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1 Introduction

This thesis is concerned with an object called ’arithmetic codex’ which has
been introduced recently in [6], and generalizes a number of notions which have
been used both in cryptography (in the areas of secret sharing and multiparty
computation) and algebraic complexity theory.
The field of secure multi-party computation is concerned with finding protocols
that offer the possibility to compute a function in several variables by a number
of parties. The extra requirement for these protocols is that all the players have
an input for the function of which they do not want others to find out the value.
A common example is that of two millionaires that want to determine who of
them is the richest without having to reveal the value of their assets [14].
Secret sharing schemes were introduced by Shamir [12] and Blakley [4]. They
later turned out to provide an important building block for many multiparty
computation protocols, especially when we want to achieve information-theoretic
security, i.e., security which holds regardless of the computational power of the
adversary. The fundamental results in this area were given by Ben-Or, Gold-
wasser and Wigderson [3] and, independently, Chaum, Crépeau and Damgaard
[8]. They both use Shamir’s secret sharing scheme in which certain multiplica-
tive properties are essential. Cramer Damgaard and Maurer [9] captured these
algebraic properties in the notion of multiplicative and strongly multiplicative
secret sharing schemes. Both notions are encompassed by the concept of arith-
metic codex.
On the other hand, the codex also has use in the field of algebraic complexity
theory, that analyses the amount of operations one needs to perform algebraic
calculations. Namely, the notion of codex encompasses that of symmetric bilin-
ear multiplication algorithm [5].
In this thesis, we first introduce the notion of codex and provide some basic
theory. Then we study the conditions under which these objects exist by estab-
lishing several bounds on its parameters. We consider first a fruitful approach
to finding bounds on some of the integer parameters, based on the relation of
codices with coding theory. This approach however does not exploit the multi-
plicative nature of codices and so we turn to a strategy that depends on the alge-
bra attached to a codex. We can compare the latter bounds with several results
known in algebraic complexity. In particular, Fiduccia and Zalcstein and later
Adler and Strassen established some results on the multiplicative complexity of
algebras. These, in turn, imply as a special case bounds on certain codices. The
results in this thesis allow to find alternative and comparatively simple proofs
for the same codex bounds in some cases. Furthermore the arguments can be
generalized to find bounds on codices which are not direct consequences of the
results in [1] and [10].
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2 Preliminary Theory

In this section we will provide some theory that is used throughout this thesis.
The concept of a codex is what in this thesis revolves around, hence it shall be
introduced first.

2.1 Definition of the (n, t, d, r)-codex

We start with the definition of an algebra and a short remark.

Remark. Throughout this thesis, N will be the set of natural numbers including
the zero element 0. Also, any ring will be assumed to be unital and any ring
homomorphism R→ S must send 1R to 1S .

Definition 2.1 (Algebra). Let R and S be rings and φ : R −→ S be a ring
homomorphism such that the image of R is contained in the center Z(S) (i.e. for
any r ∈ R and s ∈ S, φ(r)s = sφ(r)). Suppose moreover that R is commutative,
then S is called an algebra over R.

We will only consider algebras over finite fields, which in addition are finite
commutative rings. If not explicitly stated otherwise, any algebra in this writing
will be assumed to be of this kind.
Notice that an algebra of this kind is also a vector space over a finite field, with
multiplication in S as additional operation.

Definition 2.2 (Projections). Let {Ri}ni=0 be n + 1 algebras over a common
ring. We define natural projections for any subset A ⊆ {0, . . . , n}:

πA :

n∏
i=0

Ri −→
∏
i∈A

Ri , (ri)
n
i=0 7−→ (ri)i∈A.

where the product over elements i ∈ A is taken ordered naturally.

Note that the empty product of objects in the category of rings with identity is
its terminal object: The ring with one element. The empty projection is thus
the unique ring morphism onto {e}.
Remark. Let R and S be two algebras over a common ring. Often we will look
at P := R × S with coordinatewise operations. This turns P into an algebra
over the same ring. This fact may be used implicitly.

The projections we have just defined are K-algebra morphisms. They preserve
addition, multiplication and scalar multiplication.
An n-code, as to be defined below, can be thought of as a kind of ’pre-codex’.

Definition 2.3 (n-Code). Let K be a finite field, S an algebra over K with
finitely many elements, and n ∈ N a non-zero natural number. A K-linear
subset C ⊂ S ×Kn is called an n-code for S over K if:

1. Im(π0|C) = S;

2. ker(π{1,...,n}) ∩ C ⊆ ker(π0).

For an n-code C for S over K we define the constant kC := dimK(S). If there
is no risk of ambiguity, the subscript C may be left out.
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The second property in Definition 2.3 is often referred to as n-reconstruction,
which is defined in more rigour through the coming definitions. The property
is equivalent to π{1,...,n}|C being injective. However, there is no such short
description for the other types of reconstruction that will follow shortly.
If we have an n-code C for S over K and an element c = (s, x1, . . . , xn) ∈ C,
then we call s the secret of c, and the xi its shares. The motivation for this
nomenclature comes from the area of secret sharing. Secret sharing schemes were
introduced by Shamir [12] and, independently, by Blakley [4]. Secret sharing
schemes are used to split the knowledge of some information (a secret) into pieces
(the shares) such that a certain minimal number of these pieces are needed to
reconstruct the secret, while a small number of shares gives no information
about it. Arithmetic codices can be turned into secret sharing schemes, as we
will explain below, and the following definitions are inspired by this connection.

Definition 2.4 (A-Reconstruction). Let C ⊆ S×Kn be an n-code for S over K,
and let A ⊆ {1, . . . , n} be a non-empty set of indices. We call C A-reconstructing
if:

ker(πA) ∩ C ⊆ ker(π0).

Note. The second axiom in the definition of an n-code is the requirement of
{1, . . . , n}-reconstruction.

It might not be immediately obvious how this is connected to the intuition that
one has about reconstruction. A lemma to light up the connection with secret
sharing might be nice.

Lemma 2.5. Let C be an n-code for S over K and let A be a non-empty
subset of {1, . . . , n}, r its cardinality. Then the following three statements are
equivalent:

1. C is A-reconstructing,

2. For all s ∈ S \ {0} there exists no element c = (s, c1, . . . , cn) ∈ C such
that πA(c) = 0.

3. There exists a linear function φA : Kr → S, such that for all c ∈ C,
π0(c) = φA ◦ πA(c). That is, the following diagram commutes.

C S

Kr

π0

πA
φA

Proof. We will prove 1⇒ 3, 3⇒ 2 and then 2⇒ 1.

1⇒ 3: By the property of A-reconstruction, we know that for any c ∈ C
such that πA(c) = 0A, its secret must be zero too π0(c) = 0S . Linearity of
C and of the function πA now imply that for any two c, c′ ∈ C that have
the same A-coordinates, πA(c) = πA(c′), their secrets must be identical:
π0(c) = π0(c′).
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This means that we can define the function φ′A : Im(πA|C) → S, that
maps c ∈ Im(πA|C) to sc. Where we take sc := π0(c) for some c ∈ C
with πA(c) = c. Of course, we have π0 = φ′A ◦ πA by construction, and
we can extend φ′A linearly to a function of the desired type by choosing a
complement V ⊂ Kr of Im(πA|C) and a linear function ψA : V → S from
V to S and setting φA := φ′A + ψA.

3⇒ 2: Choose a function φA that suffices the conditions of 3, and assume
towards contradiction that we have s ∈ S \ {0} and c ∈ C such that
π0(c) = s and πA(c) = 0.

For this c we know by means of the commutative diagram, and linearity
of φA, that s = π0(c) = φA ◦ πA(c) = φA(0) = 0. However, s 6= 0 by
assumption.  

2 ⇒ 1: Restating 1 in terms of elements, we get for all c ∈ C: c ∈
ker(πA)⇒ c ∈ ker(π0), which we need to prove. Assume we have a c ∈ C
such that c ∈ ker(πA). Then we know that there cannot be a non-zero
s ∈ S such that π0(c) = s because that would contradict 2, there would
not exist such c ∈ C. Hence, there either exist no such c at all (which
does not even happen as 0 ∈ C), or all such c suffice π0(c) = 0. Both cases
imply 1.

The third of these equivalent statements visualises the reconstruction that we
spoke about earlier in the sense that, ’if you know the shares of A, you know
the secret’, through the reconstruction function φA.

Remark. A-reconstruction for an n-code C implies that for any subset C ′ ⊆ C
the ’reconstruction property’, ker(πA)∩C ′ ⊆ ker(π0), holds. Hence, if C ′ is also
an n-code, it has A-reconstruction. Also, if C is A-reconstructing, then for any
subset A′ ⊆ {1, . . . , n} that contains A, C is A′-reconstructing.

Definition 2.6 (r-Reconstruction). Let C ⊆ S ×Kn be an n-code for S over
K, and let r ∈ N be a number such that 1 ≤ r ≤ n. We say that C is r-
reconstructing, or that C has the property of r-reconstruction, if for all subsets
A ⊆ {1, . . . , n} of cardinality r, C is A-reconstructing.

Definition 2.7 (A-Privacy). Let C ⊆ S×Kn be an n-code for S over K, and let
A ⊆ {1, . . . , n} be a set of coordinates. We say that C is A-private, or that C has
the property of A-privacy, if the projection function π{0}∪A : C −→ S × πA(C)
is surjective.

Note that for A-privacy it does not have to hold that the image of the projection
is of dimension t := #A.

Lemma 2.8. Let C be an n-code for S over K and let A be a subset of
{1, . . . , n}. Then the following two statements are equivalent:

1. C has A-privacy,

2. For all s ∈ S there exists an element c = (s, c1, . . . , cn) ∈ C such that
πA(c) = 0.
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Proof. The implication 1⇒ 2 is trivial; As πA(C) is a linear subspace of K#A

it contains 0A. By A-privacy, projection onto S × πA(C) is surjective and the
pre-images of (s, 0A) suffice.
For 2 ⇒ 1 take an element v = (s, vA) ∈ S × πA(C), and a c ∈ C such that
πA(c) = vA. Write c = (x, c1, . . . , cn) for some x ∈ S and pick by assumption
existing elements f, g ∈ C such that π0(f) = s, π0(g) = x and they have zeroes
in all coordinates of A, πA(f) = πA(g) = 0A. Because of linearity, c′ := c+f−g
is an element of C and it has s as its secret, π0(c′) = x− x+ s = s.
Adding or subtracting f and g from c will not change the value of the pro-
jection onto the A coordinate because both f and g are zero on A, therefore
πA(c′) = πA(c). Hence we have found an element mapping to v ∈ S × πA(C),
which concludes the proof.

To see that A-privacy in some sense is the opposite of A-reconstruction, compare
item 2 of Lemma 2.5 and Lemma 2.8.

Definition 2.9 (t-Privacy). Let C ⊆ S ×Kn be an n-code for S over K, and
let t ∈ N be a number such that 0 ≤ t ≤ n. We say that C is t-private, or that
C has the property of t-privacy, if for all subsets A ⊆ {1, . . . , n} of cardinality
t, C has A-privacy.

One can check that by this definition any n-code has 0-privacy. The property
of ∅-privacy follows from property 1 in definition 2.3.
Note that if C has A-privacy, then for any subset A′ ⊆ A, C has A′-privacy.

Lemma 2.10. Let C ⊆ S × Kn be an n-code for S over K of length n that
has r-reconstruction and t-privacy for some r and t in {0, . . . , n}. Then the
following statements hold:

1. For all r′ ∈ {r, . . . , n}, C has r′-reconstruction;

2. For all t′ ∈ {0, . . . , t}, C has t′-privacy;

3. 0 ≤ t < r ≤ n;

4. dimK(S) ≤ r.

We will only prove the last statement, the first three should be easy to deduct
from the theory above.

Proof. Suppose that C ⊆ S×Kn is an n-code for S overK, with r-reconstruction
for some positive integer r < dimK(S). We choose a set A ⊆ {1, . . . , n} of size
r. Take the image of π{0}∪A|C and denote it as C ′. The function πA : C → Kr

factors through π′A : C ′ → Kr, and we similarly get π′0 : C ′ → S. A summary
is made compactly in the commutative diagram below.

C

S C ′ Kr

π0 π{0}∪A
πA

π′0 π′A
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By A-reconstruction of C, any x ∈ ker(πA) ∩ C must be in the kernel ker(π0).
We see that the kernel of π′A is trivial and thus find that π′A is injective.
On the other hand, we already had the surjection π0 : C → S, which also
factors through π′0 : C ′ → S. As the diagram commutes, we have the identity
π0 = π′0 ◦π{0}∪A, and since π0 is surjective, π′0 must be surjective too. All these
sets are finite dimensional and all the functions K-linear, so we arrive at the
contradiction:

r < dimK(S) ≤ dimK(C ′) ≤ dimK(Kr) = r  .

Definition 2.11. Let S be an algebra over a field K, C ⊆ S any subset and
d ∈ N. We define a linear subset C∗d defined as:

C∗d := SpanK

({
d∏
i=1

xi|xi ∈ C

})
.

Where SpanK(X) denotes the smallest K-linear subspace of S containing X.

We will often call a product of d elements of an n-code C a d-product for short.

Definition 2.12 ((n, t, d, r)-Codex). Let S be a finite algebra over a finite
field K such that multiplication in S is commutative. Pick natural numbers
n, t, d, r ∈ N such that n and d are positive and suppose that we have an n-code
C ⊆ S ×Kn for S over K. (So in particular, we have 0 ≤ t < r ≤ n.) Then C
is an (n, t, d, r)-codex for S over K if the following three properties hold:

1. C has t-privacy;

2. C∗d is an n-code;

3. C∗d has r-reconstruction.

For an (n, t, d, r)-codex C for S over K we still have defined the constant kC :=
dimK(S), as C is also an n-code for S over K. There is no distinction between
kC where C is viewed as a codex, and kC where it is viewed as an n-code.

An (n, t, d, r)-codex is sometimes called an ’arithmetic codex’ or even simply
’codex’ if there is no need to specify the parameters explicitly. The notion has
been introduced in slightly different form in [6], but the lemmas above should
provide enough material to convince oneself of their equivalence.
The definition of (n, t, d, r)-codex encompasses several notions in cryptography
and algebraic complexity theory. First an (n, t, 1, r)-codex C for S over K can
be turned into a secret sharing scheme as follows. In order to share a secret
s ∈ S, we can select uniformly at random an element c ∈ C such that π0(c) = s.
The shares will then be the n coordinates πi(c). Then it is easy to see that, by
t-privacy, the knowledge of only t shares gives no information about the secret.
Furthermore the secret sharing scheme is linear. This means the following:
Suppose that two secrets s, s′ ∈ S are shared using words c = (s, c1, . . . , cn)
and c′ = (s′, c′1, . . . , c

′
n). Then by linearity of C given any λ, µ ∈ K, we have

λc+µc′ ∈ C. Therefore, if we apply the same fixed linear function to each share,
the resulting vector consists of shares for ’the same’ linear function applied to
the secret (i.e. the linear function extended naturally to S).
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For applications of the area of multiparty computation, it is important to con-
sider secret sharing schemes which, in addition to linearity, enjoy other arith-
metic properties that have to do with reconstruction of products of secrets given
the products of the respective shares. More precisely, an (n, t, 2, n)-codex is a
multiplicative secret sharing scheme and an (n, t, 2, n− t)-codex is a t-strongly
multiplicative secret sharing scheme, as defined in [9].
On the other hand, the notion of (n, 0, 2, n)-codex is related to the bilinear
complexity of an algebra S over K and has a longer history, for which we refer
to [5].

2.2 Reduction lemmas

There are some lemmas that are used throughout this work. They provide a way
of constructing a codex from another codex, with smaller integer parameters.
As all the parameters n, t, d and r must be non-negative, it is only natural that
we find bounds from these lemmas.

Lemma 2.13. Let C be an (n, t, d, r)-codex for S over K with d > 1. Then C
is also a codex for S over K with parameters (n, t, d− 1, r − t).

Proof. First off, the set C is not changed in any way. It still is an n-code. The
privacy is a property of the set C as well, so we don’t need a proof for that
either.
So we only nee to check if C∗d−1 is an n-code and whether it has (r − t)-
reconstruction.
The first axiom of n-codes is satisfied: π0(C) is surjective, hence, there is for
any s ∈ S an element cs = (s, x1, . . . , xn) in C. In particular the element
c := cd−21 cs ∈ C∗d−1 has the property π0(c) = s because π0 is a K-algebra
morphism.
For the second axiom of n-codes we will prove that C∗d−1 has (r−t)-reconstruction,
as this implies it (Lemma 2.10).
Let A ⊂ {1, . . . , n} be a set of r − t coordinates, and x ∈ C∗d−1 such that
x ∈ ker(πA). It suffices to show that π0(x) = 0.
Take an index set B ⊆ {1, . . . , n} such that B has size t and the intersection of
A and B is empty. This exists because #({1, . . . , n} \A) ≥ t.
Since C has t-privacy, there exists an element c ∈ C such that π0(c) = 1 and
πB(c) = 0B .
Consider the product c · x. This is an element of C∗d (since d ≥ 2), and of
ker(πA∪B) which implies c · x ∈ ker(π0) as #(A ∪ B) = r and C∗d has r-
reconstruction. Note that by the properties of coordinatewise multiplication we
get the identity: π0(c · x) = π0(c) · π0(x) = 1 · π0(x) and we thus may conclude
that π0(x) = 0 which completes the proof.

Corollary 2.14. Iterating Lemma 2.13 we find that an (n, t, d, r)-codex C for
S over K is also an (n, t, 1, r − (d− 1)t)-codex for S over K.

Corollary 2.15. As for any (n, t, d, r)-codex for S over K the reconstruction
parameter must be larger than k := dimK(S) by Lemma 2.10 (C∗d is an n-code).
Hence, from 2.14 we also find:

r ≥ k + (d− 1)t.

8



Lemma 2.16 (Shortening). Let C be an n-code for S over K with and r-
reconstruction and t-privacy such that t ≥ 1. Then the set

C ′ := π{0,...,n−1}(C ∩ ker(πn))

is an (n−1)-code with (r−1)-reconstruction and (t−1)-privacy. That is: If C is
an (n, t, 1, r)-codex for S over K with t ≥ 1, then C ′ is an (n−1, t−1, 1, r−1)-
codex for S over K.

Proof. This is a proposition based on the concept known as shortening in coding
theory. The idea is to eliminate one coordinate from the n-code by restricting the
n-code to those elements with a zero in the last coordinate and then ’removing’
this coordinate.
With this in mind consider the subset of C with the n-th coordinate zero, C ∩
ker(πn). Now cut out the n-th coordinate completely to get to the set of which
we will soon see it is the desired (n− 1)-code: C ′ := π{0,...,n−1}(C ∩ ker(πn)).
Let’s check this in detail:

Axiom 1 of the definition of n-codes is not harmed by this. Let s ∈ S be
a secret, then since privacy is large enough, t ≥ 1, there exists an element
c ∈ C such that π0(c) = s and πn(c) = 0. Hence, π{0,...,n−1}(c) is an
element of C ′ that has s as zero-th coordinate.

(t−1)-privacy: Let A ⊆ {1 . . . , n−1} be a set of size t−1 and pick a secret
s ∈ S. I will show that there is an element (s, 0A) in the set S × πA(C ′).
Note that A∪{n} is a set of size t. By Lemma 2.8 there exists an element
c ∈ C that has the properties π0(c) = s and πA∪{n}(c) = 0. The image
c′ := π{0,...,n−1}(c) is an element of C ′, and by the universal property of the
product and since A is a subset of {1, . . . , n− 1} we have: s = π{0}(c) =
π{0}(π{0,...,n−1}(c)) = π{0}(c

′), and 0A = πA(c) = πA(π{1,...,n−1}(c)) =
πA(c′), and which is what was to be shown.

(r − 1)-reconstruction: This follows similarly, now by contradiction. Sup-
pose A ⊆ {1, . . . , n − 1} is a set of size r − 1, and C ′ is not (r − 1)-
reconstructing. By lemma 2.5 this means there is s, an element of S \{0},
and c′ ∈ C ′ such that πA(c) = 0 while π0(c) = s. By our construction
there must exist an element c ∈ C with the property that πn(c) = 0 and
π{0,...,n−1}(c) = c′. This element c has zeroes in the set A ∪ {n} of size r,
hence π0(c) = 0 holds by r-reconstruction of C. We must conclude that
π0(c′) = 0, which contradicts the assumption and proves the claim.  .

Note that (r − 1)-reconstruction implies the second axiom of n-codes to finish
the proof.

Corollary 2.17 (Shortening). Let C be an (n, t, d, r)-codex for S over K where
t ≥ 1. Then we can construct another codex C ′ for S over K with parameters
(n− 1, t− 1, d, r − 1).

Proof. First of all note that both C and C∗d are n-codes. Define C ′ as in 2.16
and (C∗d)′ similarly. The (t − 1)-privacy for C ′ thus follows directly from the
shortening lemma. The (r−1)-reconstruction of (C ′)∗d follows from this lemma
too, since (C ′)∗d ⊆ (C∗d)′. (See note after definition of A-reconstruction.)

9



To justify the inclusion (C ′)∗d ⊆ (C∗d)′ we argue: An element of (C ′)∗d is the
sum of a number of scaled d-products

∑m
i=1 λiπ(xi1) · . . . · π(xid), for which all

of the xij lie in C ∩ ker(πn) and λi ∈ K, and where π is shorthand for π{1,...,n}.
We can write this more compact because of the identity π(ab) = π(a)π(b);∑m
i=1 λiπ(xi1 · . . . · xid).

On the other hand, the elements of (C∗d)′ look exactly the same, but have the
weaker condition that each d-product lies in the kernel: xi1·. . .·xid ∈ C∩ker(πn).
Of course, if for all j we have that the n-th coordinate is zero, πn(xij) = 0, then
the n-th coordinate of the product is zero too: πn(xi1 · . . . · xid) = 0. Which
shows that (C ′)∗d ⊆ (C∗d)′.

Corollary 2.18 (Shortening). Iterating the previous corollary we find from the
(n, t, d, r)-codex C for S over K an (n− t, 0, d, r − t) codex over the same field
and algebra.

Corollary 2.19. By first applying Corollary 2.14 and then Corollary 2.18, we
find that an (n, t, d, r)-codex for S over K gives rise to an (n− t, 0, 1, r − dt)-
codex for the same algebra over the same field. Since the reconstruction pa-
rameter must be bigger than k by Lemma 2.10, we can improve the bound of
Corollary 2.15 to:

r ≥ k + dt.
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3 Examples

In this section some basic constructions are provided for the reader to get ac-
commodated with the codex. The first example is a somewhat degenerate case,
but a codex nonetheless.

Example 3.1 (Diagonal embedding). In most cases an object that in some
sense is trivial can provide for useful intuition and counterexamples. One can
take any finite field K and embed this into the n-fold cartesian product for some
positive n ∈ N.

∆ := { (x, . . . , x) | x ∈ K } ⊆ K ×Kn

This set is an n-code with only 0-privacy as its dimension is 1. The set is closed
under coordinatewise multiplication. Even stronger: For any d ∈ N, with d ≥ 1,
we have ∆ = ∆∗d. Since ∆ has obvious 1-reconstruction, this construction
provides an (n, 0, d, r)-codex for K over K for any choice of positive n, d and r
with r ≤ n.

For the next example we introduce the notation K[X]≤m, being the set of
polynomials in one variable of degree at most m over a field K.

Theorem 3.1 (Lagrange interpolation). Let K be a field and p0, . . . , pm ∈ K
a set of distinct points, then the evaluation map

φ : K[X]≤m −→ Km+1, f 7−→ (f(pi))
m
i=0

is a K-linear isomorphism.

We will not prove the theorem here. It is left as an exercise in [13, par. 12].
The interested reader can find all ingredients for the proof in this dictate.

Example 3.2 (Lagrange interpolation codex). Suppose that K is a finite field
and K a fixed algebraic closure of K. Let P = {p1, . . . , pn} ⊆ K be an indexed
set of n distinct points. Then we define a set:

Cm(P ) := {(f(pi))
n
i=1|f ∈ K[X]≤m} ⊆

n∏
i=1

K(pi).

We will use that this set is the image of the natural projection:

evP : K[X]≤m →
n∏
i=1

K[X]/(X − pi),

f 7→ (f mod (X − p1), . . . , f mod (X − pn))

Where the subscript P is left out if it is clear from the context.

Theorem 3.2. Let K be a finite field, n, t, d, k ∈ N natural numbers such that
n, d, and k are positive, K has at least k + n elements, and the inequality
d(t+ k − 1) + 1 ≤ n holds. Then there exists an (n, t, d, d(t+ k − 1) + 1)-codex
for Kk over K.
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Proof. Let n, t, d, k,K, be as in the theorem and define r := d(t + k − 1) + 1.
We can choose n + k distinct points in K, P = {p01, . . . , p0k, p1, . . . , pn} ⊆ K
and we will show that C := Ct+k−1(P ) is a codex with the desired properties.
As usual we show that C has t-privacy, and that C∗d has the required r-
reconstruction property. The reconstruction property needed for C to be an
n-code will follow from this. Lastly, the first axiom of n-codes for C is a direct
consequence of one of the diagrams below and will be noted at the appropriate
spot.
t-Privacy: To prove that there is t privacy, choose a set t coordinates A ⊆
{1, . . . , n}, and a secret s ∈ Kk. By lemma 2.8 we have to show that there is
an element in c ∈ C with π{0}∪A(c) = (s, 0A) ∈ Kk ×Kt.
Define the set of points we need to evaluate at for the ’privacy map’ π{0}∪A|C ,
P ′ := {p01, . . . , p0k} ∪ {pi|i ∈ A} and write m := k + t − 1. Note that by the
universal property of the product, the following diagram commutes:

K[X]≤m Kk ×Kn

Kk ×Kt

evP

evP ′
∼ π{0}∪A

Lagrange’s theorem tells us that evP ′ actually is an isomorphism. Therefore the
polynomial f := ev−1P ′ (s, 0A) is well-defined, and its image under the evaluation
in all points, evP (f), is an element of our codex. It has the desired property
because of the commutative diagram above.
The diagram also shows that the first axiom of n-codes for C holds (π0|C is
surjective), as we have π0|C = π0 ◦ evP = π0 ◦ π{0}∪A ◦ evP = π0 ◦ evP ′ , and the
last is a composition of two surjective functions.
r-Reconstruction: Note that the set C∗d is a subset of the image of the function
ev′P : K[X]≤dm → Kk×Kn that maps a polynomial of degree less or equal to dm
to its evaluation in the points of P . Pick a subset of coordinates A ⊆ {1, . . . , n}
of at least dm+ 1 elements and define P ′′ := {pi|i ∈ A}. We will take a closer
look at the set C∗d with respect to this A. As the following variation of the
diagram above also commutes, any element x ∈ C∗d ∩ ker(πA) yields a unique

f ∈ ev′P
−1

(x) of degree ≤ dm for which ev′P ′′(f) = 0A holds. (Note: By 3.2
evaluation in more than dm points must be injective and n ≥ dm+ 1 holds by
assumption, so f is unique.)

K[X]≤dm Kk ×Kn

K#A

ev′P

ev′P ′′
πA

Such a polynomial must have zeroes in all points of A because of the identity
ev′P ′(f) = ev′P ◦ πA(f) = πA(x) = 0A. The polynomial f must then be zero be-
cause a non-zero polynomial may have at most dm zeroes. Hence x = ev′P (f) =

12



0 ∈ Kk × Kn for any x ∈ C∗d ∩ ker(πA) and so we find for any set A of size
d(k + t− 1) + 1 that C∗d has A-reconstruction.

We conclude this section with some possibilities to generalize the last example.
Suppose that instead of using a set of points inK, P = {p01 . . . , p0k, p1, . . . , pn} ⊆
K, we would have chosen the points p01, . . . , p0k in K, such that each two dis-
tinct p0i p0j that both not lie in K are not Galois conjugate and the last points
p1, . . . , pn lie in K. Then if we properly generalize the Lagrange
interpolation theorem, and increase the reconstruction parameter (to

dt+ d[
∑k
i=1 dimK(K(p0i))] + 1) this again yields a codex along the same line

of argument, this time for the algebra that is the product of the finite exten-
sion fields K(p0i) over K. Moreover, all the points p0i that do not lie in K,
do not count for the restriction on the size of K. That is, we must only have
#K ≥ #{i|p0i ∈ K}+ n, instead of #K ≥ k + n.
Another way to circumvent the problem of having too few points that works for
any of the Lagrange interpolation polynomial based codices, is to add a ’point
at infinity’. Its evaluation map will be the defined as

ev∞ : K[X]≤m → K

m∑
i=0

aiX
i 7−→ am.

Lastly we cannot leave unnoticed that one can generalize the Lagrange interpo-
lation codex to algebras other than fields like S = K[X]/(f) for any f ∈ K[X]
that does not vanish at any of the evaluation points. To do so, we can use the
exact same approach as in 3.2, but we will need a stronger version of Theo-
rem 3.1 to assure that the isomorphisms evP ′ exists. (The Chinese remainder
theorem for commutative rings will be sufficient to cover at least the case of S.)
Unfortunately, we cannot go into further detail.
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4 Bounds based on the theory of linear Codes

By constructing a subspace of a finite vector space from a codex a vast amount
of theorems of coding theory can be accessed in the context of codices. In this
section we will establish this relationship.
First of all, there is need for a formal definition of linear codes. A more extensive
introduction on this topic can be found in [11].

Definition 4.1 (Linear Code). Let p ∈ N be a prime number, m a positive
integer. Take q to be equal to pm and K = Fq the field of pm elements. The we
call C ⊆ Kn a linear code of length n over K if it is a K-linear subspace of the
vectorspace Kn for an n ∈ N.

The theory of linear codes makes extensive use of a distance measure called the
’Hamming distance’. We’ll have to use this concept to get our bounds.

Definition 4.2 (Hamming weight). Let V = Fnq be a finite vectorspace. For
an element x ∈ V we define the Hamming weight (often just weight if not
ambiguous) as:

w(x) := #{i|xi 6= 0}.

Definition 4.3. For two elements x and y of the vectorspace V = Fnq , the
distance of the two elements as:

d(x, y) := w(x− y).

It is easily checked that this indeed is a metric on V . Note that V becomes
a discrete topological space with regards to this metric, as the image of d is
discrete. There are however other aspects of the metric just defined that are
interesting. Such as:

Definition 4.4. Let C ⊆ Fnq be a linear code. We define the diameter of C as:

d(C) := min{d(x, y)|x, y ∈ C with x 6= y}.

Note that this is equivalent to:

d(C) = min{w(c)|c ∈ C \ {0}},

since C is linear.
Now let’s state some theorems from coding theory that we will be able to harvest
soon. All of these can be found in [11].

Theorem 4.5 (Singleton bound). Let C ⊆ Fnq be a linear code of dimension k.
Then we have the following bound:

n ≥ k + d(C)− 1.

Theorem 4.6 (Griesmer bound). Let C ⊆ Fnq be a linear code of dimension k.
Then we have the following bound:

n ≥
k−1∑
i=1

⌈
d(C)

qi

⌉
.
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Theorem 4.7 (Plotkin bound). Let C ⊆ Fnq be a linear code of dimension k,
such that d(C) > n(q − 1)/q. Then we have the following bound:

qk ≤ d(C)

d(C)− q−1
q n

.

The theorem that translates a codex into a linear code is as follows:

Theorem 4.8. Let C be an (n, t, 1, r)-codex for S over K := Fq. Then there
exists a linear code C ′ of length n over K of dimension dim(S) such that d(C ′) ≥
n− r + 1.

Proof. Let B = {si}ki=1 be a basis for S over K. Because of the property
π0(C) = S, we can choose a C-representative for each si: ci = (si, xi) ∈ C.
The set {xi}ki=1 must be linearly independent. Indeed, suppose that we have a

non-trivial relation
∑k
i=1 λi · xi = 0 then we get a relation

∑k
i=1 λi · (si, xi) =

(s, 0Kn) and as a linear combination of elements of C, (s, 0Kn) again lies in C.
Then, by the n-reconstruction of C, s = 0 must hold. This means that we have
the non-trivial combination

∑k
i=1 λisi = 0S , which contradicts the assumption

that the si form a basis for S over K.  
We have now found a linear subspace space of Kn, namely spanK{x1, · · · , xk},
it has dimension k and length n. Name this linear code C ′ and note that we can
view this as the image of the K-vectorspace isomorphism f defined by f(si) = xi
that sends a secret to a uniquely chosen representation in Kn.
It remains to show that the diameter of C ′ is at least n−r+1. Suppose towards
contradiction that d(C ′) ≤ n−r. Then there exists a non-zero x ∈ C ′ \{0} such
that x has weight less than or equal to n − r. This means that there is a set
A ⊆ {1, . . . , n} of size r such that x has only zeroes in this set of coordinates:
πA(x) = (0, . . . , 0).
Now let c be an element of the original codex C such that π{1,...,n}(c) = x.
This element must exist by our construction. The r-reconstruction property of
C implies that π0(c) = 0. Recall that each element in C ′ is a representation
of only one element s ∈ S, and that since this representation system is chosen
linearly, the unique element corresponding to 0S is the zero vector. Thus we
conclude that x = 0Kn , a contradiction as x was non-zero.  

With diligence we can now translate the bounds from linear coding theory into
the following theorems for codices. (Note that an (n, t, d, r)-codex is also an
(n, t, 1, r)-codex by Lemma 2.13.)

Theorem 4.9 (Singleton bound, codex version). Let C ⊆ S×Fnq be an (n, t, d, r)-
codex for S over Fq. Then we have the following bound:

r ≥ dim(S).

Note that we already found this bound in Lemma 2.10, through a completely
different proof.

15



Theorem 4.10 (Griesmer bound, codex version). Let C ⊆ S × Fnq be an
(n, t, d, r)-codex for S over Fq. Then we have the following bound:

n ≥
dim(S)−1∑

i=1

⌈
n− r + 1

qi

⌉
.

The Plotkin bound can be translated most easily with a little bit of analysis.

Theorem 4.11 (Plotkin bound (codex version)). Let C ⊆ S × Fnq be an
(n, t, d, r)-codex for S over Fq, such that n > q(r − 1). Then we have the
following bound:

qk−1 ≤ n− r + 1

n− q(r − 1)
,

where k = kC is the dimension of S over Fq.

Proof. From the codex we distil a linear code C ′ ⊆ Fnqk of dimension k with

diameter d(C ′) ≥ n−r+1. From n > q(r−1) we expand to n−r+1 > n(q−1)/q
to find that the inequality d(C ′) > n(q − 1)/q holds. Hence, we obtain the
Plotkin bound for the linear code C ′:

qk ≤ d(C ′)

d(C ′)− q−1
q n

.

We only need to justify that we can replace d(C ′) with its lower bound n−r+1.
To do so, compare the upper bound on qk with the continuous (with respect to
the usual topology) function:

fa : R>a → R>0, x 7→ x

x− a

In which we choose a a positive real number. The derivative of fa is negative on
all of R>a, so fa is a decreasing function. Thus we derive for all positive a ∈ R
and all numbers x, y ∈ R>a:

x > y ⇒ x

x− a
<

y

y − a
.

The conclusion now follows immediately, after tidying up the inequality.

The theorems that we have obtained now are not the strongest possible, since
we haven’t used the parameters t and d of an (n, t, d, r)-codex yet. Certainly
Corollary 2.19 can improve the bounds a bit. We show what this does for the
Griesmer bound. Also, note that these bounds make no use of the multiplicative
structure of S. We’ll arrive at those in the next section.

Theorem 4.12 (Griesmer bound, codex version, enhanced). Let C ⊆ S × Fnq
be an (n, t, d, r)-codex for S over Fq. Then we have the following bound:

n ≥
dim(S)−1∑

i=1

⌈
n− r + dt+ 1

qi

⌉
.
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Note that the only information on the algebra S that the results in this section
use is its dimension k. In the next section we will see some results that have
a stronger dependence on the structure of the algebra. Finally, note that if
dim(S) = 1, the results of this section become trivial. However, in [7], the
following restriction was proved, using also arguments from code theory in a
slightly different way.

Theorem 4.13. Let C ⊆ S × Fnq be an (n, t, d, r)-codex for S over Fq. Then
we have the following bound:

r − t ≥ n− t+ 1

q
.
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5 Algebra dependent bounds

In this section we arrive at the main result that were proved in the course of the
project. There was a bound known for finite fields. In particular, the following
theorem was known (albeit unpublished).

Theorem 5.1. Let C ⊆ F ×Kn be an (n, t, d, r)-codex for F over K, where F
is a finite field extension of K. Then we have the following inequality:

n ≥ dk − d+ 1.

5.1 Local rings

The theorem we will prove here has the same conclusion under the weaker
condition that F need just be a local ring that is an algebra over K. A bound
for a non-local rings has also been found with the same proof, although the
bound in this case is not very tight and above all hard to compute. The last
section will show this by yet a stronger generalisation which holds for any codex
over any algebra. To get to this point, we start off with some lemmas.

Lemma 5.2. Let C ⊆ S×Kn be an (n, t, d, r)-codex for S over K. Then there
exists a K-linear injective function σ : S → Kn such that for any s ∈ S we have
(s, σ(s)) ∈ C.

Proof. Choose a basis s1, . . . , sk for S over K and pick elements ci = (si, xi) ∈ C
for some xi ∈ Kn. These must exist because π0(C) = S by definition. Define
the function σ : S → Kn by K-linearly extending si 7→ xi. We write s on
the chosen basis s = λ1s1 + . . . + λksk for some λi ∈ K and we see that by
linearity: σ(s) = λ1x1+. . .+λkxk. This way we found the first needed property,
(s, σ(s)) = (λ1s1 + . . . + λksk, λ1x1 + . . . + λkxk) = λ1c1 + . . . + λkck ∈ C, for
any s ∈ S, by linearity of C.
To see that σ is injective, suppose that we have some s ∈ ker(σ). Then, we have
(s, σ(s)) ∈ C and by n-reconstruction of C, it follows that (s, σ(s)) ∈ ker(π0).
Indeed, the kernel of σ is trivial.

Definition 5.3. A function σ : S → Kn such as in Lemma 5.2 will be called a
generator for C.

Lemma 5.4. Let S be a K-algebra over a field K, and σ : S → Kn be an
injective K-linear function. Then there exists a basis b1, . . . , bk for S such that
all σ(bi) have weight ≤ n− k + 1.

Proof. The image of σ has dimension k, equal to dim(S). Take any basis for
σ(S) and use Gaussian elimination to construct a basis {b′i} that is in normal
(row echelon) form. Clearly, these vectors each have weight ≤ n− k + 1. Their
inverses under σ form a basis for S that meets the restriction we claimed.

The next proposition is isolated from the proof of the theorem to improve its
natural flow. It has a rather technical and long proof although it seems only
reasonable to expect such a statement to be true a priori.
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Proposition 5.5. Suppose that C ⊆ S ×Kn is an (n, t, d, r)-codex for S over
K, and that σ : S → Kn is a generator for C. Take x1, . . . , xd−1 ∈ S, and
define

R := {σ(x1) . . . σ(xd−1)σ(y)|y ∈ S}.

Then there exists an injective linear function f : x1 . . . xd−1S → R.

Proof. First note that it is enough to prove that there exists a surjective linear
function g : R → S whose image contains x1 . . . xd−1S. One can extract a
function as above from this easily.
Since σ is a generator, all the vectors (s, σ(s)) lie in C. In the set R we can
thus only find products of d elements of π{1...,n}(C). This gives the inclusion

R ⊆ π{1,...,n}(C∗d). We’ll define the function

i : R −→ C∗d, u 7−→ (su, u)

that sends an element in u ∈ R to the unique element i(u) ∈ C∗d that has the
property: (π{1...,n} ◦ i)(u) = u.
Firstly, such an element exists for every u = σ(x1) . . . σ(xd−1)σ(y) ∈ R, namely
(x1 . . . xd−1y, r). And secondly, this is well defined because of the reconstruction
property for C∗d: We know that there cannot be two elements in a, b ∈ C∗d such
that π{1,...,n}(a) = π{1,...,n}(b) and π0(a) 6= π0(b). If this was the case, we would

have a − b ∈ C∗d with π0(a − b) 6= 0 and π{1,...,n} = 0, which contradicts

Lemma 2.5 as C∗d has n-reconstruction.
The function i must be linear because its right-inverse function (π{1,...,n}) is a

linear function. So if we compose i with π0 : C∗d → S, we still have a linear
function.
The image of π0 ◦ i indeed contains x1 . . . xd−1S. Any element x1 . . . xd−1s ∈
x1 . . . xd−1S, is mapped onto by σ(x1) . . . σ(xd−1)σ(s). Hence, with g := π0 ◦ i :
R→ S we can construct the function we seek.

The last ingredient of the theorems proof is a rephrasing of the concept of a
local ring.

Lemma 5.6. Let S be a finite algebra over a finite field K. Then the following
statements are equivalent:

1. S is a local ring. That is, there exists a unique maximal ideal m ⊆ S.

2. The ideal generated by the set of non-units S \ S×, I, is not equal to S.

Proof. We break the proof into the usual parts:

(1) ⇒ (2) We show that m = I. Firstly, m ⊆ I holds because m 6= S
and thus cannot contain a unit. For the inclusion I ⊆ m, suppose that
we have an element x ∈ I such that x /∈ m. Then, x is contained in some
maximal ideal mx, because x is not a unit. Obviously these two cannot
be the same, m 6= mx. However, this contradicts the fact that S only has
one maximal ideal. So indeed, I ⊆ m. If we would not have elements in
I \ m then of course every element x ∈ I is an element of m and we are
done immediately. Now the inclusion hold both ways, hence I = m.

19



(1)⇐ (2) The ideal I must be maximal as every ideal strictly containing
it must contain a unit. Also, every ideal not equal to S consists of only
non-units, and hence is a subset of I. Clearly this implies that I is the
unique maximal ideal of S.

With all our instruments at the ready, we can now start with the first generali-
sation of Theorem 5.1.

Theorem 5.7. Let C ⊆ S×Kn be an (n, t, d, r)-codex for S over K, then there
exist elements x1, . . . , xd−1 ∈ S \ {0}, together with x0 := 1 ∈ S such that the
following inequality holds:

n ≥ 1− d+

d−1∑
i=0

dim(x0 . . . xiS)

Moreover, if S is local when considered as a ring, the xi can be chosen unitary.
We get the bound

n ≥ dk − d+ 1

for these algebras.

Proof. Choose a linear function σ : S → Kn that sends a secret s ∈ S to a
representation σ(s), i.e. (s, σ(s)) ∈ C must hold for all s ∈ S (Lemma 5.2).
Claim: If m ≤ d − 1 there exist elements x1, . . . , xm ∈ S such that for all
i ∈ {1, . . . ,m}:

δi ≤ n+ i−
i−1∑
j=0

dim(x0 . . . xjS)

Where we define x0 = 1 ∈ S, and δi := w(σ(x0) ∗ . . . ∗ σ(xi)).
If m = 0, this statement is trivial.
Induction hypothesis: Suppose that the claim is true for some non-negative
m = M ≤ d − 2. That is to say: We have elements x1, . . . , xM ∈ S \ {0} for
which the inequalities above hold.
We consider the K-linear subspace RM+1 := {σ(x1) ∗ . . . ∗ σ(xM ) ∗ σ(y)|y ∈
S} ⊆ Kn. By Lemma 2.13 and Lemma 2.10, C is also an (n, t,M + 1, r)-codex,
of which we know that there must exist a linear injection σM+1 : x1 . . . xMS →
RM+1 (Lemma 5.5).
The injection σM+1 : x1 . . . xMS → RM+1 finds us the inequality:

dim(RM+1) ≥ dim(x0 . . . xMS).

On the other side, we can project RM+1 linearly and injectively into KδM be-
cause for all y ∈ S, the support of a product σ(x1)∗. . .∗σ(xM )∗σ(y) is contained
in the support of σ(x1) ∗ . . . ∗ σ(xM ).
We are now in the position to invoke Lemma 5.4, from which we get an element
r ∈ RM+1, that looks like r := σ(x1) ∗ . . . ∗ σ(xM+1) for some xM+1 ∈ S \ {0}.
By Theorem 4.9 it satisfies the relation:

w(r) =: δM+1 ≤ δM − dim(x0 . . . xMS) + 1,
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since dim(RM+1) ≥ dim(x0 . . . xMS). By induction hypothesis, this can be
made explicit:

δM+1 ≤ δM − dim(x0 . . . xMS) + 1

i.h.
≤ n+M −

M−1∑
j=0

[dim(x0 . . . xjS)]− dim(x0 . . . xMS) + 1

= n+ (M + 1)−
M∑
j=0

dim(x0 . . . xjS)

This concludes the induction and the proof of the claim. But note that we can
squeeze out one last lower bound for δd−1. Because, σd : x1 . . . xd−1S → Rd
must still be injective along the same argument as before. We find:

dim(x0 . . . xd−1S) ≤ δd−1 ≤ n+ (d− 1)−
d−2∑
j=0

dim(x0 . . . xjS)

or equivalently:

n ≥ 1− d+

d−1∑
i=0

dim(x0 . . . xiS).

Lastly, for the case S being local. We strengthen the induction hypothesis by
adding: x0 . . . xiS = S for any i ≤ m, and note in the induction step that we can
choose xM+1 ∈ S a unit. Indeed, the injection σM+1 is by induction hypothesis
simply an injective linear function S → KδM+1 , such that by Lemma 5.4 we
have a complete basis for S from which we can choose xM+1. All of these base
vectors bi have an image under σ such that the product σ(x0) . . . σ(xM )σ(bi)
has a weight that is smaller than δM − dim(x0 . . . xMS) + 1. By noting that
any basis for S must contain a unit (because of Lemma 5.6) we can conclude
that x0 . . . xM+1S = S. The rest of the proof follows verbatim. The conclusion
follows by harvesting the extra constriction in the induction hypothesis:

d−1∑
j=0

dim(x0 . . . xjS) = d · dim(S).

5.2 The general case

In the same way that we can reduce the integer parameters of a codex under
some condition, we will show how to ’reduce’ the algebra S. This enables us to
retrieve bounds for general algebras from bounds for codices with an algebra of
specific type.

Lemma 5.8. Let C ⊂ S × Kn be an (n, t, d, r)-codex for S over K, and I
an ideal of S strictly contained in S. Then the image of C under the natural
projection ψ′ : S ×Kn → (S/I)×Kn is an (n, t, d, r)-codex for S/I over K.
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Proof. The proof is very similar to that of Lemma 2.16.
Define C ′ as the image ψ′(C), abbreviate ψ′(C∗d) by (C∗d)′ and then note that
(C ′)∗d = (C∗d)′. To see this, take ψ′(

∑m
i=1 λixi1 . . . xid) ∈ (C∗d)′ and find that

it is in fact an element of (C ′)∗d, by using the elementary properties of ψ′:

ψ′(

m∑
i=1

λixi1 . . . xid) =

m∑
i=1

λiψ
′(xi1) . . . ψ′(xid).

This works both ways of course, so the equality must hold.
note that we have a commutative diagrams:

C S

C ′ S/I

π0

ψ′ ψ

π′0

C∗d S

(C ′)∗d S/I

π0

ψ′ ψ

π′0

C∗d K#A

(C ′)∗d

πA

ψ′
π′A

where we denote the natural morphism S → S/I by ψ and distinguish between
the projection of S ×Kn and that of (S/I) ×Kn onto the first coordinate by
denoting them π0 : C → S and π0 : C ′ → S/I respectively.
First we will prove that both the first axiom of n-codes hold for C ′ and (C ′)∗d.
To do so, we need to prove that π′0|C′ and π′0|(C′)∗d are surjective. Let us take
an s ∈ S/I with representative s mod I for some s ∈ S. Since C is an n-code,
we have c ∈ C such that π0(c) = s, hence of course, ψ ◦ π0(c) = s. π′0|C′ must
then be surjective, since the first diagram tells us that:

ψ ◦ π0(c) = π′0ψ
′(c) = s

and the element ψ′(c) lies in C ′. The function π′0|(C′)∗d then is surjective because
for every s ∈ S we had found c ∈ C ′ with π′0(c) = s, so we have an element w ∈
C ′ with π′0(w) = 1 and cwd−1 ∈ (C ′)∗d has the desired property: π′0(cwd−1) = s.
We now have to perform the same kind of reasoning to find the privacy and
reconstruction properties:
t-privacy: Let s ∈ S/I be represented by s mod I for some s ∈ S, and suppose
that A ⊆ {1, . . . , n} is a set of size t. We need to show that there is an element
c′ ∈ C ′ such that π′0(c′) = s and πA(c′) = 0A (Lemma 2.8). Since C is t-private,
there is an element c ∈ C such that π0(c) = s and πA(c) = 0A. Because of the
first commutative diagram, we immediately find that c′ := ψ′(c) has the desired
properties.
r-reconstruction: Suppose that A ⊆ {1, . . . , n} is a set of size r and that we
have an element x ∈ ker(π′A) ∩ (C ′)∗d with a representative x mod (I × {0}n)
for some x ∈ C∗d. We need to show that x ∈ ker(π′0). Since we have the third
diagram, we know that πA(x) = 0 must hold for the representative of x. From
the r-reconstruction of C∗d now follows that x ∈ ker(π0) and so x ∈ ker(ψ ◦π0).
Again going back to diagram two, we know now that x ∈ ker(π′0 ◦ ψ′) and
thus indeed x = ψ′(x) ∈ kerπ′0 follows. Which was what was to be shown. r-
Reconstruction for C ′ itself can be found with the help of the reduction lemma
2.13, from which the second axiom of n-codes for C ′ follows immediately.
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Theorem 5.9. Let C ⊆ S×Kn be an (n, t, d, r)-codex for S over K and define
the constant

M := max{dimK(S/I) | I ⊆ S an ideal such that I 6= S and S/I is local }.

Then we have the inequality:

n ≥ dM − d+ 1.

Proof. By Lemma 5.8 we have for any ideal I ⊆ S an (n, t, d, r)-codex for S/I
over K. Hence, for any ideal such that S/I is local we get the bound from
Theorem 5.7:

n ≥ ddimK(S/I)− d+ 1.

The statement follows immediately from this result.

There is a nice classification result for Artinian commutative rings [2, Thm 8.7]
which paraphrases to finite rings as:

Theorem 5.10. Let R be a finite commutative ring. Then R is isomorphic to
the direct sum of a number of finite local commutative rings R1, . . . , Rn.

R ∼=
n⊕
i=1

Ri.

Corollary 5.11. Let C ⊆ S ×Kn be an (n, t, d, r)-codex for S over K, m the
number of maximal ideals of S and k the dimension of S over K. Then the
following inequality holds:

n ≥ d k
m
− d+ 1

Proof. By 5.10 we have a decomposition of S into local subrings S1 ⊕ . . .⊕ Sm,
where m is the number of maximal ideals of S. (Indeed, the maximal ideals
are precisely the sets mi := S1 ⊕ . . .⊕mi ⊕ . . .⊕ Sm, where mi is the maximal
ideal of Si.) For each i ∈ {1, . . . ,m} we have the ideal Ii := ker(π{i}) of
elements that are zero in Si and for all of these we have S/Ii = Si is local. Now
note that the an ideal I for which S/I is local must be one of the of the form
S1⊕ . . .⊕Si−1⊕Ji⊕Si+1⊕ . . .⊕Sm, where Ji is an ideal of Si, because a local
ring cannot be decomposed non-trivially as a direct sum of rings. (Such a ring
would not have a unique maximal ideal.) Because for two ideals A,B ⊆ S for
which A ⊆ B we have the inequality dimK(S/A) ≥ dimK(S/B), we conclude
that max{dimK(S/I)} with S/I local must be an element of of {dimK(S/Ii)}.
Since the maximum of a set of integers is bigger than or equal to the average of
that set, the claim follows.

Yet again, we have not exploited all parameters at once in this theorem. This
time especially r and t could still be used more efficiently. Using the (not proved)
fact that we can just project an (n, t, d, r)-codex C ⊆ S×Kn for S over K onto
its first coordinates to get an (r, t, d, r)-codex π{0,...,r}(C) ⊆ S ×Kr for S over
K, and the reduction lemma 2.18 we create an enhancement:
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Theorem 5.12. Let C ⊆ S×Kn be an (n, t, d, r)-codex for S over K and define
the constant

M := max{dimK(S/I) | I ⊆ S an ideal such that S/I is local}.

Then we have the inequality:

r − t ≥ dM − d+ 1.

5.3 Tightness of the bounds

It is important to know when we cannot improve the bounds any further.
The Lagrange polynomial interpolation based codex can under some conditions
match the bounds that we have stated. In particular, if we have a field K that
is large enough to accommodate k + n elements, where n = d(k + t − 1) + 1
for some chosen d, k, t ∈ N with d, k ≤ 1, then Theorem 3.2 states that there
exists an (n, t, d, n)-codex for Kk over K and in the discussion at the end of
the section, we even see that we can construct similar codices over a product of
extensions of K. For these codices the bound of Corollary 5.11 becomes:

d(t+ k − 1) + 1 ≥ d k
m
− d+ 1,

which is tight if t = 0 andm = 1. Those two restrictions are readily met when we
pick the set P = {p0, . . . , pn}, that was introduced in the
proof of 3.2, such that p1, . . . , pn ∈ K, p0 in any algebraic extension of K
and take n = d(dimK(K(p0))− 1) + 1. But note that K must still suffice some
conditions on its size. The construction of Lagrange interpolation based codices
for rings other than fields noted at the end of Section 3 can be used to find tight
bounds with the same parameters. For example with the ring K[X]/(Xk).
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6 Prospects

The structure theorem on finite rings noted in section 5 showed some new possi-
bilities that can be exploited. Here I would like to sketch one of these prospects.
One of the problems we have been looking at near the end of the project was:

Problem. Suppose that C ⊆ A×B×Kn is an (n, t, d, r)-codex for A×B over
K and for the K-algebras A and B we know that any (nA, tA, d, rA)-codex for
A and any (nB , tB , d, rB)-codex for B over K there are inequalities:

nA ≥ lA, nB ≥ lB

hold for some values lA, lB ∈ N (possibly depending on A and B respectively).
Then under the assumption that A is a local ring, it holds that:

n ≥ lA + lB .

If this problem can be proved, then we can generalize Theorem 5.7 in such a
way that we actually retrieve a lower bound similar to the lower bound on the
complexity of an algebra that is proved in [1].

Corollary 6.1 (Under the assumption above). Suppose C ⊂ S × Kn is an
(n, t, d, r)-codex for S over K, and the problem stated is proven. Then if we
define m as the number of maximal ideals of S, we find:

n ≥ dk −m(d− 1).

Proof. There are S1, . . . , Sm such that S ∼=
⊕n

i=1 Si by the classification theo-
rem. All these Si are local finite algebras over K, and so for all i we know that
the inequality ni ≥ dki − d+ 1 holds for any (ni, ti, di, ri)-codex for Si over K.
Hence, by iterating the statement in the problem we find:

n ≥ dk −m(d− 1).

Lastly one sees quickly that in a finite direct sum of m local algebras, there are
precisely m maximal ideals. They are exactly the sets S1 ⊕ . . .⊕mi ⊕ . . .⊕Sm,
where mi is the maximal ideal of Si.

Remark. Note that the statement of Corollary 6.1 for the case m = 1 is true by
Theorem 5.7.

To place these results into their correct context, we would like to note that the
bound:

n ≥ 2k − 1

for (n, t, 2, r)-codices for F over K where F is an extension field of K of degree
k has been know since 1977, as a result of C. Fiduccia and Y. Zalcstein [10].
A generalisation for general algebras is implied by a result by A. Adler and V.
Strassen on the bilinear complexity of algebras in [1]. Their results imply:

n ≥ 2k −m

where m is the number of maximal ideals of the algebra. An affirmative answer
to the problem we posed above would also prove the same result and generalize
it for d ≥ 2, as we have seen in Corollary 6.1.
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