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Abstract

In this bachelor thesis we study models for the elastic deformations of patterned
quasi 2D sheets. The main ingredients for these models are elastic beams and
we focus on four different models for elastic beams in this study. We start
from the theory of elasticity and derive four beam models for both inextensible
and extensible beams, by using the Euler Lagrangian equations. One of these
models is the classic Euler-Bernoulli beam model, which is valid for elastic beams
that are not compressible and have only small, weakly non-linear deflections.
The other models are extensions of this model and are valid for strong non-
linear behaviour and/or compressible beams. With these models we analyze
the compression and buckling of beams with various boundary conditions such
as a pinned-pinned beam and a beam attached to two circular, freely rotary
nodes. Finally we also present some simulations for both a single beam between
two circular, freely rotary nodes and the elastic patterned sheets.
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Chapter 1

Introduction

When we try to compress a material, we see that it deforms. There are many
ways in which a material can deform. For instance steel breaks when we load
it with too much force. Clearly this kind of deformation is irreversible. How-
ever there are many reversible ways in which a material can react to being
compressed. A spring, for example, returns to its original state when we re-
move the compressing loads. These reversible deformations are called elastic
deformations.

These elastic deformations are mathematically described with so-called elastic
moduli. They measure how a specific object deforms elastically when it is
compressed. Hence the elastic moduli are material properties. The most well-
known is the Bulk modulus (denoted with either a K or a B). This elastic
modulus specifies the material’s resistance to uniform compression: the higher
the Bulk modulus of a material, the less easy we can compress it (see figure
1.1).

(a) (b) (c)

Figure 1.1 – Schematic 2D illustration of the Bulk modulus. In figure (a) the
original state of the sphere is shown. In figure (b) a material with a low Bulk
modulus is shown, while in figure (c) we see a material with a high Bulk modulus.
The original sphere is shown in both figures with dots.

The Bulk modulus measures what happens to an object when an uniform load
is applied. Instead of compressing a material in all directions, we could also
compress it in only one direction (see figure 1.2). Leonhard Euler (1707-1783)
first studied this sort of elastic deformations in 1727. He found that there is - in
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good approximation - a linear response between the stresses σ (i.e. the force per
unit area) on an elastic solid and the strain ε (i.e. the relative compression) of
it. Later Thomas Young (1773-1783) described this behaviour again in 1807. He
then introduced the Young’s modulus E which accounts for this proportionality
of the stress and strain in an elastic solid:

σ = Eε (1.1)

L0

(a)

σ
εL0

(b)

Figure 1.2 – Schematic 2D illustration of compression in only one direction. In
figure (a) the original state of an elastic solid (in this case an elastic beam) is
shown. In figure (b) this solid is undergoing a certain stress σ. As a result the
beam has a strain ε. The dotted lines show the original beam which has a length
L0.

But this does not describe everything that happens when we compress an elastic
solid. The previous description thus far only accounts for the deformation of
the solid in the direction in which we apply a force on it (so-called axial defor-
mation). However, besides this, there is also a lateral expansion of the elastic
material (see figure 1.3a). This phenomenon is called the Poisson effect, after
Siméon Poisson (1781-1840). The amount of this effect is expressed with the
Poisson’s ratio (denoted as ν). It is defined as the ratio between the strain in
the transversal direction and the strain in the axial direction. That is,

ν = −
εtransversal

εaxial
(1.2)

Normal materials that expand when compressed have positive Poisson’s ratios
up to a ratio of 0.5. There are however materials that have a negative Poisson’s
ratio, meaning that they are in fact shrinking in all directions when they are be-
ing compressed (see figure 1.3b). For instance Rod Lakes published an example
of a synthetic material with a negative Poisson’s ratio (see Lakes [1987]). These
kind of materials with a negative Poisson’s ratio are called auxetic.

This Poisson effect is clearly visible when we compress slender elastic rods (also
called ‘elastic beams’). They however have yet another interesting feature, since
they exhibit an instability under a large enough load. When we compress elastic
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σ

(a) 2D material with a positive Pois-
son’s ratio.

σ

(b) 2D material with a negative Pois-
son’s ratio.

Figure 1.3 – 2D illustration of both a material with a positive (a) and a negative
Poisson’s ratio (b). Both samples are compressed with a force (red). The dotted
black rectangle is the original form of the material, while the blue rectangles are
the new form when they are compressed. The green arrows show what happens in
the direction perpendicular to the direction in which the material is compressed.

rods with a great enough force, they suddenly buckle. The point at which this
buckling starts, is a bifurcation point at which a pitchfork bifurcation occurs
(see Bazant and Cendolin [2009]).

Though there is a linear response between the local stress and strain, as we
have seen in equation (1.1), there is not a linear relation between the global
stress and strain in an elastic rod. The global stress strain relation exhibits
some non-linear behaviour (see figure 1.4). This non-linearity is however purely
due to the changed geometry of the elastic beams when they are buckled.

Recently a new material has been found that has both a negative Poisson’s
ratio and a negative slope in the force strain curve (see Mullin et al. [2007]
and Bertoldi et al. [2010]). This material is an elastic sheet, in which circular
holes are made in a regular way (see figure 1.5). These so-called monoholar

ε

σ

(a)

ε

σ

(b)

ε

σ

(c)

Figure 1.4 – Sketches of possible stress strain curves for a normal elastic material
(a) and two possible stress strain curves for an elastic beam that buckles (b and
c). The kink in these curves indicate the buckling bifurcation point.
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(a) Photo of monoholar elastic pat-
terned sheet when not compressed

(b) Photo of monoholar elastic pat-
terned sheet when compressed

(c) Sketch of a monoholar elastic pat-
terned sheet which is loaded from
above

(d) Force extension curve for a mono-
holar elastic patterned sheet for both
compression (upper line) and relax-
ation (experimental data).

Figure 1.5 – Monoholar elastic sheets in which circular holes are made in a
regular way (elastic patterned sheets). Photos of this kind of elastic sheets are
shown in (a) and (b). We can clearly see the negative Poisson’s ratio in figure
(b). In figure (c) the set-up for a loading experiment is sketched. The resulting
force extension curve is shown in figure (d). There is a clear negative slope visible
in this curve, which normal materials don’t have.

elastic patterned networks also exhibit a particular peak in their force extension
curves (see figure 1.5d), which for now is not fully comprehended.

The behaviour of these new materials is purely due to the geometry of the holes
in the sheet. We see this clearly when we inspect another sort of elastic sheets.
Instead of punching out circles of constant radii, this material has holes of two
radii (in a regular way). These elastic sheets are called biholar elastic patterned
sheets. In contrary to the monoholar sheets, they don’t have the particular peak
or a negative slope in their force extension curves (see figure 1.6), though they
have a negative Poisson’s ratio.

We believe it is possible to model both the monoholar and the biholar networks
in a numerical simulation. To do this, we first observe that there is a relatively
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(a) (b)

Figure 1.6 – Biholar elastic patterned sheet. In figure (a) the set-up for a loading
experiment is sketched. In figure (b) the force extension curve is shown. Clearly
the strange behaviour (i.e. the peak) from figure 1.5d is gone

large portion of the elastic sheet between the holes. We can think of these
portions as an undeformable, circular ‘nodes’. We can then model the elastic
material that is left between the nodes as elastic ‘beams’ (i.e. slender elastic
rods). This idea is illustrated in figure 1.7.

To understand this model of the elastic networks, we first need to understand
the behaviour of the (single) beams themselves. In general there are three things
that a beam can do when it is being deformed. First, the length of the beam may
change. This is called stretching. Second, the beam can rotate in a direction
perpendicular to its main axis (i.e. the axis in which the beam is the longest).
When this happens, we say that the beam is bending. At last, the beam can
rotate around its main axis. If that happens, the beam is said to be twisting.
These three possibilities are drawn in figure 1.8.

The theory of the elastic beams was first described by Leonhard Euler and
Daniel Bernoulli in the 17th century. Since then many additional beam models
and theories have been developed. These various models differ in how realistic
they describe the elastic rods. For instance most neglect the twisting of the
beams completely, since this effect is generally the least important one. Further
differences between the models arise because the stretching of the beam is some-
times neglected. The original Euler-Bernoulli beam model is an example that
models the beams as inextensible, not-stretchable beams. Finally there are great
differences in the detail of the beam’s shape between beam theories. Generally,
less detail means a model that is easier to work with, but less realistic.

In this bachelor thesis we will heavily investigate various beam models. The
starting point for this study is the energy that the beams have, which we will
derive in chapter 2 from the theory of elasticity. In chapter 3 we will then
acquire four beam models, which are increasingly more realistic. Moreover, we
will also study various possible configurations of the beams with these models
in that chapter. At last, we will use the model explained above to simulate both
a single beam between two nodes and the elastic patterned sheets in chapter 4.
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(a) (b)

(c) (d)

Figure 1.7 – Illustration of the model of a elastic patterned sheet (pink) as
combination of nodes (green) and beams (blue). In figure (a) a piece of the
elastic patterned sheet is shown. The white circles are the holes in the network.
In figure (b) the nodes (green) are drawn. These are placed at the positions
between the holes where there are large portions of elastic material. Then in
figure (c) the beams (blue) are also shown. These represent the remaining elastic
material between the nodes. In figure (d) the resulting model is shown. In this
last picture the elastic sheet in pink is erased. The original holes in the elastic
patterned sheets are drawn as a reminder of the elastic patterned sheet. In the
simulations these circles are not shown anymore.

(a) Original elas-
tic beam

(b) Stretching of
an elastic beam

(c) Bending of an
elastic beam

(d) Twisting of an
elastic beam

Figure 1.8 – Illustration of the various modes possible in the beam. In each
figure the original position (a) is shown with dotted lines.
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Chapter 2

Background on strains and
elastic energy

In this chapter we discuss the general behaviour of the elastic beams that we use
to model the elastic patterned sheets. Since these elastic beams are far much
longer than wide, we can see them as slender solid rods (see figure 2.1). When
these rods are being deformed (for instance by the application of external loads
as we will do in Chapter 3), initial properties of the elastic beam like the stress
and the strain are changed. The theory behind these changing properties is
called elasticity (a field in continuum mechanics).

x

y

z

b

h

L

Figure 2.1 – General set up for the three dimensional beam (blue). The elastic
beam is much longer than wide (i.e. L� b, h), so it can be seen as a slender rod.

Central in the theory of elasticity are the stresses and strains inside the beam.
These properties measure the internal forces per unit area and the relative
changes in shape or size of parts of the beam respectively. For instance when the
beam is deformed by the application of a load, the beam is being squeezed (see
figure 2.2). Since the beam wants to restore its initial position (i.e. when not
deformed), the beam exerts internal forces opposite to the applied load. These
internal forces are called the stresses in the beam.

In essence these processes are the same as what’s happening when you squeeze
a normal spring. The theory of elasticity can be seen as a generalization of the
theory on elastic springs to three dimensional objects. It deals with how solid
elastic objects, like our elastic beams, deform and become internally stressed
due to external loads. A simplification of the general elasticity is the linear
elasticity. In this simplification it is assumed that the resulting internal strains

12



P
P

Figure 2.2 – Graphical illustration of the effect of an external force P (red) on
the internal stresses (blue) in an elastic solid. The first picture (black) illustrates
the original state of the elastic solid. The two other pictures (green and orange)
show the effect of an increasing external load P on the elastic solid. When this
load P increases, the stresses (blue) inside the elastic solid also increase. The
strain in these cases also increases, since the solid is squeezed.

are relatively small and that there is a linear relation between the original dis-
placements of the elastic solid and the resulting strains.

In this chapter we start from the general, three dimensional, linear elasticity
theory and apply it to our case of the slender elastic beams. Since we are dealing
with slender rods, we reduce this elastic theory to a quasi one dimensional
problem. At the end of this chapter we find an expression for the (potential)
elastic energy in our elastic beams. This expression will be our starting point
to derive the various beam models in Chapter 3.

2.1 Introduction

Let’s now inspect the three dimensional elastic rod from figure 2.1. This elastic
rod has a cross-sectional area Ω0 (see figure 2.3). Note that this cross-section can
be dependent on the x position. We choose the origin of the coordinates y and z
as the centroid of this cross-sectional area Ω0. This is done to ensure the model
is symmetric in the y and z directions, which makes the resulting expressions in
section 2.3.3 more simple and helps us reduce the dimensions that we need to
take into account. Mathematically formulated this choice ensures that we have
per construction

∫∫
Ω0

z dzdy =

∫∫
Ω0

y dzdy = 0 (2.1)

Each point (x, y, z) on this elastic rod experiences, under load, a three dimen-
sional displacement which we denote by ux, uy and uz for displacements in
respectively the x, y and z directions (see figure 2.4). From these displacements
we find the strains and stresses inside the beam in the following sections, which
we will use to express the elastic energy of elastic beams.

Both the strain and the stress are second-rank tensors. That means they both

13



x

y

z
Ω0

Figure 2.3 – General set up of the three dimensional rod problem. The green
part, Ω0, is the cross-section (at a certain point z) of the elastic rod. The red line
is centroid of the cross-section Ω0 at a position z.

can be expressed as matrices

σ =

 σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

, ε =

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 (2.2)

Each element of these matrices corresponds to a different geometrical interpre-
tation. For instance σyy is the stress in the y-direction that is working on the
y-face of the inspected solid and σyx is the stress in the x-direction that is
working on the y-face of the solid (see figure 2.5).

The potential elastic energy can be found with the stress and strains inside the
elastic solid (see Barber [2010])

Eel =
∑
i,j

1

2

∫ xe

xs

∫∫
Ω0

σijεij dz dy dx (2.3)

(in which i, j ∈ {x, y, z} and xs and xe denote respectively the beginning and
end of the beam on the x-axis.)

In the following sections we find expressions for the strain tensor ε and the stress
tensor σ so we can find an explicit expression for this elastic energy, which we
then will use in chapter 3 to acquire various beam models.

x

y

z

ux

uz

uy

Figure 2.4 – The three kinds of displacements of a infinitesimal piece of the
elastic rod. The black dot is the original position of this point and the blue dot
is the new position. The arrows (green) denote the displacements ux, uy and uz
in the x, y and z-directions.
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y

x

z

σzy

σzx

σzz

σxy

σxx

σxz

σyy σyx

σyz

Figure 2.5 – The various components of the second-rank tensor for the stress σ
(blue) inside an elastic solid (a cube in this case).

2.2 Elastic Strain

From the displacements ux, uy and uz we can determine the strain tensors in
the elastic rod (see Landau and Lifshitz) with

εij =
1

2
(ui,j + uj,i + uk,iuk,j) (2.4)

(in which ua,b ≡ ∂ua
∂b and i, j ∈ {x, y, z})

In linear elasticity the gradient of displacements is assumed to be small and
hence the last term disappear. Hence there is a linearized strain tensor whose
elements can be calculated with (see Emam [2002] and Landau and Lifshitz):

εij =
1

2
(ui,j + uj,i) (2.5)

In elasticity it is more common to work with the strain ε than it is to work with
the original displacements ux, uy and uz. If we work with this strain ε however,
we must remember the form of the strain in equation (2.5). Saint Venant pos-
tulated a geometric compatibility condition for the strain ε to ensure that the
tensor has this desired form of equation (2.5). This constraint is (see Emam
[2002]):

εij,kl + εkl,ij − εik,jl − εjl,ik = 0 (2.6)

In this expression we use the notation εij,kl for the second derivative of εij with
respect to k and l. That is,

εij,kl ≡
∂2εij
∂k∂l

(2.7)

(for i, j, k, l ∈ {x, y, z}.)

This geometric compatibility must hold for all i, j, k, l ∈ {x, y, z}. If we write
out all of the geometric compatibility conditions we end up with 81 conditions.
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Luckily most of these are either trivial or duplicates (since the strain tensor is
symmetric as seen in equation (2.5)). We hence end up with the following six
geometric compatibility conditions:

εxx,yy +εyy,xx − 2εxy,xy = 0 (2.8)

εyy,zz +εzz,yy − 2εyz,yz = 0 (2.9)

εxx,zz +εzz,xx − 2εxz,xz = 0 (2.10)

εzz,xy + εxy,zz −εxz,yz − εyz,xz = 0 (2.11)

εxx,yz + εyz,xx −εxy,xz − εxz,xy = 0 (2.12)

εyy,xz + εxz,yy −εxy,yz − εyz,xy = 0 (2.13)

Since we are studying slender elastic rods (i.e. L� h, d), we may assume that
the strain does not change much for small variations of x for the microscopic
solutions that we are studying in this chapter. This means that constants in
this chapter do depend slowly on the variable x. Hence when we are inspecting
the macroscopic behaviour of the beams in subsequent chapters, we will see that
these ‘constants’ are in fact depending on x. Hence the assumption we make
for the microscopic strain in this chapter is

εij,x = 0 (2.14)

for i, j ∈ {x, y, z}. In this εij,x ≡ ∂εij
∂x .

With his assumption the geometric compatibility conditions (equations (2.8)-
(2.13)) reduce to the following set of constraints:

εzz,yy + εyy,zz − 2εzy,zy = 0 (2.15)

εxx,yy = 0 (2.16)

εxx,zz = 0 (2.17)

εxx,zy = 0 (2.18)

εyx,zz − εzx,zy = 0 (2.19)

εxz,yy − εyx,zy = 0 (2.20)

These six conditions form the starting point of our search for the microscopic
strain elements εij (i, j ∈ {x, y, z}). In the rest of this section we use them and
try to find the strains.

Acquiring εxx
Thus, it follows from (2.16), (2.17) and (2.18) that the second derivatives of

εxx with respect y and z are always zero. Moreover, from equation (2.14) it
follows that εxx is not linear in x. This means the εxx is of the form

εxx = ε+ κzy + κyz (2.21)

Here ε, κz and κy are constants, which correspond to either the stretching mode
(ε) or the bending mode (κz and κy) of the beam (see figure 1.8).
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Acquiring εxy and εxz
Then we try to find the strains εyx and εzx. For this end, we now use the geo-

metric compatibility conditions (2.19) and (2.20). If we add these two expression
we get

0 = εyx,zz − εyx,zy − (εzx,yz − εzx,yy) =

(
∂

∂z
− ∂

∂y

)
(εyx,z − εzx,y) (2.22)

If we subtract the same conditions (2.19) and (2.20) we get:

0 = εyx,zz + εyx,zy − (εzx,yz + εzx,yy) =

(
∂

∂z
+

∂

∂y

)
(εyx,z − εzx,y) (2.23)

These two expressions imply that

∂

∂x
(εyx,z − εzx,y) =

∂

∂y
(εyx,z − εzx,y) (2.24)

and
∂

∂x
(εyx,z − εzx,y) = − ∂

∂y
(εyx,z − εzx,y) (2.25)

From this and equation (2.14) we obtain that εyx,z − εzx,y must be constant.
Hence this implies

εyx,z − εzx,y = κx (2.26)

Here we have κx as a constant which corresponds to the twisting mode of the
beam (see figure 1.8).

We now have an expression for εyx,z − εzx,y. To separate these two strain
elements we need to apply some trick. To do this we rewrite equation (2.26) to

∂

∂z

(
2

κx
εyx − z

)
=

∂

∂y

(
2

κx
εzx + y

)
(2.27)

By using Schwarz’s theorem about the equality of mixed partial derivatives
(see Feldman), we know that the form of this equation suggests that there
exists some potential function Φ such that

∂

∂z
Φ =

2

κx
εzx + y (2.28)

and
∂

∂y
Φ =

2

κx
εyx − z (2.29)

If we rewrite these two equations we end up with

εzx =
κx
2

(Φz − y) (2.30)

εyx =
κx
2

(Φy + z) (2.31)

(in this notation Φi ≡ ∂
∂iΦ for i ∈ {z, y}.)
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The remaining strain elements
For now, we will not try to find the remaining four strain elements. Later

on in section 2.3.3 we will use the last geometric compatibility condition (equa-
tion (2.15)) to acquire these.

2.3 Elastic Stress

In the previous section we have found five strain elements. However, to actually
calculate the elastic energy via equation (2.3) these strain elements are not
enough. We also need the corresponding stress elements. In this section we will
try to find these. The main ingredient in this search is Hooke’s law, which we
will first inspect. Moreover, we also find the remaining strain elements. Finally
we find the various energy contributions at the end of this section.

2.3.1 Hooke’s law

Since we are working with linear elasticity, we can use Hooke’s law (see Landau
et al. [1995]). This law gives us the following relation between the stress tensor
σ and the strain tensor ε:

σ = λITr(ε) + 2µε (2.32)

Here λ is the first Lamé parameter and µ = G is the shear modulus. Moreover,
I is the (three dimensional) identity matrix and Tr denotes the trace of the
matrix (i.e. the sum of the elements on the main diagonal of the matrix).

We can invert Hooke’s law. To do this, we observe that

Tr(σ) = Tr(λTr(ε) I + 2µε) = (3λ+ 2µ)Tr(ε) (2.33)

If we substitute this into the original Hooke’s law we obtain

σ =
λ

3λ+ 2µ
ITr(σ) + 2µε (2.34)

If we change the elastic moduli from λ and µ = G (the Lamé parameter and

the shear modulus) to E = (3λ+2µ)µ
λ+µ and ν = λ

2(λ+µ) (respectively the Young’s

modulus and the Poisson’s ratio), we find the inverse of Hooke’s law,

ε =
1

E
((1 + ν)σ − νITr(σ)) (2.35)

In this relation we have used the elastic moduli E, the Young’s modulus, and
ν, the Poisson’s ratio.
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2.3.2 Twisting energy

From equation (2.32) (Hooke’s law) and the equations for the strain associated
with the twisting mode (equations (2.30) and (2.31)) we obtain the stresses σxz
and σyz:

σxz = µκx(Φz − y) (2.36)

σyz = µκx(Φy + z) (2.37)

Now that we have found both the stresses σxz and σyz and the strains εxz
and εyz, we obtain the elastic energy that is coming from the twisting of the
beam. This elastic energy follows by substituting these strains and stresses in
the equation for the elastic energy (equation (2.3)). The summation in this
expression is however replaced with a new summation over only the stresses
and strains that are associated with the twisting of the beam. That is,

Etwisting =
1

2

∫ xe

xs

∫∫
Ω0

(σxzεxz + σzxεzx + σyzεyz + σzyεzy) dz dy dx (2.38)

Since we have both εzx and εxz and they are the same as we have seen in equation
(2.5) (and the same for εyx and the stresses), the factor 1

2 in front of the integral
for the elastic energy disappears. Hence we get for the twisting energy:

Etwisting =
1

2

∫ xa

xs

∫∫
Ω0

µκ2
z

(
(Φ,z − y)

2
+ (Φ,z + x)

2
)
dz dy dx (2.39)

A part of this integral can be identified as the torsion constant J . This constant
only depends on the geometry of the cross-sectional area Ω0 and is defined as:

J ≡
∫∫

Ω0

(
(Φ,z − y)

2
+ (Φ,y + z)

2
)
dz dy (2.40)

Hence we can rewrite the twisting energy in a shorter way as

Etwisting =
1

2

∫ xe

xs

µκ2
xJ dx =

1

2
µ

∫ xe

xs

Jκ2
xdx (2.41)

Thus at this point we have found the contribution to the elastic (potential)
energy that is due to bending. As can be seen, this contribution is depending
on a geometrical property of the materials cross-section (i.e. J), a material
property (µ) and a geometric property, which is related to the twisting of a
beam (i.e. κx).

2.3.3 Stretching and bending energy

In section 2.2 we have found five of the nine strain elements. To find the four
remaining strains, we use the inverse of Hooke’s law (equation (2.35)) to express
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these in terms of the stresses in the following way:

εzz =
1

E
(σzz − νσyy − νσxx) (2.42)

εyy =
1

E
(−νσzz + σyy − νσxx) (2.43)

εxx =
1

E
(−νσzz − νσyy + σxx) (2.44)

εzy =
1 + ν

E
σzy (2.45)

Since we have already found an expression for the strain εxx (see equation
(2.21)), we would like to use this to obtain the other strains. To do this, we
can substitute equation (2.44) in equations (2.42) and (2.43) to eliminate σxx.
Thus we acquire

εzz =
1

E

(
σzz
(
1− ν2

)
+ σyy

(
−ν − ν2

))
− νεxx (2.46)

εyy =
1

E

(
σzz
(
−ν − ν2

)
+ σyy

(
1− ν2

))
− νεxx (2.47)

εzy =
1 + ν

E
σzy (2.48)

At this point we return to the remaining compatibility condition, equation
(2.15). By substituting the above equations into this condition and noting that
εxx has only constant and linear terms (i.e. the second derivatives are zero), we
get a condition for the stresses:

0 = (σzz,yy + σyy,zz − 2σzy,zy)− ν(σyy,yy + σzz,zz + 2σzy,zy)

− ν2(σzz,yy + σyy,zz + σzz,zz + σyy,yy) (2.49)

Since this must be zero in general, for all possible values for ν, the three terms
in the parentheses are zero. If we manipulate these constraints, we find the
following condition for the stresses:

σzz,yy + σyy,zz = −σzz,zz − σyy,yy = 2σxy,xy (2.50)

This can only be true if σzz, σyy and σzy have no non-linear terms, but only
terms that are constant of linearly depending on y or z.

Now we need to additionally assume that the external forces are only applied
at infinity (i.e. the length of the beam is assumed to be very large compared to
the width of the beam). This ensures that we have an equilibrium state inside
at each point in the beam. Thus we need to have no net force at each point in
the beam. That means that the divergence of the stresses in the interior must
be zero (see Emam [2002]). That is,

σiz,z + σiy,y + σix,x = 0 (2.51)

(for i ∈ {x, y, z}.)
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Moreover, from this assumption of an internal equilibrium state we also know
that there is no force at the lateral boundaries of the elastic rod. Thus the
assumption yields us another set of constraints

(σijNj)∂Ω0
= 0 (2.52)

(with i, j ∈ {z, y} and Nj the vector that is normal to the boundary.)

By applying these boundary conditions to our stresses σzz, σzy and σyy, we find
that they need to be identically zero. Hence

σzz = 0 (2.53)

σyy = 0 (2.54)

σzy = 0 (2.55)

So, now that we have the stresses σzz, σyy and σzy it is straightforward to also
find the strains. From equations (2.42)-(2.44) we obtain:

εzz = −νεxx (2.56)

εyy = −νεxx (2.57)

εzy = 0 (2.58)

We still need to find the last unknown stress element, σxx. To do this, we start
with the inverted Hooke’s law (equation (2.35)). Since σxx = σyy = 0 we find

Eεxx = σxx (2.59)

Now we use the expression for the elastic energy (equation (2.3)) again to find
the remainder of the potential elastic energy, which is due to the bending and
the stretching of the beam (see figure 1.8). As we did before in section 2.3.2 we
now change the summation again, this time to sum over the stresses σxx, σxy,
σyx, σyy and σzz. From the equations for the strain εxx (equation (2.21)), the
equations for the other strains (equations (3.174), (3.175) and (2.58)) and the
fact that σzz = σyy = σzy = 0 the combination of the stretching and bending
energy in the beam follows

Ebending + Estretching =
1

2

∫ ∫∫
Ω0

εxxσxx dx dy dz (2.60)

=

∫
E

2

∫∫
Ω0

(ε+ κzy − κyx)
2
dx dy dz (2.61)

And by expanding this, we get:

Ebending + Estretching =

∫ xe

xs

E

2

(∫∫
Ω0

ε2 dz dy+∫∫
Ω0

(
κ2
zy

2 + κyz
2 − 2κzκyzy

)
dz dy +

∫∫
Ω0

(2εκzy − 2εκyz) dz dy

)
dx

(2.62)
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Since we have chosen the origin of the axis in a smart way such that it is the
centroid of the axis (see section 2.1 and equation (2.1)), we now have that∫∫

Ω0
z dz dy =

∫∫
Ω0
y dz dy = 0. Moreover we observe that

∫∫
Ω0
dz dy =

A, the area of the cross-section. Furthermore we have
∫∫

Ω0
z2 dx dy ≡ Iyy,∫∫

Ω0
y2 dz dy ≡ Iyy and

∫∫
Ω0
xy dz dy ≡ −Izy. These are the second (geometric)

moments of inertia of the cross-section. All of the other variables don’t depend
on z or y, so we can rewrite the energy again to find the expression:

Ebending+Estretching =

∫ xe

xs

1

2
EAε2 dx+

∫ xe

xs

1

2
E
(
Izzκ

2
z + Iyyκ

2
y + 2Izyκzκy

)
dx

(2.63)

We now have two separated integrals. One of them depends only on ε, so we
can identify this part as the stretching energy of the beam. The other integral
is a function of the bending constants κx and κy. This one can be seen as the
bending energy of the beam. So we define:

Estretching =
1

2
E

∫ xe

xs

Aε2dz (2.64)

Ebending =
1

2
E

∫ xe

xs

(
Izzκ

2
z + Iyyκ

2
y + 2Izyκzκy

)
dx (2.65)

As with the twisting energy, in both of these energy contributions we find a
constant that depends on the geometry of the beam’s cross-sectional area (i.e.
A and I), a material property (i.e. E) and a variable that depends on the
geometry of the whole beam (i.e. κz, κy and ε).

2.4 Wrap-up

In this chapter we have derived the potential elastic energy for an elastic rod.
To do this, we needed to assume the following things:

� The rod obeys linear elasticity (i.e. we can use Hooke’s law and we can
ignore the gradient of displacements in the strain expression, equation
(2.4)).

� The strain does not change much for small variations of x (i.e. ∂
∂xεij = 0

for all i, j ∈ {x, y, z}).

� External forces are applied only at infinity (i.e. the length of the beam is
much larger than its other dimensions are).

The (potential) elastic energy that we have calculated in this chapter can be
expressed as a sum of the stretching energy, the bending energy and the twisting
energy of a beam. The total elastic energy can be expressed as

Eel = Estretching + Ebending + Etwisting

=

∫ xe

xs

1

2
EAε2 dx+

∫ xe

xs

1

2
E
(
Izzκ

2
z + Iyyκ

2
y + 2Izyκzκy

)
dx+

∫ xe

xs

1

2
µJκ2

x dx

(2.66)
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Note that if we have a beam that only bends in one direction, perpendicular to
the x-axis, and we choose our coordinates in such a way that one of our axis
coincides with this direction, we can get rid of some of the term in the bending
energy. In that case the energy looks like

Eel =

∫ xe

xs

1

2
EAε2 dx+

∫ xe

xs

1

2
EIαακ

2
α dx+

∫ xe

xs

1

2
µJκ2

x dx (2.67)

In this α is the direction in which the beam is bending.

The variables ε (associated with the stretching mode in the beam), κα (associ-
ated with the bending mode) and κx (associated with the twisting mode) are
properties of the deformation of the beam. In this chapter we have assumed
they were constants, since we were interested in the microscopic solutions in the
beam. In the next chapters we will however inspect the macroscopic behaviour
of the elastic beams. This means (as stated in section 2.2) that the ‘constants’
can in fact be depending on x.
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Chapter 3

Beam Models

In Chapter 2 we have found the elastic energy in equation (2.66). In this chapter
we will inspect some of the various beam models that exists. Throughout this
chapter we will assume that the elastic beams only bend in one direction (i.e.
the y-direction). We hence have the following (potential) elastic energy:

Eel =

∫ (
1

2
EAε2 +

1

2
EIyyk

2
y +

1

2
µJκ2

x

)
dx (3.1)

We will use this expression in this chapter to find equations for the equilibria
configurations of the beam by means of Euler-Lagrangian optimalization. To do
this, however, we must assume various things on ε (i.e. stretching of the beam),
κy (bending of the beam) and κz (twisting of the beam). Depending on these
assumptions we will derive the different beam models in this chapter.

The most important distinction between the various beam models that we will
inspect in this chapter is whether or not the model takes the extensibility of the
beam into account. If a model ignores this extensibility, the beams are said to
be inextensible. This means that in this model the beam always has the same
arc length as it initially had. If a model however accounts for the extensibility
the beams are called extensible. In this case the beam can be compressed when
a load is applied to it (see figure 3.1).

In this chapter we will derive and study the following beam models:

� The Euler Bernoulli beam model for inextensible beams when the deflec-
tions of the beam stay small (see section 3.1).

� A variant of the previous model, for inextensible beams which allows for
large deflections (see section 3.2).

� An extensible beam model when the deflections of the beam stay small
(see section 3.3).

� A model for extensible beams which allows for large deflections (see sec-
tion 3.4).

24



P P

P P

(a) Example of an inextensible beam

P P

P P

(b) Example of an extensible beam

Figure 3.1 – Examples of both an inextensible (a) and an extensible (b) beam
(blue) with various loads P applied to it (before buckling). The uppermost picture
is the initial configuration of the beam, the other two are the configurations when
an increasing load P is applied to the beams. The inextensible beam remains to
have the same length as it had initially, while the extensible beam is compressed
for the same loads P .

3.1 Inextensible small deflection model (Euler
Bernoulli model)

In this section we will study a beam model that models the beams as inextensible.
Moreover, in this model we assume that the beams deflections stay small. We
start this chapter with an introduction about the model. Then we derive the
governing differential equation starting from the elastic energy in section 3.1.2.
After we have acquired this equation, we use the model to study various beam
configurations. In this study we focus on both the force-strain relationship and
the actual configuration of the beam (i.e. the deflections of the beam).

3.1.1 Introduction to the model

We inspect a beam as in figure 3.2 that is loaded from both sides with a force
P . From experiments it is known that at a certain load P , the beam will buckle
and will be in a bended position. We denote this deflection of (the centroid) of
the beam in the y-direction at time t of a point x on the beam with w(x, t) as
shown in the figure. At this point we need to be careful and very precisely about
what we mean by ‘a point x on the beam’: what we mean is not the position x
the point we are observing had on the initial, straight, beam. Instead we mean
the x-coordinate of the current position of a point on the beam.

To stress this even more we will define the initial length of the beam as L0. This
is the length the beam has when there is no force P acting on it. When there
is a force working on it, the beam may span a shorter length in the x-direction.
We will denote this length by L. In the bended configuration there is also a real
length of the beam, which is the length of the beam measured over the beam
itself (i.e. the arc length). We will denote this length as `. By assuming the
beam is inextensible (the assumption of the Euler Bernoulli beam model), what
we will do in this section, we will essentially assume that this length is the same
as the initial length (i.e. ` = L0).

Throughout this section we will assume that the deflections w(x, t) of the beam
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are relatively small. More precisely we will assume that the slope is small (i.e.
∂
∂xw(x, t) is small). This approximation seems not good when we compare this

to experimental results, since the slope ∂
∂xw(x, t) is generally not small when

the beam is buckled. In contrary, when the beam is bended the slope is too
large to justify this approximation.

The results in this sections however are still insightful. These can serve as a
first order approximation for the deflections w(x, t) and the general behaviour
of the elastic beam. Especially the results on the critical Euler loads (i.e. the
load P at which the beam will buckle) are in good agreement with experiments
(see for instance Bazant and Cendolin [2009]).

x

y

` = L0

w(x, t)

L

L0

P P

Figure 3.2 – General set-up for the beam. The load P is applied in the x-
direction, while the deflection, w(x) is in the y-direction. The blue line represent
the beam (bended in this case). L0 is the initial length of the beam, L is the
current span in the x-direction of the beam and ` is the real length of the beam.

3.1.2 Energy in the model

In this set up of the beam, we have different kinds of energy that we need to take
into account. Foremost we of course have the elastic energy, equation (3.1). But
besides that, we also have the work that is done by the load P that we apply
on the beam, W = P∆L. In this ∆L ≡ L0 − L, which is called the strain.
Moreover, if we are interested into the kinematics of the beam and not only the
equilibrium of the beam, we also have the kinetic energy of the beam that is
important. To summarize we have the following energies in our system:

� Elastic Energy Eel (see equation (3.1));

� Kinetic Energy Ekin =
∫

1
2µw

2
t dx. In this µ is the mass density in the

cross-section of the beam and wt ≡ ∂
∂tw(x, t);

� The work of the applied load W = P∆L, with ∆L = L0 − L.

In the remainder of this subsection we inspect these energy contributions. More
specifically, we find expressions for the various used quantities, like κy and
∆L. When we have acquired these, we will use the Lagrangian and the Euler
Lagrangian variation theorem to acquire the differential equation for this beam
model.

Let’s start with inspecting the elastic energy in the Euler Bernoulli beam model.
This model assumes that beams aren’t stretching or turning at all and hence
assumes that ε = 0 and κx = 0. By using these assumption on equation (3.1),
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the energy of a beam, we get the expression for the elastic energy in the Euler
Bernoulli beam model:

Eel,EB =

∫
1

2
EIyyk

2
ydx (3.2)

The previously mentioned energies in this Euler Bernoulli rod can be combined.
We can make the Lagrangian for this model, which as it turns out will be:

L =

∫ (
1

2
µw2

t −
1

2
EIyyκ

2
y

)
dx+ P∆L (3.3)

We would like to use the Euler Lagrangian optimization to find kinematic ex-
pressions for the behavior of the (deflection of the) beam. To do this we however
must first start with finding out what those constants κy and ∆L are. This is
what we will do in the next subsections.

The curvature κy associated with the bending of the beam

The term κy is something that we first have used in equation (2.21). We intro-
duced it as being associated with the bending of the beam in the y direction.
To be more precise, we find that κy can be identified as the local curvature of
the beam at a position x (see Audoly). This curvature is defined as the rate
of change of the direction of the tangent line θ (at a point x) with respect to
the arc length change s (at the same point x). See figure 3.3 for a graphical
illustration. The mathematical formulation of this is

κy =
dθ

ds
(3.4)

s θ(s)

Figure 3.3 – Definiton of θ and a point s on the beams arc. θ(s) is the angle
between the tangent line to the beam at a position s and a line parallel to the
x-axis.

This formulation, however, is not useful in this form for us. We need to find
another way to describe it (we will do this following Bourne). We know that
dθ
ds = dθ

dx
dx
ds , so we can also calculate these to find the curvature. Per definition

of θ we know that tan(θ) = dw
dx . This means that θ = arctan(dwdx ). If we use

this, we find the derivative with respect to x as

dθ

dx
=

d2w
dx2

1 +
(
dw
dx

)2 =
wxx

1 + (wx)
2 (3.5)
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In this the notation the subscript x means a derivation with respect to the

variable x (i.e. wx ≡ ∂
∂xw(x, t) and wxx ≡ ∂2

∂x2w(x, t)).

Moreover, since we know that ds =
√

(dx)2 + (dw)2 (Pythagoreans theorem on

a infinitesimal piece of the beam), we know that ds
dx =

√
1 + (wx)

2
. This thus

implies

dx

ds
=

1√
1 + (wx)

2
(3.6)

If we now combine both of these equations (equation (3.5) and (3.6)), we acquire
the expression for the curvature that we wanted to get.

κy =
wxx(

1 + (wx)
2
)3/2

(3.7)

Since we are inspecting only the cases when the slope of the deflection stays
small (i.e. wx(x, t) is small) as stated in section 3.1.1, we can use a Taylor
expansion to find an approximate expression for the curvature κy:

κy =
wxx(

1 + (wx)
2
)3/2

≈ wxx
(

1− 3

2
(wx)2 +

15

8
(wx)4 + . . .

)
≈ wxx +O(w2

x)

(3.8)

The strain ∆L in an inextensible beam

Per definition of the strain, we know that ∆L = L0 − L. Moreover, in this
section we have assumed that the beam is inextensible. As a consequence of
this, the length of the beam stays the same. This means that at a given con-
figuration, ` = L0, as we have stated in the introduction in section 3.1.1. If
we use this information, we know that ∆L = ` − L. That is the same as the
difference between the real length of a (curved) beam and the distance between
both end points of it. Both can be calculated via an integral, and it is even
possible to write ds as

√
1 + w2

x dx as we have seen previously. By assuming
again that wx(x) is small, we can use another Taylor expansion to find a good
approximation for the strain ∆L:

∆L =

∫
(ds− dx) =

∫ (√
1 + (wx)2 − 1

)
dx ≈ 1

2

∫
(wx)2dx (3.9)

Derivation of the beam model using Euler Lagrange variation method

In the previous subsections we found expressions for both the strain ∆L (equa-
tion (3.9)) and the curvature κy (equation (3.8)). If we use these equations
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and substitute them into equation (3.10), the Lagrangian for this model, we get
another way to express this Lagrangian:

∫ (
1

2
µw2

t −
1

2
EIyyw

2
xx +

1

2
P (wx)2

)
dx (3.10)

We can now finally use the Euler Lagrange variation method (see Sochi [2013])
to find this model’s kinematics. To do this we will define Π as the integrand of
the Langrangian. That is,

Π =
1

2
µw2

t −
1

2
EIyy(wxx)2 +

1

2
P (wx)2 (3.11)

The Euler Langrange variation method tells us that for optimal energy the
following equation must be satisfied. This equation will be the kinematics of
the model, that we were looking for.

0 =
∂Π

∂w
− ∂

∂t

∂Π

∂wt
− ∂

∂x

∂Π

∂wx
+
∂2

∂t2
∂Π

∂wtt
+

∂2

∂x2

∂Π

∂wxx
+

∂2

∂x∂t

∂Π

∂wxt
(3.12)

Since we have a particular Π, we can substitute this into this condition. From
this point we will simply write I = Iyy for notational simplicity. This yields the
kinematics :

(EIwxx)xx + (Pwx)x + µwtt = 0 (3.13)

According to Emam [2002] we could have added a damping term to the La-
grangian. By doing so this energy optimization yields the dynamic buckling
equation (which can be found op page 144 of Bazant and Cendolin [2009]):

(EIwxx)xx + (Pwx)x + µwtt + cwt = 0 (3.14)

(here c is the damping coefficient.)

Most of the times we are not interested in the kinematics however, but only
in the equilibrium deflections; beams generally quickly get to their equilibrium
positions, especially in the set-ups we will be looking at. This means we generally
can forget about the time derivatives, since these will be zero in equilibriums.
If we do this we get the following equation:

(EIwxx)xx + (Pwx)x = 0 (3.15)

This doesn’t look that nice, since the derivatives need to be taken over the whole
EIwxx and Pwx. But luckily, most of the times the Young’s modulus E, the
second moment of inertia I and the load P do not depend on x. That is, most
beams are homogeneous and their attributes are the same everywhere inside the
beam. Hence it is pretty safe to assume that E, I and P don’t depend on the
position x. Hence we obtain what is known as the Euler Bernoulli beam model:

EIwxxxx + Pwxx = 0 (3.16)
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This is the equation for a beam that was initially straight. If we, however,
inspect a beam that has some (place dependent) initial deflections z0(x), this
equation is not useful and a modification is needed (see figure 3.4) When we go
back to the energies, we see that the kinetic and potential energies of the beam
remain unchanged. The work done by the applied load P is however different,
since the length is different. By the same logic as before we now have:

∆L =

∫ (√
1 + (wx + (z0)x)2 − 1

)
dx ≈ 1

2

∫
(wx + (z0)x)2dx (3.17)

If we apply the same Euler Lagrange variation principle to the new Lagrangian,
we acquire the differential equation for the equilibrium of an inextensible beam
with initial curvature z0(x):

EIwxxxx + P (wxx + (z0)xx) = 0 (3.18)

x

y

` = L0

w(x, t)

z0(x, t)

L

P P

Figure 3.4 – General set-up for a beam with initial curvature z0(x). The load
P is applied in the x-direction, while the deflection, w(x), i sin the y-direction.
The blue line represents the beam, the light blue line is the original position of
the beam.

3.1.3 Boundary conditions and solutions

In the previous section we have found the differential equation for an inextensible
beam model (for small deflections w). In this section we find the general solution
to this equation. Furthermore we briefly summarize some of the possible bound-
ary for elastic beams. For notational simplicity we define the constant k2 = P

EI .
By doing so, we get the following differential equation for the inextensible beam:

wxxxx + k2wxx + k2(z0)xx = 0 (3.19)

It is quite easy for us to solve this equation and we find that the general solution
as:

w(x) = A sin(kx) +B cos(kx) + Cx+D + φ(x) (3.20)

In this expression the term φ(x) is a particular solution to the non-homogeneous
differential equation. This term is dependent on z0(x) and will only be in our
solution if there is an initial bending in the beam we are studying. Besides this
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(a) A pinned boundary.
At the pinned boundary
the beam can freely rotate
and hence the torque of
the beam on the bound-
ary is zero.

(b) A fixed boundary.
At a fixed boundary the
beam’s slope is fixed.

(c) A free boundary. Nei-
ther the deflection nor the
slope of the deflection is
fixed, but the torque and
the shear forces are zero.

Figure 3.5 – Graphical illustration of various boundary conditions possible for
beam attachments. In each picture two possible configurations of an beam at-
tached to this boundary condition are shown in blue.

particular solution, there are four constants. The values of these constant are
depending on the boundary conditions of the beam. We need four of them to
find all the constants.

In most buckling problems there are two boundary conditions at the left end of
the beam and two at the right end of the beam. What these boundary conditions
are, is implied by how the beam is attached to its surroundings. In table 3.1
and figure 3.5 some of the most frequent boundary conditions are summarized.
When referring to a specific configuration of an elastic beam it is convenient to
address them by the two boundary conditions the configuration has. So a beam
that has one free boundary and one fixed boundary is referred to as a free-fixed
beam (or a fixed-free beam).

Table 3.1 – Summary of the most frequently occuring boundary conditions at
the end x of a beam. If a beam is pinned at one end it is free to rotate and hence
the torque of the beam must be zero (i.e. w′′(x) = 0). If a beam is fixed at an
end point, its starting angle is fixed. When a beam is free at an end point, this
means it is free to rotate and its shear forces must be zero. In the table M is the
torque and Q is the shear force that is being acted on the beam at the point x.

Name w wx (= θ) wxx (= M
EI ) wxxx(= Q

EI ) wxxxx
pinned w(x) = 0 wxx(x) = 0
fixed w(x) = 0 wx(x) = 0
free wxx(x) = 0 wxxx(x) = 0

3.1.4 A pinned-pinned beam

Let’s turn our attention to a specific configuration of a beam. We will be
inspecting a pinned-pinned beam with no initial curvature (see figure 3.6). The
beam is of length L (its initial length is L0) and we apply a load P at both
end points (as we did in figure 3.2). Because both end points are pinned, this
means that the beam is free to rotate at both its end point and hence that the
torques at these points are zero. Since the beam has no initial curvature, we will
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lose the particular solution φ(x) in our general solution in equation (3.20). By
looking up the boundary conditions in this case we get the following conditions:

w(0) = 0 (3.21)

wxx(0) = 0 (3.22)

w(L) = 0 (3.23)

wxx(L) = 0 (3.24)

In this section we will start with the general solution in equation (3.20) and
apply the boundary conditions of the pinned-pinned beam. Hence we acquire
knowledge about the behaviour of a pinned-pinned beam. In this section we
will focus on both the force strain relationship for this configuration as on the
actual deflection w of the beam.

We start by substutiting the boundary conditions in the general solution we
had. We hence acquire the following constraints for this configuration:

B +D = 0 (3.25)

B = 0 (3.26)

A sin(kL) +B cos(kL) +CL+D = 0 (3.27)

−k2A sin(kL)− k2B cos(kL) = 0 (3.28)

From the first two of these we can already conclude that −D = B = 0. Hence
this implies by use of (3.28) that A sin(kL) = 0 If we substitute this into the
other remaining constraint, equation (3.27), we get C = 0.

So at this point we have found the solution for this particular case (which is
plotted in figure 3.7):

w(x) = A sin(kx) (3.29)

There is the additional constraint that either A = 0 or sin(kL) = 0. If we have
that A = 0 then the deflection is w = 0 and we must conclude that there is no
bending of the beam at all. So this corresponds to the non-buckled phase of the
beam.

L

P P

Figure 3.6 – The configuration of a pinned-pinned beam in its non-buckled
state. Both end points of the beam are pinned. Thus the torque (EIwxx) and
the deflection w are zero at these points. A non-buckled straight state of the
beam is shown in blue. The distance between both ends of the beams is L.
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x0 L

Figure 3.7 – The solution for the pinned-pinned beam configuration is plotted
(i.e. w(x) = A sin(kx)). We have used equation (3.29) with A = 2, k = π and
L = 1.

If, however, A 6= 0 but rather sin(kL) = 0, then we have a non-zero deflection
w. This situation corresponds to the buckled phase of the beam. The constraint
sin(kL) = 0 can be formulated in another way, since this constraint is equivalent
to requiring that kL = nπ (with n ∈ Z). If we now use the definition of k, we
can also write this constraint as a constraint in terms of P . Doing so we get the
following constraint:

P = EI
(nπ
L

)2

(3.30)

Thus the above derivations imply that non-zero deflections are possible whenever
this constraint (equation (3.30)) is satisfied. If we hence inspect a beam which
end points are kept a fixed distance L apart and apply different kind of loads
P there are only a few loads when the beam can have a non-zero deflection w.
This is graphically illustrated in figure 3.8.

A

P

Figure 3.8 – Graphical illustration of the possible values of the constant A in
equation (3.29) as function of a varying load P (when L is kept fixed). It is shown
that from above considerations A could take on any value at some of the values
for P , but for most values of the load P the constant A should be zero.

This is however not what is observed in experiments. Hence we conclude that
there needs to be another constraint that we haven’t used up to now. This ad-
ditional constraint will tell us what the amplitude A of the beam is at a certain,
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specified moment. However we first inspect the constraint in equation (3.30)
and find a relation between the force and the strain in the pinned-pinned con-
figuration.

Force strain relation

In equation (3.30) we got a requirement for the load P to make a non-zero
deflection possible. In most experimental cases it is more convenient to find a
relationship between the force P and the (relative) strain ∆L

L0
. Since ∆L = L0−L

this essentially is quite easy since we can substitute L = L0−∆L into equation
(3.30). If we do this we get the force strain relationship we wanted:

P = EI

(
nπ

L0

)2
(

1

1− ∆L
L0

)2

(3.31)

In buckling experiments however generally the only value for n that is relevant
is when n = 1 (since higher values won’t be achieved and negative values would
physically not agree with pressing on the beam). So for the strain curve of a

typical beam we can set n = 1. Moreover, the constant term EI
(
π
L0

)2

is defined

as the so-called ‘Euler load’ and is denoted by Pe = EI
(
π
L0

)2

. We can apply

this to the force strain relationship to find:

P = Pe

(
1

1− ∆L
L0

)2

(3.32)

If we are interested in the force strain relationship just after the beam has
buckled, we could suffice by looking at only small deflections ∆L. We could use
a Taylor expansion to find this force strain curve (just) after buckling:

P = Pc

(
1 + 2

∆L

L0

)
+O

((
∆L

L0

)2
)

(3.33)

So based on this argument we would expect a slope of 2 just after the buckling
of a beam1. This kind of force strain relation is displayed in figure 3.9.

The amplitude A of the deflection w

In the previous we have found a requirement for the load P to allow non-
zero deflections w(x) and found a force strain relationship. However, if the
requirement for the load P is met, one of the boundary conditions (namely
(3.28)) becomes degenerate and there is no way to find the amplitude A of the

1In experiments we don’t see this slope of 2. The experimental slopes generally are less
than 0.5. Moreover they depend on the geometry of the beams, a thing that we only will start
to take into account from section 3.3 onwards.
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∆L
L0

P

Pe

Figure 3.9 – The force strain relationship for an (inextensible) Euler Bernoulli
beam before buckling and (just) after buckling. The slope of the after buckling
part is 2 times the Euler Load Pe.

sine deflection w(x). Thus we need to imply another condition to the beam to
actually find the deflection w(x).

Luckily there is a natural one. Since we are dealing with inextensible cases we
have already assumed that the length of the beam must stay the same for all
time. That is, we assume that ` = L0. The value ` can be calculated with
an integral as we have seen before (in the derivation of equation (3.9)). So the
additional condition for the beam is

L0 =

∫ L

0

√
1 + (wx)2 dx (3.34)

We now use the expression for the deflection w(x) that we have found in the
case that the beam is buckled (w(x) = A sin(kx)). We substitute this equation
into equation (3.34). If we then manipulate the expression a bit by using some
trigonometric identities we express this condition in a different way:

L0 =

∫ L

0

√
1 + (Ak)2 cos2(kx) dx (3.35)

=

∫ L

0

√
(1 + (Ak)2)− (Ak)2 sin2(kx) dx (3.36)

=
√

1 + k2A2

∫ L

0

√
1− A2k2

1 +A2k2
sin2(kx) dx (3.37)
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If we now substitute q = kx, we get as our last condition on the amplitude A:

L0 =

√
1 +A2k2

k

∫ kL

0

√
1− A2k2

1 +A2k2
sin2(q) dq (3.38)

The integral that we thus have created is the incomplete elliptic integral of the
second kind. By definition this integral is:

E(z|λ) =

∫ z

0

√
1− λ sin2(x) dx (3.39)

So by using this definition on our condition for the amplitude A we can express
it shortly as:

L0 =

√
1 +A2k2

k
E

(
kL

∣∣∣∣ A2k2

1 + k2A2

)
(3.40)

This equation we got is the general condition for the amplitude A in terms of
the initial length L0. We can derive some limit behavior of this condition if we
exploit some of the properties of the (in)complete elliptic integral of the second
kind (see Wolfram).

When A = 0
Let’s first assume that our amplitude A = 0 to make sure that this condition

is in agreement with what we already know about the non-buckled state of our
beam. If A = 0 the elliptic integral reduces to E(kL|0). This is one of the
special cases when this integral can be explicitly found and it turns out that
E(kL|0) = kL. If we substitute this into equation (3.40) and fill in the rest of
the amplitudes, we get the requirement

L0 = L (3.41)

So this means that the beam must be as large as it initial was, when the beam
is perfectly straight. This makes perfectly sense in this model, since we have
assumed that the beam is inextensible. So this condition is indeed in agreement
with all the previous things we derived.

When A 6= 0
When the amplitude is not zero, we know that kL = nπ (since the boundary

condition in equation (3.28) must be satisfied). We now can use another exciting
property of the elliptic integral: E(λπ|m) = 2λE(m) for all integers λ. In this

we have E(m) ≡
∫ π/2

0

√
1−m sin2(x) dx, the complete elliptic integral of the

second kind. There is also a property of this complete elliptic integral that we
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can exploit: E(1− 1
z ) = E(1−z)√

z
for all z. So with this knowledge we can rewrite

the condition in equation (3.40) to acquire

L0 =

√
1 +A2k2

k
2nE

(
1− 1

1 +A2k2

)
(3.42)

=
2n

k
E
(
−A2k2

)
(3.43)

This is the condition that we additionally need to impose on the amplitude A
to find the deflection of the pinned-pinned beam we were inspecting. We now
will study the limit behaviour of this expression.

When A→ 0
When the amplitude becomes very small (i.e. A→ 0) we can use the Taylor

expansion of the elliptic integral around zero. This approximation is E(x) =
π
2 (1− x

4 )+O(x2) when |x| � 1. If we use this approximation on equation (3.43)
we get an approximation for small amplitudes:

L0 ≈
nπ

k
(1 +

1

4
A2k2) +O(A4) (3.44)

Since we are inspecting the case of non-zero deflections, we know that the ampli-
tude can’t be zero and hence that kL = nπ as stated before. We can substitute
this into the equation to get rid of some terms and regain our length L:

L0 ≈ L(1 +
1

4
A2k2) +O(A4) (3.45)

We now have the condition on the amplitude A. By rewriting this condition we
get an expression for the amplitude A for the sine deflection w(x) = A sin(kx)
of the pinned-pinned beam:

A = ±2

k

√
L0

L
− 1 (3.46)

This expression makes sense. From it we find A = 0 when L0

L = 1. That is, the
beam is not buckled, when the beam has remained its initial length. Since the
beam is modeled inextensible, this is precisely what we would have expected.

If we use the information about the applied load (i.e. kL = nπ) and rewrite
everything again in terms of the strain we end up with the condition for A as
function of the strain ∆L (we once more assume that n = 1 since this is the
physical relevant value for n):

A = ± 2

π

√
∆L(L0 −∆L) (3.47)
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A

∆L

(a) Amplitude A for various strains
∆L. This is a plot of the function
A = ± 2

π

√
∆L(L0 −∆L).

A

P

Pc

(b) Amplitude A for various loads
P . This is a plot of the func-

tion A = ±L
3
0
π3

√
(P − π2

L2
0
)(3 π

2

L2
0
− P ),

which is obtained by combining equa-
tions (3.47) and (3.32).

Figure 3.10 – This figure shows the various possible amplitudes A for different
strains (a) or loads (b). The values used for these plots are L0 = 2 and EI = 1.
The figure now shows that at a given P there is a certain amplitude A, which
figure 3.8 did not show.

When A→∞
If we now assume that the amplitude becomes very large, we can use another

Taylor expansion for the elliptic integral. In this case we have E(z) →
√
−z

(if |z| → ∞). Thus by this approximation we acquire the condition on the
amplitude as

L0 = 2n|A| (3.48)

In this relation we once again use the fact that kL = nπ.

|A| = π

2k

L0

L
(3.49)

This result on the amplitude A makes sense, since the amplitude A can only be
great when the beam length L is small. So this is also in agreement with the
expectations we had.

3.1.5 Other simple boundary conditions

In the previous section we have inspected a pinned-pinned beam. In section
3.1.3 however we have found that there are plenty more boundary conditions
possible. Since a pinned-pinned beam has the most simple boundary conditions
for the problem, we have started by inspecting that configuration. In this section
we will start inspecting some other relatively simple boundary conditions, such
as a pinned-fixed beam and a fixed-fixed beam.
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A pinned-fixed beam

As we did in the pinned-pinned case, we inspect in this section a beam which
has no initial curvature. This time however the boundary conditions at one
end of the beam change, since one of the end points of the beam is now fixed
(instead of pinned). The beam is fixed at the end point x = L and hence we
get a pinned-fixed beam (see figure 3.11). We could also fix the other boundary
point, but this doesn’t matter for the physics of this configuration.

L

P P

Figure 3.11 – The configuration of a pinned-fixed beam in its non-buckled state.
One end point is pinned. Thus the torque (EIwxx) and the deflection w are zero
at this point. The other end point is fixed. Thus the deflection w and the slope
of the deflection wx are zero at this point. A non-buckled straight state of the
beam is shown in blue. The distance between both ends of the beams is L.

The boundary conditions for the pinned-fixed beam are (see table 3.1):

w(0) = 0 (3.50)

wxx(0) = 0 (3.51)

w(L) = 0 (3.52)

wx(L) = 0 (3.53)

By substituting these constraints in the general solution for our differential
equation, we get the constraints on the different constants A through D.

B D = 0 (3.54)

B = 0 (3.55)

A sin(kL) +B cos(kL) +CL+D = 0 (3.56)

kA cos(kL)− kB sin(kLl) +C = 0 (3.57)

The first two of these constraints again yield that B = D = 0. Then we can use
the last constraint to find that C = −kA cos(kL). If we substitute this in the
last remaining constraint, we acquire:

A(sin(kL)− kL cos(kL)) = 0 (3.58)
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Again there are two possible things that can happen. We must have that either
A = 0 or sin(kL)− kL cos(kL) = 0. To ensure non-trivial solution we need that
A 6= 0, so for the buckled beam we are left with the later constraint. Rewriting
this condition yields the condition that needs to be satisfied to allow for buckled
beam configurations:

kL = tan(kL) (3.59)

We find the first non-negative solution to this condition via the computer. This

yields that kL ≈ 4.5. Hence we find that P = EI
(
π
mL

)2
with m = 0.69. So

this means we can map this kind of beam to the previously examined pinned-
pinned beam by using an effective length Leff = mL with m = 0.69. When
this constraint is fulfilled the solution for the pinned-fixed beam is

w(x) = A(sin(kx)− kx cos(kL)) (3.60)

This solution is plotted in figure 3.12. In this figure we clearly see that the
solution looks like the solution for a pinned-pinned beam. The effective length
that we have introduced before remarks the fact that the deflection just is a
fraction more of the wavelength of the beam.

x0 L

Figure 3.12 – The solution for the pinned-fixed beam configuration is plotted.
We have used equation (3.60) with A = 2, k = 4.49340945790906 and L = 1.

A fixed-fixed beam
If we now also change the other end of the beam from pinned to fixed, we get

a fixed-fixed beam (see figure 3.13). This means that the boundary conditions
will require the solution to satisfy

w(0) = 0 (3.61)

wx(0) = 0 (3.62)

w(L) = 0 (3.63)

wx(L) = 0 (3.64)

(3.65)
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L

P P

Figure 3.13 – The configuration of a fixed-fixed beam in its non-buckled state.
Both end points of the beam are fixed. Thus the deflection w and the slope wx
must be zero. A non-buckled straight state of the beam is shown in blue. The
distance between both ends of the beams is L.

Substituting these into the general solution of the beam we now get the following
constraints on the constants:

B +D = 0 (3.66)

kA +C = 0 (3.67)

A sin(kL) +B cos(kL) +CL+D = 0 (3.68)

kA cos(kL)− kB sin(kL) +C = 0 (3.69)

The first of these imply that D = −B and the second constraint implies that
C = −Ak. We can now use these relations to rewrite the remaining boundary
conditions to the following constraints:

A(sin(kL)− kL) +B(cos(kL)− 1) = 0 (3.70)

Ak(cos(kL)− 1)−Bk sin(kL) = 0 (3.71)

From the last of these conditions, we can find the relationship B = A cos(kL)−1
sin(kL .

Now we can again use this relationship and rewrite the remaining constraint:

A

(
sin(kL)− kL+

(cos(kL)− 1)
2

sin(kL)

)
= 0 (3.72)

This either means that A = 0 and the beam is not bended or that the term in
the parenthesis is zero, so the beam can acquire non-zero deflections (and be
buckled). If we do some rewriting of this equation we find that the following
constraint must be satisfied to allow a buckled beam:

kL sin(kL) = 2(1− cos(kL)) (3.73)

This is equation is again numerically solvable. If we do this, we find that our
condition for buckling in the fixed-fixed beam configuration is kL ≈ 6.2831853.
This looks very much like 2π and indeed kL = 2π is a solution for this equation.
It is also possible to proof that this indeed is the first positive solution to this
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equation by inspecting the derivatives. This time the effective length hence will
be m = 1

2 .

But since this solution for kL is a multiple of π we need to be careful. To make
sure we don’t mess up, we start again from the constraint in equations (3.70)
and (3.71). This time we plug in our gained knowledge about kL = 2π. This
gives us the new boundary conditions:

−A2π = 0 (3.74)

0 = 0 (3.75)

So the second boundary condition (i.e. w′(L) = 0) is thus automatically sat-
isfied, but the former needs an additional condition: we need to fix A = 0, so
there are no sine or linear terms in the deflection in this beam configuration.
We now have found the deflection for the fixed-fixed beam and we end up with
the solution below. This solution is plotted in figure 3.14

w(x) = B(cos(kx)− 1) (3.76)

x0 L

Figure 3.14 – The solution for the fixed-fixedbeam configuration is plotted. We
have used equation (3.76) with B = −2, kL = 2π and L = 6 (to ensure we have
the buckled beam configuration).

3.1.6 Beam between two, freely rotary nodes

We now turn our attention to a more unusual configuration of an elastic beam.
We inspect a single beam that is put between two circular, freely rotary, nodes
of radius r. This is not a situation that is seen often in reality. It is how-
ever important, since this is configuration is the building block of the model
of the elastic patterned sheets. In this section we study the behaviour of this
configuration when we press the nodes together.

In its initial position the beam is attached in such way to the beams that is
straight. During compression, the beam will bend and the nodes will rotate.
The angle over which the nodes rotate is denoted with θ. This is also the so-
called attachment angle of the beams (see figure 3.15). Moreover, we define the
distance between the middle points of the nodes as D and the real lenght of the
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r r

D

−θ −θ

L
w(x)

`

Figure 3.15 – Sketch of a buckled beam between two nodes. Here D is the
length between the centra of the nodes, L is the distance between the left and
right attachment positions of the beam, ` is the real lenght of the beam, r is the
radius of the node, θ is the incoming (and outgoing) angle of the beam and w(x)
is the deflection of the beam at a certain point x on the beam.

beam as `. Furthermore the distance between the attachment angles is called
L. This length thus depends on D and the attachment angle θ in the following
way

L = D − 2r cos(θ) (3.77)

Since the nodes are free to rotate, the resulting torques on the nodes must be
zero in the equilibrium positions of the system. Since the nodes have a finite
radius r 6= 0, the boundary conditions associated with this property aren’t
as easy as for a pinned-pinned beam. The non-zero radius is the cause of an
additional contribution to the torque on the node on top of the torque that the
beam exerts directly (see figure 3.16). Hence we find the following constraints:

Pr sin(θ) + EIwxx(0) = 0 (3.78)

Pr sin(θ)− EIwxx(L) = 0 (3.79)

In the elastic patterned sheets, we see that the beams are sort of glued to the
nodes. That means that they are attached orthogonal to the surface of the
nodes. Hence we also have a constraint on the angle at the end points of the
beam. Thus the constraints on the first derivatives at these points are

wx(0) = θ (3.80)

wx(L) = −θ (3.81)

Finally we know that the deflections at the end points are zero. Otherwise the
beams wouldn’t be attached to the nodes in the first place. Hence the following
boundary conditions also need to be satisfied

w(0) = 0 (3.82)

w(L) = 0 (3.83)
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−θ

P

r sin(−θ)
M

Figure 3.16 – The torque on the node. This torque consittutes of the torque of
the beam (M) and the torque produced by the load P .

This means we have six boundary conditions and not only four. But the general
solution to the governing ordinary differential equation has only four constants.
So at first we forget about the first two boundary conditions (i.e. the torque
balance on the nodes). Then we will make sure that the obtained solution also
obeys the torque balance boundary conditions.

We use maple to get the solution to wxxxx + k2wxx = 0 with the boundary
conditions w(0) = w(L) = 0, wx(0) = θ, wx(L) = −θ (with k ≡ P

EI ). We obtain

w(x) =
θ

k

1

cos(kL)− 1
((cos(kL)− 1) sin(kx)− sin(kL) cos(kx) + sin(kL))

(3.84)

Now that we have found the solution, we still need to check to make sure that
the torques on the nodes are in balance. Hence we need the second derivatives
in the end points. Simple calculations show

EIwxx(0) = −P θ
k

sin(kL)

cos(kL)− 1
(3.85)

EIwxx(L) = P
θ

k

sin(kL)

cos(kL)− 1
(3.86)

We substitute this information in equation (3.78) to find the condition for the
torque balance. It turns out this condition is exactly the same for both nodes.
This isn’t that surprising since the whole system is symmetric. The condition
is the following

P

(
θ

k

sin(kL)

cos(kL)− 1
− r sin(θ)

)
= 0 (3.87)
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Clearly this constraint is obeyed when P = 0. That corresponds with an un-
loaded system. Most of the time the system is however loaded and P 6= 0. Then
we need to have

sin(kL)

cos(kL)− 1
=
k

θ
r sin(θ) (3.88)

This condition is similar to the condition for the pinned-pinned beam that lead
to the buckling load (see equation (3.30)). More precisely, this constraint re-
duces to the condition for the pinned-pinned beam when the radius r → 0 (i.e.
sin(kL) = 0). Hence the beam between the nodes can only be bended when this
condition is obeyed.

With this constraint, it is possible to write the obtained solution for this problem
in another form. To do this, we substitute this in equation (3.84). We obtain

w(x) =
θ

k
sin(kx)− r sin(θ) cos(kx) + r sin(θ) (3.89)

From this expression it is clear that we restore the normal pinned-pinned so-
lution when the radius of the nodes becomes zero (i.e. r → 0). This is the
same equation as we obtained in equation (3.29). The only difference is that we
used the amplitude in that expression and we now have used the angle θ. Since
A = θ

k the two are similar.

Equation (3.89) gives us information about the deflections of the beam. However
we need three variables that change during the compression: the load P , the
distance between the nodes D and the attachment angle θ. Since these cannot
be chosen independently, we need another constraint on the beam.

We are working with a beam model that models beams as inextensible. This
means that the (real) length ` of the beam stays the same as the initial length
L0 during the whole compression. Hence we need to have ` = L0. To calculate
the real length ` from the beams deflections we need equation (3.34) again. We
use the approximate relation immediately since the deflection w is a mixture
of sine and cosine terms. This makes the resulting integral impossible to solve
exactly. So we need to have

L0 =

∫ L

0

√
1 + w2

x(x) dx ≈
∫ L

0

(1 +
1

2
wx(x)) dx (3.90)

Now we substitute the information about the deflection w (equation (3.89)) into
the right hand side. Hence we find
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L0 − L =

∫ L

0

1

2
wx(x) dx (3.91)

=

∫ L

0

1

2
(θ cos(kx) + kr sin(θ) sin(kx))

2
dx (3.92)

=

∫ L

0

1

2

(
θ2 cos2(kx) + k2r2 sin2(θ) sin2(kx)

+2θkr sin(θ) sin(kx) cos(kx)) dx (3.93)

=
1

2

∫ L

0

(
1

2
(θ2 + k2r2sin2(θ)) +

1

2
(θ2 − k2r2 sin2(θ)) cos(2kx)

+θkr sin(θ) sin(2kx)) dx (3.94)

=
1

4

(
(θ2 + k2r2 sin2(θ))L+

1

2k
(θ2 − k2r2 sin2(θ)) sin(2kL)

−θr sin(θ) cos(2kL) + 2θr sin(θ)) (3.95)

This expression is however not very clear to interpret. Luckily we can use
the previous constraint that ensures the torque balance (equation (3.88)). This

conditions tells us that r sin(θ) = θ
k

sin(kL)
cos(kL)−1 . For notational simplicity we define

F ≡ sin(kL)
cos(kL)−1 . Thus we have r sin(θ) = θ

kF . Substituting this into equation

(3.95) gives us:

L0 − L =
1

4k

(
k(θ2 + θ2F 2)L+ (θ2 − θ2F 2) sin(kL) cos(kL) + 2θ2F sin2(kL)

)
(3.96)

=
θ2

4k

(
k(1 + F 2)L+ (1− F 2) sin(kL) cos(kL) + 2F sin2(kL)

)
(3.97)

When we carefully inspect the last two terms of this expression we see the
following:

(1− F 2) sin(kL) cos(kL) + 2F sin2(kL) (3.98)

=
sin(kL)

cos(kL)− 1

(
cos2(kL)− 2 cos(kL) + 1− sin2(kL)

cos(kL)− 1
+ 2 sin2(kL)

)
(3.99)

=
sin(kL)

cos(kL)− 1

(
2 cos2(kL) + 2 sin2(kL)

)
(3.100)

=2
sin(kL)

cos(kL)− 1
(3.101)

=2F (3.102)

Moreover, when we inspect the first term, 1 + F 2, we find
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1 + F 2 =
cos2(kL)− 2 cos(kL) + 1 + sin2(kL)

(cos(kL)− 1)2
(3.103)

=2
1− cos(kL)

(cos(kL)− 1)2
(3.104)

=− 2
1

cos(kL)− 1
(3.105)

Hence the constraint on the length of the beam becomes

L0 − L =
θ2

2k

1

cos(kL)− 1
(−kL+ sin(kL)) (3.106)

From this expression it is not immediately clear that it reduces to the pinned-
pinned beam case when r → 0. To see this, we must recall that kL = π when
a pinned-pinned beam is buckled. Hence sin(kL) = 0 and cos(kL) − 1 = −2.
Hence the equation reduce to equation (3.45):

L0 − L
L

=
θ2

4
(3.107)

Equation (3.106) seems at first sight not of any help, since it is again an ex-
pression that is depending on the three variables, P , D and θ (recall that
D = L − 2r cos(θ)). However at this point we have not one but two differ-
ent equations that depend on those variables. Hence it is in theory possible to
find the two others, given one of the variables.

In particular we now have a way to find the deflections of this system for a given
compression D0−D

D0
of the whole system. For that given D, we can find values

for P and θ that solve both the following equations

L0 − L =
θ2

2k

1

cos(kL)− 1
(−kL+ sin(kL)) (3.108)

k

θ
r sin(θ) =

sin(kL)

cos(kL)− 1
(3.109)

Since L = D − 2r cos(θ) (see equation (3.77)), these expression can be made
more explicitly depending on the variable D. To do this, we define D0 as the
initial distance between the node (i.e. before the compression starts). Hence we
obtain:

D0 −D = 2r(1− cos(θ)) +
θ2

2k

−k(D − 2r) + sin(kD − 2kr cos(θ))

cos(kD − 2kr cos(θ))− 1
(3.110)

k

θ
r sin(θ) =

sin(kD − 2kr cos(θ))

cos(kD − 2kr cos(θ))− 1
(3.111)
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When we then have obtained the values for P and θ we have all the information
that we need to find the deflection of the beam. That is,

w(x) =
θ

k
sin(kx)− r sin(θ) cos(kx) + r sin(θ) (3.112)

These above equations describe the whole system of an inextensible elastic beam
between two circular, freely rotary nodes. They are however not easy to solve.
To solve them, we need to resort to a computer. Since there was no time left
to do these computer calculations, the results (including the theoretical force
strain curve) for this set-up are not yet acquired and thus cannot be presented
here in this thesis.
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3.2 Inextensible model for large deflections

In this section we study a beam model that models the beams as inextensible.
In contrary to the model in the previous section, the model in this section allows
large deflections w. We start this section with an introduction and the derivation
of the beam model. With this model we then study the pinned-pinned beam
again. We focuss on the force strain relation for this configuration (and will not
present the actual deflections of the beam).

3.2.1 Introduction to the model

As we did in the previous section for the Euler Bernoulli model (section 3.1.1),
we inspect the same beam that is loaded from both sides with a force P . This
time however we will not use the coordinate x and the deflection w(x), but
another system. We will use the coordinate s, which is the point, measured
over the beam itself. Moreover, we will use the angle θ(s), which will be the
angle between a tangent line to the point s and a line parallel to the x-axis (see
Figure 3.17). The main difference with the model in section 3.1.1 is that we
won’t use an approximation for the deflections w in this section. The model of
this section allows for large deflections and non-linear behaviour of the beams
deflection, in contrary to the previous model in section 3.1.1.

θ(0)

θ(s)s

P P

` = L0

L

L0

Figure 3.17 – The new setup of the beam with θ and the coordinate s, on the
beam. θ(s) is the angle that the beam makes (with a line parallel to the surface)
at a position s measured over the beam.

3.2.2 Energy in the model

Since we have not changed the essential attributes of the beam, the energy of
the beam will be the same as it was in the previous section. This means we
once again assume that there is no stretching (i.e. ε = 0) and no twisting (i.e.
κx = 0). By doing so we end up with the the following Lagrangian which looks
very much like the one we had previously in equation (3.3). We have neglected
all the kinetic energy, since we are most interested in the equilibrium deflections
of the beam.

L =

∫
−1

2
EIyyκ

2
yds+ P∆L (3.113)
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This time around the curvature κy is simple, for κy = dθ
ds (note that this is

without approximation this time). The strain ∆L can also be found in a way
similar to what we have done before. This time around, we only need to express
dx in terms of ds and θ. This is quite easy and we find that dx = cos(θ)ds.
Thus we acquire

∆L =

∫
(ds− dx) =

∫
(1− cos(θ))ds (3.114)

If we use these both equation and make one Lagrangian again, we now find
without any assumption or approximation about the deflection the following
Lagrangian:

L =

∫ (
−1

2
EIyy(θs)

2 + P (1− cos(θ))

)
ds (3.115)

(with θs ≡ ∂
∂sθ in this expression.)

At this point we can use our Euler Lagrange variation method again to find the
differential equation we were looking for. Doing so yields

EIθss + P sin(θ) = 0 (3.116)

Or, if we set k2 ≡ P
EI :

θss + k2 sin(θ) = 0 (3.117)

3.2.3 Boundary conditions and solution

Finding the general solution to this newly acquired beam model isn’t that sim-
ple. Luckily there is a trick that we can exploit to find some expression for the
solutions. What we do, is multiply the equation by θs = dθ

ds and then integrate
the whole equation. Hence we get:

1

2
(θs)

2 − k2 cos(θ) = C (3.118)

In this equation we have a constant C, that is depending on the boundary
conditions of the beam. This time however these boundary conditions are a
bit harder, but not much than before, since we have in principle that θ = w′.
So this means we suffice with a small modification of the previous boundary
conditions in table 3.1. We hence acquire table 3.2.

As can be seen in this table, some of the boundaries now only have one boundary
condition. This is since these boundaries have a condition on the deflection w
at the respective point and θ will only say something about the angles (and the
derivatives of it).

3.2.4 A pinned-pinned beam

As we did for the inextensible model for beams with small deflections in section
3.1.4 we first investigate the same pinned-pinned beam setup with our model
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Table 3.2 – Summary of the most frequently occuring boundary conditions at
the end s of a beam. If a beam is pinned at one end it is free to rotate and hence
the torque of the beam must be zero (i.e. θ′(s) = 0). If a beam is fixed at an
end point, its starting angle is fixed. When a beam is free at an end point, this
means it is free to rotate and its shear forces must be zero. In the table M is the
torque and Q is the shear force at the point s.

Name θ θs (= M
EI ) θss (= Q

EI ) θ′′′

pinned θs(s) = 0
fixed θ(s) = 0
free θs(s) = 0 θss(s) = 0

for large deflections. The boundary conditions for a pinned-pinned beam that
we have found in table 3.2 can now be used. However it is convenient to add
the boundary conditions θ(0) = α and θ(`) = −α. We can think of these
boundary conditions as the incoming and outgoing angles of the beam at its
end points. These angles are dependent on the state of the beam (i.e. buckled
or non-buckled) and will of course change with increasing loads.

If we now use two boundary conditions at the same end point (either θ(0) = α
and θs(0) = 0 or θ(`) = −α and θs(`) = 0), we find the constant that we
encountered in equation (3.118). If we do this we find that C = −k2 cos(α).
So by substituting this into equation (3.118) we acquire the problem for our
pinned-pinned case.

1

2
(θs)

2 − k2 cos(θ) = −k2 cos(α) (3.119)

Finding a Force Angle relation
Now we can - for a moment - write θs = dθ

ds and use this to rewrite the
equation above. If we do this we find a relationship between ds and dθ:

ds =
1

k
√

2(cos(θ)− cos(α))
dθ (3.120)

We can exploit this relationship we got here by integrating over it. Since we

now that
∫ `

0
ds = ` the left part of it is clear. The right part of it must be

an integral over θ. By inspecting the boundary conditions we find that this is
integrating over θ = α to θ = −α. Hence we acquire:

` =

∫ `

0

ds =

∫ −α
α

1

k
√

2(cos(θ)− cos(α))
dθ (3.121)

But in this form we can do little with the right hand sides integral we got. To
use it effectively, we need a change of variables to find a nicer integral that we
actually can calculate. The change of variables that we will use is the following:

sin
(α

2

)
sin(φ) = sin

(
θ

2

)
(3.122)
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dθ =
2 sin

(
α
2

)
cos(φ)√

1− sin2
(
α
2

)
sin2(φ)

dφ (3.123)

But before we can use this change of variables we also need to rewrite the original
equation by using some trigonometric identities to find:

cos(θ)− cos(α) = −2 sin(
θ − α

2
) sin(

θ + α

2
) (3.124)

= −2

(
sin

θ

2
cos

α

2
− sin

α

2
cos

θ

2

)(
sin

θ

2
cos

α

2
+ sin

α

2
cos

θ

2

)
(3.125)

= −2

(
sin2 θ

2
cos2 α

2
− sin2 α

2
cos2 θ

2

)
(3.126)

= −2

(
sin2 θ

2
− sin2 α

2

)
(3.127)

= 2 sin2 α

2

(
1−

sin2 θ
2

sin2 α
2

)
(3.128)

So if we combine this identity and the change of variables we find the following
integral for our pinned-pinned beam:

` =

∫ α

−α

dθ

2k sin
(
α
2

)(
1− sin2( θ2 )

sin2(α2 )

) =

∫ π
2

−π2

1

k

dφ√
1− sin2

(
α
2

)
sin2(φ)

(3.129)

This last integral that we acquired is the complete elliptic integral of the first
kind. It is denoted with the symbol K and is defined as follows:

K(m) ≡
∫ π

2

0

dx√
1−m sin2(x)

(3.130)

So if we write this elliptic integral for the integral we wanted to calculate we
find an expression. Since the elliptic integrals are well studied (see Wolfram),
we can look up the Taylor approximation for small m:

K(m) ≈ π

2

(
1 +

1

4

m

1−m
− 1

8

m2

1−m

)
+O(m3) (3.131)

If we use this information about these kind of integrals we find for our integral:

` =
2

k
K(sin2

(α
2

)
) ≈ 1

k
π

(
1 +

1

4

sin2
(
α
2

)
1− sin2

(
α
2

))+O(sin4(α/2)) (3.132)
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Although this relationship seem to be not much of a help for us, it is. If we

remember that k =
√

P
EI we have essentially found a relationship between the

load P and the attachment angle α. This relationship is:

P = EI
π2

`2

(
K(sin2

(
α
2

)
)
)2(

π
2

)2 ≈ EI π
2

`2

(
1 +

1

4

sin2
(
α
2

)
1− sin2

(
α
2

))2

≈ EI π
2

`2

(
1 +

1

8
α2

)
(3.133)

In this equation we find the term EI π
2

`2 which looks familiar. Since we are
inspecting an inextensible beam we have that the arc length ` of the beam is
identical to the initial length L0. So this term is precisely the same as the Euler

load Pe ≡ EI π
2

L2
0
. So we can also denote this relation in the following way:

P

Pe
=

(
K(sin2

(
α
2

)
)
)2(

π
2

)2 ≈ 1 +
1

8
α2 (3.134)

So at this point we have found the force angle relationship for a pinned-pinned
beam with the inextensible beam model for large deflections (this relationship
is plotted in figure 3.18). However, force strain relations are much more useful
since they are easier to measure in experiments. So we need to find a way
to acquire this kind of relationship, as we did in the previous model for small
deflections (see equation (3.32)).

α

P

Pe

Figure 3.18 – Plot of the force angle relationship for the pinned-pinned beam
configuration in the inextensible beam model as derived in equation (3.134).

Strain Angle and Force Strain relations
To do just this, we may go back to the definition of the strain ∆L = L0 − L.

Since the beam is assumed to be inextensible we have that L0 = `. Moreover
the length L can be calculated with the integral

∫ `
0

cos(θ(s))ds. So the strain
∆L can be found by calculating the following integral:
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∆L = `−
∫ `

0

cos(θ(s)) ds (3.135)

This integral looks as horrible as the last one and luckily it is in fact as horrible
so we can use the same techniques as before to calculate it. We first start
by using the relation between ds and dθ (equation (3.120)) and applying the
trigonometric identity in equation (3.128). This yields:

∆L = `−
∫ α

−α

1√
2k

cos(θ)√
cos(θ)− cos(α)

dθ = `−
∫ α

−α

dθ

2k

2
(
1− sin2

(
θ
2

))
− 1√

sin2
(
α
2

)(
1− sin2( θ2 )

sin2(α2 )

)
(3.136)

Now that we have acquired this form for the strain ∆L we must apply the same
change of variables as before (equations (3.122) and (3.123)). If we do this we
get the following expression:

∆L = `−
∫ π

2

−π2

2

k

√
1− sin2

(α
2

)
sin2(φ) dφ+

∫ π
2

−π2

1

k

1√
1− sin2

(
α
2

)
sin2(φ)

dφ

(3.137)

One of these integrals is an integral we already know: the complete elliptic
integral of the first kind (K). The other integral is also an elliptic integral. It
is the complete integral of the second kind. This integral is denoted by E and
is defined as:

E(m) ≡
∫ π

2

0

√
1−m sin2(x) dx (3.138)

If we write the integral as these complete elliptic integrals and again use the

Euler load Pe = EI π
2

`2 we get a relation for the relative strain ∆L
L0

= ∆L
` :

∆L

L0
= 1−

√
Pe
P

2E(sin2
(
α
2

)
)−K(sin2

(
α
2

)
)

π
2

(3.139)

We now have essentially a relation between the strain and the forces and angles.
But since this strain both depends on the angle α and the force P this is not
useful in this form. What we want to do is use equation (3.134) and plug it into
this equation, so we find a clean relationship between the strain ∆L and the
angle α. If we do this we find:

∆L

L0
= 1−

2E(sin2
(
α
2

)
)−K(sin2

(
α
2

)
)

K(sin2
(
α
2

)
)

= 2

(
1−

E(sin2
(
α
2

)
)

K(sin2
(
α
2

)
)

)
(3.140)
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If we use the approximations for these complete elliptic integrals for small angles
α we get the relationship for the beam when it just is buckled (since then the
angle α of the beam will be small). The approximations are:

K(m) ≈ π

2

(
1 +

1

4

m

1−m
− 1

8

m2

1−m

)
+O(m3) (3.141)

E(m) ≈ π

2

(
1− 1

4
m− 3

64
m2

)
+O(m3) (3.142)

So when we use these approximations on the previous equation, equation (3.140),
and the Taylor expansion for the sine around zero, we get the following rela-
tionship for the post-buckling configuration of the pinned-pinned beam:

∆L

L0
=
α2

4
+O(α4) (3.143)

So we can now combine this equation (3.143) with the force angle relation in
equation (3.134). This yields the following force strain relation for the pinned-
pinned beam when the beam is just in its buckled state:

P

Pe
≈ 1 +

1

2

∆L

L0
+O(α4) (3.144)

This force-strain relationship is plotted in figure 3.31 along with the force strain
curve of the Euler Bernoulli beam equation for inextensible beams with small
deflections to stress the difference between both models (see equation (3.134)).
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∆L
L0

P

Pe

Figure 3.19 – The force strain relationship for an (inextensible) beam before
and after buckling for both the model for small deflections (red) and for large
deflections (blue). The slope of the after buckling part is 2 when using the
approximation for small deflections and 1

2
when not using this approximation

(i.e. the model for large deflections).

3.3 Extensible beam model for small deflections

In the previous sections we have studied beam models that modeled the elastic
beams as inextensible. In this section we present a model that takes the ex-
tensibility of the beams into account, but assumes that the deflections of the
beam are small. We start this section with the derivation of the model. After
we have obtained the governing equations for this model, we use them to study
the pinned-pinned beam again. We focus on both the force strain relation as
the actual configuration of the pinned-pinned beam. Moreover, we also study
the configuration with an extensible elastic beam between two circular, freely
rotary nodes at the end of this section.

3.3.1 Introduction to the model

In this section we will inspect a beam model which does not assume that the
beams are inextensible. Instead this model lets the beams be extensible, which
complicates the model. However the standard set-up remains the same as before.
We will inspect a beam as in figure 3.20 that is loaded from both sides with
a force P . Note that in this extensible model we have the real length ` of the
beam, which is not necessarily the same as the initial lenght L0 of the beam. In
this section we will again assume that the slope of the deflections wx stays small,
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x

y

`

L

L0

P P

Figure 3.20 – General set-up for the beam. The load P is applied in the x-
direction, while the deflection, w(x) is in the z-direction. The blue line represent
the beam (bended in this case). ` is the real length of the beam.

as we did in section 3.1 for the (inextensible) Euler Bernoulli beam model.

For the extensible model we use a different coordinate. In the previous models
we have used both the coordinates x and s, which are the current positions of a
point on the beam. For this model however we will use the coordinate x̂. This
coordinate is the position a particular point had along the initial beam (see
figure 3.21). This means that x̂ ∈ [0, L0] for all beam configurations.

Moreover we need to take the displacements in the x-direction into account in
this extensible beam model. These displacements are denoted by u(x̂). The dis-
placements in the y-directions are called w(x̂) (See figure 3.22 for an illustration
of these displacements u and w).

3.3.2 Energy in the model

As before, in this set up we have both the elastic energy (equation (3.1)) and
the work that is done by the load P that we apply on the beam, W = P∆L.
Since we have changed our coordinates and have used the deflection in the x-
direction, the strain this time will simply be ∆L = −(u(L0)− u(0)), with x̂ = 0
and x̂ = L0 being the end points of the beam.

x, x̂

y

L0

L

`

u(x̂)

w(x̂)

x̂x

s

Figure 3.21 – The current set-up for the extensible beam model. In this sketch
the initial beam configuration (dashed, blue) and the current configuration (blue)
are shown. Moreover a point of the beam is chosen and both the deflections in
the x-direction, u(x̂), and the deflection in the y-direction, w(x̂), of that point
are drawn. Furthermore the newly coordinates x̂ and the previous coordinates x
and s for this point are shown.
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original beam piece

actual beam piece

uw

Figure 3.22 – The two kind of deflections for an infinitesimal piece of the beam.
The black part is the original beam and the blue part is the beam in its current
configuration.

Now that we are taking the extensibility of a beam into account, the elastic
energy will also change. In the inextensible cases we have assumed that ε = 0.
Since this ε is associated with the stretching mode of the beam, this is not true
for an extensible beam. ε turns out to be (see page 5 of Marguerre [1947] and
Kondoh and Atluri [1985]):

ε =
√

(1 + ux̂)2 + w2
x̂ − 1 ≈ ux̂ +

w2
x̂

2
(3.145)

In this equation ux̂ ≡ ∂
∂x̂u and wx̂ ≡ ∂

∂x̂w.

The curvature κy of the beam will remain what it was: κy = (wx̂x̂)2.

So if we combine both the ε and the κy we can express the elastic energy of
equation (3.1) in the beam as follows:

Eel =

∫ L0

0

(
1

2
EA

(
ux̂ +

w2
x̂

2

)2

+
1

2
EIw2

x̂x̂

)
dx̂ (3.146)

The other thing that is working on the beam, is the load P we have applied on
both ends of the beam. By use of the fundamental theorem of calculus we can
express the strain ∆L as an integral:

−∆L = u(L0)− u(0) =

∫ L0

0

ux̂dx̂ (3.147)

So now we can find the Lagrangian for these kind of extensible beams again by
using the above equations. This gives us:

L =

∫ L0

0

(
1

2
EA

(
ux̂ +

w2
x̂

2

)2

+
1

2
EIw2

x̂x̂ + Pux̂

)
dx̂ (3.148)

Now that we have found our Lagrangian again, we will use the Euler Lagrange
optimization again. First we define Π as the integrand of this Lagrangian. That
means:
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Π =
1

2
EA

(
ux̂ +

w2
x̂

2

)2

+
1

2
EIw2

x̂x̂ + Pux̂ (3.149)

From the general formulation for the Euler Lagrange variation method it follows
that an energy optimum must satisfy:

0 =
∂Π

∂u
− ∂

∂x̂

∂Π

∂ux̂
+

∂2

∂x̂2

∂Π

∂ux̂x̂
(3.150a)

0 =
∂Π

∂w
− ∂

∂x̂

∂Π

∂wx̂
+

∂2

∂x̂2

∂Π

∂wx̂x̂
(3.150b)

We can use the previously defined Π to find the conditions for the energy ex-
trema. If we do so we find conditions for the equilibriums for the extensible
beams. In the following derivatives we will again assume that E, A and I are
the same all over the beam we are inspecting (i.e. E, A and I are constants and
do not depend on the position x̂).

0 = EA
∂

∂x̂

(
ux̂ +

w2
x̂

2

)
(3.151a)

0 = EA
∂

∂x̂

(
ux̂ +

w2
x̂

2

)
wx̂ + EAwx̂x̂

(
ux̂ +

w2
x̂

2

)
− EIwx̂x̂x̂x̂(3.151b)

If we use the first equation of these two and substitute it into the second, we see

that one term vanishes. Moreover, we find that
(
ux̂ +

w2
x̂

2

)
should be constant.

We will investigate the value of this constant later on. The resulting coupled
differential equations will hence look like:

0 =
∂

∂x̂

(
ux̂ +

w2
x̂

2

)
(3.152a)

0 = EA

(
ux̂ +

w2
x̂

2

)
wx̂x̂ − EIwx̂x̂x̂x̂ (3.152b)

We have found from the first of these equations that ux̂+
w2
x̂

2 = C in which C is
a constant. We did not however know yet what this constant is. Luckily there
is a way for us to find this constant. We need to use another thing from the
elasticity. As it happens from the elasticity it is known that the normal force
N that a beam exerts can be calculated via the expression (see Barber [2010]):

N = −EA 1

L0

∫ L0

0

ε dx̂ (3.153)

If deflections are small, this normal force will more or less be the same as the
load P we apply on the beam, so we could replace it with P (see Figure 3.23).
For now, however, we wil continue to use the normal force N .

We have observed before that ε ≈ ux̂ + 1
2w

2
x̂. If we now use equation (3.152a)

and combine this with the equation for the normal force, equation (3.153), we
get the additional condition for the constant C that we encoutered:
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P

V

N Q

Figure 3.23 – A small piece of the beam with all the forces that it produces. N
is the normal force, which is along the centroid of the beam. Q is the shear force
that is perpendicular to the normal force N . P is the horizontal force that the
beam exerts. This is the force that counters the load that we apply on the beam.
V is the normal force, which is perpendicular to the horizontal force P . When
the deflections stay small, the centroid of the beam is almost straight. If that
happens, then the horizontal force P and the normal force N are the same. So
we can assume that N = P when the deflections are small (i.e. when w is small).

− N

EA
=
u(L0)− u(0) + 1

2

∫ L0

0
wx̂(x̂)2dx̂

L0
= C (3.154)

So this equation tells us that C = ux̂+ 1
2w

2
x̂ = − N

EA . So now that we have found
this constant C, we can rewrite our system of differential equations (3.152) to
find the extensible beam model:

 u(x̂) = u(0)− N

EA
x̂− 1

2

∫ x̂

0

wx̂(x)2dx (3.155a)

EIwx̂x̂x̂x̂ +Nwx̂x̂ = 0 (3.155b)

3.3.3 A pinned-pinned beam

Now that we have found the extensible beam model we will turn our attention
again at the most simple beam configuration: a pinned-pinned beam (see fig-
ure 3.24). The boundary conditions that we found for the inextensible case in
section 3.1.4 are easily adapted to the new situation, since only the coordinates
need to be changed. However, in the extensible model we also have the hori-
zontal deflections u(x̂) and we need one boundary condition for this deflection.
The most used condition is u(0) = 0, which means that the position of the left
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end point of the beam is kept fixed. Hence the boundary conditions are:

w(0) = 0 (3.156)

w(L0) = 0 (3.157)

wx̂x̂(0) = 0 (3.158)

wx̂x̂(L0) = 0 (3.159)

u(0) = 0 (3.160)

(3.161)

We now assume that N ≈ P . This is valid for small deflections as we ex-
plained in the previous section (see figure 3.23). Hence the beam model of
equation (3.155b) now becomes u(x̂) = u(0)− P

EA
x̂− 1

2

∫ x̂

0

wx̂(x)2dx (3.162a)

EIwx̂x̂x̂x̂ + Pwx̂x̂ = 0 (3.162b)

We start with the second expression, EIwx̂x̂x̂x̂ + Pwx̂x̂ = 0. Since both the
differential equation and the boundary conditions for this problem have the
same form as the pinned-pinned beam problem in the inextensible case (see
section 3.1.4), the solution also has the same form.

Hence we know the solution for w:w = 0 if P 6= EI
(
nπ
L0

)2

w = D sin(kx) if P = EI
(
nπ
L0

)2 (3.163)

In this k ≡
√

P
EI and n ∈ N. Moreover, D is the amplitude of the resulting sine

deflection w. For a particular configuration, this D is constant. See figure 3.25
for a graphical illustration of the current information.

We can however find the value for D. To do this, we must use equation (3.162a).
One of the boundary conditions is u(0) = 0. If we substitute this in equa-
tion (3.162a) we find

L

P P

Figure 3.24 – The configuration of a pinned-pinned beam in its non-buckled
state. Both end points of the beam are pinned. Thus the torque (EIwx̂x̂) and
the deflection w are zero at these points. A non-buckled straight state of the
beam is shown in blue. The distance between both ends of the beams is L.
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A

P

Figure 3.25 – Graphical illustration of the possible values of the constant D in
equation (3.163) as function of a varying load P . It is shown that from above
considerations D could take on any value at some of the values for P , but for
most values of the load P the constant D should be zero.

u(x̂) = − P

EA
x̂− 1

2

∫ x̂

0

w2
x̂(x)dx (3.164)

The most interesting property that follows from this expression is the strain
∆L. We have seen before that ∆L = −u(L0) (see equation (3.147)). Hence we
can find the strain ∆L through

∆L =
P

EA
L0 +

1

2

∫ L0

0

w2
x̂(x)dx (3.165)

When the beam is not yet buckled, we have found that w = 0. Hence we know
the strain:

∆L =
P

EA
L0 (3.166)

Or equivalently

P = EA
∆L

L0
(3.167)

which is in correspondence with the Elastica as seen in equation (3.153).

When the beam however is buckled, we have found that w = D sin(kx̂). Hence
the strain becomes

{
∆L = Pc

EAL0 + 1
2k

2D2
∫ L0

0
cos2(kx)dx

= Pc
EAL0 + k2D2

4 L0

(3.168)

in which we have used the fact that sin(2kL0) = 0, since kL0 = π when the
beam is buckled.
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This relates the strain ∆L and the amplitude D of the sine deflection w. It is
more convenient to find the amplitude A as a function of the strain ∆L, since
we can measure this value directly. We obtain

kD = ±2

√
∆L

L0
− Pc
EA

(3.169)

To make this relation more clear, we use the following change of variables

∆L

L0
= δ + u (3.170)

in which δ denotes the strain at which the beam start to buckle and u measures
the additional strain. That is,

δ ≡ Pe
EA

(3.171)

Hence equation (3.169) transforms into

kD = ±2
√
u (3.172)

Thus we now have described the deflection w completely:

w = 0 if P 6= EI
(
nπ
L0

)2

w = ± 2
k

√
u sin(kx) if P = EI

(
nπ
L0

)2 (3.173)

With these expression at hand, we now can calculate both the applied load P
and the amplitude D when we know the strain ∆L

L0
of the beam. To summarize,

we have:

{
P = EA∆L

L0
if ∆L

L0
≤ δ

P = Pc if ∆L
L0
≥ δ

(3.174)

and {
kD = 0 if u ≤ 0

kD = ±2
√
u if u ≥ 0

(3.175)

with Pc = EI
(
π
L0

)2

, δ = Pc
EA and u = ∆L

L0
− δ.

Both results are graphically illustrated in figure 3.26. From this it is clear that
in this model the load P cannot exceed the critical Euler load Pe. Experiments
however do not support this and hence we must conclude that this model is not
a good model for the beams.
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∆L
L0

P
EA

(a)

∆L
L0

kD/4

(b)

Figure 3.26 – Plots of the strain force relation (a) and the strain amplitude
relation (b) for a pinned-pinned extensible beam. In this figures we have plotted
equations (3.174) and (3.175)

3.3.4 Beam between two, freely rotary nodes

In section 3.1.6 we studied the unusual system of an elastic beam between
two circular, freely rotary nodes with an inextensible beam model. In this
section we investigate the same system, but with the extensible beam model of
equation (3.155b).

As before, we have two circular nodes of radius r. An elastic beam is placed
between them, initially in such a way that the beam is straight. During com-
pression, the beam will bend and the nodes will rotate. The angle over which
the nodes rotate is denoted with θ (the so-called attachment angle). The dis-
tance between the middle points of the nodes is D, the real length of the beam
is ` and the distance between the attachment points of the beam is L (see figure
3.27). As before we thus have

L = D − 2r cos(θ) (3.176)

Since this system is the same as in section 3.1.6, the boundary conditions are
the same. So we have two boundary conditions that ensure that the deflection
w at the end points are zero, two boundary conditions that make sure the beam
is attached in the right way to the nodes and finally two boundary conditions
that guarantee torque balance on the nodes. The only difference is that the end
points are now located at x̂ = 0 and x̂ = L0 (and not x = 0 and x = L). Hence
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r r

D

−θ −θ

L
w(x)

`

Figure 3.27 – Sketch of a buckled beam between two nodes. Here D is the
length between the centra of the nodes, L is the distance between the left and
right attachment positions of the beam, ` is the real lenght of the beam, r is the
radius of the node, θ is the incoming (and outgoing) angle of the beam and w(x)
is the deflection of the beam at a certain point x on the beam.

for this problem we have the following constraints

w(0) = 0 (3.177)

w(L0) = 0 (3.178)

wx̂(0) = θ (3.179)

wx̂(L0) = θ (3.180)

Pr sin(θ) + EIwx̂x̂(0) = 0 (3.181)

Pr sin(θ)− EIwx̂x̂(L0) = 0 (3.182)

(3.183)

The only difference with the inextensible case is the change of the second end
point coordinate of the beam (i.e. x̂ = L0 instead of x = L). Since the general
differential equation is also the same, we end up with the same solution (with
L0 instead of L). Thus by inspecting equations(3.89) and (3.88) we find the
deflection w for this extensible elastic beam between two nodes:

w(x̂) =
θ

k
sin(kx̂)− r sin(θ) cos(kx̂) + r sin(θ) (3.184)

with the additional condition that the following constraint is obeyed

sin(kL0)

cos(kL0)− 1
=
k

θ
r sin(θ) (3.185)

At this point we encounter a problem. Most experiments we do are strain-
controlled. That is, we know the amount of compression of the whole system
(i.e. D0−D

D0
), but these expressions are independent of D. Moreover, when we

know the load P , we can find the attachment angle θ from equation (3.185) and
then find the deflections via equation (3.184). But this is all independent of the
value of D at this moment. Hence we need to find another constraint.
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We cannot use the same strategy as before (see equation (3.90)), since the beam
is extensible in this model. Luckily we have another constraint in our model:

u(x̂) = u(0)− N

EA
x̂− 1

2

∫ x̂

0

w2
x̂(x) dx (3.186)

The distance L of the beam at the current position is related to u(x̂ via L−L0 =
u(L0)− u(0) (see equation (3.147)). Hence with the above expression we have

∆L = L0 − L =
P

EA
L0 +

1

2

∫ L0

0

w2
x̂(x) dx (3.187)

(in which we again have used the approximation N ≈ P , which is true for small
deflections)

With the same reasoning as in equations (3.91) through (3.95) we now obtain

L0 − L =
P

EA
L0 −

θ2

2

1

cos(kL0)− 1
L0 +

θ2

2k

sin(kL0)

cos(kL0)− 1
(3.188)

This expression reduces to equation (3.169), when the radius r → 0. We can
see this when we recall that kL0 = π when the radius r = 0, since that is the
buckling condition for a pinned-pinned beam.

At this point we have a complete description of the system. From equations (3.188)
and (3.185) we can find both the load P and the attachment angle θ for a given
value of L. After these are found we can use equation (3.184) to find the deflec-
tions w for the beam.

We must however not forget that L is still depending on θ. Hence to make things
more explicitly we replace L with L = D − 2r cos(θ). Hence the expressions
become:

D0 −D = 2r(1− cos(θ) +
P

EA
(D0 − 2r)− θ2

2k

−kD0 + 2rk + sin(kD0 − 2kr)

cos(kD0 − 2kr)
(3.189)

k

θ
r sin(θ) =

sin(kD0 − 2kr)

cos(kD0 − 2kr)− 1
(3.190)

w(x̂) =
θ

k
sin(kx̂)− r sin(θ) cos(kx̂) + r sin(θ) (3.191)

The above expression describe in principle the system of a beam between two
nodes. It is however not clear how to solve these analytically. It is better to
resort to a computer for these calculations. By lack of time, these computer
calculations are unfortunately not done for now.
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3.4 Extensible beam model for large deflections

In the previous section 3.3 we discussed a beam model that takes the extensi-
bility of the elastic beams into account. One of the assumptions we made was
however that the deflections w of the beam stay small. In this chapter we extend
the extensible beam model to allow for huge deflections as we did in section 3.2
for the Euler Bernoulli inextensible beam model.

We start with the derivation of the beam model via the Euler Lagrangian vari-
ational principle. After we have found the governing equations for this model,
we use it to study the pinned-pinned beam configuration once more. We focus
on the force strain relations in this study of the pinned-pinned beam (and we
will not present results on the actual deflections of the beam).

3.4.1 Introduction to model

We inspect the same beam setup as we did in section 3.3 (see figure 3.28). Hence
we inspect a beam with initial length L0 that is loaded from both sides with
a force P . In this chapter we remain using the coordinate x̂ (i.e. the position
a particular point had along the initial beam configuration) as introduced in
section 3.3. However, in this section not the deflections w(x̂) and u(x̂) but
rather the angle θ(x̂) (i.e. the angle between the tangent line and the x-axis,
see section 3.2.1) describes the form of the beam.

x

y

`

L

L0

P Pθ(0)

Figure 3.28 – General set-up for the beam. The load P is applied in the x-
direction, while the deflection, w(x) is in the z-direction. The blue line represent
the beam (bended in this case). ` is the real length of the beam.

3.4.2 Energy in the model

As before in section 3.3 in this set up we have both elastic energy of the beam
and the work by the load P contributing to the total energy of the elastic beam.

We have κy = θx̂ as in section 3.2. Moreover −∆L = u(L0)− u(0) =
∫ L0

0
ux̂ dx̂

(see equation (3.147)). Hence the total Lagrangian for the equilibrium positions
of the beam is

L =

∫ L0

0

(
1

2
EAε2 +

1

2
EIθ2

x̂ + Pux̂

)
dx̂ (3.192)
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In this expression the deflection u is used. In the introduction we however said
that we use the tangent slope θ. So we need to express the deflection u in terms
of θ. To do this we first inspect what’s going on in an infinitesimal piece of the
beam when it endures deflections.

Deflections in an infinitesimal piece of the beam

Following Kondoh and Atluri [1985], Christodoulou and Kounadis [1986] and
Magnusson et al. [2001], we now consider an infinitesimal piece of an elastic
beam of initial length dx̂ (see figure 3.29). This beam piece is deformed into
another configuration through displacements in the x-direction (i.e. u) and in
the y-direction (i.e. w).

∆

x̂ x̂+ dx̂

u(x̂)

w(x̂)

u(x̂+ dx̂)

w(x̂+ dx̂)

∆u

∆w

dx̂

θ(x̂)

Figure 3.29 – The displacement of an infinitesimal beam piece with an original
length of dx̂. In blue are both the original (straight) and the new (displaced) beam
configurations of the beam. In green the displacements in the x and y directions
are shown for both the beginning and the end of the beam piece (respectively with
u for the horizontal displacement and w for the vertical displacements). ∆u is the
difference in x-position of both ends of the beams in the displaced configuration
and ∆w is the difference in the y-position. ∆ denotes the length of the new
configuration of the beam. Finally θ(x̂) is the slope of the beam at x̂.

The difference between the vertical positions on the deformed beam piece of
the start and end of this beam piece is defined as ∆w and the difference in
the horizontal positions as ∆u. Note that this is the difference in the positions
rather than the difference in the deflections. This means that we need to take
the initial difference of dx̂ in the positions into account. From figure 3.29 it is
then apparent that
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∆w = w(x̂)− w(x̂+ dx̂) (3.193)

and
∆u = u(x̂)− u(x̂+ dx̂) + dx̂ (3.194)

We now define the new distance of the beam as ∆. Hence from the Pythagorean
theorem follows

∆ =
√

(∆w)2 + (∆u)2 =

√
(w(x̂)− w(x̂+ dx̂))

2
+ (u(x̂)− u(x̂+ dx̂) + dx̂)

2

(3.195)

Now we introduce again the angle θ(x̂) as the angle between a line tangent to
the deflection at position x̂ and a line parallel to the x-axis (as shown in figure
3.29). Hence by geometric considerations we acquire

sin(θ(x̂)) =
∆w

∆
(3.196)

=
w(x̂)− w(x̂+ dx̂)√

(w(x̂)− w(x̂+ dx̂))
2

+ (u(x̂)− u(x̂+ dx̂) + dx̂)
2

(3.197)

=
w(x̂)−w(x̂+dx̂)

dx̂√(
w(x̂)−w(x̂+dx̂)

dx̂

)2

+
(
u(x̂)−u(x̂+dx̂)

dx̂ + 1
)2

(3.198)

and

cos(θ(x̂)) =
∆u

∆
(3.199)

=
u(x̂)− u(x̂+ dx̂) + dx̂√

(w(x̂)− w(x̂+ dx̂))
2

+ (u(x̂)− u(x̂+ dx̂) + dx̂)
2

(3.200)

=
u(x̂)−u(x̂+dx̂)

dx̂ + 1√(
w(x̂)−w(x̂+dx̂)

dx̂

)2

+
(
u(x̂)−u(x̂+dx̂)

dx̂ + 1
)2

(3.201)

These expressions are valid for all initial lengths dx̂. Thus we can inspect the
limit behaviour when dx̂→ 0. We have per definition (of the derivative) that

lim
dx̂→0

u(x̂)− u(x̂+ dx̂)

dx̂
=

∂u

∂dx̂
= ux̂ (3.202)

and

lim
dx̂→0

w(x̂)− w(x̂+ dx̂)

dx̂
=

∂w

∂dx̂
= wx̂ (3.203)
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Hence in the limit case when dx̂→ 0 the equations (3.198) and (3.201) become
the following

sin(θ(x̂)) =
wx̂√

(1 + ux̂)2 + (wx̂)2
(3.204)

cos(θ(x̂)) =
(1 + ux̂)√

(1 + ux̂)2 + (wx̂)2
(3.205)

At this point we recall the expression for ε of equation (3.145)2

ε =
√

(1 + ux̂)2 + (wx̂)2 − 1 (3.206)

Since ε+ 1 is the same as the denominator of equations (3.204) and (3.205), we
can substitute this stretching term in these equation. Hence we acquire

sin(θ(x̂)) =
wx̂
ε+ 1

(3.207)

cos(θ(x̂)) =
(1 + ux̂)

ε+ 1
(3.208)

So now we have relationships between the displacements (u and w) and the
tangent slope θ. In the Lagrangian in equation (3.192) we have the displace-
ments that we must replace with θ. So it is more useful to rewrite the results
of equations (3.207) and (3.208). Thus we obtain

wx̂ = (ε+ 1) sin(θ(x̂)) (3.209)

ux̂ = (ε+ 1) cos(θ(x̂))− 1 (3.210)

The Lagrangian and the beam model

We now substitute equation (3.210) in the general Lagrangian of equation
(3.192). Hence we obtain the Lagrangian for this problem in terms of only
the stretching ε and the angle θ. We obtain:

L =

∫ L0

0

(
1

2
EAε2 +

1

2
EI(θx̂)2 + Pux̂

)
dx̂ (3.211)

=

∫ L0

0

(
1

2
EAε2 +

1

2
EI(θx̂)2 + P ((ε+ 1) cos(θ(x̂))− 1)

)
dx̂ (3.212)

As we did in for the previous beam models we can now use the Euler Lagrange
variation method to find the differential equations for the equilibrium positions
of the beam in this model. Hence we obtain{

0 = EAε+ P cos(θ(x̂)) (3.213a)

0 = EIθx̂x̂ + P (ε+ 1) sin(θ(x̂)) (3.213b)

2We also have found an explanation for this expression: since ε measures the strain in the
beam, it is the difference between the initial length and the new length of an infinitesimal
piece of the beam. Hence ε = ∆ − 1
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Figure 3.30 – 3D sketch of an elastic rod both in a straight (a) and a bended
(b) position.

We now use the first of these equations (equation (3.213a)) to find an relation-
ship between ε and θ. Hence we acquire the following expression

ε =
−P
EA

cos(θ(x̂)) (3.214)

It is now possible to substitute this relation into the set of equations (3.213).
More precisely it is possible to substitute this relationship into equation (3.213b).
We thus obtain the differential equation for the extensible beam model that al-
lows huge deflection. This differential equation is:

0 = EIθx̂x̂ + P

(
−P
EA

cos(θ(x̂)) + 1

)
sin(θ(x̂)) (3.215)

0 = EIθx̂x̂ + P sin(θ(x̂))− P 2

EA
cos(θ(x̂)) sin(θ(x̂)) (3.216)

When the last term of this differential equation is dropped, this relation reduces
to the inextensible beam model for huge deflections (i.e. equation (3.116)). This
occurs when ε → 0 (or equivalently when EA becomes huge), precisely when
we want the stretching of the beam to disappear (and the beams to become
inextensible). This is also clear when we set ε = 0 in equation (3.213b). Hence
this extensible beam model is a small expansion to the normal, inextensible
beam model.

Moreover, we now see when we should use this extensible model and when an
inextensible beam model suffice for elastic beams. When we for instance inspect
an elastic rod with which has length h in the direction in which it can buckle
and a length b in the other direction (see figure 3.30), we know the beam’s area
and its second moment of inertia:

A = hb (3.217)

I =
h3b

12
(3.218)
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Hence we have A = 12
h2 I. If we substitute this into the differential equation

(3.216), we acquire

EIθx̂x̂ + P sin(θ(x̂))− P 2

12EI
h2 cos(θ(x̂)) sin(θ(x̂)) (3.219)

Hence from this we see that the contribution of the last term becomes small
when h is small. Since this last term is the only difference between the differen-
tial equation for the extensible beam model and the equation for the inextensible
beam model (see equation (3.116) in section 3.2.2), we conclude that the stretch-
ing of the beams is more relevant in thicker beams. Hence the inextensible beam
model and the results using it from section 3.2 are better for thin beams than
for thick ones. Moreover, we see that the thicker the beams become the more
the extensibility is necessary to acquire realistic predictions from the theory.

3.4.3 A pinned-pinned beam

In section 3.2.4 we inspected a pinned-pinned beam with an inextensible beam
model that allows for large deflections (see equation (3.116)). In this section we
will study the same beam configuration once more, but now with the extensible
beam model of equation (3.216). We will generally follow the same line of
thought as in section 3.2.4, but the resulting integrals are harder to solve this
time.

To get started, we first multiply equation 3.216 by θx̂ and then integrate it.
Hence we obtain:

EI

2
(θx̂)2 − P cos(θ) +

P 2

2EA
cos2(θ) = C (3.220)

In this expression C is a constant. The value of this constant is determined by
the boundary conditions of the beam configuration that we are inspected. In
section 3.2.4 we already found the boundary conditions of this configuration.
We have that θx̂(0) = θx̂(L0) = 0 and θ(0) = α = −θ(L0), with α being the
slope at the beginning of the beam.

We now substitute the boundary conditions at the beginning of the beam into
equation (3.220) to find the value of the constant C. Hence we find:

C = −P cos(α) +
P 2

2EA
cos2(α) (3.221)

With this value we have in principle the whole description of the pinned-pinned
beam, when we substitute this into equation (3.220). We find the expression

EI

2
θ2
x̂ = P (cos(θ)− cos(α))− P 2

EA

(
cos2(θ)− cos2(α)

)
(3.222)

However this expression is not very helpful in its current form. We need to
modify it in order to find real information about the pinned-pinned beam. Our
goal is to find a relationship between the force and the strain. We use the same
strategy as in section 3.2.4 and start by finding a relation between the force and
the starting angle α. Then we derive an expression that relates this starting
angle α and the strain. Finally we combine these two to obtain the force strain
relation.
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Finding a relation between the force P and the angle α

Our first step is rewriting equation (3.257) with trigonometric identities. More
precisely we use cos(λ) = 1− 2 sin2(λ2 ). Hence we find the following identities:

cos(θ)− cos(α) =
(
1− 2 sin2(θ/2)

)
−
(
1− 2 sin2(α/2)

)
(3.223)

= 2
(
sin2(α/2)− sin2(θ/2)

)
(3.224)

cos2(θ)− cos2(α) =
(
1− 2 sin2(θ/2)

)2 − (1− 2 sin2(α/2)
)2

(3.225)

= 4
(
sin2(α/2)− sin2(θ/2)

)
− 4
(
sin4(α/2)− sin4(θ/2)

)
(3.226)

We substitute these in equation (3.257). Then we rewrite the resulting expres-
sion to find:

θ2
x̂ =

4P

EI

(
(1− P

EA
)
(
sin2(α/2)− sin2(θ/2)

)
+

P

EA

(
sin4(α/2)− sin4(θ/2)

))
(3.227)

Now we can write θx̂ explicitly as dθ
dx̂ . If we do this, we find a relationship

between dθ and dx̂:

dx̂ =

√
EI

4P

dθ√
(1− P

EA )
(
sin2(α/2)− sin2(θ/2)

)
+ P

EA

(
sin4(α/2)− sin4(θ/2)

)
(3.228)

We can exploit this relation by integrating over it. Since we have that
∫ L0

0
dx̂ =

L0 the left part is clear. The right part must be an integral over θ. By inspecting
the boundary conditions we find that we need to integrate from θ = α to θ = −α.
Hence we acquire:

L0 =∫ α

−α

√
EI

4P

dθ√
(1− P

EA )
(
sin2(α/2)− sin2(θ/2)

)
+ P

EA

(
sin4(α/2)− sin4(θ/2)

)
(3.229)

This form is however not very easy to work with. To use it effectively we need a
change of variables to find a better integral that we can work with. The change
of variables that we will use is the following:

sin
(α

2

)
sin(φ) = sin

(
θ

2

)
(3.230)

dθ =
2 sin

(
α
2

)
cos(φ)√

1− sin2
(
α
2

)
sin2(φ)

dφ (3.231)
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Hence our integral of equation (3.229) transforms into

L0 =∫ π
2

−π2

√
EI

4P

2c cos(φ)√
1− c2 sin2(φ)

dφ√
(1− P

EA )c2(1− sin2(φ)) + P
EAc

4(1− sin4(φ))

(3.232)

In this expression we have written sin(α/2) = c for notational simplicity. This
expression is however still not easy to evaluate in its current form. We need
more trigonometric identities. This time we will exploit the following:

1− sin4(φ) = sin2(φ) + cos2(φ)− sin4(φ) (3.233)

= sin2(φ)(1− sin2(φ)) + cos2(φ) (3.234)

= cos2(φ)
(
1 + sin2(φ)

)
(3.235)

When we substitute this in equation (3.232) we obtain

L0 =∫ π
2

−π2

√
EI

4P

2c cos(φ)√
1− c2 sin2(φ)

dφ√
(1− P

EA )c2 cos2(φ) + P
EAc

4 cos2(φ)(1 + sin2(φ))

(3.236)

Since this integral is symmetric around φ = 0 we can suffice by only calculating
the integral from 0 to π

2 and multiply the result by 2. Hence we find the following
relation:

L0 = 2

∫ π
2

0

√
EI

P

1√
1− c2 sin2(φ)

dφ√
(1− P

EA ) + P
EA (c2 + c2 sin2(φ))

(3.237)

This is however still not an integral that we can evaluate directly. So instead of
trying to evaluate this integral, we will construct an integral that has the same
behaviour as this integral for small starting angles α. In order to do this we
use the Taylor expansions of both the fractions in the integrand. These Taylor
approximations are:

1√
1− c2 sin2(φ)

≈ 1 +
1

2
c2 sin2(φ) +O(c4) (3.238)

and

1√
(1− P

EA ) + P
EA (c2 + c2 sin2(φ))

≈

1√
1− P

EA + P
EAc

2

(
1− 1

2

P
EAc

2

1− P
EA + P

EAc
2

sin2(φ)

)
+O(c4) (3.239)
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So with these approximation we can actually determine the integral of equation
(3.237) up to the order c3 for small starting angles α. By substituting these
Taylor approximation in equation (3.237) we obtain the following integral:

L0 ≈

2

√
EI

P

∫ π/2

0

1√
1− e+ ec2

(
1 +

1

2
c2 sin2(φ)

)(
1− 1

2

ec2

1− e+ ec2
sin2(φ)

)
dφ

(3.240)

in which we have written e ≡ P
EA for notational simplicity.

Now we expand the integrand. When we do this, we only need to take terms
into account up to order c2, since we have already used Taylor expansion up to
this order. Hence the resulting relation up to this order becomes:

L0 (3.241)

≈ 2

√
EI

P

1√
1− e+ ec2

∫ π/2

0

(
1 +

1

2
c2 sin2(φ)− 1

2

ec2

1− e+ ec2
sin2(φ)

)
dφ

(3.242)

= 2

√
EI

P

1√
1− P

EA + P
EAc

2

π

2

(
1 +

1

4
c2 − 1

4

P
EAc

2

1− P
EA + P

EAc
2

)
(3.243)

in which we have written e ≡ P
EA for notational simplicity.

This relation is however not clear and it is vague to which order of c this expres-
sion is correct. To solve this problem, we need to make yet two other Taylor
approximations. Since we are only interested in the behaviour directly after
buckling, we have a small incoming angle α and hence a small c, as we have
stated before. Hence we can make the following Taylor expansions (for when c
is small).

1√
1− P

EA + P
EAc

2
≈ 1√

1− P
EA

(
1− 1

2

P
EA

1− P
EA

c2

)
+O(c4) (3.244)

and
1

1− P
EA + P

EAc
2
≈ 1

1− P
EA

(
1−

P
EA

1− P
EA

c2

)
+O(c4) (3.245)

Substituting these approximation into equation (3.241) yields an expression that
is correct up to the order of c4. It has however terms that are of order c4, so
we must forget about these terms. Hence we acquire the relation between the
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force P and c:

L0 (3.246)

≈
√
EI

P

1√
1− e

(
1− 1

2

e

1− e
c2
)
π

(
1 +

1

4
c2 − 1

4
c2

e

1− e

(
1− e

1− e
c2
))

+O(c4)

(3.247)

=

√
π2EI

P

1√
1− P

EA

(
1 +

1

4
c2 − 1

4

P
EA

1− P
EA

c2 − 1

2

P
EA

1− P
EA

c2

)
(3.248)

=

√
EIπ2

P

1√
1− P

EA

(
1 +

1

4
c2 − 3

4

P
EA

1− P
EA

)
+O(c4) (3.249)

in which we have written e ≡ P
EA for notational simplicity.

But this expression is still not the desired relation between the force P and the
incoming angle α. To acquire this relation we need to use yet another Taylor
expansion. This time we use the Taylor approximation c = sin(α/2) ≈ α/2.

Moreover, we rearrange some terms and use the Euler load Pe = EI π
2

L2
0
. Hence

we obtain √
P

Pe
≈ 1√

1− e

(
1 +

1

16
α2 − 3

16

e

1− e
α2

)
+O(α4) (3.250)

In which we have written e ≡ P
EA for notational simplicity.

Then we square this expression. Thus we find up to order α4:

P

Pe
≈ 1

1− e

(
1 +

1

8
α2 − 3

8

e

1− e
α2

)
+O(α4) (3.251)

This relation is similar to the relation for the inextensible beam that we found
in section 3.2.4 (see equation (3.134)). More precisely this equation reduces
to the inextensible one, when e = P

EA → 0, which is a good measure for how
inextensible a beam is, as we have seen in section 3.4.2. So the extensible beam
model doesn’t change that much to the force angle relation for a pinned-pinned
beam.

Moreover it is not a problem that we divide by zero when e = 1, since e will
never be 1. If e = 1, this means that P = EA. But this can only arise when
the beam is completely compressed, which cannot ever happen.

There is however another interesting thing to equation (3.251). When the beam
still must buckle, we have α = 0. The equation then reduces to

P

Pe
≈ 1

1− e
(3.252)

Now, when the beam is extensible (i.e. e 6= 0) we have that P = Pc is not a
solution anymore. In other words, when the beam is extensible the euler load
Pe isn’t the critical load at which the beam starts to buckle. The critical load is
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the load P which satisfies this equation. This is in correspondance with other
studies of the extensible beam model (see for instance Magnusson et al. [2001]).
We will denote this critical load as Pc.

A relation between the angle α and the strain

We have found a relation between the starting angle α and the force P . However,
it is more convenient to have a force strain relation. In order to find this relation,
we need an expression that relates the starting angle α and the strain ∆L as we
did in the inextensible case in section 3.2.4.

In this extensible beam model, we have a good measure for how much a certain
point of the beam has changed. This is measured with u(x̂), with x̂ the coordi-
nate along the initial beam. This u(x̂) measures how much a point is displaced
to the right. Hence we have for the strain

∆L = −(u(L0)− u(0)) (3.253)

We then use the fundamental theorem of calculus and obtain

∆L = −
∫ L0

0

ux̂dx̂ (3.254)

In equation (3.210) we have found an expression for ux̂ in terms of ε and θ and
in equation (3.214) we found an expression for ε in terms of θ. We now combine
these two equations and substitute them into (3.254). Hence we obtain

∆L = −
∫ L0

0

((ε+ 1) cos(θ)− 1)dx̂ (3.255)

=

∫ L0

0

(
1− cos(θ) +

P

EA
cos2(θ)

)
dx̂ (3.256)

= L0 −
∫ L0

0

cos(θ)dx̂+
P

EA

∫ L0

0

cos2(θ)dx̂ (3.257)

We now have an expression with θ as the main variable. However, the integral
is over dx̂. Luckily, we have found a relation between dx̂ and dθ in equation
(3.228). We substitute this relation in equation (3.257) to find

∆L = L0−
∫ α

−α

√
EI

4P

cos(θ)− e cos2(θ)√
(1− e)(c2 − sin2(θ/2)) + e(c4 − sin4(θ/2))

dθ (3.258)

in which we have used e ≡ P
EA and c ≡ sin(α/2) for notational simplicity.

We need to rewrite this equation. Our first step in this is with the trigonometric
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identity cos(λ) = 1− 2 sin2(λ/2). Hence we obtain

∆L

L0
= 1− 1

L0

√
EI

4P

∫ α

−α

(1− 2 sin2(θ/2))− e(1− 4 sin2(θ/2) + 4 sin4(θ/2))√
(1− e)(c2 − sin2(θ/2)) + e(c4 − sin4(θ/2))

(3.259)

= 1− 1

L0

√
EI

4P

∫ α

−α

(1− e) + 2(2e− 1) sin2(θ/2)− 4e sin4(θ/2)√
(1− e)(c2 − sin2(θ/2)) + e(c4 − sin4(θ/2))

(3.260)

This integral is as horrible as the one we found in the force angle relation. Hence
we need to apply the same change of variables as we did before. That is, we use
the change of variables of equations (3.230) and (3.231). Hence we obtain:

∆L

L0
= 1− 1

L0

√
EI

P

∫ π/2

−π/2

(1− e) + 2(2e− 1)c2 sin2(φ)− 4ec4 sin4(φ)√
(1− e) + ec2(1 + sin2(φ))

√
1− c2 sin2(φ)

dφ

(3.261)

This is however still not an integral that we can evaluate directly. The most
integral information of this integral is the behaviour of the relation just after
buckling. Since the incoming angle α is very small just after buckling, so must be
c = sin(α/2). Hence we can use Taylor approximations to find an integral that
we can actually calculate. To do this, we use the following Taylor expansions:

1√
(1− e) + ec2(1 + sin2(φ))

≈ 1√
1− e

(
1− 1

2

e

1− e
c2(1 + sin2(φ))

)
+O(c4)

(3.262)

1√
1− c2 sin2(φ)

≈ 1 +
1

2
c2 sin2(φ) (3.263)

Hence the integrand of the integral of equation (3.261) will look like

1√
1− e

(
(1− e) + 2(2e− 1)c2 sin2(φ)− 4ec4 sin4(φ)

)
·(

1 +
1

2
c2 sin2(φ)

)(
1− 1

2

e

1− e
c2(1 + sin2(φ))

)
+O(c4) (3.264)

When we expand this expression we find not only terms of order c0 and c2, but
also of order c4. We have however used Taylor approximation up to order c3.
Hence the terms of order c4 are irrelevant, since this expression is not true for
these orders. Hence we can forget about them. Thus we obtain for the integrand
of equation (3.261)

1√
1− e

(
(1− e− e

2
c2) + (3e− 3

2
)c2 sin2(φ)

)
+O(c4) (3.265)
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Hence by substituting this expression into equation (3.261) we acquire an ap-
proximation for the integral. It is possible to calculate this integral. Hence we
obtain

∆L

L0
(3.266)

= 1− 1

L0

√
EI

P

1√
1− e

∫ π/2

−π/2

(
(1− e− e

2
c2) + (3e− 3

2
)c2 sin2(φ)

)
dφ+O(c4)

(3.267)

= 1− 1

L0

√
EI

P

π√
1− e

(
1− e− 1

2
ec2 +

3

2
ec2 − 3

4
c2
)

+O(c4) (3.268)

= 1−

√
EIπ2

PL2
0

1√
1− e

(
(1− e) + (e− 3

4
)c2
)

+O(c4) (3.269)

= 1−
√
Pe
P

1√
1− e

(
(1− e) + (e− 3

4
)c2
)

+O(c4) (3.270)

in which we have used the critical Euler load Pe = EI π
2

L2
0
.

There is a problem with the current form of this expression. We must get rid

of the term
√

Pc
P . Luckily we have found a relation between this terms and the

c in equation (3.250). When we take the inverse of this we have√
Pc
P

=
√

1− e
(

1 +
1

4
c2 − 3

4

e

1− e
c2
)−1

(3.271)

Hence by substituting this expression in equation (3.270) we obtain

∆L

L0
= 1−

(
(1− e) + (e− 3

4
)c2
)(

1 +
1

4
c2 − 3

4

e

1− e
c2
)−1

+O(c4) (3.272)

Now we make yet another Taylor approximation around c = 0. Then we find
the relation up to order c2. We find

∆L

L0
≈ 1−

(
(1− e) + (e− 3

4
)c2
)(

1− 1

4
c2 +

3

4

e

1− e
c2
)

+O(c4) (3.273)

= 1−
(

(1− e) + (e− 3

4
)c2 − 1− e

4
c2 +

3

4
ec2
)

+O(c4) (3.274)

= e− 2ec2 + c2 (3.275)

The last step we now take is another Taylor expansion. Since we are interested
in the behaviour of the beam just after buckling, we have already assumed that
α is small. Hence we can approximate c = sin(α/2) with c ≈ α

2 . Hence we
obtain the relation between the strain and the starting angle α:

∆L

L0
= e− 1

2
eα2 +

1

4
α2 +O(c4) (3.276)
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This relation reduces to the inextensible case (see equation (3.143)) when ε→ 0
(i.e. when EA becomes very large), as we would like.

Moreover the expression makes sense, since the beam is now extensible. Hence
when the beam is not buckled (i.e. when α = 0) the beam can have a non-zero
strain. This can be seen in the expression since there is now a e terms which
does not depend on the incoming angle α at all. More precisely when α = 0,
we have

∆L

L0
= e =

P

EA
(3.277)

Or equivalently,

P = EA
∆L

L0
(3.278)

which is in agreement with equation (3.153) for the pre buckled state of the
elastic beams.

Force strain curve

Now that we have found both a relation between the force P and the angle α
(equation (3.251)) and a relation between the incoming angle α and the strain
∆L
L0

(equation (3.276)), it is possible to derive the force strain curve for an
extensible pinned-pinned beam by combining these two expressions.

First, we rewrite equation (3.276) and find α in terms of the strain. Hence we
obtain:

α2 = 4
∆L
L0
− e

1− 2e
(3.279)

We then substitute this expression in equation (3.251). Hence we acquire

P

Pe
=

1

(1− e)2

(
(1− e) +

1

8
(1− 4e)α2

)
(3.280)

=
1

(1− e)2

(
(1− e) +

1

2
(1− 4e)

∆L
L0
− e

1− 2e

)
(3.281)

=
1

(1− e)2(1− 2e)

(
(1− 7

2
e+ 4e2) + (

1

2
− 2e)

∆L

L0

)
(3.282)

As before, this expression reduces to the inextensible force strain relation (see
equation (3.144)), when e → 0. Moreover, when the beam is not yet buckled,
we have ∆L

L0
= P

EA = e. Hence then this equation reduces to

P

Pe
=

1

1− e
(3.283)
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from which we can determine the critical load Pc by solving it for P as stated
before.

The relation is however not very clear in its current form. For one thing it relates
the current load P to the Euler load Pe, while it is more convenient to relate
this to the critical load Pc, since this load can be determined from experiments
by inspecting the acquired force strain curve. Moreover it is better to measure
the strain only from the moment that the beam buckled. To acquire this, we
use the following substitutions:

∆L

L0
= δ + u (3.284)

e = δ + ∆e (3.285)

in which we have

δ =
Pc
EA

(3.286)

and
∆e = e− δ (3.287)

Since the beam is not buckled until the critical load is exceeded, δ is the strain at
which the beam will begin to buckle. Hence u measures the extra strain, beyond
the critical strain δ. We now substitute these in equation (3.282). Moreover, we

observe that P
Pe

=
P
EA
Pe
EA

= e
ê (in which ê ≡ Pe

EA ). Hence we obtain for the force

strain relation:

δ

ê
+

∆e

ê
=

(1− δ)(1− 2δ) + ∆e 12δ−7
2 + 4(∆e)2 + 1−4δ−4∆e

2 u

(1− δ)2(1− 2δ)(1− 1
1−δ∆e)2(1− 2

1−2δ∆e)
(3.288)

Since Pc is the solution for = δ
x̂ = Pc

PE
= 1

1− Pc
EA

= 1
1−δ , we now replace one of

the 1
1−δ terms by δ

ê . Hence we obtain:

δ

ê
+

∆e

ê
=
δ

ê

1

(1− ∆e
1−δ )2(1− 2∆e

1−2δ )

(
1 +

∆e 12δ−7
2 + 4(∆e)2 + 1−4δ−4∆e

2 u

(1− δ)(1− 2δ)

)
(3.289)

Since we are most interested in the behaviour of the beam just after buckling,
we know that the load P will be close to Pc. This means that ∆e will be small.
Hence we can find an approximation up to order (∆e) via Taylor expansion. We
now use the following Taylor approximations:(

1

1− ∆e
1−δ

)2

≈ 1 +
2

1− δ
∆e+O((∆e)2) (3.290)

1

1− 2∆e
1−2δ

≈ 1 +
2

1− 2δ
∆e+O((∆e)2) (3.291)
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With these Taylor approximations the expression in equation (3.289) can now
also be approximated up to this order. Hence we find

δ + ∆e (3.292)

=

(
δ + 2∆e

2δ − 3δ2

(1− δ)(1− 2δ)

)(
1 +

∆e
2 (12δ − 7) + u

2 (1− 4δ − 4∆e)

(1− δ)(1− 2δ)

)
+O((∆e)2)

(3.293)

= δ

(
1 +

1− 4δ

2(1− δ)(1− 2δ)
u+ ∆e

(
12δ − 7

2(1− δ)(1− 2δ)
+

8− 12δ

2(1− δ)(1− 2δ)

+
(4− 6δ)(1− 4δ)− 4

2(1− δ)2(1− 2δ)2
u

))
+O((∆e)2) (3.294)

And hence

∆e (3.295)

=
δ

2(1− δ)(1− 2δ)

(
(1− 4δ)u+ ∆e

(
1 + 2δ

12δ − 11

(1− δ)(1− 2δ)
u

))
+O((∆e)2)

(3.296)

By rearranging these terms we end up with:

∆e = (3.297)(
2(1− δ)2(1− 2δ)2 − δ(1− δ)(1− 2δ) + 2δ(11− 12δ)

)
= δ(1− 4δ)u+O((∆e)2)

(3.298)

Hence we obtain for ∆e:

∆e =
δ(1− 4δ)

(2(1− δ)2(1− 2δ)2 − δ(1− δ)(1− 2δ) + 2δ(11− 12δ))u
u+O((∆e)2)

(3.299)

Since ∆e = e − δ, we now acquire the desired force strain relation after rear-
ranging the terms. We find

P = Pc +
Pc(1− 4δ)

2(1− δ)2(1− 2δ)2 − δ(1− δ)(1− 2δ) + 2δ(11− 12δ)u
u+O((∆e)2)

(3.300)

Once again, we are most interested in the behaviour just after buckling. By
definition we now that u ≈ 0 when the beam has just buckled, since u = 0
at the moment the beam start to buckle. Hence we make a Taylor expansion
around u and find:

P = Pc +
Pc(1− 4δ)

(2(1− δ)2(1− 2δ)2 − δ(1− δ)(1− 2δ))
u (3.301)

When the beams are inextensible we are in the limit when δ → 0. Then this
equation reduces to the inextensible expression in equation (3.144) as should
be. But we could also inspect the case when a beam is extensible, but not
that much. That means that δ ≈ 0. Hence we must take only those terms into
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account that are constant or linear in δ. Moreover, we can neglect terms that
are bilinear in δ and u, since these are both small and their product is hence
very small. Thus we end up with an approximate relation when a beam is a
little extensible:

P = Pc +
Pc

2− 13δ
u (3.302)

This relation is not in correspondence with the relation in Bazant and Cendolin
[2009]. The minus sign in this term however can explain why some beams have
a negative after-buckling slope.

∆L
L0

P

Pe

Figure 3.31 – The force strain relationship before and after buckling for
inextensible beam models (red and blue), for the extensible beam model with
small deflections (orange) and for beams that are a little extensible (purple).
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Chapter 4

Simulations on Elastic
Sheets

In the last chapter, chapter 3, we derived various mathematical models for elastic
beams that are axially loaded with a force P . With these models at hand we also
studied some possible configurations of the beam such as a pinned-pinned beam
(see sections 3.1.4, 3.2.4, 3.3.3 and 3.4.3) and a beam on a node (see sections
3.1.6 and 3.3.4). In these sections we studied these configurations analytically.
However, in this chapter we will stop doing everything analytically and we will
study the more complex configurations of the beam with numerical simulations.

We start this chapter with some general remarks about the model used for the
simulations. We explain what kind of beam model is used and why. Moreover
we investigate the assumptions that we make and discuss whether or not these
assumptions are realistic.

Our goal in this chapter is to find a good model for the elastic patterned sheets.
We want to understand the behaviour of these elastic network with this model
(see chapter 1). We will come to these simulations in section 4.3. Before we go to
these elastic sheets however, we will first investigate a more simple configuration.
In section 4.2 we will study a beam on a node by means of simulation.

4.1 Assumption in the simulations

In chapter 1 we saw that the elastic patterned sheets have interesting properties.
For instance the force-strain curves of these networks have a peak which is yet
not understood (see figure 4.1). We also introduced a way to model these elastic
sheets with ‘nodes’ connecting the ‘beams’ between them (see chapter 1 and
figure 4.2). In this chapter we will use numerical simulation of this model to
study the behaviour of the elastic networks. We will mainly focus on the force
strain relations, but we will also present some other relations.

Since the elastic networks are manufactured by molding, the nodes and beams
are attached at a particular, fixed manner. This attachment of the beams to
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Figure 4.1 – Experimantally measured force strain curve for a monoholar elastic
patterned sheet. The upper curve is the force strain curve when the network is
compressed, while the lower one is the curve when the beam is stretched back to
its original state (after the compressing). The most interesting part of this curve
is the peak at about 5 mm compression. This peak suggests that we need less
force to compress the beam further, which is an unusual property of the elastic
networks.

the nodes cannot change during an experiment. Hence we must make sure that
this cannot change in the simulations as well. We thus assume that the beams
are always attached to the nodes such that it is attached perpendicular to the
circles surface (see figure 4.3).

In the numerical model we assume that the beams (blue in figure 4.2) are elastic
rods which can be described by a beam model of chapter 3. However, the nodes
cannot be modified in the simulation. That is, they can rotate and move, but
they maintain their shape. Hence the nodes don’t compress or extend when we
load them. Since the nodes are generally thicker than the beams this seems a
fair assumption. But when we carefully inspect an experiment with the elastic
sheets, we see that the nodes are in fact deforming a little during compression.

The beam model that is used for the ‘beams’ in the networks is an extensible
beam model for small deflections (see section 3.3). As we stated before in section
3.1 this is not a very realistic model, since the deflections of the beams aren’t
really small. This model however is easier to implement in a numeric simulation
than the models that allow large deflections of the beam. Moreover it can also
give us a qualitative idea of what is going on in the elastic networks.

The beam model is however not the general one that we derived in section 3.3,
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(a) (b)

(c) (d)

Figure 4.2 – Illustration of the model of a elastic patterned sheet (pink) as
combination of nodes (green) and beams (blue). In figure (a) a piece of the
elastic patterned sheet is shown. The white circles are the holes in the network.
In figure (b) the nodes (green) are drawn. These are placed at the places that
connect the beams. Then in figure (c) also the beams (blue) are shown. These
are placed on the elastic sheet pink such that they connect the nodes. In figure
(d) the resulting model is shown. In this last picture the elastic sheet in pink is
erased. The original holes in the elastic patterned sheets are drawn as a reminder
of the original elastic patterned sheet. In the simulations these circles are not
shown anymore.

but it has some small modifications. In particular all the beams must satisfy
the normal differential equation for beams,

EIwxxxx + Pwxx = 0 (4.1)

Since the simulations we do are strain controlled (in contrary to force/load con-
trolled), the force P is unknown and must be calculated trough the configuration
of the beam. That is, we calculate P via (see equation (3.153))

P ≈ N = −EA∆`

L0
(4.2)
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(a) Sketch of a right attachment (b) sketch of a wrong attachment

Figure 4.3 – Sketch of possible attachments of the beams (blue) to the nodes
(green). In figure (a) a right attachment is shown, while in figure (b) a wrong
attachment is sketched. In the simulation all attachments are required to be
perpendicular to the surface of the circles as in figure (a)

in which ∆` = `− L0 is the change of (arc) length of the beam.

This expression is an approximation, since P ≈ N only when the deflections of
the beam are small. However for a qualitative study of the simulation this is a
good first approximation.

4.2 Simulations on a single beam

In this section we inspect a beam which is attached to two nodes (see figure 4.4).
We already studied this configuration analytically in sections 3.1.6 and 3.3.4.
This time we abandon the analytic approach and use simulations to study the
behaviour of this beam set-up. Note that in the simulations the set up is turned
90 degrees. Thus the beam is now vertically aligned between the nodes, while it
was horizontally aligned in the previous sections. Since this is merely a change of
coordinates, this does not matter for the physics or mathematics of the problem.

In this sections we first discuss the numeric model for the simulations in depth
in section 4.2.1. Then we inspect the result of various simulations with this
model for the single beam in section 4.2.2.

4.2.1 Explanation of numeric simulation

The numerical simulation of the single beam between nodes (and also the elastic
network) is done with the numerical computing environment MATLAB. The
simulations in this section are done with either ‘MATLAB R2012b’ or ’MATLAB
R2009b’. In this section we briefly discuss the schematics of the numerical
scheme behind the simulations.

In short, the code first creates an initial configuration of beams and nodes.
In this case this configuration is a beam which is attached to two nodes as
in figure 4.4. After the initializing the program pushes the upper node down
a certain, specified discrete distance. After that the simulation calculates the
configuration of the beam and the remaining node a certain times, until the
set-up is again in a equilibrium configuration (see figure 4.5 for a more in-depth
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Figure 4.4 – Sketch of a buckled beam between two nodes in the simulation.
Here D is the length between the centra of the nodes, L is the distance between
the left and right attachment positions of the beam, ` is the real lenght of the
beam, r is the radius of the node, θ is the incoming (and outgoing) angle of the
beam and w(x) is the deflection of the beam at a certain point x on the beam.
Note that this is the same configuration as in figure 3.15 but rotated 90 degrees.

explanation of this updating scheme). We then repeat this process a few times,
while monitoring systems configuration at each time step. Optionally, after the
compression the beam can be stretched again to its original configuration.

To avoid that the beam stays in its unstable trivial equilibirium with a straight
beam, we have build in a check on the load P . If this load becomes more than
the critical Euler load Pe for the current beam, then the beam must buckle. To
ensure this, we apply a (small) disturbance to the system. We turn the nodes
over a large angle and let the system find its way to the equilibrium configuration
from this new disturbed state.
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(a)

vdown

?

(b) (c) (d) (e)

Figure 4.5 – A schematic illustration of the updating scheme used in the
simulations with the nodes in green, the beam in blue, the attachment points
of the beam as blue circles and the forces and torques in red. The first figure (a)
describes the original position of the system at a certain time t. In this position
the forces and the torques on the node are in balance. To obtain the new config-
uration at a following time t+dt (in which dt denotes the time step we choose for
our simulations), first the upper node is pushed down a certain value vdown. This
is illustrated in figure (b). At this moment in the simulation we don’t know what
the shape of the beam is. The following step is to actually find this shape. This
is done with the differential equation for the beam, EIwxxxx + Pwxx = 0 (with
the incoming angles as the boundary conditions). The force P in this equation
is calculated from the previous shape of the beam (i.e. in figure (a)). The shape
of the beam then determines what forces and torques are applied to the nodes
as is illustrated in figure (c). We then use these forces and torques to calculate
how much the nodes rotate. Hence the attachment points on the nodes change
and the beam is attached at these (rotated) points (d). This is however not a
realistic configuration, since the resulting torques on the nodes aren’t zero (i.e.
the system is not in equilibrium). Hence we need to redo the steps (b) through
(d) a certain times to find the actual state of the system at this time t+ dt. This
new system is shown in (e). This becomes the new starting point for a following
time step.
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Finding the equilibrium

The most difficult part in the simulation is to find the real equilibrium configu-
ration of the system. We want to avoid situations where the beam is attached
to the beam in a non-realistic way (for an example see figure 4.5d). As we
explained in figure 4.5 we need to redo the calculations on the beam and the
nodes a certain times to find this real configuration.

To illustrate the need for this, we now look at a simulation that ignores this
refining. That is, we do an experiment in which steps (b) trough (d) from figure
4.5 are done only once at each time step. In first half of the simulation we
compress the system (i.e. push the upper node down) and after that we stretch
the system until the upper node is at its initial position again. A few states of
the system are shown in figure 4.6. The resulting force-strain curve is plotted
in figure 4.7.

Those figures exhibition some strange behaviour of this simulation. Foremost
we clearly see that the configuration at the end of the simulation is not the same
as the initial state of the system (compare figures 4.6a and 4.6f). This is stressed
by the force-strain curve which does not end in the origin, but a lot below it.
Moreover the after-buckling curve doesn’t look different from the pre-buckling
curve if we ignore the translation. However this should be different according
to the theory that we discussed in chapter 3.

This strange behaviour occurs in this simulation because we neglect to let the
system find its (real) equilibrium state. Hence at each time step the torque on
the nodes was not in balance. This is shown in figure 4.8. In the most ideal case
the resulting torques are zero. They are clearly non-zero in this simulation.

In the simulations in the rest of this chapter thus need to make sure that the
resulting torques are zero (or as close to it as possible). There are two ways to
achieve this. We could either iterate the updating scheme a fixed times at each
time step or we could iterate this updating scheme until the resulting torques
are below a certain threshold. Both methods have their own benefits and flaws
as we shall see in the next section.
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(a) timestep 50 (b) timestep 2500

(c) timestep 5000 (d) timestep 7500

(e) timestep 10000 (f) timesetep 15000

Figure 4.6 – MATLAB figures of the configuration of the system at various
increasing timesteps. The initial configuration is shown in (a), the configuration
at the end of the simulation in (f). In this simulation we have used E = 471000,
h = 0.167, vdown = 1.5, mass = 1/32 (of the nodes), rotational inertia = 1,
transviscosity = 150, rotational viscosity = 1 and the radius of the nodes = .15.
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Figure 4.7 – Force versus strain plot made for a single beam when we update the
beam and nodes only ones, made with MATLAB. The steep jump in this curve
is the moment when the beam buckles (since we then rotate the nodes). The
upper line is the curve when the system is compressed, the lower curve is when
the beam is stretched. In this simulation we have used E = 471000, h = 0.167,
vdown = 1.5, mass = 1/32 (of the nodes), rotational inertia = 1, transviscosity
= 150, rotational viscosity = 1 and the radius of the nodes = .15.

Figure 4.8 – The torques that are working on the nodes at each time step, made
with MATLAB. In this figure we have plotted the resulting torques divided by
the sum of the absolute values of the various contribution to the torque on the
beam (see figure 3.16. From the moment the beam is buckled (around time step
50), the torques on the node are significantly different from zero. Hence from this
figure we can conclude that the system is not in its equilibrium state.
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4.2.2 Numeric study of a single beam

Since we saw in the previous section that the first, naive try with the simula-
tion results in strange behaviour in the force strain curve, we need to be more
careful with the force balance during the simulation. In this section we will
first investigate two possible solution for this problem. First we try to run the
calculations for the beams and the nodes a fixed amount of times at each time
step. Then we try to incorporate a simple check that ensures that the resulting
torques on the nodes are small. After we have tried these solution, we will use
the simulation to study the behaviour of the beam between two circular, freely
rotary nodes for different radii of the nodes.

More calculations per time step

In section 4.2.1 we found that a simple simulation with only one calculation of
the configurations of the beams and the nodes won’t yield us the equilibrium
states of the system. We found that the underlying cause was the violation of
the torque balance during the simulation (see figure 4.8).

The most simple approach to solve this problem is the following. Instead of
calculation the configuration of the beams and the positions of the nodes just
once at each time step, we could repeat these calculation a fixed amount of
times. This gives the system time to ‘find’ its equilibrium position. To figure
out how many calculation iterations are needed to get an acceptable torque
balance we use the numerical simulation with various possible calculation steps
at each time step. The acquired force strain curves are shown in figure 4.9. In
figure 4.10 we also present the value of the resulting torques on the upper node.

As we see in figures 4.9 and 4.10 the more calculation iterations the simulation
has, the better torque balances are acquired. However even at 1024 calculation
iteration the resulting torques are still not neglectable small. It isn’t realis-
tic to use more calculations at each time step, since the simulation with 1024
calculations already needed about seven and a half hours to complete the simu-
lation. We hence conclude that this method of optimization isn’t the right one
to choose.
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Figure 4.9 – Force strain curve of simulations of a single beam between two
circular, freely rotary nodes for different calculation iterations at each time step.
In this figure we see that the system is not in equilibrium for low calculation
iteration values. Even when we do 1024 calculations for the beams and the nodes
we still have a system that is not in equilibrium. In this simulation we have used
E = 471000, h = 0.167, vdown = 1.5, mass = 1/32 (of the nodes), rotational
inertia = 1, transviscosity = 150, rotational viscosity = 1 and the radius of the
nodes = .15.

Figure 4.10 – The torques of the upper nodes during the simulation for simula-
tion with different calculation iteration values for a simulation of a beam between
two circular, freely rotary nodes. In this figure we clearly see that more calcula-
tions means a better simulation. However even at 1024 calculation iteration at
each time step the torques on the nodes are still not in balance (see figure 4.11).
In this simulation we have used E = 471000, h = 0.167, vdown = 1.5, mass = 1/32
(of the nodes), rotational inertia = 1, transviscosity = 150, rotational viscosity
= 1 and the radius of the nodes = .15.
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Figure 4.11 – The torques of the upper node during the simulation with 1024
calculations iterations at each time step. In this figure we see clearly that the
torques on the upper node are not in balance. The torque is especially large
around timestep 50, when the beam start to buckle.

Constraint on the torque balance

There is another method that we can use to ensure that the torques on the
nodes are in balance. Instead of calculating the configuration of the beam and
the rotation of the nodes a fixed amount of times at each time step, we now check
after each calculation whether or not the torques on the node are in balance.

To do this, we check the value of
∑
M∑
|M | for each node. In this the sums are

over all the torques that act on the node (see figure 3.16). If the system is in

equilibrium, the torques on all nodes must be in balance. Hence the value
∑
M∑
|M |

must be zero.

So to ensure that the system is in its equilibrium position, we can check the

value
∑
M∑
|M | . If the absolute value of this fraction is above a certain threshold

(which we specify at the start of the simulation), we say that the system is not
in equilibrium. When this is the case, we ask the simulation to recalculate the
beams configuration and the rotation of the beams. This process of checking
and recalculating is repeated until the torques are small enough. We have done
this kind of simulation for different threshold values. The resulting force strain
curves are shown in figure 4.12.

We see that the simulation isn’t good, when the threshold is too high. So we
need to choose a threshold that is low enough to find the real equilibrium states
for the system. However, if we choose a threshold that is too low, the simulation
takes too long. For instance the simulation with a threshold of 0.1 took about 40
minutes, while the simulation with a threshold value of 0.01 took approximately
80 minutes. Since the difference in the force strain curve isn’t that great, we
will keep using this threshold value in the simulations of the single beam.
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Figure 4.12 – Simulations of a single beam between two circular, freely rotary
nodes for different calculation iterations at each time step. In this figure we
clearly see that the checking for the torques is a good way to find the equilibrium
states of the system. In this simulation we have used E = 471000, h = 0.167,
vdown = 1.5, mass = 1/32 (of the nodes), rotational inertia = 1, transviscosity
= 150, rotational viscosity = 1 and the radius of the nodes = .15.

Further, we conclude that it is far better to use this check of the torques on the
nodes than it is to use a fixed amount of calculation iteration as we did before.
This not only yields us more realistic simulations, but it is also a much faster
way to simulate this system. There is however a draw-back of this method. It
is possible that we need to do too much refining calculation before the torques
are below the threshold. This can result in simulation that take too long and it
is even possible that the threshold is never met, when the system is not damped
well enough.

Different radii for the nodes

In the previous paragraphs we have concluded that the simulation works best
when we check the resulting torques on each node at each time step. We will
continue to use this procedure in the next simulations. In this paragraph we use
the numerical simulation to investigate the behaviour of an elastic beam which
is attached to two circular, freely rotary nodes of a certain radius r. We will
vary this radius and let the beams become very small. In the limit when r → 0
we expect to regain the normal pinned-pinned beam configuration and expect
to see its behaviour (see section 3.1.6).

The resulting force strain curves of the simulation are shown in figure 4.13. We
however don’t see the standard bi-linear behaviour of a pinned-pinned beam
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when the radius r is very small, since the force strain curve has a peak - even
when the nodes have a very small radius of 0.001.

The curve for the relaxation does show us the desired bi-linear relation. This
suggests that the peak is in fact not a real peak, but is a consequence of the
numerical scheme we use. In the simulation the beam can be kept too long in
the pre-buckled phase. When the beam is ‘released’ it immediately jumps to the
right buckled state at the specific strain value. This would explain the jumps
in all the graphs.

This is also endorsed by the relation between the strain and the amplitude of
the beam (see figure 4.14). In this figure we see a jump at a certain strain
value. However, when we do real experiments, these kind of jumps are not seen.
Instead the amplitude then slowly increases when the beam is buckled. So we
would inspect this amplitude strain relation to look more like the relaxation
curve for it is looking.

Hence we need to conclude that the code used for the simulation has some
flaws. It looks like the main problem lies in determine whenever a beam starts
to buckle. The check that we have used for these simulation doesn’t suffice.

In the current simulation we check whether or not the beam buckles with only
the beams length. Maybe we need to treat the whole configuration (including

Figure 4.13 – Force strain curve for both the compression and the relaxation of
a single beam between two circular, freely rotary beams with various radii. We
see that the peaks in the graph don’t disappear when the radius of the nodes
becomes very small. In this simulation we have used E = 471000, h = 0.167,
vdown = 1.5, mass = 1/32 (of the nodes), rotational inertia = 1, transviscosity
= 150, rotational viscosity = 1. The threshold value for the check on the torques
was 0.01 for the simulations.
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Figure 4.14 – Amplitude of the beams configuration versus the strain for a
single beam between two circular, freely rotary beams with various radii. These
are for both compression (the lines with the jumps) and relaxation of the system.
We have no real explanation for the strange behaviour of the simulation with
radius 0.001. In this simulation we have used E = 471000, h = 0.167, vdown =
1.5, mass = 1/32 (of the nodes), rotational inertia = 1, transviscosity = 150,
rotational viscosity = 1. The threshold value for the check on the torques was
0.01 for the simulations.

the nodes) as one great system with pinned-pinned boundaries that buckles.
Hence we would have a greater length, which would result in a lower critical
load in the simulation. This could perhaps yield better simulations, without the
peaks.

To check wether these peaks show the real relation, we have done another sim-
ulation. This time we won’t perturbate the system only when the buckling load
is exceeded, but every 10 time steps. As before, the system will be allowed to
find its equilibrium position at each time step. Since we pertubate the system
regularly, the simulation should not find unstable equilibrium positions, but will
only find the real positions. Hence the peak should disappear in this simulation.

The resulting force strain curve and amplitude strain curves of this simulation
are shown in figure 4.18. It is clear that most of the peak has disappeared in
this new simulation. There is however still a part visible of the peak. This could
mean that a straight beam is the stable position for this system, but it could be
a problem of the simulation as well. The perturbations of the system are quite
large (7 degree angles) and hence it is not clear if the right configurations are
found. To determine this, we need other simulations with smaller perturbations.

There is however a benefit of these curves. From these simulation, we see that
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there is a peak in the force strain curve (see figure 4.13) when the beam stays
(too) long in its non-buckled state. Thinking back of the force strain curve for
the monoholar elastic patterned sheets (figure 4.1), this could be what is causing
the peaks. The vertical beams may want to buckle, but they are fixed in their
straight configuration by the horizontal beams which apply a torque on them.

Figure 4.15 – Relation between the angle of the upper node and the strain of the
whole system for a single beam between two circular, freely rotary nodes with
various radii. These are for both compression (the lines with the jumps) and
relaxation of the system. We have no real explanation for the strange behaviour
of the simulation with radius 0.001. In this simulation we have used E = 471000,
h = 0.167, vdown = 1.5, mass = 1/32 (of the nodes), rotational inertia = 1,
transviscosity = 150, rotational viscosity = 1. The threshold value for the check
on the torques was 0.01 for the simulations.
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Figure 4.16 – The relation between the relative strain of the whole system
(D0−D

D0
) and the relative strain of the beam (L0−L

L0
) of a system with a beam

that is kept between two circular, freely rotary nodes with various radii. These
curves are both for compression (the lines with the jump) and relaxation. We see
that the beams strain first is linear with the systems strain. At a certain point,
when the beam buckles, the attachment points move along the boundary of the
circular nodes. As a result the beam stretches a bit. It looks like this process is
again linear in the systems strain. In this simulation we have used E = 471000,
h = 0.167, vdown = 1.5, mass = 1/32 (of the nodes), rotational inertia = 1,
transviscosity = 150, rotational viscosity = 1. The threshold value for the check
on the torques was 0.01 for the simulations.

Figure 4.17 – This figure shows the force strain curves for a single beam between
two circular, freely rotary nodes with various radii. In this figure the strain is
actually the strain of the beam (and not of the whole system as in figure 4.13).
This curves are shown for both compression (the upper curves with a jump)
and relaxation of the system. We see clearly the usual, bi-linear behaviour of
a pinned-pinned beam in the relaxation curves. In the compression curves we
see that the beams stays too long in its non-buckled state. Then at a certain
point the beam buckles. Since the attachment angles are then moving along
the boundary of the nodes, the strain L0−L

L0
is then reduces (see figure 4.16).

Hence the strain decreases at these moments. In this simulation we have used
E = 471000, h = 0.167, vdown = 1.5, mass = 1/32 (of the nodes), rotational
inertia = 1, transviscosity = 150, rotational viscosity = 1. The threshold value
for the check on the torques was 0.01 for the simulations.
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Figure 4.18 – Relation between the force and strain (a) and the distance and
strain (b) for a single beam between two circular, freely rotary nodes with radius
0.2. The blue line is the simulation with only one perturbation, when the euler
load is exceeded, while the red curve show the simulation when we perturbate
the system each 10 time steps (over an angle of 7 degrees). It is clear that the
particular peak in the force strain curve almost completely disappears in the new
simulation. Since the simulation suggests that the system constantly changed
between a straight and a bended beam, this pertubation over 7 degrees may be
too large for the system to find the real stable equilibrium state.
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4.3 Simulations on elastic patterned sheets

In this section we will inspect a model for the elastic patterned sheets (see
chapter 1). We will use the model with the elastic beams between movable, freely
rotary nodes, as explained in figure 4.2. First we explain some of the details
of using this model in a numerical simulation and we discuss the differences
with the single beam simulation in section 4.2. Then we will use the numerical
simulation to ingestive the monoholar and biholar elastic patterned sheets in
section 4.3.2.

4.3.1 Explanation of numeric simulation

The model for the elastic patterned sheets isn’t much different from the model
for the single beam between two circular, freely rotary nodes. Therefore the
global numerical scheme for both models is the same. First the initial configu-
ration (in this case the elastic patterned sheet) is constructed in the simulation.
Then the upper nodes are again pushed down a certain, specific discrete dis-
tance. After that the simulation calculates the configurations of all the beams
and then uses that information to find the positions and orientations of all the
nodes in the system. As before, this process is repeated a few times to find the
equilibrium configuration of the system. The simulation then continues to push
the upper nodes down while the system is monitored at each of these time steps.
Optionally, after the compression the elastic sheet can be stretched again to its
initial configuration.

The most notable difference however between the model for the elastic patterned
sheets and model for the single beam is that there are many more nodes and
beams in this case. This not only means that the simulation needs more cal-
culation time, but the nodes this time can also spatially move. So there is not
only a torque balancing problem in the elastic patterned sheet, but also a force
balance problem. Therefore we need to check for both the resulting torques and
the resulting forces on all nodes.

4.3.2 Simulations on the elastic patterned sheets

In experiments we see a big difference between monoholar networks and biholar
networks. For instance, monoholar networks have peaks in their force strain
curves, while the biholar networks don’t exhibit such kind of behaviour. They
have a more flat curve as shown in figure 4.19.

A numerical simulation of these kind of networks should be able to recreate this
kind of behaviour. To test this we run a simulation for a monoholar network and
various biholar networks. As stated before, the biholar networks are made in
the same way as the monoholar networks, but the beam between the nodes have
an initial curvature. This initial curvature is of the form A sin(πx) (in which x
denotes the relative place on the beam). A network is hence more biholar, when
the amplitude A of this sine becomes larger. This corresponds with a greater
difference between the radii of the holes in the real networks. When A = 0,
there is no initial curvature and we have a normal monoholar network.
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(a) (b)

Figure 4.19 – Experimentally obtained force strain curves for a monoholar (a)
and a biholar (b) elastic patterned sheet. These curves show both the initial
compression as well as the relaxation of the networks.

The resulting force strain curves of the simulations are shown in figure 4.20. We
clearly see the desired peak in this curve for the monoholar networks. Moreover,
the biholar networks don’t exhibit this peak, which is also in correspondence
with the experimental observations. Hence the used model with beams and
nodes looks like a good model to use for simulations with the elastic patterned
sheets.

Furthermore we learn from this simulation that the amplitude A of the initial
curvature isn’t that important. The curves generally have the same structure
and exhibit the same behaviour. Moreover all the curves show roughly the same
response when the strain is either small or large. Hence this supports the idea
that the monoholar networks feature an instability which is resolved when the
networks become biholar.
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Figure 4.20 – Force strain curves for elastic patterned sheets with different initial
curvature A sin(πx).The upper line (blue) shows the force strain curve when there
is no initial curvature (i.e. A = 0). Hence this is the simulation for a monoholar
sheet. The other curves shown curves for initial amplitudes A (increasing in
steps of 0.05), which corresponds with biholar networks. In the monoholar case,
we clearly see the peak in the curve, which we also see in experiments (see figure
4.19). As soon as the networks are biholar this peak however disappears, which
is also in correspondance with the experiments. The behaviour at the start and
at the end of the simulation is however roughly the same between the various
simulations. In this simulations we have used a square lattice with N2 = 25
nodes with radius 0.29, mass 0.0313, rotational inertia 1, rotational viscosity 1
and trans viscosity 150. The Young’s modulus is 471000, the width of the beams
was 0.167 and the length 0.42. The threshold for the force and torque balance
was 0.5.
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(a) Monoholar - timestep 100 (b) Biholar - timestep 100

(c) Monoholar - timestep 10000 (d) Biholar - timestep 10000

(e) Monoholar - timestep 20000 (f) Biholar - timestep 20000

Figure 4.21 – MATLAB figures of the configuration of both a monoholar
(a),(c),(e) and a biholar (b), (d),(f) elastic patterned sheet simulation for var-
ious timesteps.

105



Chapter 5

Conclusion + Outlook

In this bachelor thesis, we found four different models for slender elastic rods
that are axially loaded (see figure 5.1). These models differ in their assumptions
on the elastic beams. For instance, some of them model the elastic beams as
inextensible (i.e. their arc length is always the same). A summary of the as-
sumptions of the four beam models found in this thesis can be found in table 5.1

`

w

L

L0

P P

Figure 5.1 – General set-up for an elastic beam that is axially loaded with a
load P . The load P is applied in the x-direction, while the deflection, w(x) is in
the y-direction. The blue line represent the beam (bended in this case). L0 is the
initial length of the beam, L is the current span in the x-direction of the beam
and ` is the arc length of the beam.

We thus found four beam models that were increasingly realistic, but also in-
creasingly difficult to use. The four models are related to each other. The

Table 5.1 – In this table, the assumptions of the various beam models are shown.
‘no’ means the model does not take said property of the beam into account, while
a ‘yes’ means it does. The last column states for which kind of deflections the
model is good.

beam model stretching bending twisting deflections
Section 3.1 no yes no only small
Section 3.2 no yes no all
Section 3.3 yes yes no only small
Section 3.4 yes yes no all
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Table 5.2 – In this table the four beam models of this thesis are shown. The
extensible model reduces to the inextensible model when EA→∞.

deflections extensible inextensible
small EIwx̂x̂x̂x̂ + Pwx̂x̂ = 0 EIwxxxx + Pwxx = 0

∆L = P
EAL0 + 1

2

∫ L0

0
wx̂(r)2 dr ∆L = 1

2

∫ L
0
wx(r)2 dr

large EIθx̂x̂ + P sin(θ)− P 2

EA sin(θ) cos(θ) EIθss + P sin(θ) = 0

∆L =
∫ L0

0

(
1− cos(θ) + P

EA cos2(θ)
)
dx̂ ∆L =

∫ L0

0
(1− cos(θ)) ds

models that take the stretching of the beam into account can be reduced to the
the models that are neglecting it, when EA→∞. Hence the lower the Young’s
modulus E, the more important the stretching of the beam is. Moreover, we
found that the stretching is also more important in thicker beams (when the
other attributes of the beam stay constant).

In this thesis we used all of these four beam models to study the force strain
curve for a pinned-pinned beam. A summary of the results is shown in figure 5.2.
We clearly see the difference between the critical load in the various models and
the post-buckling behaviour. The extensible model for large deflections is the
only model that can explain the negative slope that is observed in experiments
with elastic beams.

∆L
L0

P

Pe

Figure 5.2 – Summary of the force strain relationship before and after buckling
for a pinned-pinned beam. The inextensible models are shown in red and blue
(red is for only small deflections). The extensible beam model for only small
deflections is shown in orange, while the extensible model that allows for large
deflections is purple. The purple line is the only line that has a negative post-
buckling slope, since this can only occur in that model.
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The beam models that we acquired all neglect the twisting of the beam. Follow-
up research should point out when this twisting of the beam is important and
when it can be neglected as we did in this thesis. Moreover we found a qualitative
distinction between the inextensible and the extensible models, but it might be
necessary to quantify this distinction, so we know when the simple (inextensible)
models are not precise enough and when they suffice.

Furthermore in this thesis we focused on single beams that were initially straight.
We only briefly mentioned the possibility of initial curvature. Since we also want
to model the biholar elastic patterned sheet, this initial curvature is important.
Hence it is necessary to find ways to take this initial curvature into account in
the models presented in this thesis.

Elastic patterned sheets

In this thesis we also studied the behaviour of the elastic patterned sheets, both
monoholar and biholar. The simulations in chapter 4 resembled the experimen-
tally obtained force strain curves qualitatively. We also observed that the peak
in this curve disappears when the elastic sheets becomes biholar. From this we
concluded that the idea of modeling the elastic patterned sheets with the beams
and nodes is a good approach.

Moreover, the study of an elastic beam between two circular, freely rotary nodes
showed us a peak in the force strain curve when the elastic beam was kept too
long in its (unstable) straight position. This can be precisely what’s happening
in the elastic patterned sheets. The vertical beams are kept in their unstable,
straight position by the horizontal ones. While the vertical beams may want to
buckle, the horizontal beams prevent this by applying a torque on them.

Follow-up research should focus on this idea. So not only should this research
continue with the analytical study of the beam between two circular, freely
rotary nodes, it should also incorporate more configurations with more beams
and nodes (e.g. the Roorda frame). If these configurations also show this peak,
this might suggest that this is the cause of the peak in the monoholar networks.

Furthermore the model that we used in this thesis lacks much detail. For in-
stance the nodes are modeled as undeformable, while they are deformable in
reality. Moreover, experiments show a positive Poisson’s ratio before the elastic
patterned sheets bend, but the simulations don’t show this. New research could
find a way to take these effects into account.
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Chapter 7

List of Notations

A The cross-sectional area of the beam
∆L Strain, ∆L = L0 − L
∆` Change of length of the beam ∆` = `− L0

E Young’s modulus
Eel The elastic energy of an elastic beam
ε The second rank strain tensor
εij Strain in the j-direction that is working on the i-face

εij,kl Second derivative of εij with respect to kl, i.e. εij,kl ≡ ∂2εij
∂k∂l

ε The stretching inside an elastic beam
Iij The second (geometric) moment of inertia in the ij-direction
J The torsion constant
k Introduced constant with k ≡ P

EI
κy, κz The bending inside an elastic beam (i.e. curvature of the beam)
κx The twisting inside an elastic beam
L0 The initial length of the elastic beam inspected
L The span in the x-direction of the elastic beam’s current position
` The arc length of the elastic beam in its current configuration
N The normal force
P The force (load) that acts on the end points of the elastic beam
Pc The critical load at which a beam starts to buckled

Pe The Euler load for a single beam Pe = EI π2

L2
eff

with Leff the beam’s effective length
Q The shear force
σ The second rank stress tensor
σij Stress in the j-direction that is working on the i-face

σij,kl Second derivative of σij , i.e. σij,kl ≡ ∂2σij
∂k∂l

θ(s) Angle at position s of the beam (w.r.t. the x-axis)
u(x) The deflections of a point on the beam in the horizontal, x-direction
w(x, t) The deflection of the beam at position x and time t
x̂ Coordinate along the initial configuration of the beam
z0(x) The original beam configuration (i.e. the initial bending of the beam)
Ω0 The cross-sectional area of the beam
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