
Auto-vectorization using polyhedral compilation for an embedded ARM
platform
Nieuwenhuizen, B.M.

Citation
Nieuwenhuizen, B. M. (2014). Auto-vectorization using polyhedral compilation for an
embedded ARM platform.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in the
Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3596546

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3596546

B.M. Nieuwenhuizen

Auto-vectorization using polyhedral

compilation for an embedded ARM

platform

Bachelorscriptie

Scriptiebegeleiders:
H.J. Hupkes

T.P. Stefanov

J.T. Zhai

Datum Bachelorexamen: 20 augustus 2014

Mathematisch Instituut, Universiteit Leiden

Auto-vectorization using polyhedral

compilation for an embedded ARM

platform

Bas Nieuwenhuizen

Abstract

Various modern instruction set architectures contain SIMD instructions. By using

these instructions, programmers and compilers can expose fine-grained parallelism on

the processor and significantly increase the performance of their programs.

Analytical models such as the polyhedral model facilitate various transformations

and analyses, which enable efficient automated selection of transformations.

In this thesis we examine applying polyhedral compilation to automatic vector-

ization by the compiler. In combination with an analytic model for the performance

gains this enables efficiently selecting transformations to vectorize loops.

1 Introduction

Many programs spend most of their time in loops. It therefore became worth-
while for compilers to optimize loops. A significant part of the loops has few
dependencies and can essentially have all iterations executed in parallel, espe-
cially those in multimedia and numerical applications.

A few processor architectures, trying to use that parallelism, introduced
vector instructions that work on multiple data elements in parallel. However,
using these instructions is often not easy and left for heuristics in the compiler
or for the programmer.

If the programmer has to use these instructions the original source code
becomes hard to read. Furthermore the programmer has to maintain multiple
versions for different processors. Therefore, much research is being done in
letting the compiler automatically use these instructions.

The polyhedral model [5] is used to model loops and perform complex trans-
formations on them. Using these transformations it is possible to vectorize many
loops that could not easily be vectorized by hand.

If the compiler decides which statements to vectorize and how to vectorize
them, it can make decisions that do not result in the optimal performance. It
is therefore necessary to estimate whether the transformation is profitable and
which transformation is the most profitable.

One possible solution is to define a benchmark program and run that with all
possible transformations. However, this is not practical as it is both intractable

1

2 The polyhedral model 2

to run such a program many times during a compilation and the program needs
to explicitly generate another program for this method to work. Furthermore,
it is also impractical to create a simple formula that captures all intricacies of
the hardware platform, as modern hardware platforms are very complex. The
alternative we explore in this thesis is therefore to estimate the profitability
using an simple heuristic formula.

This thesis evaluates a set of transformations with a simple cost formula,
based on a set of transformations and a formula proposed by Trifunovic et
al.[10]. In particular, we evaluate two possible interpretations of the search
space on an embedded ARM platform and compare it with a new search space
that generalizes the other two.

Kong et al [9] also studied such a model, but focused on not only vectoriza-
tion, but also cache behavior and the related loop tiling optimization.

This thesis is organized as follows: Section 2 describes the theory of the
polyhedral model. Sections 3 and 4 present the search space and cost model for
the optimizations. Section 5 describes our implementation. Section 6 presents
an evaluation of that implementation and we conclude in section 7. Section 8
contains some ideas for further research.

2 The polyhedral model

The polyhedral model is a linear algebraic framework for representing the ex-
ecution of parts of a program that is suitable for analysis and transformation.
We start with a few definitions that are used in the definition for the polyhedral
model.

Definition 2.1. An affine map f from an n-dimensional vector space to an
m-dimensional vector space is a map that can be decomposed into a linear map
and a translation.

It follows that every affine map f is a combination of a linear map g and a
vector c such that

f(x) = g(x) + c

Definition 2.2. A polyhedron P is a set in R
n such that there is a matrix

A ∈ R
m×n and a vector b ∈ R

m such that

P = {p ∈ R
n|Ap+ b ≥ 0}

A polytope is a bounded polyhedron.

Definition 2.3. A lattice is a set L ⊂ R
n such that

L = {
n
∑

i=1

aibi|ai ∈ Z}

for a basis b1, . . . , bn ∈ R
n.

2 The polyhedral model 3

We consider a map f on an n-dimensional lattice affine if and only if there is
an affine map R

n → R
n such that f is the restriction of that map to the lattice.

Definition 2.4. Let n,m ∈ N and finite sets I, V be given. An instruction t is
a tuple (i, r, w) where

1. i ∈ I.

2. r ⊂ V × (Zn affine
→ Z

m)

3. w ⊂ V × (Zn affine
→ Z

m)

Wheres both r and w are finite. We call I the instruction alphabet and V

is the set of variables. Furthermore, n is the dimensionality of the iteration
vectors. We define for k ∈ Z

n

Rt(k) = {(v, j) ∈ V × Z
m|∃(v′, f) ∈ r : v′ = v and j = f(k)}

and similarly

Wt(k) = {(v, j) ∈ V × Z
m|∃(v′, f) ∈ w : v′ = v and j = f(k)}

The sets I and V are mostly for bookkeeping and we assume in this paper
that these sets are the same for all instructions in a program. Note that Rt(k)
and Wt(k) are the array elements read and written by this instruction in it-
eration k. However not all arrays in a program have necessarily dimension m.
This can be solved by letting m be the maximum number of dimensions and
increasing the number of dimensions of arrays by adding dimensions with length
1.

Note that we use functions for the sets of accessed elements. These are
used to model multiple executions of the same instruction. We can then say
that the i’th execution reads elements Rt(i) and writes Wt(i). This definition
generalizes that to a multidimensional description. As this model is used for
loop transformations we call i the iteration vector.

Definition 2.5. A statement S is a tuple (DS , IS,dS) where

1. DS is the intersection of an dS-dimensional polytope and a dS-dimensional
lattice.

2. IS,dS is a sequence I1
S,dS = (i1, r1, w1), I

2
S,dS , . . . , I

m
S,dS = (im, rm, wm) of

instructions for which the iteration vectors are contained in Z
dS

.

We call DS the iteration domain of the statement.

The interesting property of a statement is not which array elements it reads
and writes, but from which array elements it needs the values and which ele-
ments it changes. The difference is that if it writes an array element and reads

2 The polyhedral model 4

it in a later instruction, it does not depend on the value that is initially stored
in the element. The set of read elements is

R∗
S(k) =

|IS |
⋃

u=1

(

RIu

S
(k) \

v−1
⋃

v=1

WIv

S
(k)

)

Note that the map k 7→
⋃|IS |

u=1RIu

S
(k) can be decomposed in essentially a set

of affine functions, which has computational advantages. R∗
S(k) does not have

that property as for example instruction 1 can write to (x, (k1)) and instruction
2 can write to (x, (10 − k1)) for some x, which result in a dependency on an
element except in the case that k1 = 5. As the decomposition in a set of
affine functions has computational advantages, such a superset of R∗

S(k) is often

chosen. Furthermore as the map k 7→
⋃|IS |

u=1RIu

S
(k) is simple to compute and

can be decomposed, we never use a set that is not contained in that set:

R∗
s(k) ⊆ Rs(k) ⊆ ∪

|IS |
u=1RIu

S
(k)

Note that another solution to this problem is to decompose statements with
multiple instructions into statements with a single instruction. This however
increases the number of statements

For written elements we can use

Ws(k) = ∪
|IS |
u=1WIu

S
(k)

Note that the intersection of an n-dimensional polytope P and lattice with
basis b1, . . . bn can be represented by an integer polytope on R

n × Z
n with the

the added constraints

xi =

n
∑

j=1

xn+j(bn+j)i

for all i ∈ Z, 1 ≤ i ≤ n using the parameters x1, . . . , x2n.

Definition 2.6. A statement instance of a statement S in an iteration domain
DS for S is a pair (S, i) with i ∈ DS.

Statement instances correspond to a single execution of a statement.
We do not yet have a representation of the execution order of statement in-

stances. An intuitive solution is an affine map from statement instances to time.
A multidimensional representation of the time using a lexicographic ordering is
used due to limitations in the process that generates code from the polyhedral
model.

Definition 2.7. A schedule for a statement S is an injective affine function
from DS to a lattice.

By putting multiple statements and corresponding iteration domains and
schedule together we get a Static Control Part (SCoP).

2 The polyhedral model 5

Definition 2.8. A Static Control Part (SCoP) is a finite set

{(S, θS) : S is a statement and θS is a schedule for S}

such that for statements S 6= T we have that

θs(DS) ∩ θT (DT) = ∅

and the codomains of all schedules have an equal number of dimensions.

SCoPs are used to represent a maximal region of a program that can be
represented by the polyhedral model. The parts of a program that can be
represented by a SCoP can be characterized by the following conditions [4]

1. The only possible control flow consists of loops and if’s with affine bounds.

2. (Multidimensional) arrays are the only data structures.

3. There is are no calls or they have been inlined.

4. Affine bounds, conditions and memory accesses depend only on outer loop
counters, constants and a set of parameters that is constant during the
execution of the SCoP.

Let us consider the following example

f o r (i n t i = 0 ; i < 1024 ; ++i) {
a [i] = 0 ; // S1
f o r (i n t j = i ; j < 2048 ; ++j) {

a [i] += b [i] [j] ; // S2
}

}

This example is trivially a SCoP, with the iterations domains

DS1 = {i ∈ Z : 0 ≤ i ≤ 1023}

and
DS2 = {(i, j) ∈ Z

2 : 0 ≤ i ≤ 1023 ∧ j − i ≥ 0 ∧ ≤ 2047}

Furthermore, we have the sets of affine memory accesses

RS1(i) = ∅

WS1(i) = {(a, (i))}

RS2(i, j) = {(b, (i, j))}

WS2(i, j) = {(a, (i))}

And finally we have the schedules

θS1(i) = (i, 0)

θS2(i, j) = (i, 1, j)

2 The polyhedral model 6

Transformations

The transformations considered in this model are primarily concerned with the
order of statements and their instances. To this end, we only consider transfor-
mations of the schedule and the iteration domain.

Definition 2.9. A transformation is an invertible map f from a SCoP Po to a
SCoP Pn such that for all (S′, θS′) = f((S, θS)) we have invertible maps gS , hS

such that

1. DS′ = gS (DS)

2. θS′ = hS ◦ θS ◦ g
−1
S

3. |IS′ | = |IS | and for all IkS = (i, r, w) we have

IkS′ = (i, {v ◦ g−1
S : v ∈ r}, {v ◦ g−1

S : w})

where hS and g−1
S are affine.

In essence a transformation can change schedules, but not the code that
is executed. However, we allow a transformation on the iteration domain as
we want to be able to increase the number of dimensions of the codomain of
the schedule, which is not possible using an affine map. The instructions are
changed accordingly to compensate for the change in iteration domains.

Furthermore, a transformation induces an isomorphism between statement
instances. We can map the instance (S, i) to (S′, gS(i)). When considering
this isomorphism, the only effect a transformation has is therefore changing the
order of execution of statement instances.

Not every transformation is valid however, as after a transformation a state-
ment instance could be executed that depends on an instance that is executed
afterwards.

Definition 2.10. Two statement instances (S1, i1) and (S2, i2) are conflicting
if either

1. RS1
(i1) ∩WS2

(i2) 6= ∅

2. WS1
(i1) ∩RS2

(i2) 6= ∅

3. WS1
(i1) ∩WS2

(i2) 6= ∅

We can then define the transformations that do not change program seman-
tics.

Definition 2.11. A transformation from Po to Pn is semantics-preserving if
and only if there are no conflicting statement instances (S1, i1) and (S2, i2) in
SCoP Po such that

θS1
(i1) < θS2

(i2)

and their corresponding statement instance (S′
1, i

′
1) and (S′

2, i
′
2) have

θS′

1
(i′1) > θS′

2
(i′2)

2 The polyhedral model 7

Girbal proposed a family of schedules for a statement with a dS dimensional
iteration domain as follows:

Θs =

0 0 . . . 0 βS
0

A1,1 A1,2 . . . A1,dS 0
0 0 . . . 0 βS

2

A2,1 A2,2 . . . A2,dS 0
0 0 . . . 0 βS

0

...
...

...
...

...
AdS ,1 AdS ,2 . . . AdS ,dS 0

0 0 . . . 0 βS
0

where A ∈ Z
dS×dS

and β ∈ Z
dS+1. The affine scheduling function θs : ZdS

→

Z
2dS+1 is then

θS(i) = Θ

(

i

1

)

Due to limitations in the code generation, the matrix A needs to be invert-
ible [11]. Furthermore, we require the ranges of θS1 and θS2 to be disjunct for
all pairs of different statements S1, S2.

Different classical loop optimization correspond to different parts of the
scheduling matrix [6]:

1. Matrix A has to be an invertible matrix and is used for transformations
such as loop interchange and other transformations that transform the
execution order of instances within a statement.

2. β is used to transform the relative ordering of statement to each other.
This is used in optimizations such as loop fusion.

Loop interchanges[6] correspond exactly to permutations of the rows of sub-
matrix A of the schedule. For example

f o r (i n t i = 0 ; i < 1024 ; ++i)
f o r (i n t j = 0 ; j < 512 ; ++j)

ar r [i] [j]++;

with schedule

0 0 0
1 0 0
0 0 0
0 1 0
0 0 0

i

j

1

can be loop interchanged to

f o r (i n t j = 0 ; j < 512 ; ++j)
f o r (i n t i = 0 ; i < 1024 ; ++i)
a r r [i] [j]++;

3 Optimization search space 8

with schedule

0 0 0
0 1 0
0 0 0
1 0 0
0 0 0

i

j

1

We transposed the rows of the submatrix A from

(

1 0
0 1

)

to

(

0 1
1 0

)

.

Strip-mining[6] corresponds to replacing a loop index i in the iteration do-
main with i = cj+ k where 0 ≤ k ≤ c− 1 and c is a constant, and subsequently
transforming the schedule to make k the index of the innermost loop. If the
innermost loop has no dependencies between iterations, the code generation can
then vectorize this loop. For example

f o r (i n t i = 0 ; i < 1024 ; ++i)
a r r [i]++;

can be transformed to

f o r (i n t i = 0 ; i < 1024 ; i += 4)
f o r (i n t j = 0 ; j < 4 ; ++j)

ar r [i + j]++;

The code generator can then emit code to execute the inner loop in parallel.
The iteration domain is modified from {i ∈ Z : 0 ≤ i ≤ 1023} to {(i, j, t) ∈
Z
3 : i = 4t ∧ 0 ≤ j ≤ 3 ∧ 0 ≤ i + j ≤ 1023}, where t is used as a variable to

contract i to be a multiple of 4.

3 Optimization search space

How effective an optimization is depends on the set of solutions considered by the
optimization. Optimizing in a large search space has the potential of finding
a good solution that would be excluded by a small search space. However,
searching through a large search space will also take more time. Therefore the
size of the search space is a compromise between compilation time and run time.

There exist integer linear programming formulations of the set of valid sched-
ules into which we could incorporate an analytical cost function. It has however
already been established that this formulation introduces a sufficiently large
number of variables to make this formulation impractical for a production com-
piler.

We therefore need to limit our search space to a subset of the semantics-
preserving transformations. We will present three algorithms which generate
a search space. All three search spaces are based on a combination of loop
interchanges and strip-mining.

Let x be the SCoP that is to be optimized, n the number of statements in the
SCoP and d the maximum dimensionality of the iteration domains. Furthermore
let φ be the function that assigns each SCoP a cost, which we try to minimize.

3 Optimization search space 9

Algorithm 1 Optimizer X1

xmin ← x

for σ ∈ { d-element permutations} do
x′ is x interchanged by the permutation σ.
for v = 1 to d do

y is x′ with dimension v strip-mined for all statements.
if φ(y) < φ(xmin) then

xmin ← y

end if

end for

end for

Algorithm 1 searches exactly the loop interchange and strip-mine combina-
tions, where all statements are transformed exactly the same way. This search
space is similar to more traditional compiler optimizations that transform whole
loops.

The algorithm evaluates up to ndd! possible schedules. As the number of
dimensions d is often very small, the algorithm is tractable even though the
number of schedules is exponential in the number of dimensions.

This search space is limited, an example where it does not find the vector-
ization opportunities is

f o r (i n t k = 0 ; k < 1024 ; ++k) {
f o r (i n t i = 0 ; i < 1024 ; ++i)

f o r (i n t j = 0 ; j < 1024 ; ++j)
v [i] [j + 1] = v [i] [j] ; // A

f o r (i n t i = 0 ; i < 1024 ; ++i)
f o r (i n t j = 0 ; j < 1024 ; ++j)
w[i +1] [j] = w[i] [j] ; // B

}

where A is only vectorizable in i and B is only vectorizable in j.
Algorithm 2 is able to able to vectorize that example by greedily considering

to strip-mine dimensions per statement. It searches through a larger search
space. However, as it searches greedily through that space it still evaluates up
to ndd! schedules.

As the algorithm does not backtrack, it does not consider all combinations
of strip-mine dimensions. In particular, the searched space X2 is not a superset
of X1.

Furthermore, it ensures that it has a semantics-preserving schedule at all
times by checking a complete schedule which does not strip-mine the statements
that have not yet been considered. Note that this misses opportunities in loops
as simple as

f o r (i n t i = 0 ; i < 1024 ; ++i) {
f o r (i n t j = 0 ; j < 4 ; ++j)

v [i] [j] += w[i] [j] ; // A

3 Optimization search space 10

Algorithm 2 Optimizer X2

xmin ← x

for σ ∈ { d-element permutations} do
x′ is x interchanged by the permutation σ.
for i = 1 to n do

x′
orig ← x′

for v = 1 to d do

y is x′
orig with statement i strip-mined in dimension v.

if φ(y) < φ(x′) then
x′ ← y

end if

end for

end for

if φ(x′) < φ(xmin) then
xmin ← x′

end if

end for

v [i] [0] = 1 .0 / v [i] [0] ; // B
}

As B can not be strip-mined without strip-mining A in dimension i. However it
can be more beneficial to vectorize B as divisions are often an order of magnitude
slower than additions. Note that a loop interchange is not going to help, as the
algorithm still chooses dimension j first for statement A.

All loop interchange and per statement strip-mining combinations generate
dnd! schedules to consider, which is also exponential in the number of statements
n.

Theorem 3.1. A transformation from Po to Pn is semantics-preserving if and
only if for all statements S1 and S2 in Po the restriction of the transformation
to those two statements is semantics-preserving.

Proof. Suppose that the transformation is not semantics-preserving. Then there
are statement instances i and j of statement Si, Sj ∈ Po such that i depends on
j and in Pn i is executed before j. The restriction of the transformation to S1

and Sj also contains i and j and is therefore not semantics-preserving.
However, suppose that there are statements Si and Sj in Po such that the

restriction of the transformation to Si and Sj is not semantics-preserving. Then
there are statement instance i and j in Si and Sj such that i depends on j and
in Pn i is executed before j. The original transformation transforms those
instances in the same way and is therefore not semantics-preserving.

Note that if we have a transformation for each single statement in a SCoP,
we can combine them into a transformation for the entire SCoP. Furthermore
it follows that this combined transformation is semantics-preserving if and only
if all combinations of two transformations is semantics-preserving.

3 Optimization search space 11

We can then construct a graph of transformations on statements in a SCoP
P where each node corresponds to a transformation on a statement and there
is an edge between two nodes if they are not equal and correspond to the
same statement, or their combined transformation is not semantics-preserving.
This graph is not simple as it can have loops: A transformation on a single
statement can be not semantics-preserving and the corresponding node will
therefore have a loop. The graph that corresponds to the last example is

A B

No transformation

Strip-mine j

Strip-mine i

Each independent set of the graph corresponds to a transformation on a
subset of P , as it corresponds to at most one transformation per statement.
By theorem 3.1 this combined transformation is semantics-preserving. On the
other hand every semantics-preserving transformation that can be represented
by a set of nodes in the graph corresponds to an independent set of nodes by
theorem 3.1.

It follows that the maximum independent set in the graph has exactly |P |
elements, as at most |P | transformations can be combined into a transformation
and the identity transformation corresponds to a set with |P | elements. There-
fore each semantics-preserving transformation of P that can be represented by a
set of nodes in the graph corresponds to a maximum independent set and each
maximum independent set corresponds to a semantics-preserving transforma-
tion on P .

Furthermore if the cost model can be evaluated independently per statement,
we can assign a weight to each node and the cost of a transformation is then
the sum of the weights of the corresponding nodes. The problem of finding a
semantics-preserving transformation can then be reduced to finding a maximum
independent set with minimum weight. By subtracting a suitably large constant
from all weights this reduces to a minimum weight independent set problem.

Algorithm X3 considers every loop interchange and for every loop inter-
change it builds a graph of the strip-mine transformations and finds the mini-
mum cost semantics-preserving transformation.

Using this reduction to calculate the optimal strip-mining transformations
we get an algorithm that does d2n2d! polyhedral operations to construction the
graphs and dnd! simpler operations. This formula still contains the exponential
part, but the underlying operations is much faster, especially if one considers
that the polyhedral operations are non-polynomial operations themselves.

Note that search space X3 with all loop interchanges on the entire SCoPs
and per statement strip-mine transformations is a proper superset of X1 and
X2. With an accurate cost model searching in X3 therefore produces code that

4 Cost model 12

Algorithm 3 Optimizer X3

xmin ← x

for σ ∈ { d-element permutations} do
x′ is x interchanged by the permutation σ.
build transformation graph
y is x′ transformed in optimal way according to the graph.
if φ(y) < φ(xmin) then

xmin ← y

end if

end for

is at least as fast as the code generated using the other two search spaces.

4 Cost model

An analytic cost model is key to exploring the search space without having to
explicitly construct every possible solution in the search space. Furthermore,
having a simple model for the performance gains facilitates reasoning about
which parts of the search space will contain the best solutions.

Both modern processors and the optimizations that are typically performed
after vectorization are sufficiently complex to make an analytic model that per-
fectly models the performance impractical. Therefore, the cost model has to be
an approximation.

The central assumption we use is that vectorized loops run faster except
if there are factors that interfere with the vectorization. We assume that the
most important interfering factor is that the vectorizer needs to insert extra
instructions for memory accesses with a stride between iterations that is not
equal to 1.

Our heuristic is based on the heuristic chosen by Trifunovic et al. [10]. They
also based their cost model on the alignment of the memory accesses. However,
LLVM does not store useful information about pointer alignment. We therefore
decided not include the alignment component in the cost model.

Memory stride

Vector load and store instructions on ARM can only access series of consecutive
values. If the compiler decides to vectorize a loop in such a way that the resulting
program needs to load and store non-consecutive vectors, it has to include extra
instructions to do these loads.

The stride of a memory access depends on the layout of the array that is ac-
cessed. As memory is a single-dimensional array the compiler needs to linearize
the array. Most compilers store element i, j, k of an arrays with dimensions size
L,M and N and elements size E at index (iMN+jN+k)E and this layout is in
fact suggested by several language standards [8], as they see a multidimensional
array as an one dimensional array of arrays.

5 Implementation 13

Formula

The formula used to calculate the cost of a statement S = (DS , I) is then

|DS |

V F

(

∑

i∈I

c(i)

)

Where c(i) is the cost of the vectorized version of instruction i. For loads
and stores this cost depends on the memory stride of the access as explained in
an earlier subsection.

V F is the vectorization factor, which is the number of elements the vector
instructions operate on. If the statement contains instructions that work with
differing amounts of elements, we choose the largest one.

For the purpose of the cost formula, if an instruction works on k ≤ V F

elements, it is counted V F
k

times. In our current implementation those element
counts are all powers of two, which ensures that this quotient is integer and it
is therefore possible to emit those instructions to work on the larger number of
elements.

5 Implementation

We implemented the vectorization optimization in the Polly [7] framework with
the LLVM compiler framework.

Polly uses a variant of the polyhedral model that is slightly different to the
model described in section 2. The developers of Polly chose to represent func-
tions as relations between the domain and codomain, which can be represented
by integer polyhedra. It allows schedules that are not affine and the strip-mine
transformations can therefore be done without transforming the iteration do-
main.

Determining the penalties

We used the following costs in the implementation:
stride cost

0 1
1 2

2 or larger 4
For stride 0 there is a NEON instruction that loads a float and replicates it

across the vector register in a single cycle. Note that there are no write with
stride 4, as those would induce a dependency between instructions that prevent
the vectorization.

For stride 1 we use the plain vector load and store instructions. Because
LLVM does not have suitable alignment information, we cannot emit the aligned
versions of these instructions. The nonaligned instructions, however, have an
extra cycle latency. The primary problem with the alignment information in
LLVM is that it does not store the alignment information of pointers, but of

6 Evaluation 14

Fig. 1: Relative performance change caused by Polly.

at
axbi

cg

ch
ol
es
ky

do
itg
en

ge
m
ve
r

ge
su
m
m
v
m
vt

sy
m
m
sy
r2
k sy

r

tr
m
m

du
rb
in

dy
np
ro
g lu

lu
dc
m
p

co
va
ria
nc
e

flo
yd
-w
ar
sh
al
l

re
g-
de
te
ct ad

i

fd
td
-a
pm
l

ja
co
bi
-2
d-
im
pe
r

se
id
el
-2
d

0.5

1

1.5

2

load and store instructions. If a pointer is accessed in a loop and the pointer is
aligned in the first iteration then it typically is not in other iterations and the
instructions have the lowest common denominator, which is not aligned.

The NEON instruction set contains load and store instructions that can
access a specific value in a vector register. It follows that we can load and store
values with larger strides by doing 4 separate loads and stores.

6 Evaluation

We experimentally evaluate the vectorization optimization on a modified ver-
sion the Polybench/C [2] benchmark suite on a Zedboard[3], which contains an
ARM Cortex A9 processor[1]. We compared it against the existing vectorizers,
including the primary optimizer included in Polly.

We modified the Polybench suite to use global arrays instead of arrays al-
located by a malloc wrapper in a different file. Firstly, memory allocation
function provided by the system libraries for the Zedboard had a bug which
resulted in memory corruption. Furthermore, LLVM could not detect that the
arrays are disjunct and the Polly framework does not yet support generating
separate versions and deciding at runtime which version is applicable. Doing
the aforementioned modification solves both issues.

As the ARM NEON instructions only support single precision arithmetic,
the benchmarks do not include results using double precision arithmetic. We
tested both the tiny and small size benchmark configuration using the following
configurations of the compiler:

6 Evaluation 15

Fig. 2: Geometric mean of the relative runtime performance.

Po
lly

Pl
ut
o
X
1
X
2
X
3

0
0.5
1

1.5

Fig. 3: Relative total compile times using the different search spaces.

X1X2X3

0
1
2
3
4

1. Clang with -O3 with Polly, but without any polyhedral optimizations.

2. Clang with -O3 with Polly and a optimizer based on Pluto, which is an
existing optimization based on the polyhedral framework.

3. Clang with -O3 with Polly and the vectorization optimization using search
space X1.

4. Clang with -O3 with Polly and the vectorization optimization using search
space X2.

5. Clang with -O3 with Polly and the vectorization optimization using search
space X3.

We compare them against Clang with -O3, which include a loop vectorizer
and basic block vectorizer that do not use the polyhedral framework.

Figure 1 shows that enabling Polly without any scheduling optimizations has
significant performance improvements on average. The regression on dynprog is
a consequence of bad interaction between Polly and the loop vectorizer. Most
of the benchmarks have loops with very small bodies, which could explain the
high variance of the results, as small changes in code can have relatively large
changes in performance.

Figure 2 shows that extending the search space can result in better perfor-
mance. All search spaces result in better code than Polly or Polly with Pluto.

5 shows the individual benchmarks. Our search spaces do not regress sig-
nificantly for any benchmark compared to just Polly. Note the benchmark
”ftfd-apml”. It has equal runtimes for X1 and X3, but is slow for X2. This
shows that X2 can result in worse solutions than X1 and that this is not only
theoretical, but also encountered in practice.

7 Conclusion 16

Figure 3 shows that searching through the larger search spaces does take
significantly more time. Note that we can precalculate the cost for each strip-
mine dimension for each statement. This is the most expensive part of the cost
formula and we avoid calculating it multiple times. This brings the compile
time much close to each other than in a naive implementation, as those parts
of the cost formula dominate the time needed to determine the cost.

Furthermore, the compile times for the optimizations were mostly dominated
by determining which transformations were semantics-preserving, as the time
needed for a single query was around 0.6 milliseconds on average.

In X3 the time needed to find the minimum weight independent sets was
typically less than 1% of the compile time for all but one benchmark.

The compile and run times adhere to the typical tradeoff between the two.

7 Conclusion

We presented a set of optimizations which try to vectorize loop nests according
to an approximate cost model. The optimizations use the polyhedral model
and leverage the extra information that can be represented to enable complex
transformations. The cost model can be used with just the polyhedral represen-
tation, which avoids code generation while searching for profitable vectorization
strategies. We considered three search spaces for the optimizations, each of
which is based on loop interchanges and strip-mining.

Furthermore, we implemented the optimizations in Clang and evaluated
them using an ARM processor.

8 Discussion

On a Core i7, some benchmarks were slower with the vectorization pass than
without. On closer examination these slowdowns were caused by one pattern:
if we vectorize a statement in a loop and do not vectorize another statement in
that loop we get mismatched code such as

f o r (i n t i = 0 ; i < 1024 ; ++i) {
i f (i % 4 == 0)

vector i zedStatement1 (i) ;
statement2 (i) ;

}

This is then optimized by the backend. The remainder is replaced by a
bitwise and, but the is still an extra branch. The preferred solution in this code
would be to transform into

f o r (i n t i = 0 ; i < 1024 ; i += 4) {
vector i zedStatement1 (i) ;
f o r (i n t j = 0 ; j < 4 ; ++j)

statement2 (i + j) ;
}

8 Discussion 17

However, this code still contains extra branches that can interact with the
processor to get a significant slowdown. How to include this increase in com-
plexity of the control flow in the performance model is still an open problem.

Furthermore, some examples used throughout the paper can be clearly vec-
torized, but the algorithm does not find it because it always strip-mines using
the equation i = j + k with 0 ≤ k ≤ 3 and j a multiple of 4. In some of these
cases the algorithm would be able to vectorize the code if we also allow j a
specific value x such that j ≡ x mod 4.

We found that some of the polyhedral operations were quite slow and we
theorize that this is caused by the overly general notion of integer map in Polly,
which causes more general and slower algorithms to be used.

References

[1] Cortex-a9 processor. www.arm.com/products/processors/cortex-a/

cortex-a9.php, accessed 20 June 2014.

[2] Polybench/c. http://web.cse.ohio-state.edu/~pouchet/software/

polybench/, accessed 20 Jun 2014.

[3] Zedboard. http://www.zedboard.org/product/zedboard, accessed 20
June 2014.

[4] Cédric Bastoul. Improving Data Locality in Static Control Programs. PhD
thesis, Pierre et Marie Curie, 2004.

[5] Paul Feautrier. Dataflow analysis of array and scalar references. Interna-
tional Journal of Parallel Programming, 20(1):23–53, 1991.

[6] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David
Parello, Marc Sigler, and Olivier Temam. Semi-automatic composition of
loop transformations for deep parallelism and memory hierarchies. Inter-
national Journal of Parallel Programming, 34(3):261–317, 2006.

[7] Tobias Grosser. Enabling polyhedral optimizations in llvm. Diploma thesis,
Passau, 2011.

[8] ISO. Information technology – programming languages – c++. ISO
14882:2011, International Organization for Standardization, Geneva,
Switzerland, 2011.

[9] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noël
Pouchet, and P. Sadayappan. When polyhedral transformations meet simd
code generation. In Hans-Juergen Boehm and Cormac Flanagan, editors,
PLDI, pages 127–138. ACM, 2013.

[10] Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira
Rosen. Polyhedral-model guided loop-nest auto-vectorization. In PACT,
pages 327–337. IEEE Computer Society, 2009.

8 Discussion 18

[11] Nicolas Vasilache, Cédric Bastoul, and Albert Cohen. Polyhedral code
generation in the real world. In CC, volume 3923 of Lecture Notes in
Computer Science, pages 185–201. Springer, 2006.

More benchmark results

8 Discussion 19

Fig. 4: Relative performance of schedule optimizations against Clang without
Polly, part 1

0.5 1 1.5 2 2.5 3 3.5

2mm

3mm

atax

bicg

cholesky

doitgen

gemm

gemver

gesummv

mvt

symm

syr2k

syr

trmm

durbin

dynprog
Pluto

X1

X2

X3

8 Discussion 20

Fig. 5: Relative performance of schedule optimizations against Clang without
Polly, part 2.

0.5 1 1.5 2 2.5

gramschmidt

lu

ludcmp

correlation

covariance

floyd-warshall

reg-detect

adi

fdtd-2d

fdtd-apml

jacobi-1d-imper

jacobi-2d-imper

seidel-2d
Pluto

X1

X2

X3

