′ ◦ i1∗ and f2 = f ′ ◦ i2∗. Then there is some pointed G-bundle q : Y ′ → X
with f ′ as associated morphism. The restriction of this bundle to U must by lemma 8.3 have
f ′ ◦ i1∗ = f1 as associated morphism, which is by construction also the associated morphism of
the bundle p1 : Y1 → U . Therefore, the restriction of q to U is isomorphic to the restriction of
p to U . Likewise, the restriction of q to V is isomorphic to the restriction of p to V . Applying
lemma 8.5, we find that Y and Y ′ are isomorphic as G-bundles, and therefore the have the same
associated morphism. Thus we have f = f ′, and this ends the proof.

The proof above gives us a different way of thinking about the statement of the Seifert-van
Kampen theorem. When we have G-bundles over U and V that are compatible over W , then
there is exactly one way to patch these bundles to a G-bundle over X. The statement of the
theorem is then just a reformulation in terms of associated morphisms.
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