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Chapter 1

Introduction

In the centrally seeded abelian sandpile growth model, one adds N grains to the origin of
the d-dimensional square lattice Zd. If the number of grains at a site n = (n1, . . . , nd)
is higher than a fixed parameter k ≥ 2d the site n is unstable and it ‘topples’: k grains
are removed and 1 grain is added to each of the 2d neighbours. As long as there are
unstable sites the toppling continues. Eventually all sites will become stable. The stable
configurations form elaborate patterns and are subject of research its properties, especially
in two dimensions.

In this project the asymptotic properties of the stable configurations σ(N) as N →∞ will
be addressed. The most important open problem is the existence of the limiting shape.
Namely, whether there exists an S 6= {∅,Rd}, such that

lim
N→∞

{n : σ(N)(n) > 0}
g(N)

= S ⊂ Rd.

Even though lower and upper bounds for the the support of σ(N), Su(N) , have been estab-
lished, it remains unclear whether the limiting shape is a disc or a perhaps polygon [8].
The primary aim is to find two functions f(N) and g(N) such that Su(N) lies between two
level sets {n : |Nw(n)| ≤ f(N)} and {n : |Nw(n)| ≤ g(N)}, where w is the fundamental
solution of the Discrete Laplace operator (see definitions 1 and 4).

Figure 1.1: From left to right and top to bottom: stable sandpiles (σ(N)) for N = 106

simulated by the author and N = 1018 and N = 1028, simulated by D.B. Wilson, Microsoft
Research [10]. All scaled to be the same size. Cyan represents height 4, red height 3, blue
heigt 2 and yellow height 1.
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Chapter 2

Discrete Laplacians

Discrete Laplacians are operators on functions on lattices Zd and can be viewed as dis-
cretisations on Rd of the Laplacian and appear naturally when working with a graph or
(discrete) grid. In what follows we will be working in lattices in Zd and therefore base our
definitions of the Discrete Laplacian and its properties on this situation.

Definition 1. Consider the square lattice Zd, where every vertex or site n has 2d neigh-
bours (at graph distance 1). The Discrete Laplace operator ∆ acts on real functions
f : Zd → R as

(∆f)(n) = 2d · f(n)−
d∑
i=1

(f(n+ ei) + f(n− ei))

for all n ∈ Zd, where ei denotes the i-th unit vector.

Figure 2.1: The five-point stencil of site n = (n1, n2) ∈ Z2.

Definition 2. The Laplace equation, a second order partial difference equation, is

∆f = 0.

Solutions of this equation are called harmonic functions. The set of these functions is the
kernel of ∆.

Equivalently, f is harmonic if the value of f(n) is equal to the average of the values of
f over the 2d nearest neighbours of n. Similarly to Rd, Liouville’s theorem is valid for
discrete Laplacians on Zd.

Theorem 1 (Liouville’s theorem). Every bounded harmonic function is a constant.

Proof. Take an arbitrary bounded harmonic function f(n). Let M = maxm∈Zd f(m) and
suppose n is such that f(n) = M . Since f is harmonic and f(n) ≥ f(m) for all m ∈ Zd

(∆f)(n) = 2d · f(n)−
d∑
i=1

(f(n+ ei) + f(n− ei)) = 0 ⇒ f(n± ei) ≡M
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for i ∈ {1, 2, ..., d}. Therefore f must be constant.

Definition 3. For f and ei defined as above and for any k ∈ N, k ≥ 2d, we define ∆k as

∆kf(n) = k · f(n)−
d∑
i=1

(f(n+ ei) + f(n− ei)) .

Then the functions in the kernel of ∆k, i.e. those for which ∆kf = 0, are given by

k · f(n)−
d∑
i=1

(f(n+ ei) + f(n− ei)) = 0 ⇒ k · f(n) =

d∑
i=1

(f(n+ ei) + f(n− ei))

⇒ f(n) =

∑d
i=1 (f(n+ ei) + f(n− ei))

k
.

We saw that for k = 2d if f is harmonic and bounded it is a constant. For k > 2d, one
has the following lemma.

Lemma 1. Every bounded function f for which ∆kf(n) = 0 for all n ∈ Zd with k > 2d
is equal to zero.

Proof. Let k > 2d, f a non-constant bounded real function and let n be such that |f(n)| =
maxm∈Zd |f(m)| > 0. Then in particular

|f(n)| ≥ 1

k

d∑
i=1

(|f(n+ ei)|+ |f(n− ei)|) .

Then for some i ∈ {1, 2, ..., d}, |f(n ± ei)| > |f(n)|. This is in contradition with the
assumption that |f(n)| ≥ |f(m)| for all m ∈ Zd.

2.1 Green’s function

Definition 4. The function w : Z2 → R is called a fundamental solution or the Green
function of ∆ if for all n

∆w(n) = δ0(n) =

{
1, n = 0
0, n 6= 0

Before we start looking for solutions, let us first introduce some useful notation [3].

We identify the Cartesian product Wd = RZd with the set of formal real power series in
the variables u±11 , . . . , u±1d by viewing each w = (wn) ∈Wd as the power series

∑
n∈Zd

wnu
n (2.1)

with wn ∈ R and un = un1
1 · · ·u

nd
d for every n = (n1, . . . , nd) ∈ Zd.
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For every p ≥ 1 we regard `p(Zd) as the set of all w ∈Wd with

‖w‖p =

(∑
n∈Zd

|wn|p
)1/p

<∞.

In particular, `1(Zd) is the set of all w ∈Wd with ‖w‖1 =
∑

n∈Zd |wn| <∞.

Let us now consider the (irreducible) Laurent polynomial for dimension d

f (d) = 2d−
d∑
i=1

(ui + u−1i ) ∈ Rd (2.2)

where Rd = Z[u±11 , . . . , u±1d ] ⊂ `1(Zd) ⊂Wd is the ring of Laurent polynomials with integer
coefficients. Every h in any of these spaces will be written as h = (hn) =

∑
n∈Zd hnu

n

with hn ∈ R (resp. hn ∈ Z for h ∈ Rd). The map (m,w) 7→ um ·w with (um ·w)n = wn−m
is a Zd-action by automorphisms on the additive group Wd which extends linearly to an
Rd-action on Wd given by

h · w =
∑
n∈Zd

hnu
n · w (2.3)

for every h ∈ Rd and w ∈ Wd. If w also lies in Rd this definition is consistent with the
usual product in Rd.

Equation 2.2 reminds us of the discrete Laplace operator ∆ defined in definition 1. Noting
that under the embedding of Rd ↪→ `∞(Zd,Z) the constant polynomial 1 ∈ Rd corresponds
to the element δ0(n) ∈ `∞(Zd,Z) (as in definition 4), we consider

f (d) · w = 1. (2.4)

The fundamental solutions of this equation (definition 4) can be found by using Fourier
analysis.

Definition 5. For every n = (n1, . . . , nd) ∈ Zd and t = (t1, . . . , td) ∈ Td ' [0, 1)d we set
〈n, t〉 =

∑d
j=1 njtj ∈ T. We denote by

F (d)(t) =
∑
n∈Zd

f (d)(n)e2πi〈n,t〉 = 2d− 2 ·
d∑
j=1

cos(2πtj), (2.5)

the Fourier transform of f (d).

We can find a fundamental solution w(d) of f (d)w(d) = δ0, as the inverse Fourier transform
of 1/F (d)(t):

(1) for d ≥ 3,

w(d)(n) =

∫
Td

e−2πi〈n,t〉

F (d)(t)
dt for every n ∈ Zd. (2.6)

For d = 2 the situation is different. One has to modify (2.6), as the corresponding function
1/F (2)(t) is not integrable:

(2) for d = 2,

w(2)(n) =

∫
T2

e−2πi〈n,t〉 − 1

F (2)(t)
dt for every n ∈ Z2. (2.7)
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The following theorem gives an insight into the asymptotic behaviour of fundamental so-
lutions: [3]:

Theorem 2. We write ‖ · ‖ for the Euclidean norm on Zd.

1) For every d ≥ 2, w(d) given by 2.6 and 2.7 satisfies: f (d) · w = 1.

2) For d = 2 and n ∈ Z2,

w(2)(n) =

0 if n = 0,

= − 1
8π log ‖n‖ − κ2 − c2

1
‖n‖4

(n4
1+n

4
2)−

3
4

‖n‖2 +O(‖n‖−4) if n 6= 0
(2.8)

w(2)(n) =

{
0 if n = 0,

= − 1
2π log ‖n‖ − log(8)+2γ

4π +O(‖n‖−4) if n 6= 0,
(2.9)

where γ is the Euler-Mascheroni constant.

3) For d ≥ 3,

‖n‖d−2w(d)
n = κd + cd

1
‖n‖4

∑d
i=1 n

4
i − 3

d+2

‖n‖2
+O(‖n‖−4) (2.10)

where κd > 0, cd > 0.

Having found the fundamental solution w we can now find solution v for equations of the
form f · v = g, with g being a polynomial, i.e. g =

∑
n∈Zd gnu

n, with a finite number of
non-zero coefficients: if

(f v)(n) = g(n)

then

v(n) = w(n) ∗ g(n) =
∑
m∈Zd

w(n−m) · g(m).
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Chapter 3

Centrally seeded abelian sandpile
growth model

3.1 The model

In this thesis we will be focussing on the centrally seeded (abelian) sandpile growth model.
The sandpile configuration is a function on the d-dimensional square lattice Zd to Z≥0,
the value indicating the number of grains at - or the height of - each site n = (n1, . . . , nd).

Definition 6. The height configuration σ : V → Z, V ⊂ Zd, assigns to each site n =
n1, . . . , nd) ∈ V the number of grains at that site, i.e. the height of site n is σ(n).

A sandpile consists of a (finite) number of grains,
∑

n∈V σ(n), and it being centrally seeded
indicates that if further grains are to be added these are only seeded at the origin.

Definition 7. A site n is called unstable if its height σ(n) is greater than a fixed parameter
k ≥ 2d and stable otherwise.

From an unstable site k grains are removed and 1 grain is added to each of its 2d neigh-
bours. This process is called toppling and can be represented by a toppling matrix.

Definition 8. [5] A toppling matrix is a symmetric integer valued matrix ∆V
n,m, n,m ∈

V ⊂ Zd that satisfies the conditions

1. For all n,m ∈ V , n 6= m, ∆V
n,m = ∆V

m,n ≤ 0,

2. For all n ∈ V , ∆V
n,n > 0,

3. For all n ∈ V ,
∑

m∈V ∆V
n,m ≥ 0,

If there exists an unstable site in V , its height configuration is called unstable. This can
be expressed in terms of the toppling matrix:

Definition 9. A configuration σ is called stable if σ(n) ≤ ∆V
n,n = k for all n ∈ V .

Otherwise it is called unstable toppling starts.

The Discrete or lattice Laplacian is a toppling matrix with open boundary conditions,
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given by

∆n,m =


2d for n = m,

−1 for ‖n−m‖ = 1,

0 otherwise

(3.1)

and the toppling matrix used for this model is its generalization using k ≥ 2d

∆k
n,m =


k for n = m,

−1 for ‖n−m‖ = 1,

0 otherwise.

(3.2)

Definition 10. Toppling occurs as long as in V there are unstable sites and can be rep-
resented by the mappings Tn : ZV → ZV given by

Tn(σ) =

{
σ(m)−∆V,k

n,m ∀m ∈ V if σ(n) > k,

σ otherwise,

In other words, Tn(σ) = σ′, where if σ(n) > k, site n loses k grains, i.e.

σ′(m) = σ(m)− k, for m = n

and one grain is added to its neighbours, i.e.

σ′(m) = σ(m) + 1, for m : ‖n−m‖ = 1.

These topplings have the Abelian Property, i.e. that a stable configuration does not depend
on the order of the toppling, i.e. for n,m ∈ V and σ such that σ(n) > ∆V

n,n and σ(m) >

∆V
m,m,

Tn ◦ Tm(σ) = Tm ◦ Tn(σ).

For the proof, see [5].

This matrix representation is useful for understanding the toppling rules and when doing
simulations on the model. For further analysis the adapted Discrete Laplace operator ∆k

given in definition 3 is used. Furthermore we will be assuming V = Zd.

If a start configuration has finite support, i.e. |{n : σ(n) 6= 0}| <∞, the configuration will
always stabilize. The stable end configuration corresponding to start configuration Nδ0 is
denoted by σ(N), where N is then the number of grains initially in the system. Depending
on k the initial number of grains is preserved or grains are lost. Hereto we distinguish two
cases:

Definition 11. The critical case, where k = 2d and the initial number of grains is pre-
served preserved, and the dissipative case, where k > 2d, meaning that k − 2d grains are
lost from the system every time a site topples.

Definition 12. The number of times a site n topples is denoted by u(n). Function u is
also known as the odometer function [4].

The odometer function can be used to describe the complete stabilizing process for start
configuration Nδ0, i.e. σ(0) = N , N <∞, and σ(n) = 0 for all n ∈ Zd \ 0 as:
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Nδ0 −∆ku
(N) = σ(N), (3.3)

where

∆ku
(N)(n) = ku(N)(n)−

d∑
i=1

(
u(N)(n+ ei) + u(N)(n− ei)

)
,

describing the change in the height of site n caused by losing grains through toppling itself
and gaining grains through toppling neighbours.

Since we know that δ0 = ∆kw, where w is the fundamental solution (cf. Definition 4),
we can substitute this in (3.3) and use the properties of the fundamental solution and ∆k

being a linear operator to write

∆kNw −∆ku
(N) = ∆kv

(N) , with v(N) = w ∗ σ(N) (3.4)

⇒ ∆k(Nw − u(N) − v(N)) = 0 (3.5)

from which we conclude that Nw − u(N) − v(N) is a harmonic function. We call equation
(3.5) the sandpile equation.
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Chapter 4

Analysis of the sandpile equation

4.1 Analysis in dimension d ≥ 3

Consider Nw − u(N) − v(N). We know that N is a constant, that w is bounded and
that, since the toppling process is finite, u(N) has finite support. Furthermore, since the
height function is non-negative and toppling occurs when for a site n, σ(n) > k we have
0 ≤ σ(N)(n) ≤ k for all n ∈ Zd. Therefore v(N) = w ∗ σ(N) is also bounded, which makes
Nw − u(N) − v(N) a bounded harmonic function and therefore constant.

Let us work the above out a bit more rigorously. For k ≥ 2d we have:

a) ‖w‖∞ = supn∈Zd |w(n)| <∞.

b) u(N) has finite support since the toppling stops and only finitely many sites topple
finitely many times. In particular

0 ≤ u(N)
(k>2d) ≤ u

(N)
(k=2d) ≤ N.

c) ‖v(N)‖∞ = supn∈Zd |v(N)(n)| <∞ since

|v(N)(n)| = |
∑
m∈Zd

σ(N)(n−m) · w(y)|

≤
∑
m∈Zd

|σ(N)(n−m)| · |w(m)|

≤
∑
m∈Zd

|σ(N)(n−m)| · sup
i∈Zd
|w(i)|

≤ ‖w‖∞
∑
m∈Zd

|σ(N)(n−m)|

= N ‖w‖∞, for k = 2d.

For k > 2d,
∑

m∈Zd |σ(N)(n−m)| < N .

Combining a, b and c one concludes that Nw−u(N)−v(N) is bounded for d ≥ 3 and k = 2d.

Lemma 2. For d ≥ 3 and k ≥ 2d

Nw − u(N) − v(N) ≡ constant.
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Then using Theorem 1 and Lemma 1 and 2 we get:

Corollary 1. In dimension d ≥ 3

Nw − u(N) − v(N) ≡

{
constant, if critical (k = 2d),

0, if dissipative (k > 2d)
. (4.1)

Later we will show that the constant in equation 4.1 is in fact equal to zero.

4.2 Analysis critical case in dimension d ≥ 3

In the last section we concluded Nw − u(N) − v(N) to be constant in the critical case, i.e.
for k = 2d. However, we can say more about its behaviour.

Regarding the fundamental solution w ((2.6),(2.10)) we have

|w(n)| → 0, for |n| → ∞ (4.2)

and since u(N) has finite support, i.e. there exists an M ∈ N such that u(N)(n) = 0 for all
n ∈ Zd with ‖n‖∞ = maxi=1,...,d |ni| ≥M , we have

u(N)(n)→ 0, for |n| → ∞. (4.3)

Furthermore, since

|v(N)(n)| = |
∑
m∈Zd

σ(N)(m) · w(n−m)|

≤
∑
m∈Zd

|σ(N)(m)| · |w(n−m)|

=
∑

m∈Zd:σ(N)(m)>0

|σ(N)(m)| · |w(n−m)|

≤ |2d|
∑

m∈Zd:σ(N)(m)>0

|w(n−m)|

and since the support Sσ(N) = {m ∈ Zd : σ(N)(m) > 0} is finite, given that as |n| → 0,
|w(n)| → 0, it follows that

|v(N)(n)| → 0, for |n| → ∞ (4.4)

as well and therefore

Nw − u(N) − v(N) → 0, for |n| → ∞. (4.5)

Then combining (4.1) and (4.5) we for k = 2d get

Nw − u(N) − v(N) ≡ constant ≡ 0

and therefore we can state the following:

Lemma 3. In dimension d ≥ 3 and for parameter k ≥ 2:

Nw − u(N) − v(N) ≡ 0.
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4.3 Analysis in dimension d = 2

In dimension d = 2, for k ≥ 2d, u(N) and σ(N) also have finite support, however w behaves
differently.

In the dissipative case, k > 2d, we have

‖w‖1 <∞ , hence |w(n)| → 0 for |n| → ∞,

from which we can conclude that, analogously to the cases before, in dimension d = 2 and
for k > 2d one also has

Nw − u(N) − v(N) ≡ 0.

In the critical case, k = 2d, we see from equation (2.9) that |w(n)| behaves logarithmically
and is therefore unbounded

|w(n)| = O(log ‖n‖)→∞ for |n| → ∞.

Again, since u and σ have finite support, for sufficiently large |n|,

Nw(n)− u(N)(n)− v(N)(n) = Nw(n)− v(N)(n) = Nw(n)−
∑
m∈Zd

σ(N)(m) · w(n−m)

= Nw −
∑

m∈S
σ(N)

σ(N)(m) · w(n−m) = O(log ‖n‖).

However, harmonic functions of sublinear growth are also constants. Let us recall the
following result, c.f., [1][Theorem 6, p. 199] and [2][Lemma 1, p. 408]:

Lemma 4. If f(n) is discrete harmonic everywhere and satisfies the inequality

|f(n)| ≤ C(1 + ‖n‖)p,

for all n, where p is an integer, then f(n) is a polynomial of degree not exceeding p.

This means that in dimension d = 2, we have:

|Nw − u(N) − v(N)| ≤ C log ‖n‖ ≤ C(1 + ‖n‖)1

for ‖n‖ sufficiently large and where C is a constant. So Nw− u(N)− v(N) is a polynomial
of degree not exceeding 1. In fact, there are only 3 harmonic functions with linear growth:
1, n1 and n2. Hence Nw − u(N) − v(N) would be of the form c1 + c2n1 + c3n2. However,
since no linear function can be bounded by a logarithmic function, Nw−u(N)−v(N) must
be constant.

Now for k = 2d, using the facts that

1. u(N) and σ(N) have finite support

∃M : u(N)(n), σ(N)(n) = 0,∀n : ‖n‖ > M

2. the amount of grains N is preserved

3. σ(N)(n) ≤ 4,∀n ∈ Zd

13



and (also for future reference) defining the bounded (fixed, dependent on N) supports as

Su(N) := {n ∈ Zd : u(N)(n) > 0}
Sσ(N) := {n ∈ Zd : σ(N)(n) > 0}

we can rewrite Nw(n)− u(N)(n)− v(N)(n), for ‖n‖ sufficiently large, as

∣∣∣Nw(n)− u(N)(n)− v(N)(n)
∣∣∣ =

∣∣∣∣∣∣Nw(n)− u(N)(n)−
∑
m∈Zd

σ(N)(m) · w(n−m)

∣∣∣∣∣∣
=

∣∣∣∣∣∣Nw(n)−
∑

m∈S
σ(N)

σ(N)(m) · w(n−m)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

m∈S
σ(N)

σ(N)(m) · w(n)−
∑

m∈S
σ(N)

σ(N)(m) · w(n−m)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

m∈S
σ(N)

σ(N)(m) · [w(n)− w(n−m)]

∣∣∣∣∣∣
≤ 4 ·

∑
m∈S

σ(N)

|w(n)− w(n−m)|

= 4 · |Sσ(N) | · sup
m∈S

σ(N)

|w(n)− w(n−m)|

≤ g(N) · sup
m∈S

σ(N)

|w(n)− w(n−m)|

Now, since the support Sσ(N) is finite, for sufficiently large ‖n‖

|w(n)− w(n−m)| ' C
∣∣∣∣log

‖n‖
‖n−m‖

∣∣∣∣+O(‖n‖)−4

and hence
sup

m∈S
σ(N)

|w(n)− w(n−m)| → 0, as ‖n‖ → ∞.

So we can conclude that in dimension d = 2, for k = 2d = 4, Nw − u(N) − v(N) ≡ 0 as
well.

4.4 Summary

In this chapter we showed that for sandpile growth models for all d ≥ 2 and k ≥ 2d

Nw − u(N) − v(N) ≡ 0.
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Chapter 5

A limiting shape

We are interested in finding limiting shape:

lim
N→∞

{n : σ(N)(n) > 0}
g(N)

= S ⊂ Rd, with S 6= {∅,Rd}.

We can use what we know about the behaviour of the harmonic function

Nw − u(N) − v(N) ≡ 0 (5.1)

to try and find an estimate.

5.1 The dissipative case

In the dissipative case, for d ≥ 2 the fundamental solution w is non-negative. In a stable
end configuration a site n has non-negative integer height σ(N)(n) along with a non-
negative number of topplings u(N)(n) ≥ 0. Furthermore, if the site has toppled, it and its
neighbours have at least one grain

u(N)(n) > 0 ⇒ σ(N)(n), σ(N)(n± ei) > 0 ⇒ v(N)(n) > 0.

This means that for a given site n, because of (5.1), if u(N)(n) > 0, then necessarily
Nw(n) > 1 since

u(N)(n) > 0⇒ u(N)(n) ≥ 1⇒ Nw(n) = u(N)(n) + v(N)(n) > 1

and therefore
Su(N) = {n : u(N)(n) > 0} ⊆ {n : Nw(n) > 1}. (5.2)

On the other hand, since w and σ(N) are bounded (‖w‖∞ < ∞ and 0 ≤ σ(N)(n) ≤ k for
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all n ∈ Zd) and σ has finite support, for all n one has

0 < v(N)(n) = (w ∗ σ)(n)

=
∑
m∈Zd

w(m)σ(n−m)

≤ maxσ(N)
∑
n∈Zd

|w(m)|

= k
∑
m∈Zd

|w(m)|

= k‖w‖1 =: C <∞

Consequently, if Nw(n) = u(N)(n) +v(N)(n) > C for a site n, then since v(N)(n) ≤ C, one
necessarily has

u(N)(n) = Nw(n)− v(N)(n) > C − C = 0.

Therefore
{n : Nw(n) > C} ⊆ {n : u(N)(n) > 0} = Su(N) . (5.3)

Combining results 5.2 and 5.3 we get the following approximations for Su(N) :

AN := {n : Nw(n) > C} ⊆ Su(N) ⊆ {n : Nw(n) > 1} =: BN . (5.4)

Now, since all sites in Su(N) have at least one direct neighbour, i.e. a site at graph distance
1, which is contained in Sσ(N) , one has

Su(N) ⊆ Sσ(N) ⊆ Su(N) ∪ ∂+Su(N) ,

where ∂+Su(N) = ∂+1 Su(N) represents the set of sites m ∈ Zd \ Su(N) for which there exists

an n ∈ Su(N) such that
∑d

i=1 |ni −mi| = 1.

Therefore, if the scaling limit of Su(N) exists, then the the scaling limit of Sσ(N) exists as
well, and the limits coincide.

In fact, one can show that the distance between the sets AN and BN is bounded by a
constant independent of N . In other words

AN ⊆ Su(N) ⊆ BN ⊆ AN ∪ ∂+p AN

for some p. Therefore, the scaling limits of AN and Sσ(N) - if they exist - must coincide
as well.

We are going to establish directly the existence of the scaling limits for sets of the form

S{|Nw|≤c} = {n ∈ Zd : |Nw(n)| ≤ c}

where c > 0. In fact, one can show that for k > 2d, there exists an S ⊂ Rd, S 6= ∅,Rd,
such that for all c > 0,

S{|Nw|<c}

logN
→ S

where
S = {x ∈ Rd : α(x) ≤ 1},

16



with α(x) defined for x ∈ Rd \ {0} by

α(x) =
d∑
j=1

xj sinh−1(xjs),

where s > 0 solves

k = 2

d∑
j=1

√
1 + (xjs)2.

The function α(x) was identified by Zerner [7] as the directional limit of wn:

lim
‖x‖∞→∞

− logw(x)

α(x)
= 1,

(
‖x‖∞ = max(|x1|, . . . , |xd|)

)
, (5.5)

5.2 The critical case

Let us first recall some results established in the literature.

Levine and Peres (in [8]) have given the following bounds on the shape of the abelian
sandpile in d dimensions.

Theorem 3. Write N = ωdr
d, where ωd is the volume of the unit ball in Rd. Then for

any ε > 0 we have
Bc1r−c2 ⊂ Sσ(N) ⊂ Bc′1r+c′2

where
c1 = (2d− 1)−1/d, c′1 = (d− ε)−1/d.

The constant c2 depends only on d, while c′2 depends only on d and ε.

In dimension two, these bounds read as

Bc1r−c2 ⊂ Sσ(N) ⊂ Bc′1r+c′2

where

r =

√
N

π
, c1 =

1√
3
, c′1 =

1√
2− ε

.

and the constants c2 and c′2 are independent of N .

Levine and Peres noted that Theorem 3 does not settle the question of the asymptotic
shape of Sσ(N) , since the bounds do not converge, as it was the case for the dissipative
model. Indeed it is not clear from simulations whether the asymptotic shape in two
dimensions is a disc or perhaps a polygon - see figure 1.1 - as conjectured by Fey and
Redig [6]. Also the existence of a limit shape has not yet been established.

We would like to understand the relation between Sσ(N) and level sets of Nw and will use
simulations to try and get a better understanding of the shape and size of Sσ(N) .

The aim is to find two functions f(N) and g(N) such that Su(N) is squeezed between two
level sets {n : |Nw(n)| ≤ f(N)} and {n : |Nw(n)| ≤ g(N)} and explore their properties.
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5.3 Simulations

In this section different aspects of the model will be regarded to find out more about the
behaviour in the two dimensional critical k = 2d case.

5.3.1 Behaviour of the odometer u

Before analysing the odometer, we first give the following definition.

Definition 13. The boundary of Sσ(N) is the set of sites n ∈ Zd which have a direct
neighbour (relation ∼) m such that σ(N)(m) = 0, i.e. outside of Sσ(N),

boundary of Sσ(N) := {n ∈ Sσ(N) : ∃m ∈ Zd \ Sσ(N) : m ∼ n}.

The boundary of Su(N) is defined analogously.

The boundary of Sσ(N) is that of Su(N) ∪ ∂+Su(N) , where ∂+Su(N) the edge, or outer
boundary, of Su(N) .

The maximum of u(N), confirmed by simulations, is located at the origin

max(u(N)) = u(N)(0)

and the minimum on the boundary of Su(N) .

Figure 5.1: The odometer u(N) for N = 106.
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Figure 5.2: Plot of max(u(N)) for N = [105, 106]

5.3.2 Growth of the support Sσ(N)

We would like to establish bounds on Sσ(N) . To get an impression of the growth of Sσ(N)

we the radius.

Definition 14. The radius rσ(N) of Sσ(N) is defined by

rσ(N) := max{|n1| : σ(N)((n1, 0)) 6= 0},

which is equal to max{|n1| : σ(N)((0, n1)) 6= 0} due to the symmetry of σ(N).

We plot the values of rσ(N) N = [105, 106].
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Figure 5.3: Plot of the radius rσ(N) of σ(N) for N = [105, 106] and of π · r2
σ(N) on the same

interval, which seems to be just slightly sublinear to the naked eye.

If we would have σ(N)(n) = 1 for all n in Sσ(N) and Sσ(N) were a disc, the radius rσ(N) ,
would relate to N as N ' πr2

σ(N) . The sites in the support of σ(N), however, have heights
from 1 to 4 and the radius should therefore be scaled. A fit of the data for the radius rσ(N)

as a function of N indicates

r = c
√
N,

c = 0.3107± 8.5 · 10−4.

Where (0.3099, 0.3116) is the 95% confidence interval. This indicates the radius rσ(N) to
relate to N as

rσ(N) =

√
N

ρ
(5.6)

where c =
√

1
ρ ⇒ ρ ≈ 10.3590 ≈ 3.2974π.
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5.3.3 Height ratios

The stable configurations σ(N) portray repeating patterns and the ratios of the sites with
heights 1 through 4 play a role in determining the total area of the support Sσ(N) . We will
analyse the ratios by registering the number of sites with height 1,2,3 and 4 respectively
when simulating the stabilization of N grains.

Let ai, i = 1, 2, 3, 4 denote the ratios of the number of sites of height i to the total number
of sites in the support of σ(N), i.e. the possibility of a site in σ(N) having height i,

ai =
|{n ∈ Sσ(N) : σ(N)(n) = i}|

A(N)
,

where A(N) := |Sσ(N) | is defined as the area of the support of σ(N).

Figure 5.4: The ratios of the heights 1,2,3 and 4 in simulations for N = [105, 106].

The area A(N) plays an important role in the determination of the limiting shape of σ(N)

and can be related to N and ai as follows.

N = a1A
(N) + 2a2A

(N) + 3a3A
(N) + 4a4A

(N)

= A(N) · (a1 + 2a2 + 3a3 + 4a4)

Since we know N , and the ai’s tend to a certain ratio, we can predict the surface A(N) by

A(N) =
N

a1 + 2a2 + 3a3 + 4a4
:=

N

a
. (5.7)

Figure 5.5 shows the behaviour of a = a1 + 2a2 + 3a3 + 4a4, based on the data from
simulations.
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Figure 5.5: Values of a = a1 + 2a2 + 3a3 + 4a4 for N = [105, 106].

While the data for a is hard to fit, a fit for the values ofA(N) gives a slope of 0.3031(0.3025, 0.3036)
(figure 5.6), which indicates a to tend to 1/0.3031 ≈ 3.2992 ≈ ρ/π.

In [9], based on the model where a site n topples when σ(n) ≥ 4 in stead of when σ(n) > 4,
the stationary density ζs of the sandpile, i.e. the expected number of particles at a fixed
site, and the single site height probabilities are given:

ζs = 17/8,

aζ0 = 2
π2 − 4

π3 ,

aζ1 = 1
4 −

1
2π −

2
π2 + 12

π3 ,

aζ2 = 3
8 + 1

π −
12
π3 ,

aζ3 = 3
8 −

1
2π + 1

π2 + 4
π3 .

Assuming aζi = ai+1, we would expect the ai to be valued

a1 ≈ 0.07363,

a2 ≈ 0.27522,

a3 ≈ 0.30629,

a4 ≈ 0.44617,

though these values do not correspond to the values observed in 5.4. However, the expected
number of particles at a fixed site, using these values

â = 1 · 0.07363 + 2 · 0.27522 + 3 · 0.30629 + 4 · 0.44617 ≈ 3.32762, (5.8)
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does approach our earlier estimated value for a.

One can combine (5.6), (5.7) and (5.8) to relate the radius rσ(N) to the area A(N) as

A(N) = πr2
σ(N) ,

rσ(N) ≈
√

N

3.3π
.

Figure 5.6: A(N) and N/a for N = [105, 106].

5.3.4 Using the fundamental solution w

To understand the relation between Sσ(N) and the level sets of Nw and to find functions
f(N) and g(N) such that Su(N) is squeezed between two level sets {n : |Nw(n)| ≤ f(N)}
and {n : |Nw(n)| ≤ g(N)}, we first explore the properties of the the fundamental solution
w.
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Figure 5.7: Top view (height plot) and surf image of |w| and values on the x1-axis |w(n, 0)|.

We know that |w| and σ(N) are symmetrical in the x1, x2 and x1 = ±x2 axes, so we
are allowed to limit our analysis to the upper right quarter, which is beneficiary when
performing simulations in Matlab.

The level sets of |Nw| are of the form {n ∈ Zd : |Nw(n)| ≤ C} for a C ∈ R. We want to
find an inner and an outer bound for the support of σ(N). Therefore we define two special
values, which describe the |Nw|-value on the boundary of the bounding level sets for Sσ(N) :

Definition 15. The value C−(N) of |Nw|, defined by:

C−(N) := max
{
C : {n ∈ Zd : |Nw(n)| ≤ C} ⊆ Sσ(N)

}
The value C+(N) of |Nw|, defined by:

C+(N) := min
{
C : {n ∈ Zd : |Nw(n)| ≤ C} ⊇ Sσ(N)

}
A plot of C±(N) for N = [105, 106] is given in Figure 5.9.
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Figure 5.8: Top: ‘S.*Nw’. Bottom: The values of Nw (N = 106) on the boundary of
the upper right quarter of σ(N) for N = 105 by taking the maximum of every column of
‘S.*Nw’.
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Figure 5.9: Behaviour of C− and C+. Top: C− and C+ for N = [105, 106]. Bottom:
C−(N)
N and C+(N)

N for N = [105, 106] on a log scale.

Displaying the level sets {n : |Nw(n)| ≤ C−} and {n : |Nw(n)| ≤ C+} along with S, as
seen in figure 5.10, we verify that the level sets indeed provide good bounds for Sσ(N) .
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Figure 5.10: The level sets {n ∈ Zd : |Nw(n)| ≤ C−} (brown-red) and {n ∈ Zd : |Nw(n)| ≤
C+} (blue), bound Sσ(N) (red) from below and above, for N = 105 and N = 106. The
radii are rC− and rC+ respectively, i.e. |Nw(rC± , 0)| = C±.
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Earlier, in section 5.3.2, we noted the radius of Sσ(N) to behave like rσ(N) =
√
N/ρ where

and the C±(N) are values of |Nw| on the boundary of Sσ(N) , whose growth is equivalent
to that of the radius, i.e. ‖n‖ ' rσ(N) for the n for which |Nw(n)| = C−, as can be seen
in figure 5.10. Therefore, recalling 2.9 for N →∞,

C−(N)

N
≈ |w(rσ(N))| ≈

1

2π
log

(√
N

ρ

)
+ κ =

1

4π
(log(N)− log(ρ)) + κ =

1

4π
log(N)− κ̂,

(5.9)

where 1
4π ≈ 0.079577, κ = log(8)+2γ

4π ≈ 0.27534 and κ̂ = log(ρ)
4π − κ ≈ −0.0713.

A fit of the data for C± verifies the forms

C−(N) = N(α1 · log(N) + β1)

C+(N) = N(α2 · log(N) + β2),

with fitted parameters

α1 = 0.07932 (0.07920, 0.07943),
α2 = 0.07893 (0.07886, 0.07900),
β1 = 0.07331 (0.07177, 0.07484),
β2 = 0.08099 (0.08006, 0.08192).

These functions C±(N) are in fact the f(N) and g(N) we were looking for such that Sσ(N)

is squeezed between two level sets F (N) := {n : |Nw(n)| ≤ f(N)} and G(N) := {n :
|Nw(n)| ≤ g(N)}, thus

f(N) := C−(N), (5.10)

g(N) := C+(N). (5.11)

Let the radii rf and rg of F (N) and G(N) be defined as

rf = max {n : |Nw(n, 0)| ≤ f(N)} ≈ ‖n‖ : |Nw(n)| = f(N), (5.12)

rg = min {n : |Nw(n, 0)| ≥ g(N)} ≈ ‖n‖ : |Nw(n)| = g(N). (5.13)

Combining (2.7) and (5.9) through (5.13) and solving for n, we find the expression for rf
and rg:

N

(
1

2π
log ‖n‖+ κ

)
= N

(
1

4π
log(N)− κ̂

)
⇒ rf (N) ≈

√
N

ρ
≈ 0.3016

√
N

N

(
1

2π
log ‖n‖+ κ

)
= N (α2 log(N) + β2) ⇒ rg(N) ≈ e2πβ2N2πα2

2
√

2
≈ 0.3302

√
N

A plot of rf and rg along with rσ(N) is given in figure 5.11.
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Figure 5.11: The radius rσ(N) along with rf and rg.

The inner and outer bounds given by Levine and Peres (Theorem 3) indicate radii

rib =

√
N

3π
− c2 ≈ 0.3257

√
N and

rob =

√
N

(2− ε)π
− c′2 ≈ 0.3989

√
N.

Note that these bounds are based on the model where the maximum height is 2d − 1 in
stead of 2d. We therefore expect the bounds of our model to be smaller. The difference
between the radii, of the form ξ

√
N , is smaller too, in particular

rg − rf ≈ 0.0286
√
N,

whereas rob − rib ≈ 0.0732
√
N .
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5.4 Polygonal bound

While the expamples in figure 1.1 suggest the limiting shape to be dodecagonal (which
has also been conjectured by Redig [6]), the plots in figure 5.10 show that the boundary
of Sσ(N) touches the inner bounding level set, with radius rf ' rσ(N) , at 0, π/4 and π/2
radians and the outer bounding level set, with radius rg, at π/8 and 3π/8, which suggests
the outer bounding shape to be octagonal (cf. figure 5.12). In particular Sσ(N) seems to be
bound above and below by an octagon of radius (apothem length) rσ(N) and its inscribed
circle respectively.

Figure 5.12: Finding a rough upper bound using simple geonometry.

In fact, taking a closer look at 5.12 the limiting shape of Sσ(N) seems to be the intersection
between the octagon of radius or apothem length rσ(N) and the level set G(N) = {n :
|Nw(n)| ≤ C+(N)}. This would require

rg ≤
rσ

cos(π8 )
:= rC+ ,

where rσ/ cos(π8 ) describes the radius of the circumscribed circle of the concerning octagon.

According to our estimates rg ≈ 0.3302
√
N and rC+ ≈ 0.3362

√
N this is the case.
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Chapter 6

Conclusions

In this thesis we performed analysis on the harmonic sandpile equation and showed that
for all d ≥ 2 and k ≥ 2d

Nw − u(N) − v(N) ≡ 0.

Furthermore, simulations were performed for the critical, two-dimensional case, with the
aim to find a link between the limiting shape and the fundamental solution in the form
of level sets. These simulations, performed on the range N = [105, 106], have shown the
following:

The radius of the Sσ(N) has been estimated at

rσ(N) ≈
√

N

3.3π
≈ 0.3106

√
N.

The two functions f(N) and g(N) such that Su(N) lies between two level sets {n :
|Nw(n)| ≤ f(N)} and {n : |Nw(n)| ≤ g(N)}, have been estimated to be

f(N) = C−(N) ≈ N(0.07957 · log(N) + 0.07130),

g(N) = C+(N) ≈ N(0.07893 · log(N) + 0.08099),

from which can be deduced that the radii of the level sets van be descibed by

rf (N) ≈ 0.3016
√
N,

rg(N) ≈ 0.3302
√
N.

These bounds diverge at a rate of rg − rf ≈ 0.0286
√
N . We know now that the limiting

shape cannot be described in terms of the level sets of the fundamental solution w. We
have seen however that for the upper bound, the radius rg of level set G(N),

0.3302
√
N ≈ rg(N) ≤ rC+ =

rσ
cos(π8 )

≈ 0.3362
√
N

which leaves the door open for the limiting shape to be an octagon with apothem length
rσ(N) . This is left for another project.
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Appendix A

Script

The following script is the one I use for all my simulations. I only in the really end
thought of a way to speed up the process as N grows, but didn’t implement that (yet). I
had different codes in between - including ones that make movies of the toppling process
- but this one turned out to be the most efficient one.

1 % Simulating sandpiles
2 % Version 1: 23/3/2013 !! Has been updated a lot since.
3 % Frederique de Paus
4

5 % MAKE SURE TO LOAD 'w.mat' first! (Variable name is Green)
6

7 clc; %clear all;
8

9 % Parameters / initialization
10 N = 1000000; % End amount of chips
11 n = 100000; % Start amount of chips
12 batch = 100000; % Number of chips to add per batch
13 d = 2; % Dimension
14 h = 0; % Constant hight at sigma
15 k = 2*d; % Critical value (height)
16 order = (N/(2*pi))ˆ(1/d); % Order of diameter field
17 M = floor(order); % To ensure integer
18 r = 2*M+1; % Length side matrix / field
19 o = M+1; % Coordinate of origin
20 sigma = h*ones(r); % Start configuration
21 u = zeros(r); % Times x topples
22 desiredtime = 100000; % Max time you want to wait for results
23

24 ntimes = max((N−n)/batch+1,1); % 'Step size'
25 nsteps = batch*ones(ntimes,1); % Vector of amount of chips per batch
26 nsteps(1,1) = n;
27

28 umax = zeros(ntimes,1); % Maximum amount of topples
29 swide = zeros(ntimes,1); % Radius of sigma
30

31 Couter = zeros(ntimes,1); % Inner bound of boundary sigma
32 Cinner = zeros(ntimes,1); % Outer bound of boundary sigma
33

34 % Toppling
35 start = cputime;
36 loops = 0;
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37 time = 0;
38 for j = 1:length(nsteps)
39 sigma(o,o) = sigma(o,o)+nsteps(j,1); % Adding chips at origin
40 while ((find(sigma>k)) & (time <= desiredtime))
41 loc = find(sigma>k); % Locations sigma>k
42 for i = 1:length(loc)
43 if floor(loc(i)/r) == loc(i)/r % Transforming to coord.
44 y = loc(i)/r;
45 x = r;
46 else
47 y = floor(loc(i)/r)+1;
48 x = loc(i) − (y−1)*r;
49 end
50 temp = sigma(x,y);
51 sigma(x,y) = mod(sigma(x,y)−1,k)+1;
52 mult = (temp−sigma(x,y))/k;
53 if x−1 > 0
54 sigma(x−1,y) = sigma(x−1,y)+mult; end
55 if x+1 < r+1
56 sigma(x+1,y) = sigma(x+1,y)+mult; end
57 if y−1 > 0
58 sigma(x,y−1) = sigma(x,y−1)+mult; end
59 if y+1 < r+1
60 sigma(x,y+1) = sigma(x,y+1)+mult; end
61 u(x,y) = u(x,y)+1;
62 end
63 loops = loops+1;
64 time = cputime−start;
65 end
66

67 % max odometer and radius
68 umax(j,1) = max(u(:)); % For growth u
69 hokje = o; % Start for radius sigma
70 while (sigma(o,hokje)>0 && hokje < o+M) % −
71 hokje = hokje + 1; % −
72 end % −
73 swide(j,1) = hokje−o+1; % end for radius sigma
74

75 % Ratios (Add or remove to save time)
76 aantal = zeros(1,4);
77 aantal(1) = length(find(sigma==1)); % # sites of height 1
78 aantal(2) = length(find(sigma==2)); % # sites of height 2
79 aantal(3) = length(find(sigma==3)); % # sites of height 3
80 aantal(4) = length(find(sigma==4)); % # sites of height 4
81 aandelen(j,6) = sum(aantal); % Area of support
82 aandelen(j,2:5) = aantal./aandelen(j,6);
83

84 % Calculating bound of boundary sigma
85 N = sum(nsteps(1:j,1)); % Amount of grains in system
86 Nw = N.*Green(401−M:401,401:401+M); % Green is 801x801
87 S = sigma(1:o,o:r); S(S>0)=1; % Right upper corner support
88 SedgeNwval = max(S.*Nw); % Max values columns => tresh.
89 SedgeNwval(SedgeNwval==0)=[]; % Remove zero values for min
90 Couter(j,1) = max(SedgeNwval); % Maximal value of Nw on edge
91 Cinner(j,1) = min(SedgeNwval); % Minimal value of Nw on edge
92 end
93

94 loops;
95 time

36


	Introduction
	Discrete Laplacians
	Green's function

	Centrally seeded abelian sandpile growth model
	The model

	Analysis of the sandpile equation
	Analysis in dimension d3
	Analysis critical case in dimension d3
	Analysis in dimension d=2 
	Summary

	A limiting shape
	The dissipative case
	The critical case
	Simulations
	Behaviour of the odometer u
	Growth of the support S(N)
	Height ratios
	Using the fundamental solution w

	Polygonal bound

	Conclusions
	Appendices
	Script

