
Simple hypothesis testing
Boesten, F.W.N.

Citation
Boesten, F. W. N. (2013). Simple hypothesis testing.
 
Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3596642
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3596642


F.W.N. Boesten

Simple hypothesis testing

Bachelor thesis, 20 juni 2013

Thesis advisor: Prof. Dr. Peter Grünwald

e-mail: frank.boesten@live.nl

Mathematisch Instituut, Universiteit Leiden
1



2

1. Introduction

Thousands of researchers all over the world make use of statistical methods
to determine whether a hypothesis is correct or false. Shockingly, there are a lot
of problems associated with the most common methods of hypothesis testing [1].
Often, the researchers who use these methods are not even aware of them, and
therefore invalid conclusions are sometimes drawn. There are two solutions to
this problem: First, statisticians could put more effort in explaining problems of
the tests researchers use. Second, statisticians could develop better tests.

This thesis focuses on the second solution, and it focuses specifically on testing
a simple versus a simple hypothesis. The most common method of testing simple
versus simple hypothesis testing is the Neyman-Pearson test. This test is briefly
explained in section 2.

Section 3 and 4 are about two tests that have been proposed as an alternative
to the Neyman-Pearson test: the robust P-value method and the sequential likeli-
hood ratio test. These tests are not commonly used in practice, because there are
a number of problems associated with them, which are described at the end of
each section. To examine whether these problems can be fixed somehow, the main
question of this thesis is to examine the differences between these two tests. To
examine this difference, the second test is generalized to the generalized sequential
likelihood ratio test. This general test is described in chapter 5. The robust P-value
test and the generalized sequential likelihood ratio test are very alike, but there
still is an interesting difference, which is also described in chapter 5. The general
test may be a practical alternative for the Neyman-Pearson test in testing simple
versus simple hypotheses, but further research is needed to find out whether this
is the case.

This thesis focuses primarily on testing simple versus simple hypotheses, but
chapter 6 gives an introduction to testing complex hypotheses sequentially. Test-
ing complex versus simple hypothesis is more common in practice, but also more
difficult, therefore a detailed description of this type of testing lies beyond the
scope of this thesis. Directions for future research are described in section 7.

In the remainder of this introduction, some basic statistical definitions are
briefly explained. People who are familiar with statistics can choose to skip this
part.

1.1. Basic statistical definitions. In simple hypothesis testing, we always com-
pare two hypotheses. In most cases, one of these hypotheses is the null hypothesis,
H0. This is the hypothesis the scientist usually wants to disprove. It is a hypothe-
sis which corresponds to a general or default position. This is usually translated
in a hypothesis which assumes that there is no relationship between two mea-
sured phenomena or that a potential treatment has no effect.

The other hypothesis is the one the scientist usually wants to prove. We call
this hypothesis the alternative hypothesis, H1. This is usually translated in a
hypothesis which assumes that there is a relationship between two measured
phenomena or that a potential treatment does have an effect.

Informal definition 1. (simple hypothesis) A simple hypothesis is a probability dis-
tribution for which all parameters of the distribution are specified.
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For example: the hypothesis that a coin is fair, e.g. the probability of throwing
heads is equal to 1

2 , is a simple hypothesis, because the parameter of the binomial
distribution, p, is specified to be 1

2 . Another example is of a simple hypothesis
is ”Our medicine does not have an effect on the blood pressure.” We probably
know how the blood pressure is distributed in a normal population, therefore we
exactly know how the data should be distributed if the medicine does not have
an effect.

Informal definition 2. (composite hypothesis) A composite hypothesis is a probabil-
ity distribution for which the parameters of the distribution are not completely specified.

For example: the hypothesis that a coin is unfair, e.g. the probability of throw-
ing heads is unequal to 1

2 , is a composite hypothesis. We do not know what the
parameter of the binomial distribution, the chance of success p, is exactly. We
only know it is unequal to 1

2 . Another example is: Our medicine has an effect on
the blood pressure. This hypothesis does not tell us how the data are distributed;
it only tells us they are not distributed as they would be in a normal population.
Therefore, the parameters of this hypotheses are not completely specified.

Definition 1. (probability measure) A probability measure is a measure P on a set Ω
with the property that P(Ω) = 1. We equip P with the Borel σ-algebra, which means that
all sets A ⊂ Ω that we will be interested in are measurable, if P(A) is well defined. This
is usually written as a ’probability triple’: (Ω, σ, P), where σ denotes the Borel σ-algebra
in our case.

Intuitively, everybody knows what a probability is. However, we need to define
it mathematically to be able to prove theorems. Therefore this formal definition
is needed. It ’measures’ the probability of an event. For example: Let P be the
probability measure under assumption of the hypothesis that a coin is fair. Let A
denote the event that the coin turnes up head. Then the probability measure of
the event A, P(A), is equal to 1

2 .

From now on, we shall denote by P the probability measure under assumption
of the simple hypothesis H0, and by Q the probability measure under assumption
of the simple hypothesis H1.

Definition 2. (random variable) A random variable is a measurable function from
Ω→ R.

Because we use the Borel σ-algebra, all random variables we are interested in
will be well-defined.

Definition 3. (sample space) Let χ denote the range of possible outcomes for one event.
The sample space Ω is the set of possible sequences of data we can observe. In our
setting, Ω = χn or Ω = χ∞. If Ω = χn, and each element of Ω is written as ω =
(x1, x2, · · · , xn), then we define the random variables X1, · · · , Xn: X1 = x1, · · ·Xn =
xn. If Ω = χ∞ and each element of Ω is written as (x1, x2, · · · ), then we define the
random variables X1, X2, · · · as X1 = x1, X2 = x2, · · · .

For example: A coin is tossed and 1 denotes the event that the coin turns up
head, 0 denotes the event the coin turns up tails. Then the range for one individ-
ual outcome is χ = {0, 1}. Our sample space can either be finite or infinite. If
it is finite, we have: Ω = χn = {0, 1}n. If it is infinite, we have: Ω = χ∞ = {0, 1}∞.
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From now on, we assume that our Xi (i ∈ S) are independent and identically
distributed. This assumption is often made in statistical hypothesis testing.

Definition 4. (cylindrical point) Let χ∞ be an infinite dimensional sample space and
denote the elements of χ∞ by {xi}i∈N. For any set of n given real numbers a1, · · · , an,
we shall denote by C(a1, · · · an) the subset of χ∞ for which x1 = a1, · · · , xn = an.
C(a1, · · · an) is called a cylindrical point of order n.

Of course, a researcher will never continue to sample on forever. While an
infinite sequence perhaps could be observed, the researcher chooses to stop after
a certain amount of observations. After he stops, the researcher knows the infi-
nite sequence of observations is an element of the cylindric point of these initial
observations.

Definition 5. (hypothesis test) A test, T, is a function from the sample space Ω →
{0, 1}. If 0 is the outcome of this function, H0 is accepted. Else it is rejected, and H1 is
accepted.

Definition 6. (type I error) A type I error occurs when a test rejects H0 while H0 is
true.

Definition 7. (significance level) The probability of a type I error for a certain test is
called the significance level. This is usually denoted by α = P(T = 1).

The significance level for a certain test is chosen by the researcher who con-
ducts the test. Its value depends on how certain you want to be that if the test
rejects the null hypothesis, H0 is indeed correct. Of course, researchers will want
to choose α as low as possible. However, lowering α usually means you have to
make more observations, which costs more money, or it means increasing β (see
below), which is also undesirable. Researchers therefore always have to balance
between the cost and the uncertainty of their test.

The value of α researchers usually use depends on the field of study. In the
field of psychology for example, α = 0.05 is usually used, while in physics, the
value α = 0.001 is more common.

Definition 8. (type II error) A type II error occurs when a test accepts H0 while H0 is
false. This probability is usually denoted by β = Q(T = 0).

Of course, researchers want β to be as low as possible, but again, lowering β
costs money. It is beginning to become more and more common to use β = 0.20
[6].

Definition 9. (power) The power of a test (1− β) is the probability of rejecting H0 when
H0 is false.

The probability of a type I error (α) and the probability of a type II error (β)
for a certain test, T, give information about how ’good’ a test is. If a researchers
can choose between two tests T and T′ with type I and II errors respectively α, β
and α∗, β∗, then if α < α∗ and β < β∗, a researcher will always choose the first test.

Definition 10. (stopping rule) A stopping rule is a function S : ∪i>0 χi → {0, 1},
where 0 denotes that the researcher stops making observations, and 1 denotes that the
researcher makes another observation.
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Examples of stopping rules are: ”Stop when the head of the coin has ended
upwards 4 times.” or ”Stop when 100 observations have been made.”

Informal definition 3. (optional stopping) Changing the stopping rule while making
observations is called optional stopping.

A test is sensitive to optional stopping if the statistical analysis is no longer
valid when the stopping rule is changed. It is insensitive to optional stopping
when it does not matter whether we change our stopping rule while making
observations. Of course, it is better if a test is insensitive to optional stopping,
but usually this means you have to make more observations, which costs more
money.
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2. Neyman-Pearson hypothesis test

This most common method of hypothesis testing is based on the work of
Fisher, Neyman and Pearson and dates from the beginning of the 20th century.
It is widely used in all sorts of research. It is also the method which is taught to
high-school students and millions of social science students worldwide attending
courses in statistics.

An important property of the test is that we have to determine our entire
sampling plan in advance. This means that beforehand, we define a stopping
rule, and we cannot change it while making observations. The test is therefore
sensitive to optional stopping. After observing the data, the likelihood ratio is
calculated, and the test tells you whether you should accept or reject H0.

2.1. test design. We fix our stopping rule and significance level α in advance. We
denote by x the data which is observed after applying the stopping rule. The test
is defined as follows:

(1) If P(x) = 0, reject H0 with type I error probability equal to zero
(2) If Q(x) = 0, accept H0 with type II error probability equal to zero
(3) If P(x)

Q(x) > c, accept H0

(4) If P(x)
Q(x) ≤ c, accept H1

c is called the rejection constant, and is determined such that the type I error of
the test is less than α. The correct value of c depends on the distribution of P.

This test has an interesting property regarding its power, which is called the
Neyman-Pearson lemma:

Theorem 1. Suppose that H0 and H1 are two simple hypotheses and that the test that
rejects H0 whenever the likelihood ratio is less than c and significance level α. Then any
other test for which the significance level is less than or equal to α has power less than or
equal to that of the likelihood ratio test.

Proof of Theorem 1. Denote the elements of Ω by x and the random variable
defined on this sample space by X. A hypothesis test amounts to using a deci-
sion function d(x), where d(x) = 0 if H0 is accepted and d(x) = 1 if H0 is rejected.

Since d(X) is a Bernoulli random variable, E(d(X)) = p (note that the small p
denotes something different than the large P). The significance level of the test is
thus α = P(d(X) = 1) = E0(d(X)), and the power is Q(d(X) = 0) = E1(d(X)).
Here E0 and E1 respectively denote the expectation under assumption of H0 and
H1.

Now let d(x) correspond to the likelihood ratio test: d(x) = 1 if P(x) < cQ(x)
and E0(d(x)) = α. Let d∗(x) be the decision function of another test satisfying
E0(d∗(X)) ≤ E0(d(X)) = α. We will show that E1(d∗(X)) ≤ E1(d(X)), which
proves the theorem.

The following inequality holds:

d∗(x) [cQ(x)− P(x)] ≤ d(x) [cQ(x)− P(x)] ,

because if d(x) = 1, cQ(x)− P(x) > 0 and if d(x) = 0, cQ(x)− P(x) ≤ 0. Now
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integrating (or summing) both sides of the inequality above with respect to x
gives:

cE1(d∗(X))− E0(d∗(X)) ≤ cE1(d(X))− E0(d(X))

and thus

E0(d(X))− E0(d∗(X)) ≤ c [E1(d(X))− E1(d∗(X))] .
And hence we have proved that E1(d∗(X)) ≤ E1(d(X)), as the left-hand side is

nonnegative by assumption.

2.2. Example for normally distributed data. Consider a psychologist who wants
to conduct an experiment to find out whether students from the faculty of math-
ematics are on average highly gifted (the average IQ is 130) or as gifted as the
general population. To do this, he takes a sample of N math students and mea-
sures their IQ. It is well known that the IQ in the general population is normally
distributed with mean 100 and standard deviation 15. The psychologist assumes
the standard deviation of the IQ among math students is also 15. He chooses
α = 0.05 as significance level for his test.

We then have the following mathematical model: (X1, · · · , XN) = X is a ran-
dom sample from a normal distribution having variance 152. We consider the
following simple hypothesis: H0 : µ = 100 = µ0 and H1 : µ = 130 = µ1. To
evaluate the test, we first need to determine our rejection constant c. Therefore,
we calculate the likelihood ratio:

P(X)

Q(X)
=

exp(− 1
2σ2 ∑N

i=1(Xi − µ0)
2)

exp(− 1
2σ2 ∑N

i=1(Xi − µ0)2)
= exp(− 1

2σ2

N

∑
i=1

((Xi − µ0)
2 − (Xi − µ1)

2)

The only part dependent on the data is the sum ∑N
i=1((Xi − µ0)

2 − (Xi − µ1)
2.

Expanding the squares reduces this to:

2NX(µ0 − µ1) + Nµ2
0 − Nµ2

1,
where only 2NX(µ0 − µ1) is dependent on the data. As µ0 − µ1 < 0, the like-

lihood ratio is small if X is large. We want to find a x0 such that P(X > x0) = α
if H0 is true.

Under assumption of H0, we know that X is distributed with mean µ0 and
standard deviation σ√

n . Since

P(X > x0) = P(
X− µ0

σ/
√

n
>

x0 − µ0

σ/
√

n
)

we know that x0−µ0
σ/
√

n = z(α), and hence we need to choose x0 = z(α)σ√
n + µ0.

Filling in this expression in our likelihood ratio gives us the value of c.

Note that for lim n → ∞, the value of x0 approaches µ0 arbitrarily close. This
means that for large sample sizes, the null hypothesis is rejected for very small
deviations from 100 for the mean of the sample size. This is quite remarkable, as
this would mean that if the sample size is large enough, the test would reject H0
if the mean of the IQ of the math students is closer to 100 than 130. For example,
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it is possible that the test rejects H0 while a mean of 101 is measured. This is quite
bizarre.

2.3. Advantages and disadvantages. The example shows that for normally dis-
tributed data, H0 can be rejected while the data actually favors H0. It can easily
be shown that this is also true for data which are not normally distributed. A re-
searcher using this method of hypothesis testing therefore should be very careful
in interpreting the outcome of the test. However, many researchers who use this
method of hypothesis testing, are not aware of this property. Research conducted
by Freeman (1993) [2] shows that of a sample of doctors, dentists and medical
students, only 20% of them are aware of this disadvantage. This property is
therefore a huge disadvantage of this test.

Another large disadvantage, is that in real life, it is often impossible stick to
your predefined stopping rule. First of all, if you conduct an experiment on for
example 100 persons, you do not know whether they are all going to show up on
the experiment, whether mistakes will be made which make the observations in-
valid, etc. Researchers will therefore often ’cheat’: they alter their stopping rule,
while it makes the statistical analysis invalid. Of course, this is not desirable.

Third, it can occur that after examining 100 observations, it turns out the evi-
dence is not conclusive, but does give a strong indication that for example your
medicine does have an effect. In Neyman-Pearson hypothesis testing, you are not
allowed to conduct a number of additional observations to find out whether con-
clusive evidence can be found. If you would like to do more research, you have
to start all over again and cannot use the data that you have already collected,
which is a huge waste of money.

The above disadvantages and a number of other disadvantages of this method
are described in more detail by van der Pas [1].
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3. The robust P-value test

The robust P-value method of simple hypothesis testing has been suggested as
a new form of hypothesis testing, as it has a number of attractive properties with
regard to the problems which arise with the method of Neyman-Pearson hypoth-
esis testing. It dates from the end of the 20th century and is not widely known
or used among researchers. It is almost equivalent to the likelihood ratio test: we
again use the likelihood ratio of the distributions under assumption of H0 and H1.

There are however two major differences with the Neyman-Pearson hypothesis
test. First, we do not have to determine our stopping rule in advance. The test is
thus insensitive to optional stopping. Second, the value of the rejection constant
is independent of the sample size.

3.1. Test Design. When making use of the Robust P-value method, you do not
know in advance what your sample size is. We denote this undetermined value
of the sample size n (which is thus a random variable). Let xm = x1 · · · xn be a
sequence of m outcomes from a sample space Ω. Choose a fixed value α∗ ∈ (0, 1]
(α∗ is the rejection constant). Then after making m observations:

(1) If P(xm) = 0, reject H0 with type I error probability equal to zero
(2) If Q(xm) = 0, accept H0 with type II error probability equal to zero
(3) If P(xm)

Q(xm)
< α∗, reject H0

(4) If P(xm)
Q(xm)

≥ α∗, continue sampling or stop doing observations (and accept
H0)

Van der pas (2010) [1] has proved theorem 2, which relates the type I error to
α∗ for a fixed number of observations. This proof relies on Markov’s inequality:

Corollary 1. (Markov’s inequality) Let Y be a random variable with P(Y ≥ 0) = 1
for which E(Y) exists and let c > 0, then: P(Y ≥ c) ≤ E(Y)

c .

Proof of Corollary 1. This is the proof for the discrete case, but the continuous
case is entirely analogous.

E(Y) = ∑
y

yP(y) = ∑
y<c

yP(y) + ∑
y≥c

yP(y)

Because it holds that P(Y ≥ 0) = 1, all terms in both sums are nonnegative. Thus:

E(Y) ≥ ∑
y≥c

yP(y) ≥ ∑
y≥c

cP(y) = cP(Y ≥ c)

.

Theorem 2. Assume for all xn ∈ χn that Q(xn) 6= 0 and choose α∗ ∈ (0, 1]. Further,
let n be a fixed number. If H0 is rejected by the robust P-value test, the type I error
probability is less than α∗.

Proof of Theorem 2. Let Y = P(Xn)
Q(Xn)

. Note that Y cannot take on negative values,
because both Q and P can only take on values between zero and one. As Q(xn) 6=
0 for all xn ∈ χn, we know the expected value of Y exists. Therefore, we can apply
Markov’s inequality on Y:

P(
P(Xn)

Q(Xn)
≤ α∗) = P(

Q(Xn)

P(Xn)
≥ 1

α∗
) ≤

E(Q(Xn)
P(Xn)

)

1
α∗

= α∗∑
xn

P(xn) · Q(xn)

P(xn)
= α∗∑

xn
Q(xn) = α
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This theorem tells us that if the sample size n is fixed in advance, you know the
type I error is smaller than α∗. However, we do not want do fix our n in advance,
because the robust P-value method is supposed to be insensitive to optional stop-
ping.

It is possible to proof that the type I error is smaller than α∗ if you do not
fix your sample size in advance. One way of proving this, is by making use of
Martingales:

Definition 11. (discrete-time martingale) A discrete-time martingale is a sequence of
random variables X1, X2, · · · that satisfies for any time n:

E(|Xn|) < ∞
E(Xn+1|X1 = x1, · · · , Xn = xn) = xn

The setting of making observations without knowing the sample size in advance,
can be translated to a Martingale as follows: define Mn = Q(X1,··· ,Xn)

P(X1,··· ,Xn)
. {Mn}n∈N is

a Martingale where the n’th element of the Martingale denotes the inverse of the
likelihood ratio after making n observations. (Why we need to take the inverse
of the likelihood becomes clear later.) Hence, if after making n observations we
have that 1

Mn
< α∗, the null hypothesis is rejected.

We now prove that {Mn}n∈N is indeed a Martingale.

For the first condition, we need to assume that for all ω ∈ ∪i∈N χi : P(ω) 6=
0, Q(ω) 6= 0. In practice, it rarely occurs that a researcher formulates a hypothe-
sis which places a zero probability on any event in the sample space. Hence it is
not a problem that we have to make this assumption.

Denote by EP(X) the expected value under assumption of the null hypothesis.
We want to prove that EP(Mn+1|M1 = m1, · · · , Mn = mn) = mn. Because the
variables X1, X2, · · · are identically and independently distributed, the value of
Mn+1 only depends on Mn. Hence we know that EP(Mn+1|M1 = m1, · · · , Mn =
mn) = EP(Mn+1|Mn = mn). Now we have:

EP(Mn+1|Mn = mn) = ∑
xn∈χn

Q(xn)

P(xn)
P(xn)mn = mn ∑

xn∈χn
Q(xn) = mn

Hence we have proven that {Mn}n∈N is a Martingale. Note that we needed
that Mn is the inverse of the likelihood after n observations for this last step.

Now we can make use of theorems that apply to Martingales. One of these is
Doob’s optional sampling theorem:

Theorem 3. (Doob’s optional sampling theorem) Let {Ms}s∈N be a Martingale and
define M∗∞ = sups∈N Ms. Then for each δ ∈ [0, 1]: P( 1

M∗∞
≤ δ) ≤ δ

Proof of Theorem 3. The proof of this theorem lies beyond the scope of this
thesis. For a proof of the theorem, see reference 3.

It is now clear why we needed to introduce Martingales. The theorem tells us
that:
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∀α∗ ∈ [0, 1] : P(
1

supn
Q(Xn)
P(Xn)

≤ α∗) ≤ α∗,

which is equivalent to:

∀α∗ ∈ [0, 1] : P(sup
n

P(Xn)

Q(Xn)
≤ α∗) ≤ α∗.

This last statements proves that the robust P-value test is insensitive to optional
stopping, as it proves that regardless of what stopping rule you use, you know
that the chance on a type I error is smaller than α∗

3.2. Example for normally distributed data. Consider the same example which
is described in section 2.2 (the psychologist who wants to determine whether
math students are highly gifted). The likelihood is determined in exactly the
same manner. The test procedure is therefore as follows. If

exp(− 1
2σ2 (2nX(µ0 − µ1) + nµ2

0 − nµ2
1)) < α,

reject H0. Else, continue sampling or stop doing observations and accept H0.

We again examine what happens when the sample size goes to infinity. We
therefore rewrite the above expression:

exp(− n
2σ2 (2X(µ0 − µ1) + µ2

0 − µ2
1)) < α.

We see that if (2X(µ0 − µ1) + µ2
0 − µ2

1) < 0, the expression goes to zero for
large n (and H0 is accepted), and if it is smaller than zero, the expression goes to
infinity for large n. Hence we are interested in the case where the expression is
zero. Equating the expression to zero gives:

X =
1
2
(µ0 + µ1),

Intuitively this sounds correct. For large sample sizes, the test simply accepts
the hypothesis to which the mean of the data lies the closest.

3.3. Advantages and disadvantages. As the rejection constant is independent of
the sample size, the test is insensitive to optional stopping. This means we do
not have to determine our sample size beforehand, and can for example decide
to make additional observations if our first observations do not give us decisive
information. This is one major advantage of the robust P-value method compared
to the Neyman-Pearson test.

A second advantage is that for large sample sizes, the test does what it should
do: it favors the hypothesis to which the mean of the observations lies the closest.

Why don’t researchers use this test instead of the Neyman-Pearson hypothesis
test? Theoretically, the test has huge advantages over the Neyman-Pearson test.
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One answer to this question is that conducting a robust P-value method costs a
lot more money than a Neyman-Pearson test.

Typically, a researcher receives funds to make for example 100 observations.
After making these observations, the researcher conducts a statistical test. If we
choose for example α = 0.05, the data likelihood of the data under assumption of
H1 must be 20 times greater than under assumption of H0. This is a lot sterner
than if we do the same with the Neyman-Pearson test. A researcher would there-
fore only use the robust P-value method, when he wants to be able to change his
stopping rule while making the observations. And as this comes at a great cost,
a researcher will not do this very often.

Another disadvantage of this test, is that it is not possible to say anything
about your type II error in advance. As a researcher, before spending a lot of
money to collect data, you want to know whether your investment is going to be
worthwhile. If your β is large, the probability that you waste a lot of money is
large. Therefore, this is also a large disadvantage.
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4. The sequential likelihood ratio test

The sequential likelihood ratio test has been proposed by Wald in 1945 [4] as
another alternative to regular hypothesis testing. Again, the sample size n is con-
sidered a random variable instead of a constant, and again we use the likelihood
ratio. We make only one observation at a time and after each observation, the
sequential test tells us whether we should make another observation, reject H0 or
accept H0.

The goal for Wald was to construct a test which needs less data than the
Neyman-Pearson hypothesis test. When conducting a Neyman-Pearson hypoth-
esis test, it is for example possible that after doing 50 of the 100 observations, you
already know which hypothesis is going to be preferred by the data, but you have
to make the other 50 additional observations, as your statistical analysis is invalid
otherwise. He therefore constructed a test which has the possibility to stop after
each observation.

4.1. Test Design. Let (x1, · · · , xm) = xm be a sequence of m observations. Let
p, q respectively be the density function of an individual observation Xi under
assumption of P, Q. We then have: P(xm) = ∏m

i=1 p(xi), Q(xm) = ∏m
i=1 q(xi) The

test is then defined as follows. After making m observations:

(1) If P(xm) = 0, reject H0 with type I error probability equal to zero
(2) If Q(xm) = 0, accept H0 with type II error probability equal to zero
(3) If Q(xm)

P(xm)
≥ A, accept H1

(4) If Q(xm)
P(xm)

≤ B, accept H0

(5) If B < Q(xm)
P(xm)

< A, make an additional observation

Theorem 4. If A, B 6= 0, the sequential likelihood ratio test terminates with probability
1.

Proof of Theorem 4. After making n observations, we calculate the likelihood
ratio:

Q(x1, · · · , xn)

P(x1, · · · , xn)
=

q(x1)× q(x2) · · · q(xn)

p(x1)× p(x2) · · · p(xn)
,

We continue to make observations when:

B <
q(x1)× q(x2) · · · q(xn)

p(x1)× p(x2) · · · p(xn)
< A.

We transform the equation on log-scale, and with log( q(xi)
p(xi)

) = zi and get:

log(B) <
n

∑
i=1

zi < log(A).

Note that {Zi} i = 1, · · · , n is again a sequence of independent identically
distributed random variables. Denote by m the smallest integer for which either
∑m

i=1 Zi > log(A) or ∑m
i=1 Zi < log(B). If we prove that P(m = ∞) = 0, then we

have proved that the test terminates with probability 1.

Let c = |log(A)| + |log(B)|. If we prove that the probability is zero that
(∑k

i=1 Zi)
2 < c2 holds for all k ∈ N, then we have proved that P(m = ∞) = 0.
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As we know that {Zi}i∈N is a sequence of independent random variables hav-

ing the same distribution, we know that the expected value of (∑
j
i=1 Zi)

2 con-
verges to ∞ as j → ∞. Hence we know there exists a positive integer r such that
the expected value of (∑

j
i=1 Zi)

2 is bigger than 4c2. For this value r, we know that
P[(∑r

i=1 Zi)
2 ≥ 4c2] = ε with ε ∈ (0, 1].

Note that if we prove that the chance is zero that (∑lr
i=1 Zi)

2 < c2 for all l ∈ N,
then we have proved that the chance is zero that (∑k

i=1 zi)
2 < c2 holds for all

k ∈ N. We know that:

P[(
lr

∑
i=1

Zi)
2 < c2 for all l ∈ N)] =

∞

∏
j=1

P[(
lr

∑
i=1

Zi)
2 < c2 holds for l = j | it holds for all l ∈ {1, · · · j− 1}]

We first examine a single term of the right-side expression, therefore let j ∈ N.
We know that (∑

(l−1)r
i=1 Zi)

2 < c2. We also know that P[(∑lr
i=1+(l−1)r Zi)

2 ≥ 4c2] =

ε. Consider (∑lr
i=1 Zi)

2 = (∑lr
i=1+(l−1)r Zi +∑

(l−1)r
i=1 Zi)

2. We know that ∑
(l−1)r
i=1 Zi ∈

(−c, c) and we know with probability ε that (∑lr
i=1+(l−1)r Zi) ∈ (∞,−2c]∪ [2c, ∞).

For every a ∈ (−c, c) and every b ∈ (∞,−2c] ∪ [2c, ∞) it holds that |a + b| > c.
Hence, we know with probability at least ε that (∑lr

i=1 Zi)
2 ≥ c2.

Now we know that P[(∑lr
i=1 Zi)

2 < c2 holds for l = j | it holds for all l ∈
{1, · · · j− 1}] ≤ 1− ε for every j ∈ N, and hence we can finally conclude:

P(m = ∞) ≤
∞

∏
j=1

1− ε = 0

Theorem 5. If we take A = 1−β∗

α∗ and B = β∗

1−α∗ , then we know that the following
inequality holds for the type I and type II error: α + β ≤ α∗ + β∗.

Proof of Theorem 5. Let {xm}m∈N be an infinite sequence of observations. Our
sample space is the set of all infinite sequences. When for a cylindric point
C(x1, · · · , xn) we have Q(a1,··· ,an)

P(a1,··· ,an)
≥ A, and there exists no m < n such that

Q(a1,··· ,am)
P(a1,··· ,am)

≥ A or Q(a1,··· ,am)
P(a1,··· ,am)

≤ B, we will call it a type 1 cylindric point. These are
the sequences of points for which H1 is accepted. Similarly, we define cylindric
points of type 0.

Let S0, S1 resp. be the set of all cylindric points of type 0,1. Theorem 4 tells us
that P(S0 ∪ S1) = 1 and Q(S0 ∪ S1) = 1, which simply means that under assump-
tion of both hypotheses the test will terminate.

Since for each sample (x1, · · · , xn) for which c(x1, · · · , xn) is an element of
S1 the inequality Q(x1,··· ,xn)

P(x1,··· ,xn)
≥ A holds, we know that Q(S1)

P(S1)
≥ A. Similarly

Q(S0)
P(S0)

≤ B.
Of course P(S1) = α and Q(S0) = β, and as S0 and S1 are disjoint, it follows

that P(S0) = 1− α and Q(S1) = 1− β. Substituting this in the inequalities gives:

A ≤ 1− β

α
, B ≥ β

1− α
.
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If we take A = 1−β∗

α∗ and B = β∗

1−α∗ , divide the first equation by (1− β)(1− β∗),
multiply the second by (1− α∗)(1− α), and add the resulting inequalities, we get:

α + β ≤ α∗ + β∗.

Theorem 5 only tells us that if we take A = 1−β∗

α∗ and B = β∗

1−α∗ , we then have
α + β ≤ α∗ + β∗. This only tells us that we know that either α ≤ α∗ or β ≤ β∗.
However, in his paper Wald writes about this choice of A and B: ”The probabil-
ity α on an error of the first kind cannot exceed α∗ and the probability β of an error
of the second kind cannot exceed β, except by a very small quantity which can be ne-
glected for practical purposes” [4, p133]. The mathematical proof of this statement
however lies beyond the scope of this thesis. Therefore we simply assume that for
all practical purposes, by this choice of A and B, we know that α ≤ α∗ and β ≤ β∗.

For Wald, the goal of this test was to save the number of observations. In his
paper, he states the following about the number of observations necessary to con-
duct this test: ”The sequential probability ratio test frequently results in a saving of about
50% in the number of observations as compared with the current most powerful test.” [4,
p119], where with ’the current most powerful test’, he refers to the Neyman-
Pearson test. Wald shows the above statement is true for testing the mean of a
normally distributed variate, for values of α ∈ [0.01, 0.05], β ∈ [0.01, 0.05], under
assumption of H0 and H1.

A couple of years after his first paper on sequential likelihood ratio tests in
1945, Wald an Wolfowitz also proved the Wald-Wolfowitz theorem. It is the equiv-
alent of the Neyman-Pearson lemma, but then for the sequential likelihood ratio
test:

Theorem 6. (Wald-Wolfowitz theorem) Let S0 be any sequential probability ratio test
for deciding between two simple alternatives H0 and H1, and S1 another test for the same
purpose. We define (i, j = 0, 1) : αi(Sj) = probability, under Sj, of rejecting Hi when it

is true; Ej
i (N) = expected number of observations to reach a decision under test Sj when

the hypothesis Hi is true. (It is assumed E1
i exists.) Then if αi(S1) ≤ αi(S0), it follows

E0
i (N) ≤ E1

i (N).

Proof of Theorem 6. The proof of this theorem lies beyond the scope of this
thesis. For a proof of the theorem, see reference 5.

The theorem states that of all sequential tests with the same power the sequen-
tial probability ratio test requires on the average the fewest observations.

4.2. Example for normally distributed data. We again consider the same exam-
ple as we examined in sections 2.2 and 3.2. The likelihood ratio is again given
by:

exp(− 1
2σ2 (2nX(µ1 − µ0) + nµ1 − nµ0))

If we let β = 0.20 (which is a value regularly used in sciences,[6]), we will reject
our null hypothesis when the likelihood ratio is greater than 1−β

α = 16. We will
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accept our null hypothesis when the likelihood ratio is smaller than β
1−α = 4

19 .
Else, we continue sampling.

This means we reject H0 when the data is 16 times more likely to occur under
assumption of H1 than under H0. We accept H0 when it is about 5 times more
likely than the data occurs under assumption of H0 than under H1.

4.3. Advantages and disadvantages. As the rejection constants are independent
of the sample size, the test shows a lot of similarity with the robust P-value test. It
is almost as stern as the robust P-value test, as it also demands that the likelihood
of the data under assumption of H1 must be a lot greater than the likelihood of
the data under assumption of H0. In the case of α = 0.05 and β = 0.20, the
null hypothesis is rejected when the data is 16 times more likely to occur under
assumption of H1, compared to 20 times in the robust P-value test for α = 0.05.

To compare this with the Neyman-Pearson test, we consider the example al-
ready discussed in section 2.2. If we take a sample size of 100, with α = 0.05,
σ = 15, µ0 = 100, then H0 is rejected if X > x0 = 102.5. If we insert this value in
the expression for the likelihood ratio, we get: P(X)

Q(X)
= e2900 ≈ 101260. This means

that it is possible that H0 is rejected while the likelihood ratio greatly favors H0.
We now see why the robust P-value and Wald’s test are a lot more stern than
the Neyman-Pearson test, as they both only reject a hypothesis if the likelihood
favors that hypothesis.

One of the reasons why the robust P-value test is not used in practice, is that
it needs a lot more data (and thus costs a lot more money) than the Neyman-
Pearson test. However, Wald has shown that the Sequential Likelihood Ratio Test
frequently results in a 50% saving compared to the Neyman-Pearson test. There-
fore, in theory the Likelihood Ratio Test is superior to the robust P-value test and
Neyman-Pearson test, as it saves observations and is stern.

Of course the major disadvantage is that you have to make your observations
one by one. In practice this is often not possible. Also, although the test in
general reduces the number of observations, it does not tell you how many ob-
servations you are going to have to make, which is sometimes difficult to deal
with in practice.
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5. Generalized Sequential Likelihood Ratio Test

In section 3 we saw that in theory, the robust P-value test is an improvement
of the Neyman-Pearson test, as it is sterner. However, the test generally needs too
many data to carry out the test. In section 4 we saw that the sequential likelihood
ratio test by Wald is sterner, but also saves a lot of observations compared to the
Neyman-Pearson test. It is therefore superior to both other tests, but it has one
major disadvantage: we have to make our observations one by one.

In this section, we generalize the sequential likelihood ratio test to a test where
we do not have to make our observations one by one. Hopefully, this results in a
test which is better than all previously named tests. We will see that the robust
P-value test and generalized sequential likelihood ratio test are very alike.

5.1. Test Design. Beforehand, we decide how many observations we want to
make, which we denote with n1. If we put the n1 data points in the test, it either
terminates or tells us to make more observations. If it does not terminate, we de-
cide to make n2 additional observations, etc. We therefore have a possibly infinite
sequence (n1, n2, · · · ). Denote the i’th set of data points by (xi1 , · · · , xini

) = Xi.
After doing i sets of observations:

(1) If P(X1, · · · , Xi) = 0, reject H0 with type I error probability equal to zero
(2) If Q(X1, · · · , Xi) = 0, accept H0 with type II error probability equal to

zero
(3) If Q(X1,··· ,Xi)

P(X1,··· ,Xi)
≥ A, accept H1

(4) If Q(X1,··· ,Xi)
P(X1,··· ,Xi)

≤ B, accept H0

(5) If B < Q(X1,··· ,Xi)
P(X1,··· ,Xi)

< A, choose how many additional observations you
want to make

Theorem 7. If A, B 6= 0, the generalized sequential likelihood ratio test terminates with
probability 1.

Proof of Theorem 7. After each i’th set of data points, we calculate the likelihood
ratio:

Q(X1, X2, · · · , Xi)

P(X1, X2, · · · , Xi)
=

q(x11)× · · · × q(xini
)

p(x11)× · · · × p(xini
)

We continue to make observations when:

B <
q(x11)× · · · × q(xini

)

p(x11)× · · · × p(xini
)
< A.

We transform the equation on log-scale, and with log(
q(xij

)

p(xij
)
) = zij and get:

log(B) <
i

∑
k=1

nk

∑
h=1

zkh
< log(A).

Note that
{

Zij

}
is again a sequence of independent identically distributed ran-

dom variables. Denote by m the smallest index of the sequence (n1, n2, · · · ) for
which either ∑m

k=1 ∑nk
h=1 Zkh

> log(A) or ∑m
k=1 ∑nk

h=1 Zkh
< log(B). If we prove

that p(m = ∞) = 0, then we have proved that the test terminates with probability
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1.

Let c = |log(A)| + |log(B)|. If we prove that the probability is zero that
(∑i

k=1 ∑nk
h=1 Zkh

)2 < c2 holds for all i, then we have proved that p(m = ∞) = 0.

As we know that
{

zij

}
is a sequence of independent random variables hav-

ing the same distribution, we know that the expected value of (∑i
k=1 ∑nk

h=1 Zkh
)2

converges to ∞ as i → ∞. Hence we know there exists a positive integer r
such that the expected value of the square over the sum over r elements of
the sequence

{
zij

}
is bigger than 4c2. Then certainly we know for this r that

P[(∑lr
k=1+(l−1)r ∑nk

h=1 Zkh
)2 ≥ 4c2] = ε with ε ∈ (0, 1] for each l ∈ N.

Note that if we prove that the probability is zero that (∑lr
k=1 ∑nk

h=1 Zkh
)2 < c2

holds for all l ∈ N, then we have proved that the chance is zero that (∑i
k=1 ∑nk

l=1 Zkh
)2 <

c2 holds for all i ∈ N. We know that:

P[(
lr

∑
k=1

nk

∑
h=1

Zkh
)2 < c2 holds for all l ∈ N] =

∞

∏
j=1

P[(
lr

∑
k=1

nk

∑
l=1

Zkh
)2 < c2 holds for l=j | it holds for all l ∈ {1, · · · , j− 1}].

We first examine a single term of the right-side expression, therefore let j ∈ N.
We then know that ∑

(j−1)r
k=1 ∑nk

h=1 Zih < c2. We also know that P[∑
jr
i=1+(j−1)r ∑nk

h=1 Zih ≥

4c2] = ε. Consider (∑
jr
k=1 ∑nk

h=1 Zkh
)2 = (∑

jr
i=1+(j−1)r ∑nk

h=1 Zih + ∑
(j−1)r
k=1 ∑nk

h=1 Zih)
2.

We know that ∑
(j−1)r
k=1 ∑nk

h=1 Zih ∈ (−c, c) and we know with probability ε that

∑
jr
i=1+(j−1)r ∑nk

h=1 Zih ∈ (−∞,−2c] ∪ [2c, ∞). For every a ∈ (−c, c) and every
b ∈ (−∞,−2c] ∪ [2c, ∞) it holds that |a + b| > c. Hence we know with prob-
ability at least ε that ∑

jr
k=1 ∑nk

h=1 Zih ≥ c2.

Now we know that P[(∑lr
k=1 ∑nk

l=1 Zkh
)2 < c2 holds for l = j | it holds for all l ∈

{1, · · · , j− 1}] ≤ 1− ε for every j ∈ N, and we can finally conclude:

P(m = ∞) ≤
∞

∏
j=1

1− ε = 0.

Theorem 8. If we take A = 1−β∗

α∗ and B = β∗

1−α∗ , then we know that the following
inequality holds for the type I and type II error: α + β ≤ α∗ + β∗

Proof of Theorem 8. Again, let (n1, n2, · · · ) be the sequence of numbers where
the i’th number represents the number additional observations made after the
i − 1’th iteration of the test. When for a cylindric point C(X1, · · · , Xi) we have

that Q(X1,··· ,Xi)
P(X1,··· ,Xi)

≥ A, and there exists no integer j < i such that Q(X1,··· ,X j)

P(X1,··· ,X j)
≥ A or

Q(X1,··· ,X j)

P(X1,··· ,X j)
≤ B, we call it a cylindric point of type 1. Similarly, we define cylindric

points of type 0.

Let S0, S1 ⊂
⋃

j∈N(χ∑
j
i=1 ni ) resp. be the set of all cylindric points of type 0,1,

which by definition consists only of samples of length n ∈ {n1, n1 + n2, n1 + n2 +
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n3, · · · } number of observations. Theorem 7 tells us that P(S0 ∪ S1) = 1 and
Q(S0 ∪ S1) = 1, which simply means that under assumption of both hypotheses
the test will terminate.

Since for each sample (Xn1 , · · · , Xni ) for which C(xn1 , · · · , xni ) is an element
of S1 the inequality Q(xn1 ,··· ,xni )

P(Xn1 ,··· ,Xni )
≥ A holds, we know that Q(S1)

P(S1)
≥ A. Similarly

Q(S0)
P(S0)

≤ B.
Of course P(S1) = α and Q(S0) = β, and as S0 and S1 are disjoint, it follows

that P(S0) = 1− α and Q(S1) = 1− β. Substituting this in the inequalities gives:

A ≤ 1− β

α
, B ≥ β

1− α

If we take A = 1−β∗

α∗ and B = β∗

1−α∗ , divide the first equation by (1− β)(1− β∗),
multiply the second by (1− α∗)(1− α), and add the resulting inequalities, we get:

α + β ≤ α∗ + β∗

Theorem 8 only tells us that α + β ≤ α∗ + β∗. In section 4, we stated that for
the normal sequential likelihood ratio test, for practical purposes, we can assume
that α ≤ α∗ and β ≤ β∗. As the proof of this statement for the non-general case
lies beyond the scope of this thesis, we were also unable to check this statement
for the general case. Intuitively however, it would be very strange if the statement
is not true for the general case, because of the great similarity of the proofs of the
above theorems between the general and non-general case. For now, we therefore
assume that for all practical purposes, we can simply assume that by this choice
of A and B, we know that α ≤ α∗ and β ≤ β∗

5.2. Are the robust P-value method and sequential likelihood ratio test special
cases of this general test? It is simple to see that the sequential likelihood ratio
test is a special case of the generalized sequential likelihood ratio test. And on
first sight, it also looks like the robust P-value method is a special case of the
general sequential test: if you fill in B = 0, then the test design of the general
sequential test is exactly the same as the robust P-value test design. This would
mean that a robust P-value test corresponds to a general sequential test with type
II error chosen to be zero.

However, it is not that simple. When conducting a general sequential test, you
choose a simple stopping rule: you stop when the likelihood falls in some prede-
termined region. The only thing you can change while making observations, is
the number of observations you are going to make in the next iteration of the test.
When conducting a robust P-value test, you know nothing about your stopping
rule in advance, except that you know you are going to stop making observa-
tions when the likelihood is smaller than α∗. But one thing is for certain: most
researchers will stop making observations at one time, they generally do not plan
to go on forever.

Thus, when you choose to conduct a general sequential test with B = 0, be-
cause of the stopping rule, you would accept that it is possible to sample on
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forever, while someone conducting a robust p-value test generally does not want
to do that. You can only say that the general sequential test and robust p-value
test are the same in one very special case: namely the case where the researcher
is willing to make infinitely many observations. As this generally is not the case,
we can conclude that the robust p-value test and the general sequential test are
fundamentally different.

5.3. Advantages and disadvantages. The general sequential test may be a good
alternative for the Neyman-Pearson test. First, the test is sterner than the Neyman-
Pearson test. Second, the number of observations required to conduct the test
may also be acceptable in some cases. In chapter 4 we saw that for the special
case of making your observations one by one, the test generally results in a 50%
saving of observations compared to the Neyman-Pearson test. Further research
could focus on whether the number of observations required to conduct the gen-
eral test is acceptable in other cases. If it is, it could be an alternative for the
Neyman-Pearson test.
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6. Short introduction to testing complex hypotheses

sequentially

The extension of the Neyman-Pearson test from simple to composite hypotheses
is quite simple. If you want to test the hypothesis H0 : θ = θ0 versus H1 : θ > θ0,
you simply calculate the p-value of the observed data (the probability of obtain-
ing data at least as extreme as the observed data). If the p-value is smaller the
predetermined significance level α, you reject the null hypothesis. The Neyman-
Pearson lemma (theorem 1) shows that for the simple case, the Neyman-Pearson
test is optimal. One very important property of testing complex hypotheses with
the Neyman-Pearson test, is that is also optimal, as in: there exists no test with
equal or less significance level, which has higher power. As optimality of this
extension for complex hypotheses has been proven for the Neyman-Pearson test,
no more mathematical research is needed for these type of tests. (Of course there
are still a lot wrong with the interpretation of the results of these tests, but math-
ematically there is nothing wrong with them.)

However, it is a lot more difficult to extend Wald’s sequential test from sim-
ple to composite hypotheses, and after 65 years of research, no general test
has been found. Research has mainly focused on testing H0 : θ ≤ θ0 versus
H1 : θ ≥ θ1(> θ0). The difficulty is to find a test which is optimal, and in the se-
quential context this means: finding a test which minimizes the expected number
of observations.

Wald himself proposed the following way of extending his test to complex hy-
potheses: If you want to test H0 : θ = θ0 versus H1 : θ > θ0 with type I and
type II errors α and β, use the the test for the simple case with H : θ = θ0 and
K : θ = θ1. This test has minimum expected sample size at θ = θ0 and θ = θ1
by the Wald-Wolfowitz theorem (see theorem 6), but for other θ, its maximum
expected sample size over other θ can be considerably larger than the optimal
fixed sample size. Hence Wald’s suggestion does not provide an optimal test for
all θ.

So far, the best extension of Wald’s sequential test (as far as the author of this
thesis has been able to check), has been obtained by Lai (1988) [7]. He proposed
to use a stopping rule of the form

N̂ = inf{n : max[
n

∑
i=1

log
fθ̂n

(Xi)

fθ1(Xi)
,

n

∑
i=1

log
fθ̂n

(Xi)

fθ0(Xi)
] ≥ g(cn)}.

This test is designed for the parameter of an exponential family of distribu-
tions, and cost c per observation. fθ is the distribution of an individual obser-
vation under the assumption that the parameter is θ, and θ̂n is the maximum
likelihood estimator of θ after n observations. In the test discussed so far, we
have not yet encountered a cost per observation, c. It simply is the cost (in terms
of money for example) of making an additional observation, and in some hypoth-
esis tests this can be added to the inference procedure. The function g satisfies
g(t) ∼ log t−1 as t→ 0 and g(t)→ 0 as t→ ∞.

Lai has proven that this test is nearly optimal, and he also gave a closed-form
approximation of the function g [7]. However, Lay proved this optimality result
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only for testing the parameter of an exponential family of distributions.
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7. Directions for future research

There are three things further research could focus on:

First, it would be interesting to see how the generalized sequential likelihood
ratio test works in practice. For the normal sequential likelihood ratio test, we
know it results in a 50 % saving of observations compared to the Neyman-Pearson
test. We however do not know how this works out for the generalized sequential
test. A first step would be to examine after how many observations researchers
generally are able to analyze there data. For a researcher making 30 observations
a day, in most cases it would be very inefficient to analyze the data after each
individual observation. However, it would probably not be too much trouble to
analyze the data once a day. Research could then focus on how the generalized
likelihood ratio test performs compared to the Neyman-Pearson test under these
circumstances.

Second, research could focus on examining the three methods for the non-
simple case. Testing simple versus simple hypotheses in practice is rare, simple
versus a composite hypothesis or a composite versus a composite hypothesis is a
lot more common in practice.

Third, in this thesis, we were unable to give a proof for relation between the
type I & II errors and the rejection constants for the generalized sequential likeli-
hood ratio test. This part still needs to be proven.
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