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1 Introduction

The development of many different organs, such as the lungs, kidneys and
all kind of glands, is driven by the branching of epithelial tissue. This par-
ticular kind of morphogenesis is responsible for the tree-like forms of the
organs, by sprouting of new tubes from preexisting ones (Affolter et al,
2003). Branching morphogenesis is regulated by growth factors, extracellu-
lar matrix (ECM) molecules, proteases and morphogens. A complex system
with all of these cues together tells a tissue to branch or not (Nelson, 2006).
A question that arises is whether epithelial tissue alone can form a branching
morphology, or does it need external signals to initiate branching? Does the
epithelial cells has a intrinsic power to branch or does it need other organ
tissue such as the mesechymal tissue?

C.M. Nelson et al. (2006) studied how the geometry of a tissue determines
branching morphogenesis. In this article they found that the geometry is
determined by autocrine inhibitory morphogens. These are substances, pro-
duced by the epithelial cells, that inhibits the neighboring cells to move into
the direction of the substances. Figure 1 shows one of the results of the
experiments done by Nelson.

Figure 1: Branching position is determined by tubule geometry and is con-
sistent with the concentration profile of secreted diffusible inhibitor(s). Scale
bars, 50 µm
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In Figure 1 frequency maps - stacked fluorescent images of stained nuclei
from 50 tubules to quantify the position of cells - of 24 hours after induction
of branching are shown for (A) curved tubules, (B) bifurcated tubules and
(C) a tree. The occurrence of branching sites in (C) are found by the arrows.
Images (D), (E) and (F) show concentration profiles of the inhibitors. In
this case for (D) curved tubules, (E) bifurcated tubules and (F) fractal trees.
The concentration profiles show that growth occurs at the branching sites.
In the frequency maps these places are the ones with the least concentration
of inhibitor. So branching occurs at that places where the cells are at least
inhibit to move. In Figure 2 the cells are placed near each other to see how
the cells react.

Figure 2: Position of branching can be predicted by calculated concentration
profiles. Scale bars, 50 µm

Images (A) and (B) in Figure 2 are concentration profiles of the in-
hibitors and show that the most concentration of inhibitor is placed right
between the cells. The frequency maps (C) and (D) 24 hours after induc-
tion of branching conform this idea that the cells are inhibit to move in the
region with high concentration of inhibitor.
In this article it will be discussed if it is possible to model the experiments
of Nelson et al., to see if epithelial tissue can form branching morphologies
by the autoinhibition described in the experiments.

An other article, by T. Hirashima et al (2009), shows a model of the epithe-
lial cells inside mesenchymal tissue. They modelled the uteric bud inside
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a kidney and placed two sources of growth factor GDNF inside the mes-
enchymal tissue. Besides placing sources of growth factor they also let the
epithelial tissue be elastic, such that the modeled uteric bud does not fall
apart. By placing the sources of GDNF and setting the tissue to be elastic,
they found that the uteric bud form branches. The initial conditions are
given in Figure 3.

Figure 3: Computer simulation by Hirashima et al. (2009)

Figure 3 shows a tip of an ureteric bud with dashed lines the stalk part
that is not affected by the GDNF. The black circle is the center of the tip
and the other circles represents the GDNF sources.
Results of computer simulations of the model described by Hirashima are
given in Figure 4.
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Figure 4: Temporal change in the shape of a ureteric bud

The results in Figure 4 show that a proper value of the growth-chemotaxis
ratio (Rgc) is necessary. This ratio is defined as the growth rate of a layer
divided by the velocity of cell movement due to chemotaxis. The growth-
chemotaxis ratio should be in balance to form a Y-shaped structure (b).
When the growth rate is higher, the initial pattern will form into a kinked
pattern (c) and when the cell mobility is too high a bloated structure is
formed.
To make this model a slightly more realistic, this article will discuss an
expansion of their model, by introducing an autocrine loop between the ep-
ithelial and mesenchymal cells. In this way, the model itself chooses where
the sources of the growth factor will be inside the mesenchymal tissue. Then
it is more realistic to see whether branching morphologies occur in the ep-
ithelial tissue due to a reaction with the mesenchymal tissue or not, because
in nature the sources of the grow factor are not set at particular places in
the mesenchymal tissue but are randomly spread among the mesenchymal
tissue. This randomly spread is given by the expansion of the model by
Hirashima et al. Besides the randomly placement of growth factor sources
will the epithelial tissue not be elastic. In nature cells can behave both in-
dividually as together at a different way, so they do not have to be stitched
together in an elastic way.
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2 Material and Methods

2.1 Biological explanation

As said before, this article describes experiments with two computational
models. The first one, further named as the Inhibition Model (IM), models
the autoinhibition of the epithelial cells following the physical experiments
of Nelson e.a. (2006). A cell secretes a substance, for example the growth
factors EGF or TGFβ, that inhibits itself and its neighbors to move into
the direction with the higher concentration of the substance. So a cluster of
cells will form branches into directions with the lowest local concentration
of inhibitor, because the cells are inhibited to walk into other directions.
The other model, named as the Epithelial-Mesenchymal Model (EMM),
computes the interaction between the epithelial cells and the mesenchymal
tissue. The model includes an autocrine loop between the two kinds of cells.
That means that the epithelial cells secrete a substance c1 that activates the
mesenchymal cells to secrete a substance c2. This c2 is a chemoattractant for
the epithelial cells, so when the mesenchymal cells are activated to secrete
c2, the epithelial cells will move through the mesenchymal tissue. However,
this movement is not equivalent on all sides on the epithelial cluster. Be-
cause of the instability of the cluster, it can occur that at some sites more
mesenchymal cells are activated by c1, so the chemotaxis to c2 is stronger
at these sites. In this way, the epithelial cluster can form branches within
the mesenchymal tissue.

2.2 Cellular Potts Model

Both models can be computed by an expansion of the Cellular Potts Model
(CPM), also called the Glazier-Graner-Hogeweg (GGH) Model. Within this
model the cells are represented as a set of sites or pixels on a lattice. Each
site ~x is part of a specific cell, indicated as σ(~x). The properties of this
cell differ depending on which type of cell it is. Therefore a site also gets
an indication for the cell type: τ(σ(~x)). To model the motility of cells, the
lattice sites have to be able to change, in such a way that one site can copy
itself into another. In nature everything wants to be in the state that costs
the least energy, so for a realistic model the cells in the model also wants to
be in the state of the least energy. To measure the energy over the lattice,
the CPM model has the following Hamiltonian:

H =
∑

neighbors

J(τ(σ(~x)), τ(σ(~x′)))(1−δ(σ(~x), σ(~x′))+λ
∑
σ

(a(σ)−Atarget(σ))2
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Here the J(τ(σ(~x)), τ(σ(~x′))) describes the energy of the bond between sites
~x and ~x′, depending on the cell types of the sites. The Kronecker delta gives

δ(σ(~x), σ(~x′)) =

{
1 if σ(~x) = σ(~x′)

0 if σ(~x) 6= σ(~x′)

so that the energy is zero if the sites are form the same cell. Only the bonds
between different cells count inside the Hamiltonian.
The parameter λ stands for the resistance to compression of the cells. Cells
also have an area a(σ) and a fixed target area Atarget(σ).

The Hamiltonian gives the effective energy of the lattice by measuring two
components: the total adhesion energy, that is the energy of all the bonds
between different cells, and the surface component. That last one gives that
the cell area should be conserved. It can happen that the model lowers the
current area beneath the target area, so that the surface component become
positive, but then the adhesion energy can decrease a little bit more to gain
a lower effective energy.

The model will minimize the effective energy of the lattice. Physically this
means that the cells will go to their lowest energy state and thus that cells
only leave their lowest energy state by adding force. When cells move to the
lowest energy state they thus exerts an active force on the environment. To
minimize the effective energy, the model has to make copies of lattice sites
into others by a stochastic process. Cells move randomly up or down, left or
right, so a lattice site choose randomly a neighbor to copy itself in. When
the copy is associated with an increase in the pattern energy, that is as the
effective energy will decrease after the copy is done, the probability that
this copy will actually be done is 1. With a copy associated with a decrease

in the pattern energy, the probability is e
−∆H

T where ∆H is the change in
effective energy and T is the cellular temperature or cell motility. So the
probability that a copy succeeds, depending on the effective energy change,
is given by

P (∆H) =

{
e

−∆H
T if ∆H ≥ 0
1 if ∆H < 0

The effective energy will be measured at each time step, when a site tries to
copy itself into another.

2.3 Chemotaxis and inhibition

Both the IM and EMM are extensions of the Cellular Potts Model. The
basic movements of the cells are computed by the CPM, but in both models
the effective energy has an extra component.
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2.3.1 Inhibition Model

First the Inhibition Model. The substance secreted by the epithelial cells
inhibits the cells to move in the directions with high concentrations of the
substance. So the effective energy change has to rise when a lattice site wants
to copy itself into a site with a higher concentration inhibitor. Therefore,
the effective energy change by the inhibition can be measured as

∆Hinhibition = µc(~x′)

with µ the inhibitionconstant and c(~x′) the concentration inhibitor on lattice
site ~x′. This is a neighbor of ~x, the site which want to copy itself in ~x′.
Because of the higher positive energy change, when copying into a lattice

site with a higher concentration inhibitor, the probability e
−∆H

T becomes
lower, so the copy is less likely to succeed. And therefore the cell will
better move into a direction with a lower concentration of inhibitor. So the
morphogen inhibits cell movement.

2.3.2 Epithelial Mesenchymal Model

In the Epithelial Mesenchymal Model, instead of inhibiting the movements of
cells in particular directions, the mesenchymal tissue attracts the epithelial
cells. In terms of the effective energy it is more profitable to move into a
direction with a higher concentration of chemoattractant, c2 in the model.
So the model has to check whether the concentration in the targeting site
is higher or lower than in the copying site. The effective energy change can
be given by1

∆Hchemotaxis = −µ

(
c(~x′)

1 + sc(~x′)
− c(~x)

1 + sc(~x)

)
with µ the chemotaxis constant, c(~x) the concentration in ~x, c(~x′) the con-
centration in ~x′ and s the saturation constant, which will be zero in all
the simulations in this article. When ~x′ contains a higher concentration
chemoattractant than ~x, the ∆H will be negative. So the probability that
this copy will succeed will be 1. A lattice site will thus always copy itself into
a neighbor, when the concentration c2 of the neighbor is higher than in the
site itself. In that way epithelial cells will move through the mesenchymal
tissue driven by the concentration of c2.
The concentration of chemoattractant or inhibitor is given by the following
formula:

∂c

∂t
= α(1− δ(σ(~x), 0))− εδ(σ(~x, 0)c+D∇2c

1Merks, R., Newmand S., Glazier, J. (2004) Cell-oriented modeling of in vitro capillary
development. In: Sloot P., Chopard, B., Hoekstra, A., eds. Cellular Automata: 6th In-
ternational Conference on Cellular Automata for Research and Industry. Berlin: Springer
Verlag, Lect. Notes Comput. Sc. 3305, 425-434
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where δ(σ(~x), 0) = 0 inside the secreting cells and δ(σ(~x), 0) = 1 in the
others cell types or medium. The constant α gives the secretion rate, ε the
rate of degradation and D the rate of diffusion23.
The effective range of the chemoattractant is given by the diffusion length
L. These parameters can be derived from the differential equation for the
concentration. Consider a steady state for the concentration, then ∂c

∂t = 0,
and take then the homogen differential equation

D∇2c− ε = 0

General solutions for this equation are c(~x) = c0e
λ~x where λ =

√
ε
D or

λ = −
√

ε
D . When λ =

√
ε
D then the concentration will rise to infinity, so

this solution is not possible, thus c(~x) = c0e
−
√

ε
D
~x. The diffusion length

is then defined as the length where the concentration is decreased with a
factor e. So

c0e
−
√

ε
D
~x = coe

−1

thus4 ~x =
√

D
ε = L.

2.4 Computational input

In this article the software CompuCell3D5 is used for simulating the two
models with the computer. This program works with Python and XML files
that describe the input of various subprograms. To measure the chemotaxis,
CompuCell3D has a python file named Chemotaxis, that works out the
partial differential equation of the concentration c1 and c2 and the change
in effective energy for chemotaxis.
To rewrite the Chemotaxis file for simulating autoinhibition we rewrite

float ChemotaxisPlugin::simpleChemotaxisFormula(float _flipNeighborConc,

float _conc,ChemotaxisData & _chemotaxisData){

return (_flipNeighborConc-_conc)*_chemotaxisData.lambda

}

into

2Gamba, A., Ambrosi, D., Coniglio, A., De Candia, A., Di Talia, S., et al. (2003)
Percolation, morphogenesis, and Burgers dynamics in blood vessel formation. Phys Rev
Lett 90

3Merks, R., Perryn, E., Shirinifard, A., Glazier J. (2008) Contact-Inhibited Chemotaxis
in De Novo and Sprouting Blood-Vessel Growth. PLoS Comput Biol 4(9)

4Ambrosi, D., Gamba, A., Serini, G. (2004) Cell directional persistence and chemotaxis
in vascular morphogenesis. B Math Biol 66: 1851-1873

5M. Swat, Gilberto L. Thomas, Julio M. Belmonte, A. Shirinifard, D.Hmeljak, J.
A. Glazier (2012) Multi-Scale Modeling of Tissues Using CompuCell3D, Computational
Methods in Cell Biology, Methods in Cell Biology 110: 325-366
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float ChemotaxisPlugin::simpleChemotaxisFormula(float _flipNeighborConc,

float _conc,ChemotaxisData & _chemotaxisData){

return (_flipNeighborConc)*_chemotaxisData.lambda;

}

The autocrine loop inside the EMM is made by writing the following code
in the steppable for the model.

def step(self,mcs):

field1=CompuCell.getConcentrationField(self.simulator,"c1")

#veld van c1

field2=CompuCell.getConcentrationField(self.simulator,"c2")

#veld van c2

for cell in self.cellListByType(2):

x=int(cell.xCOM) #x-waarde van cel

y=int(cell.yCOM) #y-waarde van cel

field1_cell=field1[x,y,0] #conc c1 bij cel

field2_cell=field2[x,y,0] #conc c2 bij cel

if field1_cell >= 1: #als conc c1 >= 1 dan

field2_cell=field2_cell+0.2*field1_cell

#verhoog conc c2 met helft conc c1

field2[x,y,0]=field2_cell

This code finds for all mesenchymal cells the concentration c1 and let the
concentration c2 rise with 0.2 times the concentration c1 as the c1 concen-
tration is 1 at a mesenchymal cell. The source of extra c2 is at the center of
mass of the cell. So in the simulations dots can occur when looking at the
c2 field.

The XML file of the model exists of so-called plugins and steppables. Plug-
ins give the initial conditions of the lattice site and steppables compute the
changes at the lattice per one Monte Carlo Step. That is the time in which
N copy attempts are made, with N the number of lattice sites. The fol-
lowing plugins and steppables are used for both models: Celltype, Volume,
CenterOfMass, Contact, Chemotaxis, Secretion, FlexibleDiffusionSolverFE
and PIFInitializer.

2.5 Morphospaces and compactness

During the simulations parameters sweeps are made. That means that the
program automatically changes the value of a specific parameter during the
simulations. The data from these simulations can then be used for analysis
of the different parameter values. In this article two kinds of analysis will
be done: making morphospaces and computing the compactness.
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Morphospaces are images with sets of morphologies after a particular amount
of Monte Carlo Steps formed with different values of one specific parameter.
This article describes morphospaces for the temperature, the diffusion con-
stant and the inhibition or chemotaxis constant, depending on which model
is described.
Each parameter sweep contains 10 repeats of a simulation for each param-
eter. For each repeat the compactness of the epithelial tissue can be mea-
sured. The compactness is defined as the relation between the surface of
a cluster of cells and its convex hull. The convex hull of a cluster of cells
is the smallest convex set that contains this cluster. So the compactness
is C = Aarea

Aconvex hull
. The compactness can be seen as a measure for the

spread of the cells through the plane and can tell if there are branches or not.
A low compactness means that the surface of the convex hull is much bigger
than the surface of the cluster, so that the cluster can contains branches.
The repeats of the simulations give the possibility to calculate the standard
deviation of the compactness to get an accurate value for the compactness.
These standard deviations are always given after 10 simulations and are
notated as the error of the compactness6.

6Palm, M., Merks, R. Large-scale parameter studies of cell-based models of tissue
morphogenesis using CompuCell3D or VirtualLeaf
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3 Results

Both the experiments of Nelson (2006) and the simulations done by Hi-
rashima (2009) showed branched structures of epithelial cells. To test if
Nelson’s observations suffice for branching growth, a model is made to sim-
ulate the movements of epithelial cells and the reaction on each other by
autoinhibition. To make the simulations of Hirashima more realistic a model
is made to simulate movements of epithelial cells inside mesenchymal tissue
forming a autocrine loop.

3.1 Inhibition Model

Autoinhibition is the inhibition of a substance c1 on the epithelial cells pro-
duced by the same cells. A cell produce c1 that inhibits its neighbors to
move into that direction. In that way, when one cell is slightly more outside
the cluster, it inhibits its neighbors to move outside and itself can move
further, so a branch occurs.

The model is first simulated with some chosen parameters, to see if branches
occur. Next the model is computed with a parameter sweep of the temper-
ature, the diffusionconstant and the inhibitionconstant. In that way, the
sensitivity of the model to the parameters can be found.

First of all the inhibition model is computed with given values of the param-
eters. These values are chosen to give a good example of the model. They
are given in table 1:

Table 1: Parameter values in computation of Inhibition Model
Parameter Cell type Value

Temperature 150

Adhesion energy Medium - EC 15

EC - EC 15

Chemotaxis constant 150

Secretion constant 0.013

Diffusion constant 0.24

Decay constant 0.03

The adhesion energy between medium and medium is always set to zero.
Looking at the energy component of the Hamiltonian:∑

neighbors

J(τ(σ(~x)), τ(σ(~x′)))(1− δ(σ(~x), σ(~x′))

when the adhesion energy is zero, this component is zero at every boundary
between pixels with cell type medium because all the medium is of the same
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σ. So the adhesion energy between pixels of type medium does not effect
the energy component.
To see the effect of autoinhibition on a cluster of cells there is chosen for a
rectangular cluster, such as in the experiments of Nelson. The initial cluster
is given in Figure 5.

Figure 5: Initial cluster of epithelial cells; Cellfield after 0 MCS

Figure 5 shows a group cells in green, with in black the boundaries
between the different cells. With the particular parameter values given in
Table 1 the results are given in Figure 6.

Figure 6: Inhibition by epithelial cells; Cellfield after 9000 MCS

The cells move from their start position, whereas the concentration of
inhibitor slightly change along the cluster. Some cells move out the cluster,
causing an inhibition at the neighboring cells. This moving outwards of
some cells, inhibiting others to move, causes the branches shown in Figure
6.
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To see how the autoinhibitons works with the used parameter values, the
concentration field is given in Figure 7.

Figure 7: Concentrationfield by autoinhibition; Concentration field
after 9000 MCS

Figure 7 shows the concentration field of the simulated model after 9,000
MCS. At the dark places, the concentration is the most high and becomes
less how lighter the figure. At the arrows, the concentration is lighter than
in the middle, so at these places is the concentration less and also the inhi-
bition. So at the arrows there can be branching.
The compactness measured at 9,000 MCS is C = 0.503± 0.0179. At 0 MCS
the compactness is C = 0.925± 0.0062. The decreasing of the compactness
means that the relation between the area of the cluster and the area of the
convex hull around the cluster is decreased, thus the cluster is no longer
nearly convex, but contains branches.

The parameter values used in the results above are chosen to let branches
occur. It is necessary to look at the different parameters one by one to
study the sensitivity of the model to these parameters. This can be done by
measuring the compactness and computing the morphospaces of parameters
at different values.

3.1.1 Diffusion length

Study of the diffusion length shows that there is an optimal value of the
diffusion length whereas the compactness is at its minimum. After 10 simu-
lations the mean minimal compactness is C = 0.370± 0.0543 at a diffusion
length of L = 2.236. So at L = 2.236 the difference between the area of the
cluster and its convex hull is at its maximum. Thus most of the branches
occur in the cluster of cells, when L = 2.236.

To see if the diffusion length has any effect on the model it is necessary
to compute the model with the constant at extreme values. Next a param-
eter sweep can be made to see what the sensitivity of the model according
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to the diffusion length is. All figures in these section are made with the pa-
rameters values found in Table 1 on page 13, only the values of the diffusion
length are given.

Let L = 0, then L = D
ε = 0, so D = 0 and thereby D∇2c = 0 in the

partial differential equation of the concentration inhibitor. So this equation
will be

∂c

∂t
= α(1− δ(σ(~x), 0))− εδ(σ(~x, 0)c

where ∂c
∂t is only depending on the decay constant ε and the secretion con-

stant α. That means that the concentration will rise during time, but the
inhibitor will always stay in the pixels belonging to the epithelial cells. The
concentration of inhibitor in pixels with cell type medium is zero, because
there is no diffusion and secretion in medium, thus the effective energy com-
ponent ∆Hinhibition = µc(~x′) = 0. This means that the pixels of cells are
only inhibited to move in pixels of other cells, causing the cells to spread
out to obtain the most favorable energy state.
Figure 8 shows the results when the diffusion length L = 0 and thus the
diffusion constant D = 0.

Figure 8: L = 0; Simulation state after 9000 MCS

The cluster from the beginning of the simulation is spread along the
medium in a couple of clusters. The adhesion energy is strong enough to
hold some cells together, but the initial cluster has fallen apart by the inhi-
bition, just as expected.

On the other side it is interesting to see how the cells will move when the
diffusion length is set to L = ∞. Then the diffusion constant is infinite,
causing a high flow of inhibitor into the medium. Also the decay constant
can be ε = 0, in such a way that the inhibitor will not be degraded and dif-

16



fuses into the medium. The concentration inhibitor in pixels of type τ = 0,
neighboring the epithelial cells, is now very high by the diffusion causing a
positive change in the effective energy by copying a cell pixel into a medium

pixel. The probability e
−∆H

T will be very little because of the high ∆H. So
no pixel of cell type EC will copy itself into medium pixels. That means
that no cell will move outside the cluster into the medium. The initial shape
will remain. Because the model can not work with infinity the constant will
be set on D = 1, 000, 000. Figure 9 represents the results as L moves to
infinity:

Figure 9: L =∞; Simulation state after 9,000 MCS with D = 1, 000, 000

Figure 9 shows that the boundaries of the cells are not smooth anymore.
The forward Euler method used for the differential equation has become
numerically unstable for these high values of D. Another way to compute
L→∞ is to set ε = 1 · 10−10. Figure 10 shows the results for ε = 1 · 10−10.

Figure 10: L =∞; Simulation state after 9,000 MCS with ε = 1 · 10−10
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Figure 10 shows the same results as with D = 1, 000, 000 but the bound-
aries are smoother. So forward Euler is less unstable here. The cluster has
barely moved because of the high amount of inhibitor inside the medium.

The results of the simulations with the diffusion length at L = 0 and L =∞
contain no branches, see Figure 8, Figure 9 and Figure 10. So the model is
simulated 10 times around the value that give branches and the compactness
is measured. The plot in Figure 11 shows the diffusion length against the
compactness.
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Figure 11: Diffusion length against compactness; Mean and standard
deviations from 10 simulations at each value

The plot shows that when the diffusion length rises the compactness de-
creases. The concentration of c1 will come further into the medium where
it inhibits the branching of the epithelial cells. At 0 < L < 1.581, there is a
very low level of c1 in the medium, so the cells can go everywhere, because
there is no inhibition. The compactness is then measured over the largest
cluster, but the initial cluster has fallen apart. When the diffusion length
moves from L = 1.581 to L = 2.236, the concentration inhibitor inside the
medium increases, inhibiting cells to move random and stay more and more
together. Now the epithelial cells form branches, because at some spaces
there is fewer concentration inhibitor. So the compactness decreases to a
minimum at C = 0.370 for L = 2.236, but rises again from C = 0.370 to
C = 0.467 for L = 2.236 to L = 2.739, where the diffusion length is long
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enough to inhibit the epithelial cells to form any branches.

Besides the compactness, a morphospace also shows at which values of the
diffusion length branches occur. Figure 12 shows the morphospace of the
parameter sweep with the diffusion constant. The corresponding diffusion

length can be found by using L =
√

D
ε .

Figure 12: Morphospace with different diffusion constants; Cell field
after 10,000 MCS

In the morphospace the same behavior as in the graph of the compactness
is found. At low values of the diffusion length, from L = 0 to L = 1.291 (that
is D = 0.05), the cells are spread through the medium and as the value rises,
the cells form more and more a cluster with branches. The higher diffusion
lengths, caused by higher diffusion constant values from D = 0.25, cause
instability of the forward Euler method used for the differential equation.
In figure 5, this instability is shown at the figure D = 0.25.

3.1.2 Temperature

Another interesting parameter is the temperature T . This is not the real
temperature, but a non-physical temperature describing the cell motility, in
that way that a higher temperature stands for a stronger cell motility. The
movements of epithelial cells is driven by extension of the pseudopodia of a
cell. This mode of motility is similar to the crawling movement of a single
cell. On the lattice at the CPM, one pixel copy itself into another with a

probability e
−∆H

T if ∆H > 0. Changes in the temperature thus effect the
copy probability with positive ∆H, with higher temperatures causing higher

probabilities because −∆H
T moves to zero when T moves to infinity, so e

−∆H
T

moves to 1.

Study shows that the temperature effects the rate of movement of the cells.
When T = 0 the cells will not move at all, but branches occur at T ≥ 50
until T = 200.

As with the diffusion length, we start by studying the effect of the tem-
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perature on the model, by computing extreme values, namely T = 0 and
T →∞. After that a parameter sweep can be done to study the sensitivity
of the model due to the temperature. All figures in these section are made
with the parameters values found in Table 1 on page 13, only the values of
the temperature are given.

Set T = 0, then −∆H
T = −∞ such that e

−∆H
T = 0. Thus when the tem-

perature is zero the probability that a pixel will copy itself into another,
causing a positive energy change, is zero. These copies will not exist. The
copies of cell pixels into medium pixels are accompanied with positive energy
changes. So these copies are not present in the model with T = 0. Copies
into a direction with negative energy change can occur, but only at pixels of
cells. That means that all cells will stay where they began, because to move
into a spheroid, the most favorable energy state, pixel with τ = 1, cell type
epithelial, have to copy into pixels with τ = 0, cell type medium, which is
not possible at T = 0. Thus the cell motility is zero. Figure 13 will show
the results with T = 0.

Figure 13: T = 0; Simulation state after 9000 MCS

The cluster in Figure 13 is after 9,000 MCS still in the same position as
it was at the beginning, meaning that the cells did not move at all. That
was precisely what has been expected.

Now set the temperature T =∞. Then −∆H
T = 0, so e

−∆H
T = 1. Thus

P (∆H) =

{
1 if ∆H ≥ 0
1 if ∆H < 0

That means that it does not matter whether a pixel tries to copy itself with
a positive energy change or a negative energy change, in both cases the copy
will always succeed. The cells will spread among the medium. Figure 14
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shows the results with T = 1, 000, 000, because the model can not work with
infinity.

Figure 14: T = ∞; Simulation states after (A) 1,000 MCS and (B) 9,000
MCS and T = 1, 000, 000

The pixels with cell type medium will copy themselves in other pix-
els with probability 1. At this way a complete cell can disappear because
medium pixels copied themselves into the cell pixels. And once a cell is lost,
it cannot come back again (see also Voss-Böhme (2012)). Because the high
amount of medium around the initial cluster of cells, the cells are almost
disappear at 1,000 MCS and totally disappeared at 9,000 MCS, see Figure
14.

At T = 0 there is no movement and at T = ∞ the cell motility is so high
that all the cells are replaced by medium. Therefore a parameter sweep is
done around the value T = 150 in the example in Figure 6 on page 14 and
the compactness is measured and plotted against the temperature values in
figure 15.
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Figure 15: Temperature against compactness; Mean and standard de-
viations from 10 simulations at each value

The plot in Figure 15 shows different values of the temperature against
the compactness. A high drop occurs between temperatures T = 25 and
T = 75. The meaning of this drop can be found in the morphospace in
Figure 16.

Figure 16: Morphospace with different temperatures; Cell field after
10,000 MCS

The epithelial cells are in initial state at temperature T = 0. This
because the cells can only move into directions with negative energy change
when T = 0, but the movements into these directions are only into the
cluster, never outwards. There is no movement outwards because such a
movement causes more adhesion energy and surface and therefore always a
positive energy change, in which direction a cell can not move. So there will
be no movement at all.
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At T = 50 the probability e
−∆H

T is high enough to cause copies into directions
with positive energy change. Thus a cell can move outwards the cluster
and branches can occur by inhibiting neighboring cells to move outwards,
causing the compactness to drop. At T →∞ the probability of movements
at positive energy changes will be almost 1, so that the copy probability in
both positive and negative directions of the energy will be the same and so
the cells will move randomly. Movement not longer depends on inhibition.

3.1.3 Inhibition constant

The last parameters that will be discussed is the inhibition constant µ.
Study of the inhibition constant shows that this constant effects the ability
to form branches. When the inhibition constant µ = 0, the initial cluster
will form a spheroid, whereas µ = ∞ the initial cluster is almost the same
after 10,000 MCS. Figure 19 shows that µ = 600 is the mean extreme value
that gives a minimum compactness of C = 0.260± 0.0245. At µ = 600 the
most branches occur.
Again we study the effect of the inhibition constant on the model, by first
taking extreme values, namely µ = 0 and µ = ∞. After that a parameter
sweep can be done to study the sensitivity of the model according to the
inhibition constant. All figures in these section are made with the param-
eters values found in table 1 on page 13, only the values of the inhibition
constant are given.

Set µ = 0. Then ∆Hinhibition = µc(~x′) = 0 for every ~x in the lattice.
So the effective energy only change depending of the adhesion energies and
surfaces of the cells. The model has become the standard CPM. The CPM
will always go to the most favorable energy state: the spheroid. Here are the
least boundaries and the smallest surfaces, that gives the lowest result of the
Hamiltonian, because then the adhesion energy and the volumeconstraint
of the Hamiltonian are that low, that further decreasing of the constraints
causes a positive ∆H. Figure 17 shows the results with µ = 0.
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Figure 17: µ = 0; Simulation state after 9000 MCS

The cluster starts to form a spheroid in which its most favorable energy
state is reached. After 9000 MCS the model is not yet in its minimal energy
state, so the cluster is not yet a spheroid.

Set µ =∞, then the inhibition component of the Hamiltonian, ∆H, will be
∆H = µc(~x′) =∞. So the effective energy change is infinite everywhere on
the lattice. An infinite energy change gives the probability of a copy into a

direction with positive ∆H to be limT→∞ e
−−∆H

T = 0. In every direction is
the ∆H = ∞, so no copy will succeed. The initial cluster will remain the
same. Figure 18 shows the results when µ =∞.

Figure 18: µ =∞; Simulation state after 9000 MCS with µ = 1, 000, 000

Now the inhibition is very strong and so it inhibits the cells to move. The
initial cluster will stay, and because the model cannot work with µ = ∞,
the probability for a cell to move is not zero. So the cells move very close
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around their initial position.

To find a proper value of the inhibition constant where branches can oc-
cur, a parameter sweep is done and the compactness is measured, see Figure
19.
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Figure 19: Inhibition constant against compactness; Mean and stan-
dard deviations from 10 simulations at each value

The graph for the inhibition constant against the compactness shows
that there exists an optimum value of µ = 600 where the compactness is
at its minimum, namely at C = 0.260. So at µ = 600 the most branches
should appear. To check this value a morphospace is made to see if the cells
stay together or if they scatter. Figure 20 shows this morphospace.
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Figure 20: Morphospace with different inhibition constants, from 0
to 1000; Cell field after 10,000 MCS

The first drop in the plot shown in figure 19 can be explained by the
fact that when the inhibition constant is zero, there is no inhibition and so
the cells move to the lowest energy state, a spheroid, as reflected by the
compactness close to C = 1. For values of µ closer to µ = 100, the inhibi-
tion component of the Hamiltonian will be positive, so the ∆H can become
positive, causing a probability between 0 and 1 that copies of pixels with a
positive ∆H will succeed. The epithelial cells will move into directions with
the lowest positive energy change, because these directions have the highest
probability. The cells that move outwards the cluster inhibits the neighbor
cells, so branches occur.
There is an optimal value of µ = 600. When the constant is higher than
µ = 600, the ∆H will become too high and the probability of a copy will
become very low. A copy will almost only occur when the energy change
of a movement is negative. But this movement is very rare, because of the
inhibitor around the cells. That explains the rise of the compactness in the
plot (Figure 19) and the near absence of branches in the morphology when
the inhibition constant has value 1000.

The plot shown in figure 19 shows a steep drop of the compactness be-
tween µ = 0 and µ = 100. To see if there is a particular value of µ where
the compactness starts to drop the compactness of the clusters with the in-
hibition constant between µ = 0 and µ = 100 is measured. Figure 21 shows
the graph of the compactness against the inhibition constant, zoomed in on
µ = 0 till µ = 100.

26



0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90

C
om

p
ac

tn
es

s

Inhibition constant

Compactness against inhibition constant

Compactness/Chemotaxis constant
+ + +

+

+

+

+

+
+

+

+× × × ×

×
×

×
× ×

×

Figure 21: Inhibition constant against compactness;µ = 0 till µ = 100.
Mean and standard deviations from 10 simulations at each value

Zoomed in on the first 100 steps of the inhibition constant, the graph in
Figure 21 shows a relatively smooth decrease of the compactness. So there
is not a specific value of the inhibition constant that causes a steep decrease
of the compactness. Its decrease is stronger between µ = 0 and µ = 100
than between µ = 100 and µ = 600, but smooth.

A morphospace is also made to see what happens between µ = 0 and
µ = 100. This morphospace is found in Figure 22.

Figure 22: Morphospace with different inhibition constants, from 0
to 100; Cell field after 10,000 MCS

The morphospace also shows no big changes between the morphologies.
The initial cluster of cells become longer and flatter when the inhibition
constant moves to µ = 100, but in a smooth way and not at a specific value
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of µ.

3.1.4 Conclusion

The inhibition model shows that branches occur when the parameters of the
model are set as in table 1. We studied the dependence of the branching
mechanism on the diffusion length, the temperature and the inhibition con-
stant. The diffusion length has an optimal value at L = 2.236 for which
the compactness is at its minimum C = 0.370 and the most branches occur.
The temperature does not have an optimum, the compactness makes a steep
drop at T = 50 but remains the same at temperatures higher than T = 50.
At T = 200 the cluster of cells falls apart so the compactness can stay the
same, but the branches disappear. The temperature, thus the cell motility,
effects the adhesion of the cells. At T < 50 the cells stay to close together
to form any branches and at T > 200 the cell motility is to high to remain
the initial cluster of cells. The inhibition constant has again an optimum
for which the compactness is minimal, namely C = 0.260. This optimum is
at µ = 600, the value where the most branches occur.

3.2 EC-Mesenchym model

The experiments and computations done by T. Hirashima showed that
branches occur when the sources of growth factor are set on fixed point
and the epithelial tissue is elastic.
To make a more realistic model, the Epithelial-Mesenchymal Model is made
to simulate the appearance of branches when the epithelial cells form a au-
tocrine loop with the mesenchymal tissue around the cells. In this loop,
the epithelial cells produce a substance c1. This substance activates the
mesenchymal cells to produce more of a substance c2 to which the epithe-
lial cells chemotact. Besides that the elasticity of the epithelial tissue is gone.

In this section, the results of the second model, the epithelial cells inside
mesenchymal tissue will be given. First an example will be given to see how
the model works and if branches occur. The parameter values for this exam-
ple will be given in that way that branches occur. To study the sensitivity
of the model according to the parameters different parameter sweeps will be
done for the diffusion length, the temperature and the chemotaxis constant.
Each of these parameters will be discussed to see what the behavior is on
the extreme values of zero and infinity, because negative values will not be
found in nature.

To begin the EC-Mesenchym model is computed with given values of the
parameters to get an example with branches. The values of the parame-
ters are given in table 2 An example of this model is given by the following
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parameters:

Table 2: Parameter values in computation of EC-Mesenchym Model
Parameter Cell type Value

Temperature 20

Adhesion energy Medium - EC 0

Medium - Mesen 0

EC - Mesen 8

EC - EC 1

Mesen - Mesen 10

Chemotaxis constant c2 150

Secretion constant c1 0.13

c2 0.0001

Diffusion constant c1 0.24

c2 0.24

Decay constant c1 0.003

c2 0.02

The adhesion energy between medium and the epithelial cells and be-
tween the medium and the mesenchymal cells is set to zero for the same
reason as in the Inhibition Model.
Figure 23 shows the initial cluster of epithelial cells inside the mesenchymal
tissue.

Figure 23: Autocrine loop between epithelial and mesenchymal
cells; Simulation state after 0 MCS

Figure 23 contains both red and green cells. The red ones are the mes-
enchymal tissue, that surrounds the green epithelial cells, such that it is the
same as in the beginning of branched organs.
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Now the model is computed with the given parameters values and is given
in Figure 24.

Figure 24: Autocrine loop between epithelial and mesenchymal
cells; Simulation state after 1250 MCS

Figure 24 shows that the epithelial cells are moving inside the mesenchy-
mal tissue. The epithelial cells produce the substance c1, that diffuses into
the mesenchymal tissue. The tissue reacts by producing the substance c2.
This c2 reaches the epithelial cells and causing a chemotaxis towards the
c2. In that way, the epithelial cells start moving inside the tissue. At some
points even branches occur, because some epithelial cells are stronger at-
tracted to the c2 than their neighbors. But on other points on the lattice
the attraction is stronger than the adhesion energy and the cells are moving
away from the cluster and don’t even have contact anymore.
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Figure 25: Autocrine loop between epithelial and mesenchymal
cells; Simulation state after 2750 MCS

When the model runs longer to 2750 MCS, all the cells spread through
the mesenchymal tissue (see Figure 25).

The compactness measured at 1250 MCS is C = 0.803 ± 0.0201 after ten
simulations against at compactness of C = 0.947 ± 0.0043 at 0 MCS. So
the convex hull around the surface of the epithelial cluster is bigger at 1250
MCS, and at 1250 MCS, the initial cluster is still complete, so there are
some branches. At 2750 MCS is the compactness C = 0.683 ± 0.0606, a
little bit lower than at 1250 MCS. Looking at Figure 25, the initial cluster
has fallen apart in some sub-clusters. The compactness of the biggest sub-
cluster is then measured, what can cause a low compactness if the cluster
contain some branches, but there are no branches in the initial cluster.

The parameter values used in the results above are chosen to let branches
occur. It is necessary to look at the different parameters one by one to study
the sensitivity of the model according to these parameters, in this case the
diffusion length, the temperature and the chemotaxis constant. This can
be done by measuring the compactness and computing the morphospaces of
the parameters at different values.

3.2.1 Diffusion length

In the Epithelial-Mesenchymal Model both the substances c1 and c2 have
diffusion, so also both the substances have a diffusion length. These lengths
will be discussed separately here because they both have an other effect on
the model.

Study of the diffusion length of c1 shows that at L = 0 the model is the
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same as the CPM and so the epithelial cluster will form a square inside
the mesenchymal tissue. For 0 < L < 2.887 the compactness rises from
C = 0.915 ± 0.0117 to C = 0.932 ± 0.573. For 2.887 < L < 8.660 the
compactness decreases to C = 0.795 and branches are found. At L =∞ the
epithelial cluster will fall apart due to chemotaxis.
Study of the diffusion length of c2 shows that at L = 0 the model again works
as the CPM and so a epithelial square will be formed. For 0 < L < 1.118 the
compactness decreases from C = 0.876 to C = 0.524. For 1.118 < L < 3.354
the compactness rises again to C = 0.747 and branches are found. At L =∞
the epithelial cells will form a spheroid.

We will first study the effect of the diffusion length on the model at the
extreme values L = 0 and L = ∞. After that a parameter sweep can be
done to study the sensitivity of the model for the diffusion length. All fig-
ures in these section are made with the parameter values found in Table 2
on page 29. The values of the diffusion length differs through this section
and are given at the figures.

Set the diffusion length of c1 to L = 0. According to section 3.1.1 the
diffusion constant D = 0 when L = 0, so there is no diffusion of c1 into the
mesenchymal tissue. So there is no activation of the mesenchymal tissue to
produce c2. Thus there is a very little amount of c2 present, but this is too
low to let the epithelial cells chemotact. Therefore the model will go to form
a square of epithelial cells inside the mesenchymal tissue, its most favorable
energy state because then the sum of boundary energies and surface energies
is at its lowest point. Figure 26 shows the results when L = 0 for substance
c1.
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Figure 26: L = 0; Simulation state after 1250 MCS and L of substance c1

The initial cluster of epithelial cells moved into a square inside the mes-
enchymal tissue in Figure 26. This is its most favorable energy state, just
as expected.

Set L = ∞ of substance c1, then two different situations can exist. The
first one is that the diffusion constant of c1 is D = ∞, causing an uniform
concentration of c1 on the lattice, because ∂c1

∂t is the sum of all the pro-
duction rates in the cells. Then all mesenchymal cells will produce c2 at
the same rate and thus the chemotaxis is no longer dependent on the local
geometry. So the cells will spread over the lattice. On the other side, the
decay constant ε = 0 when L = ∞. Then the concentration c1 will also
become uniform, causing a spread of the epithelial cells. Figure 27 shows
the results when L =∞.

Figure 27: L =∞; Simulation state after 1250 MCS and ε = 1 · 10−10
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Figure 27 shows that the epithelial cells are spread through the mes-
enchymal tissue. However the concentration c1 is not uniform, but there are
still some little gradients. It will take some time before the gradients settle
down. Only when L =∞ the production rate of c2 is uniform, but this can
not be tested by simulations.

After studying the extreme values of the diffusion length of c1, a parameter
sweep is done to find proper values where branches occur. The compactness
is also measured and given in Figure 28.
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Figure 28: Compactness against diffusion length; Mean and standard
deviations from 10 simulations at each value

Figure 28 shows that the compactness rises from C = 0.915± 0.0117 to
C = 0.932± 0.573 when the diffusion length rises from L = 0 to L = 2.887.
The substance c1 diffuse further into the mesenchymal tissue, thereby acti-
vating more mesenchymal cells to produce more c2. Thus for L > 0 there
is chemotaxis. For 0 < L < 2.887 the diffusion of c1 activates only the
neighboring mesenchymal cells to produce more c2. So the epithelial clus-
ter will become a spheroid because every cell chemotact to the neighboring
mesenchymal cells. Therefore the compactness rises. For L > 2.887 the
c1 goes far enough into the mesenchymal tissue to activate those cells for
producing more c2. So at some points the chemotaxis is stronger then on
others, and thus branches can occur and the compactness decreases. At
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L = 9.129 the value of the diffusion constant is that high that instability
occur in Euler Forward. For L → ∞ the gradient of the concentration will
become flat, because of the open boundary condition. Then the chemotaxis
does not longer react on local gradients and thus the cells spread out. Then
the compactness will be high because it will be measured over the biggest
sub-cluster of cells.

A morphospace for the values of the diffusion constant is made in order
to see how the diffusion length affects the cellfield (see Figure 29).

Figure 29: Morphospace with different diffusion constant; Cell field
after 1250 MCS

In the morphospace in Figure 29 the same behavior can be found. For
0 < D < 0.025, that is 0 < L < 3.162, the epithelial tissue becomes a
spheroid and for D > 0.025 the epithelial cells performs stronger chemo-
taxis and branches occur, so the compactness decreases, until D = 0.25
where instability occurs in Euler Forward.

Secondly, set the diffusion length of c2 at L = 0. That means that D = 0
of c2, so there is no diffusion of c2 into the epithelial cells. Thus there is
no chemotaxis of the epithelial cells and the model will form a square of
epithelial cells within the mesenchymal tissue. Figure 30 will give the result
of L = 0.

The same thing happens in Figure 30 as when the diffusionconstant of
c1 was set at L = 0 (see Figure 26). There is no chemotaxis and the model
brings itself in the energetic most favorable state.
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Figure 30: L = 0; Simulation state after 1250 MCS

Set L = ∞, then again there are two situations. Either D = ∞, so c2

is diffused very strong into the epithelial cells causing a strong chemotaxis
of the epithelial cells and therefore a strong spread of these cells. Or ε = 0,
so there is no decay of c2 what causes also a strong chemotaxis and therefore
a spread of the epithelial cells. Figure 31 shows the results when L =∞.

Figure 31: L =∞; Simulation state after 1250 MCS and ε = 1 · 10−10

The expectation was to find that the epithelial cells were all spread
through the mesenchymal tissue in Figure 31 due to the chemotaxis. Now
L = ∞ so the gradients of the concentration c2 will settle down when the
time goes to infinity. Thus the epithelial cells will all chemotact to its
neighboring mesenchymal cells. So the cluster will become a spheroid.
After studying the extreme values of the diffusion length of c2, a parameter
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sweep is done to find proper values where branches occur. The compactness
is also measured and given in figure 32.
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Figure 32: Compactness against diffusion length; Mean and standard
deviations from 10 simulations at each value

Figure 32 shows when the diffusion length moves from L = 0 to L =
1.118 the compactness drops from C = 0.876 to C = 0.524. When the
diffusion length is 0 < L < 1.118 the substance c2 will not diffuse far into
the mesenchymal tissue. So there is a strong chemotaxis of the epithelial cells
to c2. Individual cells can react stronger on c2 than others, so the cluster
will scatter. The compactness becomes this low because some sub-clusters
are flattened, but the initial cluster is fallen apart. For 1.118 < L < 3.354
the compactness rises from C = 0.524 to C = 0.747 because c2 further into
the mesenchymal tissue and so the chemotaxis is less strong. Therefore the
initial cluster will not fall apart and even branches can occur. In the model
the diffusion length is measured by changing the diffusion constant, so at
L = 3.536 the diffusion constant is that high that the model gets negative
concentrations at the Euler Forward method and so instability occur.
The same behavior can be found in the morphospace in Figure 33.

37



Figure 33: Morphospace with different diffusion constant; Cell field
after 1250 MCS

The epithelial cluster in Figure 33 belonging to the diffusion constant
value of D = 0.025 is scattered through the mesenchymal tissue due to the
strong local chemotaxis. For 0.025 < D < 0.25 less sub-clusters appear for
higher D. At D = 0.25 the instability can be found.

3.2.2 Temperature

In the same way as in the Inhibition Model here the temperature is not
a physical temperature but a ’cellular’ temperature representing the cell
motility. High cellular temperatures indicate high random cell motility.

Study of the temperature shows that rate of movement is effected by this
parameter. For T = 0 the cells can only move when the energy lowers by
their movements. For 0 < T < 20 the compactness drops steeply but then
remains the same for 20 < T < 180. At T = ∞ cells will fall apart and
spread over the medium.

We first study the effect of the temperature on the model at the extreme
values T = 0 and T = ∞. After that a parameter sweep can be done to
study the sensitivity of the model according to the temperature. All figures
in these section are made with the parameter values found in Table 2 on
page 29. The values of the temperature differs through this section and are
given at the figures.
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Set T = 0, then the probability of a copy into the direction with a positive
∆H is zero (see section 3.1.2), so these copies will not exist. The movement
by chemotaxis is caused by a negative ∆H, because in the formula

∆Hchemotaxis = −µ(
c(~x′)

1 + sc(~x′)
− c(~x)

1 + sc(~x)

the energy change ∆Hchemotaxis < 0 if ~x′ contains a higher concentration
chemoattractant than ~x, so there still will be chemotaxis. Besides chemo-
taxis the model also computes the state with the least energy H of the
Hamiltonian. Figure 34 shows the result with T = 0.

Figure 34: T = 0; Simulation state after 1250 MCS

Figure 34 shows that the epithelial cells are slightly moved in the mes-
enchymal tissue. The spheroid occurred by computing the most favorable
energy state, but also some branches can be found in Figure 34, formed by
the chemotaxis of the epithelial cells. The secretion and diffusion of the
substances is still active, also the chemotaxis. With more steps, the cells
are spread along the tissue and the initial cluster no longer exists.

Set now T = ∞, then the probabilities of the copies in direction of both
positive and negative energy change are 1 (see section 3.1.2). A pixel then
moves into every direction with the same probability and thus all the pixels
will be spread over the lattice. In Figure 35 the results for T =∞ are given.
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Figure 35: T =∞; Simulation state after 1250 MCS with T = 1, 000, 000

Figure 35 shows a black plane with some red and green dots. The red
dots are the mesenchymal cells and the green ones the epithelial cells. The
black plane is made of boundaries between the different pixels of cells. The
pixel of one cell moves to everywhere with the same probability, so pixels
with the same cell type can be lying apart from each other. At that way one
cell can be split into two or more cluster of pixels with the same cell type.
Each of these clusters has a boundary (in black) causing the high amount
of black in the picture. So at a temperature of T = ∞ the temperature is
so high that even cells does not stay together anymore.

After studying the extreme values of the temperature, a parameter sweep is
done to find proper values where branches occur. The compactness is also
measured and given in Figure 36.
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Figure 36: Compactness against temperature; Mean and standard de-
viations from 10 simulations at each value

The graph in Figure 36 shows a steep drop of C = 0.881 to C = 0.776
between T = 0 and T = 20. After T = 20 the compactness remains ap-
proximately the same, looking at the errorbars of the found compactness
values. So the temperature is important only at low levels. After T = 20
the temperature does not effect the compactness anymore until T = 180.
Branches occur from T = 0, because the initial cluster has a compactness of
C = 0.949±0.00731 and so at T = 0 the compactness is decreased by 0.068.
So to let any branches occur at higher speed it is necessary to set T ≥ 20.
The same behavior as in the graph can be found in the morphospace of the
temperature. Figure 37 shows this morphospace.
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Figure 37: Morphospace with different temperatures; Cell field after
1250 MCS

The morphospace in Figure 37 shows that some branches occur for T ≥
20. At T = 0 the cluster gets a notch and the epithelial cells starts to form
some branches, but this process is slower than for T ≥ 20. At T = 80 the
figure starts to be more and more black. So for T > 80 more boundaries are
formed in the same way as discussed for T =∞.

3.2.3 Chemotaxis constant

The last parameter to be discussed here is the chemotaxis constant. In the
Epithelial-Mesenchym Model the substance c1 does not have a chemotaxis
constant, because there is no chemotaxis to c1. Substance c1 only activates
the mesenchymal cells to produce the substance c2 to which the epithelial
cells chemotact. Therefore in the following text is by chemotaxis constant
the chemotaxis constant of substance c2 meant.

Study of the chemotaxis constant of substance c2 shows that at µ = 0 there
is no chemotaxis and the model founds its most favorable energy state. For
0 < µ < 50 this state becomes a spheroid of epithelial cells inside the mes-
enchymal tissue and for µ ≥ 50 the cluster begins to show branches and
even falls apart at µ = 250. For µ = ∞ the chemotaxis is that strong that
all the mesenchymal cells will disappear.

It is necessary to study the effect of the chemotaxis constant on the model
at the extreme values µ = 0 and µ =∞. After that a parameter sweep can
be done to study the sensitivity of the model according to the chemotaxis
constant. All figures in these section are made with the parameter values
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found in Table 2 on page 29. The values of the chemotaxis constant differs
through this section and are given at the figures.

Set µ = 0, then ∆Hchemotaxis = 0. That means energy change over the
lattice of the CPM only depends on the Hamiltonian

H =
∑

neighbors

J(τ(σ(~x)), τ(σ(~x′)))(1−δ(σ(~x), σ(~x′))+λ
∑
σ

(a(σ)−Atarget(σ))2

without a component for the chemotaxis. When the model only depends on
the Hamiltonian above, then it is the same as the CPM and will act that
way. That means that the model will go to its most favorable energy state
and that nothing more effects the model. Figure 38 shows the result when
µ = 0.

Figure 38: µ = 0; Simulation state after 1250 MCS

Without any chemotaxis of the epithelial cells, all the cells will almost
stay in their initial place. They are slightly moved into a position with a
lower energy state, but nothing more. The most favorable energy state is
that of a epithelial square inside the mesenchymal tissue, where the bound-
ary energies and surface energies are at their lowest points.

Now set µ =∞, then ∆Hchemotaxis = −∞ when pixel ~x has a lower concen-
tration c2 than pixel ~x′ in which ~x tries to copy itself. On the other side
is ∆Hchemotaxis = +∞ when ~x tries to copy into ~x′ with an lower concen-
tration c2. So chemotaxis gives a negative energy change of ∆H = −∞,
where movements of epithelial cells away of the chemoattractant gives an

energy change of ∆H =∞, causing into a probability of e
−∆H

T = 0. So the
epithelial cells will only chemotact.
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The mesenchymal cells will act the same as in the CPM, going to its most
favorable energy state. Figure 39 shows the result of the EM model with
µ =∞.

Figure 39: µ =∞; Simulation state after 1250 MCS and µ = 1, 000, 000

In Figure 39 all of the mesenchymal cells are disappeared. The epithelial
cells can only move by chemotaxis and each pixel with this cell type suc-
ceeds with probability 1 at a copy by chemotaxis. So the epithelial cells copy
themselves into the mesenchymal cells, causing the last ones to disappear,
because the probability that a copy of a pixel with τ = 2 succeeds, depends
on ∆H. The chemotaxis makes it possible for the epithelial cells to reach
each mesenchymal cell, so at last only the epithelial cells are left.

After studying the extreme values of the temperature, a parameter sweep is
done to find proper values where branches occur. The compactness is also
measured and given in Figure 40.
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Figure 40: Compactness against chemotaxis constant; Mean and stan-
dard deviations from 10 simulations at each value

The graph in Figure 40 shows that the compactness decreases, when the
value of the chemotaxis constant rises. Between µ = 0 and µ = 50 the
compactness rises from C = 0.913± 0.0091 to C = 0.928± 0.0089. If µ = 0
there is no chemotaxis of the epithelial cells to the mesenchymal cells and
the model will thus go to its energetic most favorable state, the epithelial
square inside the mesenchymal tissue. When the chemotaxis constant be-
comes µ = 25 the chemotaxis is too weak to cause an effect. The ∆H in the
direction of the chemotaxis becomes less than without chemotaxis and so
copies that have a positive ∆H without chemotaxis can now have a negative
∆H, causing that the copy will succeed always. So the most favorable en-
ergy state will be when the epithelial cells at the boundary of the cluster will
all have the same amount of mesenchymal neighbor cells, because then the
chemotaxis is everywhere around the cluster the same and thus the energy
cannot be lower. So there will be an almost perfect spheroid of epithelial
cells and thus the compactness rises. When µ > 50 the chemotaxis will be
that strong that some epithelial cells move outwards the cluster, causing the
compactness to drop.
At µ = 250 the compactness is C = 0.675 with sd = 0.0319 and is still
dropping, but the graph ends here because in the morphospace (Figure 41)
the morphology at µ = 250 shows that the cluster is fallen apart at some
points. The chemotaxis is to strong to contain a cluster of epithelial cells.
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Figure 41 shows the morphospace of the chemotaxis constant.

Figure 41: Morphospace with different values of the chemotaxis
constant; Cell field after 1250 MCS

In Figure 41 the same behavior of the cells is found as in the graph in
Figure 40. For 0 < µ < 50 the cluster forms a spheroid because of the
weak chemotaxis, and for µ ≥ 50 the chemotaxis grows stronger and causes
branches in the cluster. At µ = 250 the chemotaxis is that strong that the
cluster falls apart.

3.2.4 Conclusion

The EM model shows that branches occur when the parameters of the model
are set as in Table 2. To find the best parameters of the model, the diffusion
length, the temperature and the inhibition constant are further discussed.
The diffusion length of c1 at L = 0 gives that the model acts the same as the
CPM and so the epithelial cluster will form a square inside the mesenchymal
tissue. For 0 < L < 2.887 the compactness rises from C = 0.915 to C =
0.932. For 2.887 < L < 8.660 the compactness decreases to C = 0.795 and
branches are found. At L = ∞ the epithelial cluster will fall apart due
to chemotaxis. The diffusion length of c2 at L = 0 gives that the model
again works as the CPM and so a epithelial square will be formed. For
0 < L < 1.118 the compactness decreases from C = 0.876 to C = 0.524.
For 1.118 < L < 3.354 the compactness rises again to C = 0.747 and
branches are found. If L =∞ the epithelial cells will form a spheroid. The
temperature has only an effect at low temperatures. For 0 < T < 20 the
compactness drops steeply from C = 0.881 to C = 0.776 but remains the
same at T > 20. The chemotaxis gives an epithelial spheroid for 0 < µ < 50
and for µ ≥ 50 the cluster shows branches until it falls apart at µ = 250.
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4 Discussion

The question that rises out of earlier experiments of Nelson et al. (2006)
and Hirashima et al. (2009) was if epithelial tissue alone can form branching
morphologies, or whether external signals initiate branching. In this article
two different models were made, based on both experiments and other mod-
els.

The first model, the Inhibition Model, was based on the experiments of
Nelson et al. (2006) and showed that with the right parameters chosen for
the model, the autoinhibition of the epithelial cells suffices for branching
morphogenesis (Figure 6).
The other model was the Epithelial Mesenchymal Model, based on the model
given by Hirashima et al. (2009). They found that elastic epithelial tissue
will move to fixed sources of grow factor driven by chemotaxis and thereby
form branches in the cluster. The EMM showed that the non-elastic epithe-
lial tissue will even form branches when the sources of grow factor are not
fixed, but when the grow factors are produced by an autocrine loop between
the epithelial cells and the mesenchymal tissue around them.
Branching morphogenesis occurs in both the IM and EMM and thus can be
driven by autoinhibition or an autocrine loop with surrounding tissue. One
strong difference between both models is the amount of Monte Carlo steps
after when branching morphologies appear and disappear. For the EMM
most branching morphologies are gone after 2500 MCS, against the existing
of branching morphologies after 9000 MCS in the IM. The lack of elasticity
in the EMM is one reason for this, compared to the results of Hirashima
where branching morphologies last longer. According to the CPM the cells
in both models are placed on a lattice and the dynamics are measured for
each pixel on this lattice. Another way to simulate cell dynamics is to define
the tissue as a fluid and cells as density. See Iber and Tanaka (2013) for this
kind of models. Here there is no elasticity as in the model by Hirashima,
but the tissue will be longer together than in the models discussed in this
article. This because it is seen as a fluid instead of separated cells.
It is not known if branching morphogenesis prescribed by the discussed mod-
els is done the same way in nature and the precise parameter values are not
experimentally known. Therefore it is important to do parameter studies,
to see how the model behaves and to study the sensitivity of the model
according to the parameters. When the model is more understood, similar
changes can be done in the experiments to compare the results with the
simulations.

Looking at Figure 12 (page 19) containing the morphospace with different
diffusion constants, the model blows up at a diffusion constant of D = 0.25.
The reason for this is that the model works with a numerical method to
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compute the derivative of the concentration. This method, Euler forwards,
takes big time steps, what can lead to a negative concentration in some
steps. That is not possible, so the model blows up and then gives this fig-
ure. To investigate higher diffusion lengths it is necessary to take smaller
time steps in order to prohibit the concentration to be negative or to lower
the decay constant.
In Figure 14 (page 21), all the epithelial cells disappear and only the medium
remains. This is a reaction of the model at higher temperatures. The cell
motility is that high that the probability for a pixel to copy itself in its

neighbor, causing a higher effective energy is also 1, because e
−∆H

T becomes
1 when T moves to infinity. There is a lot more medium than epithelial cells,
so all the pixels of type medium will copy themselves into the cells, causing
the cells to disappear and once a cell is gone, it cannot come back.
The branches that occur in the EMM hold for about 1250 MCS and after
that the cluster of epithelial cells falls apart. Further studies are necessary
to conclude if this is a critical point in the model or that the epithelial cells
needs more than only the autocrine loop to form branches and contain them
for longer time.
Both the models give a way to form branches in a epithelial cluster and
so produce the first steps of forming a branched organ, such as the lungs,
kidneys or all kind of glands. A nice step for further studies is to see how
changes in the adhesion energy effect both models. If the adhesion energy
between epithelial cells increases, will the branches exist for longer time or
will they never appear. Another nice step following this article is to see what
happens when both the models are put together such that forming branches
is driven by autoinhibition and an autocrine loop with the mesenchymal
tissue at the same time. In that way a model can be made that comes closer
to reality.
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6 Appendix

6.1 XMl files of IM and EMM

First the XML file of the IM will be given.

<CompuCell3D version="3.6.2">

<Potts>

<!-- Basic properties of CPM (GGH) algorithm -->

<Dimensions x="150" y="150" z="1"/>

<Steps>10000</Steps>

<Temperature>150</Temperature>

<NeighborOrder>3</NeighborOrder>

</Potts>

<Plugin Name="CellType">

<!-- Listing all cell types in the simulation -->

<CellType TypeId="0" TypeName="Medium"/>

<CellType TypeId="1" TypeName="EC"/>

</Plugin>

<Plugin Name="Volume">

<VolumeEnergyParameters CellType="EC" LambdaVolume="20.0" TargetVolume="74"/>

</Plugin>

<Plugin Name="CenterOfMass">

<!-- Module tracking center of mass of each cell -->

</Plugin>

<Plugin Name="Contact">

<!-- Specification of adhesion energies -->

<Energy Type1="Medium" Type2="Medium">0.0</Energy>

<Energy Type1="Medium" Type2="EC">15</Energy>

<Energy Type1="EC" Type2="EC">15</Energy>

<NeighborOrder>4</NeighborOrder>

</Plugin>

<Plugin Name="Chemotaxis">

<ChemicalField Name="c1"Source="FlexibleDiffusionSolverFE">

<ChemotaxisByType ChemotactTowards="Medium" Lambda="150.0" Type="EC"/>

</ChemicalField>

</Plugin>

<Plugin Name="Secretion">

<!-- Specification of secretion properties of select cell types. -->

<Field Name="c1">

<Secretion Type="EC">0.013</Secretion>

</Field>

</Plugin>

<Steppable Type="FlexibleDiffusionSolverFE">

<!-- Specification of PDE solvers -->
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<DiffusionField>

<DiffusionData>

<FieldName>c1</FieldName>

<DiffusionConstant>0.24</DiffusionConstant>

<DecayConstant>0.03</DecayConstant>

<DoNotDecayIn>EC</DoNotDecayIn>

</DiffusionData>

<BoundaryConditions>

<Plane Axis="X">

<ConstantDerivative PlanePosition="Min" Value="0.0"/>

<ConstantDerivative PlanePosition="Max" Value="0.0"/>

</Plane>

<Plane Axis="Y">

<ConstantDerivative PlanePosition="Min" Value="0.0"/>

<ConstantDerivative PlanePosition="Max" Value="0.0"/>

</Plane>

<Plane Axis="Z">

<ConstantDerivative PlanePosition="Min" Value="0.0"/>

<ConstantDerivative PlanePosition="Max" Value="0.0"/>

</Plane>

</BoundaryConditions>

</DiffusionField>

</Steppable>

<Steppable Type="PIFInitializer">

<PIFName>rectangular.piff</PIFName>

</Steppable>

</CompuCell3D>
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Now the XML file of the EMM will be given.

<CompuCell3D version="3.6.2">

<Potts>

<!-- Basic properties of CPM (GGH) algorithm -->

<Dimensions x="150" y="150" z="1"/>

<Steps>3000</Steps>

<Temperature>20.0</Temperature>

<NeighborOrder>3</NeighborOrder>

</Potts>

<Plugin Name="CellType">

<!-- Listing all cell types in the simulation -->

<CellType TypeId="0" TypeName="Medium"/>

<CellType TypeId="1" TypeName="EC"/>

<CellType TypeId="2" TypeName="Mesa"/>

</Plugin>

<Plugin Name="Volume">

<VolumeEnergyParameters CellType="EC" LambdaVolume="20.0"

TargetVolume="74"/>

<VolumeEnergyParameters CellType="Mesa" LambdaVolume="20.0"

TargetVolume="74"/>

</Plugin>

<Plugin Name="CenterOfMass">

<!-- Module tracking center of mass of each cell -->

</Plugin>

<Plugin Name="Contact">

<!-- Specification of adhesion energies -->

<Energy Type1="Medium" Type2="Medium">0</Energy>

<Energy Type1="Medium" Type2="EC">0</Energy>

<Energy Type1="Medium" Type2="Mesa">0</Energy>

<Energy Type1="EC" Type2="Mesa">8</Energy>

<Energy Type1="EC" Type2="EC">1</Energy>

<Energy Type1="Mesa" Type2="Mesa">10</Energy>

<NeighborOrder>4</NeighborOrder>

</Plugin>

<Plugin Name="Chemotaxis">

<!-- Specification of chemotaxis properties of select cell

types. -->

<ChemicalField Name="c1" Source="FlexibleDiffusionSolverFE">

</ChemicalField>

<ChemicalField Name="c2" Source="FlexibleDiffusionSolverFE">

<ChemotaxisByType ChemotactTowards="Mesa" Lambda="150.0"

Type="EC"/>

</ChemicalField>
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</Plugin>

<Plugin Name="Secretion">

<!-- Specification of secretion properties of select cell types. -->

<Field Name="c1">

<Secretion Type="EC">0.13</Secretion>

</Field>

<Field Name="c2">

<Secretion Type="Mesa">0.00001</Secretion>

</Field>

</Plugin>

<Steppable Type="FlexibleDiffusionSolverFE">

<!-- Specification of PDE solvers -->

<DiffusionField>

<DiffusionData>

<FieldName>c1</FieldName>

<DiffusionConstant>0.24</DiffusionConstant>

<DecayConstant>0.003</DecayConstant>

</DiffusionData>

<BoundaryConditions>

<Plane Axis="X">

<ConstantDerivative PlanePosition="Min" Value="0.0"/>

<ConstantDerivative PlanePosition="Max" Value="0.0"/>

</Plane>

<Plane Axis="Y">

<ConstantDerivative PlanePosition="Min" Value="0.0"/>

<ConstantDerivative PlanePosition="Max" Value="0.0"/>

</Plane>

</BoundaryConditions>

</DiffusionField>

<DiffusionField>

<DiffusionData>

<FieldName>c2</FieldName>

<DiffusionConstant>0.24</DiffusionConstant>

<DecayConstant>0.02</DecayConstant>

<DoNotDecayIn>Mesa</DoNotDecayIn>

</DiffusionData>

<BoundaryConditions>

<Plane Axis="X">

<ConstantDerivative PlanePosition="Min" Value="0.0"/>

<ConstantDerivative PlanePosition="Max" Value="0.0"/>

</Plane>

<Plane Axis="Y">

<ConstantDerivative PlanePosition="Min" Value="0.0"/>

<ConstantDerivative PlanePosition="Max" Value="0.0"/>
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</Plane>

</BoundaryConditions>

</DiffusionField>

</Steppable>

<Steppable Type="PIFInitializer">

<PIFName>NewSimulation.piff</PIFName>

</Steppable>

</CompuCell3D>

6.2 Steppables

Here the steppable will be given used for the autocrine loop in the EMM.

from PySteppables import *

import CompuCell

import sys

class ECMesaSteppable(SteppableBasePy):

def __init__(self,_simulator,_frequency=1):

SteppableBasePy.__init__(self,_simulator,_frequency)

def start(self):

def step(self,mcs):

field1=CompuCell.getConcentrationField(self.simulator,"c1")

#veld van c1

field2=CompuCell.getConcentrationField(self.simulator,"c2")

#veld van c2

for cell in self.cellListByType(2):

x=int(cell.xCOM) #x-waarde van cel

y=int(cell.yCOM) #y-waarde van cel

field1_cell=field1[x,y,0] #conc c1 bij cel

field2_cell=field2[x,y,0] #conc c2 bij cel

if field1_cell >= 1: #als conc c1 >= 1 dan

field2_cell=field2_cell+0.2*field1_cell

#verhoog conc c2 met helft conc c1

field2[x,y,0]=field2_cell

def finish(self):

# Finish Function gets called after the last MCS

pass
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