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Abstract

The existence of the most recent common maternal ancestor, the mitochondrial Eve, is studied
using results from the Galton-Watson process. To accomplish this, ancestral trees are generated
according to certain assumptions and progeny distributions.
Results from the Galton-Watson process are first recreated from which the condition for an infinite
tree is derived. These results are applied to a model of the mitochondrial Eve. Assuming a
number of women contemporary to the mitochondrial Eve, the maximum probability of one lineage
surviving is also determined in a specific situation.
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1 Introduction

1.1 The mitochondrial Eve

The Out of Africa model [12] proposes the evolution of archaic Homo Sapiens into modern humans as
originating in Africa after which earlier human populations were replaced by migration and without
genetic mixing. By contrast, the Multiregional hypothesis [11] proposes that all archaic human life
forms evolved simultaneously to the modern human, while having enough genetic mixing to ensure
the development of a unique human race. Both hypotheses rely in part on fossil evidence but focus
also on the evolution of genetic material. One source for such genetic research is mitochondrial DNA
(mtDNA), which is not found in cells’ nuclei but in organelles called the mitochondria.

Though very short, mtDNA may play a part in attempting to answer these evolutionary questions. As
it happens, mtDNA is inherited solely from the mother as opposed to nuclear DNA which is inherited
in equal parts from the father and the mother. Due to this peculiar form of inheritance, the mtDNA
of an individual would be identical to the mtDNA of every maternal ancestor, provided there are no
mutations and natural selection does not play a part.

Cann, Stoneking and Wilson examined mtDNA of 147 living humans drawn from five geographic
populations in [3] and stated that the mtDNA of all people could be described as mutations of the
mtDNA of a single woman. This most recent common ancestor was named the mitochondrial Eve and
would have lived in Africa around 200.000 years ago. More recent research estimates the mitochondrial
Eve to have lived 99.000 to 148.000 years ago. [9]

Often viewed as the proof for the validity of the Out of Africa model, research into the mitochondrial
Eve does not give conclusive proofs for either the Out of Africa model or the Multiregional hypothesis.
While the existence of one common female ancestor is widely accepted, the question remains when and
where this ancestor lived and mainly what kind of starter populations are eligible for the existence of
a mitochondrial Eve. [4]

The starter population question arises from the fact that the mitochondrial Eve is not equivalent to
the biblical Eve. The mitochondrial Eve is only the most recent common ancestor in the inheritance
of mtDNA. However, studies into nuclear DNA show that descendants of women contemporary to the
mitochondrial Eve are alive today. Since their mtDNA is not distinct, there must have been a time in
their ancestry when there were no female descendants thus breaking the mtDNA line.

This bachelor thesis uses a model developed by Neves and Moreiro in [8] to study ancestral trees
generated under certain assumptions to find an answer to these questions using results from the Galton-
Watson process.

1.2 The Galton-Watson process

The mathematical theory utilised in modelling the mitochondrial Eve is that of the Galton-Watson
process. The problem of the disappearance of (aristocratic) family names was first posed by F. Galton
in 1873 and subsequently solved by H.W. Watson in 1874. However, Watson had concluded the
inevitable extinction of all surnames, a fault which was not corrected until 1930 when J.F. Steffensen
gave a detailed proof. [6]

In the Galton-Watson process the inheritance of surnames is described from father to son. Assuming
that a man has r sons with probability qr, r ∈ N0, the existence of a surname through the generations
can be modelled as a random tree generated by these probabilities. Such a tree starts with one
particle (the father) in generation 0, branching a number of particles in the next generation (his sons)
according to a given probability distribution. The question of the survival of a surname then becomes
the probability of such a tree being of infinite length.

The application of the Galton-Watson process to the problem of the mitochondrial Eve can thus be
explained as replacing the father to son inheritance to that of a mother to daughter inheritance.
When assuming each woman has probability qr of having r daughters, a similar ancestral tree can
be generated. To be able to make any statement about the existence of the mitochondrial Eve, the
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probability of an infinite tree is of course of interest. Due to the fact that the mitochondrial Eve was
not the only woman living at that time, also of interest are the conditions and the probability for the
existance of only one such infinite tree.
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2 The Galton-Watson model

The Galton-Watson process revolves around generating random trees according to certain
probability distributions. To translate the problem of surname extinction to a mathematical model,
certain definitions and assumptions are in order.

Number of generations

The model used is discrete in time and focusses on the number of particles in each generation. Let
Zn be the number of particles in the n-th generation of a tree, n ∈ N0. Each particle in generation n
will die out in generation n+ 1, so generations are non-overlapping. Three assumptions must be made
regarding the sequence (Zn)n∈N0

:

1. The number of particles in a generation is only dependent on the number of particles in the
previous generation. The random variables Z0, Z1, Z2, . . . thus form a Markov chain meaning

P (Zn+1 = z|Z1 = z1, Z2 = z2, . . . , Zn = zn) = P (Zn+1 = z|Zn = zn)

for any z, z1, . . . , zn ∈ N0.

The transition probabilities are time- and population size-independent.

2. Each particle in generation Zn generates a number of other particles in the next generation,
independently and identically distributed.

3. A tree always starts with one particle, i.e. Z0 = 1.

The first assumption can prove to be a restriction if a man with few brothers would be more likely
to have fewer sons than a man with many brothers. In the second assumption, the case in which
different particles interact with one another is excluded. The third assumption can be easily adjusted
if Z0 6= 1 since families of initial particles develop independently, so any other starter population can
be considered by taking a tree with Z0 = 1 and starting from a different generation.

Progeny distribution and generating function

Let numbers q0, q1, . . . be given such that qr ≥ 0 for r ∈ N0 and
∑∞
r=0 qr = 1. Let P (Z1 = k) = qk

and let all following Zi be distributed as the sum of Zi−1 independent random variables identically
distributed as Z1, i ≥ 2. Furthermore, when a tree has gone extinct in generation n it will remain
extinct for any following generation so P (Zn+1 = 0|Zn = 0) = 1 for all n ∈ N0.

Let S(x) be the probability generating function of qr:

S(x) =

∞∑
r=0

qrx
r, x ∈ R

with iterations
S0(x) = x, S1(x) = S(x) and Sn+1(x) = S(Sn(x)), n ∈ N0.

Since the generating function is a power series with a radius of convergence greater than or equal to 1
and due to the normilisation of qr, S(x) is continuous on the unit interval. S(x) is also differentiable
on the unit interval if S′(1) <∞.

To avoid triviality and to ensure the existence of a solution to the problem, the following assumptions
should be made regarding the progeny distribution:

1. The values of pr are time- and population size-independent.

2. To avoid the trivial case of a tree existing solely of each particle always producing i particles in
the next generation: pi 6= 1 for any i ∈ N0. Such a tree will be finite if i = 0 or infinite if i ≥ 1.

3. To ensure the strict convexity of the generating function S on the unit interval: p0 + p1 < 1.
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4. The expected value E(Z1) is finite, from this it follows that S′(1) <∞.

The process described can be thought of as a genealogical tree of one father, the particle in Z0,
who has a number of sons generated by the probabilities qr. In succession, his sons have again, all
independently, a number of sons generated by the same distribution thus allowing the surname to be
passed on through the generations. This process continues infinitely or until there are no more sons
born and the surname becomes extinct.

2.1 Extinction probability

Galton posed a question about the disappearance of family names. Of interest is then of course the
probability that such a rooted tree is finite or the event that the extinction probability is positive.
Let therefore En be the set of all rooted trees that end in no more than n generations, so
En = {T rooted tree : Zn = 0}. Using this, the extinction probability θ̄ can be defined.

Definition 2.1. Let θ̄n = P (En) be the probability of extinction in at most n generations, with
θ̄0 = q0 and θn = 1− θ̄n. Let θ̄ = lim

n→∞
θ̄n.

The last element needed is a well known given of continuous and differentiable functions, the Mean
Value Theorem, a proof of which can be found in [1], section 2.8, theorem 11. This theorem will be
used in this section as well as in section 2.2.

Theorem 2.2 (Mean Value Theorem). Let a < b and f : [a, b]→ R continuous on [a, b] and differen-
tiable on (a, b). Then there exists some c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Main theorem

It is now possible to formulate and prove the main theorem regarding the Galton-Watson process which
gives the condition for the existence of an infinite tree.

Theorem 2.3. Let m =
∑∞
r=1 rqr be the mean number of sons, then:

(i) θ̄ is the smallest solution of S(x) = x for x ∈ [0, 1];

(ii) θ̄ = 1 if m ≤ 1 and θ̄ < 1 if m > 1.

Proof. Any tree in En is extinct in at most n generations. If such a tree has r particles in the first
generation, then there has to be a tree in En−1 attached to each of these r particles. It follows that

θ̄n = P (En) =

∞∑
r=0

qrP (En−1)r = S(θ̄n−1). (2.1)

Taking the limit on both sides and using the fact that S is a continuous function on the unit interval
and θ̄ ∈ [0, 1] gives

θ̄ = S(θ̄). (2.2)

So the extinction probability θ̄ must be a fixed point of S in [0, 1]. Due to the normilisation of the
probabilities qr, it is clear that 1 is a fixed point of S.1

Assume there exists a ∈ [0, 1) with a = S(a). The generating function S is continuous and differentiable
on the unit disk, so S is also continuous on [a, 1] and differentiable on (a, 1). With theorem 2.2 it follows
that there must exist b ∈ (a, 1) such that

S′(b) =
S(1)− S(a)

1− a
= 1

1Watson believed this to be the only solution of the equation and thus concluded the inevitable
disappearance of all surnames. However, he overlooked the possibility of there being a second solution less than 1.
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using that a = S(a) and S(1) = 1.

Assumption 3 on the progeny distribution ensures the strict convexity of S on [0, 1], so the first
derivative S′(x) is a strictly increasing function on [0, 1]. If there exists b ∈ [0, 1) with S′(b) = 1 it
must then follow that S′(1) > 1. Since S′(1) =

∑∞
r=1 rqr = m this ensures the existence of an solution

in [0, 1) only when m > 1.

Assume there are two solutions in [0, 1), θ1 and θ2 with 0 ≤ θ1 < θ2 < 1. S(x) is continuous on [θ1, θ2]
and differentiable on (θ1, θ2), using theorem 2.2 there exists ε1 ∈ (θ1, θ2) such that

S′(ε1) =
S(θ2)− S(θ1)

θ2 − θ1
= 1.

S(x) is also continuous on [θ2, 1] and differentiable on (θ2, 1) so there exists ε2 ∈ (θ2, 1) such that

S′(ε2) =
S(1)− S(θ2)

1− θ1
= 1.

Since S′(x) is a strictly increasing function on [0, 1], this contradicts the existence of two points on
[0, 1] with the same derivative. So any solution of θ̄ = S(θ̄) on the unit interval will be unique.

This leads to two distinct situations:

1. If m ≤ 1, the only fixed point of S in [0,1] is 1. This means the extinction probability θ̄ is equal
to 1; all trees will become finite;

2. If m > 1 there exists another unique fixed point less than 1, so the extinction probability θ̄ is
less than 1; there is a positive probability for the existence of an infinite tree;

and thus concludes the proof.

In the subcritical case m < 1 all trees will become finite at one point. The same goes for m = 1 but
since this value is the turning point for the extinction probability θ̄ to go from 1 to strictly less than
1, this case is called critical. When m > 1 there exists a positive probability of any tree becoming
infinite: this is known as the supercritical case.

2.1.1 Approximation of θ

In the supercritical case, the extinction probability θ̄ is strictly less than 1 so the survival probability
θ is strictly positive. The value of θ can be exactly determined solving (2.2). However, this can prove
to be very complicated depending on the distribution of qr.

It is however possible to approximate the value of θ using only the mean and variance of the progeny
distribution. This approximation θa of θ is known as the small survival probability approximation.

Definition 2.4. Let v =
∑∞
r=0(r −m)2qr be the variance of the number of sons. Assume that v ∈ R

and v <∞.

voor een enter
Lemma 2.5. For m > 1, S′′′(1) <∞ and certain ζ ∈ [θ̄, 1]

θ = θa + R̃(θ)

with

θa =
2(m− 1)

v +m(m− 1)
and R̃(θ) =

2θ2

3!

S′′′(ζ)

v +m(m− 1)
.

Proof. Determine the second order Taylor polynomial of the generating function S(x) around x = 1
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with error term R(x):

S(x) = S(1) + (x− 1)S′(1) +
1

2
(x− 1)2S′′(1) +R(x)

=

∞∑
r=0

qr + (x− 1)

∞∑
r=1

rqr +
1

2
(x− 1)2

∞∑
r=2

r(r − 1)qr +R(x)

= 1 + (x− 1)m+
1

2
(x− 1)2

∞∑
r=2

r(r − 1)qr +R(x)

with R(x) = S′′′(ζ)
3! (x− 1)3 for certain ζ between x and 1.

Since θ̄ = S(θ̄) it follows that

θ̄ = 1 + (θ̄ − 1)m+
1

2
(θ̄ − 1)2

∞∑
r=2

r(r − 1)qr +R(θ̄)

1− θ = 1 + (−θ)m+
1

2
(−θ)2

∞∑
r=2

r(r − 1)qr +R(1− θ)

θ = mθ − 1

2
θ2
∞∑
r=2

r(r − 1)qr −R(1− θ)

θ =
2(m− 1)∑∞
r=2 r(r − 1)qr

− 2R(1− θ)
θ
∑∞
r=2 r(r − 1)qr

.

(2.3)

This approximation for θ can be exclusively expressed in terms of the mean m and the variance v. It
holds that

∞∑
r=2

r(r − 1)qr =

∞∑
r=1

r(r − 1)qr

=

∞∑
r=1

r2qr −
∞∑
r=1

rqr

=

∞∑
r=1

r2qr −m+m2 −m2

=

∞∑
r=1

r2qr − 2m2 +m2 +m(m− 1)

=

∞∑
r=1

r2qr − 2m

∞∑
r=1

rqr +m2
∞∑
r=1

qr +m(m− 1)

=

∞∑
r=1

(r −m)2qr +m(m− 1)

= v +m(m− 1).

(2.4)

Substituting (2.4) in (2.3) gives

θ =
2(m− 1)

v +m(m− 1)
− 2R(1− θ)
θ(v +m(m− 1))

= θa + R̃(θ).

So the small survival probability approximation θa is given by

θa =
2(m− 1)

v +m(m− 1)
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and the error is given by

R̃(θ) = − 2R(1− θ)
θ(v +m(m− 1))

= − 2

3!θ

S′′′(ζ)

v +m(m− 1)
(1− θ − 1)3

=
2θ2

3

S′′′(ζ)

v +m(m− 1)

for certain ζ ∈ [1−θ, 1]. This means dat ζ ∈ [0, 1] and S′′′(ζ) reaches its maximum on the unit interval
for ζ = 1. Since S′′′(1) <∞ it follows that the error in the approximation is bound.

The error term will always be bound but when imposing a maximum on r, it will also be small.
Imposing a maximum on the value of r will not be too great a restriction on the model in a biological
sense, since this is the amount of sons a man would have. It will however determine how small the
error term R̃(θ) is.

2.2 Convergence rates

2.2.1 Convergence of θ

The survival probability of a tree can be viewed when looking at a finite number of generations, or
θn. More interesting however is the survival probability of a tree when viewing an infinite amount of
possible generations with offspring, or θ. The question remains in how many generations the sequence
(θn)n∈N0 approaches its limit θ. This convergence rate is determined in two seperate cases, namely
m 6= 1 (super- and subcritical) and m = 1 (critical). In determining this convergence rate the following
definition is used.

Definition 2.6. Let (an)n∈N0
and (bn)n∈N0

be two sequences. Then

an ∼ bn if lim
n→∞

an
bn

= 1.

Super- and subcritical

Lemma 2.7. For n ∈ N0 and S′(θ̄) 6= 1

|θn − θ| ≤ c · e−n/ξ

for certain constant c ∈ R and

ξ =
−1

ln[S′(1− θ)]
(2.5)

the correlation time.

Proof. Let n0 ∈ N0. S(x) is continuous and differentiable on the unit interval so with theorem 2.2
there exist α ∈ (θ̄n0−1, θ̄) such that

S′(α) =
S(θ̄)− S(θ̄n0−1)

θ̄ − θ̄n0−1
=

θ̄ − θ̄n0

θ̄ − θ̄n0−1
so θ̄ − θ̄n0

= S′(α)(θ̄ − θ̄n0−1)

using (2.1) and (2.2). In the same way there exists α′ ∈ (θ̄n0−2, θ̄) such that

θ̄ − θ̄n0−1 = S′(α′)(θ̄ − θ̄n0−2)

so
θ̄ − θ̄n0 = S′(α)S′(α′)(θ̄ − θ̄n0−2).
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Iterating this argument, it follows that for all n ∈ N0 there are αj ∈ (θ̄n0+j−1, θ̄) with j ∈ {1, . . . , n}
such that

θ̄ − θ̄n0+n =

n∏
j=1

S′(αj)(θ̄ − θ̄n0).

This statement is true for all n0 ∈ N0 so take n0 = 0. It then follows that

θ̄ − θ̄n =

n∏
j=1

S′(αj)(θ̄ − θ̄0) and

|θ̄ − θ̄n| = (θ̄ − θ̄0)

n∏
j=1

S′(αj)

using the fact that θ̄ ≥ θ̄n for all n ∈ N0.

S′(x) is a strictly increasing function on [0,1]. Since αj ∈ (θ̄j−1, θ̄) and lim
n0→∞

αj = θ̄ it follows that

αj ≤ θ̄ for all j ∈ {1, . . . , n}. Due to the strict increase, this means that S′(αj) ≤ S′(θ̄) for all
j. Because αj , θ̄ ≥ 0 and S′(x) is a power series with non-negative coefficients, it also follows that
S′(αj), S(θ̄) ≥ 0.

Applying this in the previous equation gives

|θ̄ − θ̄n| = (θ̄ − θ̄0)

n∏
j=1

S′(αj)

≤ (θ̄ − θ̄0)

n∏
j=1

S′(θ̄)

= (θ̄ − θ̄0)[S′(θ̄)]n.

Substituting θ̄ = 1− θ finally concludes

|θn − θ| ≤ (θ0 − θ)[S′(1− θ)]n

= c · en ln[S′(1−θ)]

= c · e−n/(−1/ ln[S′(1−θ)])

= c · e−n/ξ

with

c = (θ0 − θ) = (q0 − θ) and ξ =
−1

ln[S′(1− θ)]
.

Critical

To determine the convergence rate of θn to 0 when m = 1, a slightly different but equivalent definition
of the survival probability θ is in order.

Definition 2.8. The probability that a tree doesn’t end in n generations is given by θn = P (Zn > 0).

This definition yields the following result

θn = P (Zn > 0) = 1− P (Zn ≤ 0) = 1− P (Zn = 0) = 1− Sn(0). (2.6)

This can be used together with lemma 2.9, the full phrasing and proof of which can be found in [5],
chapter 1, section 10.2, lemma 10.1.
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Lemma 2.9. For m = 1, S′′′(1) <∞ and X all the points x that either

(i) are interior to the unit circle or

(ii) lie on the segment of the unit circle with −θ0 ≤ arg x ≤ θ0 excluding x = 1:

1

1− Sn(x)
=

1

1− x
+
nS′′(1)

2
+O(log n), x ∈ X,n→∞.

Lemma 2.9. can be immediately used to determine the convergence rate of θ in the critical case.

Corollary 2.10. For S′(θ̄) = 1 and S′′′(1) <∞

θn ∼
2

nS′′(1)
.

Proof. Substitute x = 0 in lemma 2.9 then

1

1− Sn(0)
= 1 +

nS′′(1)

2
+O(log n)

1

θn
= 1 +

nS′′(1)

2
+O(log n).

By using (2.6) it then follows that

lim
n→∞

θn
2

nS′′(1)

= lim
n→∞

θn
nS′′(1)

2

= lim
n→∞

θn(
1

θn
− 1−O(log n))

= lim
n→∞

1− θn − θnO(log n)

= lim
n→∞

1− θn − lim
n→∞

θnO(log n)

= lim
n→∞

θ̄n − lim
n→∞

θnO(log n)

= 1− 0 = 1.

The last equality follows from the fact that in the critical case, all trees will eventually die out so θ̄n
converges to 1. In the second term, O(log n) converges to ∞ in logarithmic time while θn converges to
0. Using (2.6) once again it follows that θn = 1 − Sn(0). Since Sn(0) is a power series, θn converges
faster to 0 than in logarithmic time. It then follows that the product of θn and O(log n) will converge
to 0 for n→∞ which proves the collorary.

2.2.2 Number of generations

Another area of interest is the number of generations in a finite tree, in the critical and subcritical
case. It is known that this sequence will converge to 0, but at what rate? To determine this, define

pn =

{
q0, n = 0
P (En\En−1), n ≥ 1

as the probability that a tree terminates in exactly n generations.

Lemma 2.11. For n ∈ N0 and S′(θ̄) 6= 1

pn ≤ c̃ · e−n/ξ

for certain constant c̃ ∈ R and ξ the correlation time as in (2.5).
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Proof. A tree with r particles in the first generation can only terminate in exactly one generation when
all these particles produce zero progeny in the second generation. So

p1 =

∞∑
i=1

qiq
i
0

= S(q0)− q0

= S(p0)− p0.

Subsequently, a tree that ends in exactly n generations can be thought of as a tree consisting of a first
generation with a subtree connected to each particle in this first generation. This substree is at most
n− 1 generations long, otherwise it wouldn’t terminate in n generations. If there are i such particles,
then at least one of these i subtrees must not be in En−2 otherwise the whole tree would terminate in
less than n generations. This translates in counting the subtrees in En−1 and then substracting the
subtrees in En−2:

pn =

∞∑
i=1

qi(P (En−1)i − P (En−2)i)

= S(P (En−1))− S(P (En−2))

= S(

n−1∑
r=0

pr)− S(

n−2∑
r=0

pr).

Applying the Mean Value Theorem as in lemma 2.7 once again yields that for all n0, n ∈ N0 there
exist βj ∈ (

∑n0+j
r=0 pr,

∑n0+n−1
r=0 pr), j ∈ {1, . . . , n} such that

pn0+n =

n∏
j=1

S′(βj)pn0

and for n0 = 0

pn = p0

n∏
j=1

S′(βj).

Since θ̄ =
∑∞
r=0 pr = limn→∞

∑n−1
r=0 pr and βj ∈ (

∑j
r=0 pr,

∑n−1
r=0 pr) it follows that βj ≤ θ̄ for all

j ∈ {1, . . . , n}.
Since S′(x) is a stricly increasing function on [0,1] this means that S′(βj) ≤ S′(θ̄) for all j. S′(x)
is also a power series with non-negative coefficients, combining this with βj , θ̄ ≥ 0 it follows that
S′(βj), S

′(θ̄) ≥ 0 for all j ∈ {1, . . . , n}.

Applying these inequalities to the previous equation leads to

pn = p0

n∏
j=1

S′(βj)

≤ p0

n∏
j=1

S′(θ̄)

= p0 · [S′(1− θ)]n

= c̃ · e−n/ξ

with c̃ = p0 = q0 and the correlation time ξ as in (2.5).
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3 The mitochondrial Eve model

The results gained from the Galton-Watson model can now be used for the mitochondrial Eve model.
Theorem 2.3 states a condition for the existence of an infinite tree depending on the mean number of
sons. In the model for the mitochondrial Eve however results are gained in terms of the distribution
of a woman’s children, regardless of gender. This model depends on four assumptions:

1. There is no overlap between generations. (Meaning that a particle in generation n dies in
generation n+ 1.)

2. Each women has r children with probability Qr, r ∈ N0 independent and identically distributed.
The values for Qr are time-and population size-independent.

3. A child is female with probability p, and male with probability 1 − p. The value for p is time-
and population size-independent.

4. There always exist enough males to procreate.

According to these assumptions, a genealogical tree can be constructed for each woman, being the root
of the tree, and her descendants. Define an edge to be open if it connects a mother and her daughter
and all other edges to be closed. The question if there exists an infinite lineage of mtDNA corresponds
with the existence of an infinite path of open edges starting at the root.

However, in this genealogical tree not all edges may be statistically independent, which is a condition for
the Galton-Watson process. This problem can be solved by defining the female genealogical tree (FGT)
as the original tree after removing all male descendants. The question now becomes the probability of
an infinite FGT, in which the number of daugthers qr is distributed by

qr =

∞∑
k=r

Qk

(
k

r

)
pr(1− p)k−r. (3.1)

To determine with which probability the mitochondrial Eve exists and under which conditions she
exists, two questions are of importance namely:

1. What is the probability θ of an infinite FGT?

2. What is the probability of there existing only one infinite FGT?

The theory developed by Galton and Watson as shown in the previous sections can be used to answer
the first question, whereas the second question requires some extra work.

In this section the same symbols will be used in the same way as in the Galton-Watson model. So
θ and θ̄ will be used for the survival and extinction probability, respectively, of an FGT. The letters
m and v will be used for the mean and variance of the number of daugthers. Lastly, the generation
function S(x) will also be used as the generating function of the distribution of qr for r daugthers as
opposed to r sons.

3.1 Extinction probability

From (3.1) the mean and variance of the number of daugthers can be determined. Let N̄ =
∑∞
r=1 rQr

the mean number of children of either gender. The number of daugthers is then binomially distributed
with parameters N̄ and p. The mean and variance are thus given by

m = N̄p and v = N̄p(1− p). (3.2)

Using theorem 2.3 and (3.2) the condition for the existence of an infinite FGT follows immediately.

Theorem 3.1. Let pc = 1
N̄

. Then

θ > 0 if p > pc .
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Proof. From theorem 2.3 it follows that the survival probability θ is positive only when the mean
number of daugthers is larger than 1. Using (3.2) it shows that

N̄p > 1 so p >
1

N̄
= pc.

This concludes the proof and gives the necessary condition for the existence of an infinite FGT.

3.1.1 Approximation of θ

In the mitochondrial Eve model it can also prove difficult to determine the exact value of θ. Since
this model is based on the distribution of all children, regardless of gender, this could be even more
difficult than in the Galton-Watson model. However, it is again possible to estimate this value using
only the mean and variance of the number of daugthers, in the small survival probability approximation.

Lemma 3.2. For m > 1, S′′′(1) <∞ and certain ζ ∈ [θ̄, 1]

θ = θa + R̃(θ)

with

θa =
2pc(p− 1)

p2(1− pc)
and R̃(θ) =

2p2
cθ

2

3!

S′′′(ζ)

p2(1− pc)
.

Proof. Using lemma 2.5 and (3.2) it follows that

θa =
2(N̄ − 1)

N̄p(1− p) + N̄p(N̄p− 1)

=
2(N̄p− 1)

−N̄p2 + N̄2p2

=
2( ppc − 1)

p2( 1
p2c
− 1

pc
)

=
2( ppc − 1)

p2( 1−pc
p2c

)

=
2pc(p− 1)

p2(1− pc)
.

The error term can also be determined immediately using lemma 2.5. It holds that

R̃(θ) =
2θ2

3!

S′′′(ζ)

N̄p(1− p) + N̄p(N̄p− 1)

=
2θ2

3!

S′′′(ζ)

p2( 1−pc
p2c

)

=
2p2
cθ

2

3!

S′′′(ζ)

p2(1− pc)

for certain ζ ∈ [θ, 1]. As in lemma 2.5 it follows that S′′′(ζ) reaches its maximum on the interval for
ζ = 1 and since S′′′(1) <∞ the error term is bound.

As seen in the Galton-Watson model, to ensure that the error term is small a maximum can be imposed
on r. Likewise, this will not be too great a restriction on the mitochondrial Eve model.
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3.2 Number of lineages

To answer the second question of when there exists only one infinite FGT, let W be the number
of women contemporary to the mitochondrial Eve and Yn the number of lineages remaining after n
generations. The distribution of Yn is then given by

P (Yn = l) =

(
W

l

)
θln(1− θn)W−l. (3.3)

The existence of the mitochondrial Eve is then compatible with the survival of only one lineage. By
looking at the survival of two or more lineages it was shown in [2] that the existence of the mitochondrial
Eve would only be possible in a stable-sized population while in [8] it was concluded that this would
also be possible in a exponentially growing population. Both articles however rely on assumptions of
values for p and W , and assumptions on the progeny distribution. To give an exact probability for
the existence of only one lineage thus proves to be quite difficult. Of course it depends on the survival
probability over n generations, as seen in (3.3). It is mentioned earlier that this value depends solely
on the progeny distribution and is not exactly known in non-trivial cases.

Poisson approximation

To be able to say something about the existence of only one lineage, it is possible to determine the
probability in one particular situation. This can be done using the fact that a binomial distribution
with parameters n and p can be approximated by a Poisson distribution with parameter np if n is
large enough and p is small enough.

The mean number of lineages is given by E(Yn) = Wθn. For the existence of the mitochondrial Eve
an infinite amount of generations is needed, so in this case lim

n→∞
E(Yn) = Wθ.

Assume that this value is equal to 1, so Wθ = 1. The value of W can be estimated from variability
in nuclear DNA of modern humans as in [10]. While an exact value is not known, it is known that
W � 1. It then follows that θ � 1, so the conditions for the Poisson approximation are in place. For
E(Yn) = 1 it holds that

lim
n→∞

P (Yn = l) =
(Wθ)le−Wθ

l!
=

e−1

l!
.

This gives a probability of e−1 for the existence of only one lineage.
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4 Conclusion

In this thesis the probability of the existence of the mitochondrial Eve is studied using results from
the Galton-Watson process. Given the many comparisons between these subjects, the condition for
a positive survival probability in the mitochondrial Eve model can be immediately determined. The
exact value of θ can be difficult to determine, but it is possible to approximate this value in the small
survival probability approximation.

The existence of the mitochondrial Eve however not only translates to the existence of an infinite tree,
but to the existence of only one such infinite tree. Given the number of women contemporary to the
mitochondrial Eve, the question is whether or not only one lineage will survive after an infinite number
of generations. The maximum probability of one lineage surviving is determined in one specific case
by using a Poisson approximation. Further studies into the subject could attempt to generalise and
determine the probability of one lineage surviving with different progeny distributions.

The mitochondrial Eve could help answer questions about the early origins of the human species.
Another entity which could play a role is the Y-chromosomal Adam, which would be a most recent
paternal common ancestor. The dating of this ancestor is much less clear compared to the mitochondrial
Eve, varying from 120.000 to 388.000 years ago. [7],[9]

It would seem that the results developed for the mitochondrial Eve model could be used for a Y-
chromosomal Adam model. One objection however is raised in the fourth assumption in the mito-
chondrial Eve model, which is the existence of enough males to procreate. The equivalence of this
statement would prove to be an objection due to the birth rate of males being slightly higher than
that of females. When viewing a large number of generations this will definitely make a difference.
Another continuation could then be the study of the Y-chromosal Adam using an adapted model, or
a biparental model in which lineages of men are modelled alongside those of women.

It is clear that the theory first finalised by Galton and Watson in 1874 is still applicable to a number
of situations. Using and adapting this theory could provide answers on ancestry and evolution.
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