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INTRODUCTION

Let C be the category of finite groups. Let Ob(C) denote the class of objects of
C and let Ob(C)/= = {[G] : G € Ob(C)} denote the set of isomorphism classes.
The Grothendieck group G of C with respect to short exact sequences is the group
generated by Ob(C)/2 subject to the relations [G] = [H]|[N] € G if there exists a
short exact sequence
1-H—>G—N—>1.

Let p be zero or a prime number and let &, be the collection of all pairs (K, L)
where K is a field of characteristic p and L/K is a finite field extension. We call
(K, L) € & normal, Galois or separable if the field extension L/K is normal, Galois
or separable. Let D,: &, — G be given by D,(L/K) = [Autg(N)][Aut(N)] 71,
where [V is a finite extension of L that is normal over K. We will call the map D,
the Galois degree. In Section 5 we show that the Galois degree is well-defined, as
well as the following result.

Theorem 1. Suppose that (K,L) € &, and (L, M) € £,. Then

Dy(L/K) - Dp(M/L) = Dy(M/K).
We call a field extension L'/K' a base extension of a field extension L/K if there
exists a field homomorphism v¢: L — L’ with ¢(K) C K’ such that for each basis

B of L as a K-vector space, ¥(B) is a basis for L' as a K’-vector space. In Section
5 the following result will be shown.

Theorem 2. Assume that (K, L) € &, is normal and L'/K' is a base extension of
L/K. Then D,(L/K) = D,(L'/K").

Let A be a multiplicatively written abelian group. A map d: &, — A is called a
degree with values in A if it satisfies the following two conditions:

(i) if (K, L), (L, M) € &, then d(M/K) = d(M/L) - d(L/K) and

(ii) if (K, L) € &, is normal and L'/K’ is a base extension of L/K then d(L/K) =
d(L'/K").

We let Deg(p, A) denote the set of all degrees d: £, — A. A degree d: £, — A is
called universal if for each abelian group B the mapping Hom(A, B) — Deg(p, B)
sending f to f od is a bijection.

The main results of this thesis are the following two theorems, which will be proven
in Section 5.

Theorem 3. The Galois degree Dy: & — G is universal.



4

Theorem 4. Let p be prime and p? = {p" : n € Z} C Qso. Then the map
D: &, — G x p? given by D(L/K) = (D,(L/K),[L : K|;), where [L : K]; is the
inseparability degree of L/K, is a universal degree.

In Section 4, a simplification of a degree, called a basic degree will be studied. This
simplification consists of removing the condition that (K, L) is normal in (ii). In
other words a basic degree is a degree that satisfies the following condition instead
of (ii) above: (ii’) if (K,L) € &, and L'/K’ is a base extension of L/K then
d(L/K)=d(L'/K").

We let bdeg(p, A) denote the set of all basic degrees d: £, — A and call a basic
degree d: £, — A universal if for each abelian group B the map Hom(A, B) —
bdeg(p, B) sending f to f od is a bijection.

Results from Section 2 will show that D, is not a basic degree, which gives rise to
the question if there is a universal basic degree. In Section 4 this question will be
answered with the following two theorems.

Theorem 5. The basic degree d: & — (Qso,) given by d(L/K) = [L : K] is

universal.

Theorem 6. Let p be prime. Then the basic degree d: &, — (Q=0,) x p” given
by d(L/K) = ([L : K]s, [L : K];), where [L : K], is the separability degree of L/K,

is universal.

In the first two sections we will develop, mainly using Galois theory, some theory
on linear disjointness and base extensions. In Section 3 the group G will be studied
and the following result will be proven.

Theorem 7. Let S be the set of isomorphism classes of finite simple groups. Then
G is the free abelian group on S.



1. LINEAR DISJOINTNESS

Definition 1.1. Let L/K be a field extension and let R, S be K-subalgebras of L.
Then R and S are called K-linearly disjoint in L if the canonical ring homomor-
phism R ®k S — L is injective.

Proposition 1.2. Let L/K be a field extension and R, S be K-subalgebras of L.
If R and S are K-linearly disjoint in L then RN S = K.

Proof. Suppose K C RN S and let x € (RN S)\K. Then there exists a K-basis A
of R and a K-basis B of S such that {1,2} C AN B. Note that the elements 1 ® x
and x ® 1 are K-linearly independent in R® S. However under the canonical ring
homomorphism ¢: R®@g S — L the images of 1 ® x and  ® 1 are the same. Hence
¢ is not injective. O

Proposition 1.3. Let L/K be a field extension and R,S be K-linearly disjoint
K-subalgebras of L. If R’ (resp. S’) is a K-subalgebra of R (resp. of S) then R’
and S’ are K-linearly disjoint in L.

Proof. Let 1: R®g S — L be the canonical ring homomorphism. Note that R’ ®
S’ € R®k S and the canonical ring homomorphism x: R’ @k S — L is equal to
R @rs- Since R and S are K-linearly disjoint ¢ is injective. Hence & is injective
making R’ and S’ linearly disjoint over K in L. d

Proposition 1.4. Let L/K be a field extension and R, S be K-subalgebras of L.
Let I be a directed set. Suppose that R = lignRi is a direct limit of a directed
system {R;, fi;}, where R, is a subalgebra of R; and f;; is the inclusion of R; in
R; if ¢ < j, of K-subalgebras of L over I. Then R and S are K-linearly disjoint in
L if and only if for all 7 € I, the K-algebras R; and S are K-linearly disjoint in L.

Proof. Recall that direct limits and tensor products commute, so hg(Rl ®r S) =
(hg R;) ®k S. Let f;: R; — lim R;. Recall that direct limits have the following
universal mapping property. If? is a K-algebra with for each i € I a K-algebra
homomorphism v;: R; — C such that 1; = v, o f;; if i < j. Then there exists a
unique K-algebra homomorphism : hﬂRi — C' such that for all ¢ € I one has
¥ o f; = ;. One can find these properties of a directed system in chapter 2 of [1].
Extend the directed system {R;, fi;} to the directed system {R; ®x S, fi; ® ids}
and for each i € I let ¢;: R; ® S — L be the canonical ring homomorphism. Note
that ; satisfies the condition of second property hence one obtains a unique K-
algebra homomorphism : ligRi Rk S — L satisfying for each ¢ € I the equality
Yo (fi ®idg) = 1;. Note that f; ® idg is an inclusion hence injective. Therefore
is injective if and only if v; is injective for each i € I. The result now follows from
applying the first property. (I

Proposition 1.5. Let L/K be a field extension and R, S be K-subalgebras of L.
Then R and S are K-linearly disjoint in L if and only if the subfields they generate,
say E and F, are K-linearly disjoint in L.

Proof. Assume that R and S are K-linearly disjoint. It suffices to show that if
Z1,...,Tn, € E are K-linearly independent and yi,...,y, € F are K-linearly
independent then {x;y; }1<i<n,1<j<m are K-linearly independent in L. There exist
r1..., T, € R and $1,...,8m,8 € S, with r # 0 # s, such that x; = r;/r
and y; = s;/s for all ¢ and all j. Let a;; € K such that Z” o jrisj/rs = 0.
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Multiplication by rs yields Z” a; 735 = 0 hence a; ; = 0 for all 7 and all j. The
converse is immediate from Proposition 1.3. (]

Definition 1.6. Let K be a field and R and S be K-algebras that are domains. We
call R and S somewhere K -linearly disjoint if there exists a field extension L/K and
K-algebra embeddings of R and S into L such that R and S are K-linearly disjoint
in L. We call R and S everywhere K -linearly disjoint if for all field extensions L/K
and all K-algebra embeddings of R and S into L, the embeddings of R and S are
K-linearly disjoint in L.

Proposition 1.7. Let K be a field and R, S be K-algebras that are domains and
let Frac(R), Frac(S) denote the fraction fields of R and S. Then the following hold:

(i) R and S are somewhere K-linearly disjoint if and only if R® S is a domain.

(ii) R and S are everywhere K-linearly disjoint if and only if Frac(R) ® g Frac(S)
is a field.

Proof. (i). If R and S are somewhere K-linearly disjoint then R @ S can be em-
bedded in a field hence it is a domain. Conversely if R ®x S is a domain then it
can be embedded in its fraction field.

(ii). Suppose R and S are everywhere K-linearly disjoint. Note that T' = Frac(R)®x
Frac(S) D K. In order to show that T is a field it suffices to show that (0) is the
only maximal ideal of T. Let m C T be a maximal ideal, then F = T/m is a
field containing Frac(R) and Frac(S). Note that the induced map ¢: T — FE is
the quotient map T'— T/m. From the assumption that R and S are everywhere
K-linearly disjoint and Proposition 1.5 it follows that ¢ is injective hence m = (0).
Conversely suppose that Frac(R) ® g Frac(S) is a field. Let A be an arbitrary non-
trivial ring, then any ring homomorphism Frac(R) ® x Frac(S) — A is injective.
Hence any ring homomorphism from Frac(R) ® x Frac(S) to a non-trivial K-algebra
is injective. Since any field extension of K is a non-trivial K-algebra it follows that
Frac(R) and Frac(S) are everywhere K-linearly disjoint and so from Proposition
1.3 it follows that R and S are everywhere K-linearly disjoint. O

Proposition 1.8. Let K be a field and F, F field extensions of K that are contained
in a field Q. If E/K is finite then the following are equivalent:

(i) F and F are K-linearly disjoint in €;
(ii) E®g F is a field;
(i) [F: K] =[EF : F].

Proof. (iii) < (i). Let t: E ®kx F — EF be the canonical ring homomorphism.
Note that ¢ is a surjective F-linear map between finite dimensional F-vector spaces.
Hence dimp ker(¢) = [E : K] —[EF : F] and so ¢ is injective if and only if [F : K] =
[EF : F].

(ii) < (i). Suppose E and F are K-linearly disjoint in . Then E and F are
somewhere K-linearly disjoint. From Proposition 1.7 it follows that F ®x F is a
domain. Note that dimp(E®k F) < [E : K] hence EQ F is a finitely generated F-
vector space. Let © € E® g F be an arbitrary non-zero and let A\, : EQxS — EQkS
be given by A\, (y) = zy. Since F®x S is a domain A, is injective and since £ ®k S
is finitely generated as an F-vector space it follows that A, is surjective. From this
it immediately follows that £ ®k S is a field.

The converse is immediate from Proposition 1.7. O
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Theorem 1.9. Let K be a field and K C E,F be field extensions. Then the
following hold:

(i) Suppose E and F are everywhere K-linearly disjoint. Then at least one of F
and F is algebraic of K.

(ii) Suppose at least one of F and F is algebraic over K. Then E and F' are
somewhere K-linearly disjoint if and only if £ and F are everywhere K-
linearly disjoint.

Proof. (i). Suppose that both E and F are not algebraic over K. Assume that
E and F are everywhere K-linearly disjoint. Then it follows from Proposition
1.8 that F ®k F is a field. There exist transcendental subextensions K(a) C E
and K(b) C F. Let X be a variable. Let K(X) — K(a) and K(X) — K(b) be
given by X — a and X — b respectively. Let ¢: E ®@x F — E Qg (x) F be the
canonical ring homomorphism. Since £ ®x F is a field and E @k x) ' # {0}
it follows that ¢ is injective. Note that dimg ) (K (a) ®x K (b)) = oo and that
dim g () (K(a) QK (X) (K(b)) = 1. Since ¢(K(a) ®x K(b)) = K(a) QK (X) K(b) it
follows that ¢ is not injective. This is a contradiction. Hence E and F' are not
everywhere K-linearly disjoint.

(ii). Suppose E is algebraic over K and that E and F are K-linearly disjoint in
some field L. Let L’ be a field and let £ — L’ and F' — L’ be embeddings that
are equal on K. It needs to be shown that F and F' are K-linearly disjoint in
L’. Note that every algebraic extension is a direct limit of finite extensions. Hence
by Proposition 1.4 it is no loss of generality to assume that E/K is finite. From
Proposition 1.8 it follows that F ®x F' is a field and so from Proposition 1.7 it
follows that F and F' are everywhere K-linearly disjoint. The converse is clear. [

Proposition 1.10. Let K be a field and E, F' be field extensions of K that are
contained in a field 2. If E/K is finite Galois then the following hold:

(i) EF is Galois over I' and Gal(E/(ENF)) = Gal(EF/F);
(ii) E and F are K-linearly disjoint in 2 if and only if ENF = K.

Proof. (). It is well known from basic Galois theory that EF is Galois over F.
Define
¢: Gal(EF/F) — Gal(E/(ENF)), ¥ — ¥|g.

Note that ¢ is well defined since each ¢ € Gal(EF/F) is the identity on F' and so it
is the identity on ENF. By definition ¥|r= idr hence if ¥|g= idg then ¢ = idgp.
Hence ¢ is injective. Note that E™(#) = E'N F hence im(¢) = Gal(E/(E N F)).
Therefore ¢ is surjective and thus bijective. Hence from Galois theory it follows
that [EF : F] = [E: EN F).

(ii). If ENF = K then by part (i) one has [E : K| = [EF : F] and so from
Proposition 1.8 it follows that E and F' are K-linearly disjoint. The converse is
direct from Proposition 1.2. O

Notation. Let G be a group and H C G be a subgroup. Then Indg(H) denotes
the index of H in G.

Proposition 1.11. Let G be a finite group and let H,I C G be subgroups. Then
Indg(H NI) <Indg(H) - Indg(I) with equality if and only if G = HI.

Proof. Note that although HI need not be a group the number of cosets of I in
HT is still well-defined hence Indg(7) is well-defined. First we show Indg(I) =
Indgy(HNI). Let H act on G/I by left multiplication and let = I /I € G/I. Note
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that H NI = Stab(x) and HI/I is the orbit of x. Corollary 4.8 of [3] states that
if a group acts on a set, then for any element of the set the index of the stabilizer
is equal to the cardinality of the orbit. Hence #(HI/I) = #(H/(H NI)) and so
Indg;(I) = Indy(H N I). To prove the statement observe:

Indg(HNI)=Indg(H) -Indg(HNI)=Indg(H) - Indg;(I) < Indg(H) - Indg(I).
O

Proposition 1.12. Let L/K be finite Galois with G = Gal(L/K) and let H,I C G
be subgroups. Then L and L! are K-linearly disjoint if and only if G = HI.

Proof. From Proposition 1.8 it follows that L and L! are K-linearly disjoint if
and only if [L¥ : K] = [LHL! : L!] which is equivalent to [L¥L! : K| = [L¥ :
K][L! : K] since L/K is finite. From Galois theory one has L¥L! = LH" and
[L% : K] = Indg(S) for each subgroup S of G. Hence L¥ and L! are K-linearly
disjoint if and only if Indg(H NI) = Indg(H) - Indg(I) and so from Proposition
1.11 one obtains that L and L’ are K-linearly disjoint if and only if G = HI. O

2. BASE EXTENSIONS

Definition 2.1. A field extension L’'/K’ is called a base extension of a field ex-
tension L/K if there exists a field homomorphism ¢: L — L’ with ¢(K) C K’
satisfying the following two equivalent conditions:

(i) for every basis B of L as a K-vector space, ¢ (B) is a basis of L’ as a K’-vector
space;

(ii) the canonical map L ® x K’ — L’ is an isomorphism.

Remark 2.2 (Transitive property of base extensions). If L'/K’ is a base extension
of L/K and L"”/K" is a base extension of L'/K' then L”/K" is a base extension
of L/K.

Definition 2.3. A set {L;/K;}7_, of field extension is called a chain of base ex-
tensions if L;11/K;4+1 is a base extension of L;/K; or L;/K; is a base extension of
Li11/K;41 for each 0 <i < n.

The number n of base extensions in a chain (of base extensions) is called the length
of the chain.

Two field extension L/K and L'/K' are called connected if there exists a chain of
base extensions containing L/K and L'/K’.

Proposition 2.4. Let K be a field and K C L, M be two field extensions that
are everywhere K-linearly disjoint. Then L ® g M /M is a base extension of L/K.
Moreover if L and M are contained in a larger field Q then LM /M is a base
extension of L/K.

Proof. From Proposition 1.7 it follows that L @k M is a field. It is immediate
from the definition that L ® x M/M is a base extension of L/K. Suppose L and
M are contained in a larger field 2. Let ¢: L ® x M — LM be the canonical
homomorphism. Note that ¢ is surjective. Moreover since L ®x M is a field and
LM # {0} it follows that ¢ is injective. Hence ¢ is a isomorphism and thus LM /M
is a base extension of L/K. O

Proposition 2.5. Let L/K be a finite Galois extension and let L'/K’ be a base
extension of L/K. Then L'/K’ is finite Galois and Gal(L/K) = Gal(L'/K').
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Proof. Since L'/K' is a base extension of L/K there is an field homomorphism
v: L — L'. Identify L and K with their images under ¢ and take Q = L’. Note
that L and K’ are K-linearly disjoint in L’. Hence from Proposition 1.2 it follows
that L N K’ = K. From Proposition 1.8 it follows that [L : K] = [LK' : K'] hence
it follows that LK’ = L’. The result follows from Proposition 1.10. O

Definition 2.6. Let G and H be groups, let X be a G-set and Y be a H-set. Let
¢: G — H be a group homomorphism and ¥: Y — X be a map. The actions of
G and H are called compatible through ¢ and v if for all ¢ € G and all y € Y the
equality ¢(*9)y) = 9(¢(y)) holds.

Theorem 2.7. Let E and F be fields with the same characteristic. Let G C Aut(F)
and S C Aut(E) be finite subgroups and let ' C S be a subgroup. Let ¢: G — S
be a group homomorphism and let ¢): F — F be an field homomorphism. Suppose
that the actions of G and S are compatible through ¢ and 1 and that G acts
transitively on S/T" through ¢, and let H = Stab(T/T) C G. Then FH/F¢ is a
base extension of ET/ES.

Proof. Since the actions of G and S are compatible so are the actions of ¢(G) and S.
Since G acts transitively on S/T so does ¢(G), which is equivalent to S = T'¢(G).
Hence from Proposition 1.12 it follows that E7 and E?(%) are linearly disjoint over
ES. From the definition of H one has ¢(H) = T N ¢(G) and from Galois theory it
follows that ET E¢(@) = Eo(H)  Applying Proposition 2.4 with K = E°, L = ET
and M = E?(©) yields that E*(H) /E#(©) is a base extension of ET /E*. Note that
: E — (FE) is an isomorphism and that the composition of an isomorphism with
a base extension is again a base extension. With the compatibility of the actions
it follows that ¢ (E)H /4 (E)Y is a base extension of ET/E®. Since (E)/¥(E)% is
Galois one obtains from Proposition 1.10 that ¢(E) and F are linearly disjoint
over Y(E) N FY = ¢(E)¢. From Proposition 1.3 it follows that ¢(E)? and F¢
are ¥(F)C-linearly disjoint. Note 1(E)? F¢ c FH and by Proposition 1.8 and the
assumption that G acts transitively on S/T one has

() FC: FO = [p(B) - p(B)¥] =[G : H] = [F" : FY].

Hence ¢(E)! FEG = FH. By the transitive property of base extensions F¥ /FC is
a base extension of ET /ES.

T o(H) H
708 2 @) g2 g
g < g v w%) = ?
E‘T EqJ(H) w(E")H F‘H
E‘s E¢>‘(G> w(é)G F‘G

d

Notation. Let K be a field and let X = {X; : ¢ € I} be a set of independent
variables. Then K (X') denotes the field of rational functions in the variables X; € X
over K.
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Theorem 2.8. Let K, K’ be fields with the same characteristic and let n € Z~q.
Suppose L/K, L'/K' are finite separable field extensions of degree n. Then there
exists a chain of base extensions of length 4 connecting L/K with L'/K'.

Proof. Let M be a Galois closure of L and let G = Gal(M/K). Let Homg (L, M)
denote the set of field homomorphism L — M that are the identity on K. Note
that G acts naturally on Homg (L, M) by composition. Let H C G be the stabilizer
of the inclusion ¢ € Homg (L, M) of L into M, then M = L. Let X = {X, :
a € Homg (L, M)} be a set of independent variables. The group G acts on M(X)
by its action on M and its action on X. Note that this action is compatible with
the action of G on M. Hence from Theorem 2.7 it follows that M (X)# /M(X)“
is a base extension of M /MY = L /K. Let S be the symmetric group of the set
Hompg (L, M) and let T C S be the stabilizer of ¢. Let F be the prime field of K
and let S act on F(X) by its action on X. Note that the action of G on M(X) is
compatible with the action of S on F(X). Through its action on Homg (L, M) the
group G is a subgroup of S. Since G acts transitively on Homyg (L, M) and T is
a stabilizer it follows that S = GT which is equivalent to G acting transitively on
S/T. Hence from Theorem 2.7 it follows that M (X) /M (X)€Y is a base extension
of F(X)T /F(X)?, hence one obtains the following chain of base extensions of length
two:

{L/K,M(X)"/M(X)% F(X)" /F(X)5}.

Repeating the argument above for L’/ K’ yields a similar chain of base extensions
of length two. Note that n = #Homg (L, M) = #Homg (L', M') hence the sym-
metric groups are isomorphic. It is clear that by identifying the inclusion of L in
M with the inclusion of L’ in M’ one obtains a group isomorphism ¢: S — S’ such
that ¢(T) = T". Hence M'(X")?' /M'(X’)%" is a base extension of F(X)T /F(X)S.
Therefore one obtains the following chain of base extensions connecting L/K to
L' /K’ of length four:

{L/5M(20)" /(2 F ()T /E ()5, M (X /0 (X)L K
O

Definition 2.9. A base extension L'/K' of L/K is called trivial if there exists a
field isomorphism 1: L — L’ that satisfies the conditions of Definition 2.1.

Example 2.10. Let Q be an algebraic closure of Q and let (5, (s € Q be a 5" and
an 81 primitive root of unity. Then it follows from Galois theory that Q({s)/Q and
Q(¢s)/Q are finite Galois extensions with Gal(Q(¢5)/Q) = Cy and Gal(Q((s)/Q) =
V4, where Cy is the cyclic group of order 4 and Vj is the Klein four-group. From
the above theorem it follows that there exists a chain of base extensions of length
4 connecting Q(¢5)/Q with Q(¢s)/Q. In this example we show that there does
not exist a shorter such chain. Since V; 2 C, it follows from Proposition 2.5
that Q(¢5)/Q is not a base extension of of Q({s)/Q. Hence there is no chain of
length equal to one. Suppose that Q({5)/Q is a base extension of L/K. Then it
immediately follows that K = Q and L = Q({5). Hence Q({5)/Q is not a non-
trivial base extension of a field extension L/K. It is clear that this argument also
applies to Q(¢s)/Q. Form this it follows that a chain of length 3 can be shortened
using the transitive property of base extensions to a chain of length equal to 2 or
1. It remains to show that there is no chain of length two. Suppose that there is
such a chain. Then there exists a field extension L/K such that L/K is a base
extension both of Q({5)/Q and of Q(¢s)/Q. From Proposition 2.5 it follows that
L/K is Galois and that V3 = Gal(L/K) = Cy4. This is a contradiction hence there
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is no chain of length two. Hence there is no chain of base extensions connecting
Q(¢5)/Q with Q(¢s)/Q of length shorter than four.

Proposition 2.11. Let p be prime and K a field of characteristic p and let f €
K[X] be irreducible. Write f(X) = g(X?") with m > 0 maximal. Then g is
irreducible and separable over K and each root of f has multiplicity equal to p™.

Proof. Since deg f = p™ deg g there is a largest possible m that can be used. Note
that since f(X) = g(XP"), any non-trivial factorisation of g gives a non-trivial
factorisation of f hence g is irreducible in K[X]. Since g is irreducible it follows
that g is separable if and only if its derivative is non-zero. By the maximality of
m it follows that g is not a polynomial in XP, hence its derivative is non-zero. Let
M/K be a splitting field of g and factor g over M as

g X)=c(X —a1)(X —az2) - (X — ap).

Note that the a; are distinct since g is separable. Take bq,...,b, in a sufficiently
large field extension of M such that a; = b? . Tt follows from the distinctness of
the a; that the b; are distinct. From this it follows that

FX) = g(XP") = e(XP" —a1) - (XP" —an) = (X —by)P" - (X — b, )",
which shows that the roots of f have multiplicity equal to p™. O

Corollary 2.12. Let p be prime and K a field of characteristic p. Suppose that
f € K[X] is irreducible with exactly one root in a splitting field over K. Then f is
of the form X?" — a for some m > 0.

Corollary 2.13. Let p be prime, K a field of characteristic p and L/K a finite
purely inseparable field extension. Then [L : K| = p™ for some n > 0 and there
exists a tower of field extensions K = L,, C L,_1 C ...Ly C Ly = L such that
L;/L;41 is purely inseparable of degree p.

Theorem 2.14. Let p be prime and let K, K’ be fields of characteristic p. Suppose
that L/K and L'/K’ are purely inseparable field extensions such that [L : K|; =
[L': K']; = p. Then there exists a chain of base extensions of length 2 connecting
L/K with L' /K.

Proof. Since [L : K]; = p there exists o € L such that L = K(«) and of € K.
Similarly there exists o € L’ such that L’ = K'(a’) and (/)P € K’. Note that
a and o are transcendental over F,. Let T be a variable. Let ¢: F,(T) — L
be the field homomorphism such that ¢(T) = « and let ¢': F,(T) — L’ be the
field homomorphism such that ¢'(T") = o’. It is clear that ¢ and ¢ make L/K
and L'/K’ into base extensions of F,(T")/F,(T%). Hence one obtains the following
chain of base extensions of length 2 connecting L/K with L'/K’:

{L/K,F,(T)/F,(T"),L'/K'}.
(]
Definition 2.15. A chain of base extensions {L;/K;}}", is called group preserving
if each L;/K; is finite Galois.

Remark 2.16. Let {L;/K;}" , be a group preserving chain of base extensions.
Then it follows from Proposition 2.5 that Gal(L;/K;) = Gal(L;/K;) for 0 <4,j <
n.
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Theorem 2.17. Let K, K’ be fields with the same characteristic. Suppose L/K,
L’'/K’ are finite Galois extensions such that Gal(L/K) = Gal(L'/K’). Then there
exists a group preserving chain of base extensions of length 4 connecting L/K with
/K’

Proof. Set G = Gal(L/K) and let X = {X, : ¢ € G} be a set of independent
variables. Let G act on L(X) by its action on L and its action on X. The action
of G on L(X) is compatible with the action of G on L. Hence from Theorem 2.7 it
follows that L(X)/L(X)¢ is a base extension of L/K. Let F be the prime field of K
and let G act on F(X) by its action on X. The action of G on L(X) is compatible
with the action of G on F(X'). Hence Theorem 2.7 shows that L(X)/L(X)% is a base
extension of F(X)/F(X)Y. Let G act on L'(X) by its action on L’ and its action
on X. Applying the arguments above to L'(X) one obtains, using Proposition 2.5,
the following group preserving chain of base extensions of length 4:

{L/K,L(X)/L(X)% F(X)/F(X)°, L'(X)/L' ()%, L'/K"}.
O

Example 2.18. Let F be a prime field and let L/F be a Galois extension such
that Gal(L/F) = Cy. Let F C K C L be the fixed field of Cy < Cy. Then is K/F
is Galois and Cy = Gal(L/K) = Gal(K/F). From the theorem above it follows
that there exists a group preserving chain of base extensions connecting K /F with
L/K of length four. In this example we show that there does not exist a shorter
such chain. First note that L/K is not a base extension of K/F hence there does
not exist a chain of length one. Using similar arguments as in Example 2.10 it
follows that K/F is not a non-trivial base extension. Suppose that L/K is a base
extension of M/N. From Gal(K/F) = C; it follows that either L/K is a trivial
base extension of M/N or N =F and M = K. Since L/K is not a base extension
of K/F it follows that L/K is not a non-trivial base extension of M/N. It follows
from this that a chain of length 3 can be shortened using the transitive property
of base extensions to a chain of length equal to 2 or 1. Hence to show that there
does not exist a chain of length shorter than 4 it suffices to show that there is no
chain of length 2. Suppose that M/N is a base extension of L/K and of K/F. Let
Homp (K, M) be the set of field homomorphisms L — M which are the identity
on F and let ¢ € Homp(K, M) be arbitrary. Note that Auty(M) acts transitively
on Homp (K, M) by composition. It follows from the fact that K/F is normal that
o(p(K)) = ¢(K) for all o € Autp(M). Let ¢p: L — M be as in the definition
of a base extension. Note that ¢|x€ Homp(K, M) and that ¢/(K) C N. Hence
it follows that ¢(K) C N for all ¢ € Homp(K, M). Therefore M/N cannot be a
base extension of K/F. Hence there does not exist a group preserving chain of base
extensions connecting K /F with L/K of length shorter than 4.

3. THE GROTHENDIECK GROUP OF FINITE GROUPS

Definition 3.1. Let G be a group. A series
{1}=G,CGr1C...CG1 CGy=G
of subgroups of G is called subnormal if G; <G;_1 for 0 < i <n.
Definition 3.2. Let
(%) {1}=G,CGp1C...CG1 CGy =G
() {1}=H,CHp,1C...CH CHy=G
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be two subnormal series of a group G. The subnormal series (xx) is called a refine-
ment of () if (%) = (x) or (xx) is obtained from (x) by insertion of subgroups.
The subnormal series (x) and (xx) are called equivalent if there exists a bijection

c:{0,1,....,n—1} = {0,1,...,m — 1}
such that G;/Giy1 = Hy i)/ Hy ()41 for each .
Definition 3.3. A subnormal series
{1}=G,CGr1C...CGL CGy=G

of a group G is called a composition series if each G;41 is a maximal normal
subgroup in G;.

Remark 3.4. A subnormal series

{1} =G, CGr1C...CG1 CGy=G
of a group G is a composition series if and only if G;/G;41 is simple for all 4.
Remark 3.5. Let G be a finite group. Then G has a composition series.

Theorem 3.6 (Jordan-Hoélder-Schreier). Let G be a group. Then any two subnor-
mal series of G have refinements that are equivalent. Moreover any two composition
series of G are equivalent.

Proof. See [2]. O

Definition 3.7. Let G be a group with a composition series
{1} =G, CGr1C...C G CGy=G.
The factor groups G;/G;41 are called the composition factors of G.

Remark 3.8. From Theorem 3.6 it follows that two composition series of a group
G are equivalent. Therefore the composition factors of a group are well-defined.

Definition 3.9. Let C be the category of finite groups. Let Ob(C) denote the
class of objects of C and let Ob(C)/= denote the set of isomorphism classes. The
Grothendieck group G on C with respect to short exact sequences is the group
generated by Ob(C)/2 subject to the relations [G] = [H]|[N] € G if there exists a
short exact sequence

1-H—-G—N—1.

Remark 3.10. The Grothendieck group G satisfies the following universal mapping
property. For each group B and each map ¢: Ob(C)/2 — B which satisfies ¢([G]) =
d([H])#([N]) if there exists as short exact sequence

1-H—->G—-N-—=1
there exists a unique group homomorphism h: G — B such that hoidop(c)/~ = ¢.

Proposition 3.11. Let B be a group with a map ¢: Ob(C)/= — B that satisfies
Y([G]) = ([H])Y([N]) if there exists a short exact sequence

1-H—-G—N —1.

Suppose that B and v satisfy the universal mapping property of G. Then there
exists a unique group isomorphism h: G — B such that hoidoy(c)/~ = 1. Moreover
h satisfies k! o) = idop(c) /=
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Proof. Since G satisfies the universal mapping property there exists a unique group
homomorphism h: G — B such that hoidoy )/~ = . Furthermore since B and 1
satisfy the universal mapping property there exists a unique group homomorphism
h': B — G such that h'ot) = idop(c)/~. From this it follows that ¢ = hoidopc)/~ =
(hoh') o1 hence hoh' =idg and similarly A’ o h = idg. Hence h' = h™1. O

Proposition 3.12. Let B be an arbitrary group with a map ¢: (Ob(C)/=) — B
such that ¢([G]) = ¢([H])¢([N]) if there exists a short exact sequence

1-H—-G—N—>1.
Then the following hold:

(i) ¢({1}) =1€ B;
(ii) the image of ¢ generates an abelian subgroup of B;

(iii) let G be a finite group with a subnormal series {1} =G, C ... C G; C Gy =
G and let Q; = G;_1/G,. Then the equality ¢([G]) = []}, #([Qi]) holds in
B.

Proof. (i). Let G be an arbitrary finite group. Then the following short sequence
is exact:

1G5 G151
Therefore ¢([G]) = ¢([G])@([{1}]) hence ¢([{1}]) =1 € B.
(ii). Let G and H be finite groups. Note that the following short sequences are
exact:

g—(g,1) M}

1-G——5GxH H—1,

T S CONGIV : SCLDIS NN

Hence it follows that [G][H] = [G x H] = [H]|G] € B.
(iii). Note that for 0 < i < n the short sequence

I%Gz%Gz_lﬁQlﬁl

is exact, hence ¢([Qi]) = #([Gi—1])¢(|Gi])~! in B. From part (i) and part (ii) it
follows that

L) = H (@([Gima])o([G) ) = o([Go)o(IGa)) ™" = &([G]).

O

Theorem 3.13. Let S C Ob(C)/= be the set of isomorphism classes of simple
groups. Then G is the free abelian group on S.

Proof. Let A be the free abelian group on S. Define the map ¢: (Ob(C)/=) — A
by ¥([G]) = [1-,(Qi] where Q1,...,Q, are the composition factors of G. From
Remark 3.8 it follows that 1 is well-defined. Let

1-HLae% N

be a short exact sequence of finite groups. Then H = f(H) <G and N = G/f(H).
Hence {1} < H <G is a subnormal series which can be extended to a composition
series

{1} =G, CGp1C...CGy=f(H)C...CGy=0G.
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Take Q; = G;—1/G; for 0 < i < n. Since {0} = G, C ... C Gy, = f(H) is a
composition series it follows that Qx41,...Q, are the composition factors of H.

Moreover 1, ..., Qk are the composition factors of N. Hence it follows that
n n k
v(G) = [[l@i] = ( II [QJ) (H[QJ) = B([H)W(IN)-
i=1 i=k—+1 i=1

Let B be a group and ¢: (Ob(C)/%) — B a map that satisfies ¢([G]) = ¢([H])d([N])
if there exists a short exact sequence

1-H—-G—N —1.

Define h: S — B by h([S]) = #([S]). From Proposition 3.12 it follows that without
loss of generality it can be assumed that B is abelian. By the universal mapping
property of a free abelian group it follows that i can be extended uniquely to a group
homomorphism h: A — B. Let [G] € Ob(C)/= be arbitrary and let Q1 ..., Q, be
the composition factors of G. Then from Proposition 3.12 it follows that

#((6)) = [T e(Q) = [Th(Q]) = (hov)(G).

4. BASIC DEGREES

Definition 4.1. Let p be zero or a prime number and let £, be the collection of
all pairs (K, L) with K a field of characteristic p and L a finite field extension of
K. Let A be a multiplicatively written abelian group. A basic degree with values
in A is amap d: £, — A such that:

(i) if (K,L) € &, and (L, M) € &, then d(M/K) = d(M/L) - d(L/K),

(ii) if (K,L) € &, and (K’,L’") is a base extension of (K,L) then d(L/K) =
d(L'/K").

Let bdeg(p, A) denote the set of basic degrees d: £, — A.

A basic degree d: £, — A is called universal if for each multiplicatively written
abelian group B the mapping Hom(A, B) — bdeg(p, B) sending f to fod is a
bijection.

Remark 4.2. If d: £, =+ A and d': £, — B are two universal basic degrees then
there exists a unique group isomorphism h: A — B such that hod = d’. Moreover
h satisfies h™! o d’ = d.

Example 4.3. Let p be zero or a prime number. Then the following are examples
of basic degrees:

(i) gp - {1}7 (KvL) = 1;
(ii) & — (Qs0,-), (K, L) = [L : KJ;

(iii) If d: & — A a basic degree and B is a group with a group homomorphism
f: A— Bthen fod is a basic degree.

Proposition 4.4. Let p be zero or a prime number. Then for all n,m € Zsq
there exists a tower of field extensions K C L C M such that Char (K) = p and
(IL : K]s,[M : L]s) = (n,m). Moreover if p is prime then for all n € Z( there
exists a field extension L/K such that [L: K|; =n and [L: K]; = p.
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Proof. Let n,m € Zq be arbitrary and let X be a variable. Note that Q(X™™) C
Q(X™) C Q(X) is a tower of separable field extensions such that [Q(X™) :
QX™")]; = n and [Q(X) : Q(X™)]s = m. Assume that p is prime. Let F,
be an algebraic closure of F,, and let F' € Auty, (F),) be the Frobenius map. From
Galois theory it follows that Fyn = {a € F, : F"(a) = a} is a separable field
extension of F,, of degree n. Hence it follows that F,, C Fpn C Fpem is a tower
of separable field extensions such that [Fpn : Fpls = n and [Fpnm : Fpn]s = m.
Note that Fy,» (XP)/F,(XP) is a base extension of Fyn /F,, hence Fyn (X?)/F,(XP)
is a separable extension of degree n. It is clear that Fyn (X)/F,n(X?) is a purely
inseparable field extension such that [Fpn(X) : Fpn(XP)]; = p. Hence it follows
that Fpn (X)/F,(X?) is a field extension such that [Fp»(X) : Fp(XP)]s = n and
[Fpr (X) : Fp(XP)]i = p. O

Theorem 4.5. The basic degree d: & — (Qso,-) given by d(K,L) — [L : K] is

universal.

Proof. Let B be an arbitrary multiplicatively written abelian group and d’: £ — B
an arbitrary basic degree with values in B. Let (K, L), (K',L") € & be such that
[L:K]=|[L:K']. Then from Theorem 2.8 it follows that d'(L/K) = d'(L'/K").
Define the map ¢: Zsg — B by ¢(n) = d'(L/K) where [L : K] = n. From
Proposition 4.4 and the above it follows that ¢ is well-defined and multiplicative
hence ¢ can be extended to a group homomorphism ¢: Qso — B. Note that ¢
is unique since every group homomorphism on Q- is uniquely determined by its
values on Z~y. Moreover it follows in a straightforward way from the definition of
¢ that ¢ od = d’. This proves that d is universal. O

Notation. Let L/K be a field extension. Then Sep; (K) denotes the separable
closure of K in L.

Theorem 4.6. Let p > 0 be prime and pZ = {p" : n € Z} C Q. Then the basic
degree d: &, — (Qs0,") x p% given by d(L/K) = ([L : K]s,[L : K];) is universal.

Proof. Let B be an arbitrary multiplicatively written abelian group and d’: & — B
an arbitrary basic degree with values in B. Let (K, L), (K’',L") € &, be such that
[L:K]s=[L: K'];and [L : K]; = [L' : K'];. Then from Theorem 2.8 it fol-
lows that d'(Sep,(K)/K) = d'(Sep.,(K')/K’). From Corollary 2.13 and Theorem
2.14 it follows that d'(L/Sep; (K)) = d'(L'/Sep(K')). Therefore it follows that
d(L/K)=d'(L'/K"). Define ¢: Q=¢ x p* — B by

¢ (a/b,p") = d'(La/Ka)(d'(Ly/Kp)) " (d'(L'/K))"

where L,/ K, (resp. Ly/Kp) is a separable field extension of degree a (resp. degree
b) and L'/K' is a purely inseparable field extension of degree p. It follows from
Proposition 4.4 that ¢ is a well-defined group homomorphism. Let (K,L) € &,
be arbitrary. Then from Theorem 2.14 and Corollary 2.13 it follows that if [L :
K]; = p"™ then d'(L/Sep.(K)) = d'(L'/K’)™ where L'/K’ is a purely inseparable
extension of degree p. Hence the following holds:

d'(L/K) = d'(Sep,(K)/K)d'(L/Sep.(K)) = ¢([L : K], [L : K];) = (¢ 0 d)(K, L).

Hence ¢ satisfies ¢ od = d’. It is clear that ¢ is unique. This shows that d is a
universal basic degree. O
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5. DEGREES OF FIELD EXTENSIONS

Definition 5.1. Let p be zero or prime and A be a multiplicatively written abelian
group. A degree with values in A is a map d: £, — A such that:

(i) if (K, L), (L, M) € &, then d(M/K) = d(M/L) - d(L/K);

(ii) if (K, L) € &, is normal and L'/K’ is a base extension of L/K then d(L/K) =
d(L'/K").

Let Deg(p, A) denote the set of all degrees d: &£, — A.
A degree d: £, — A is called universal if for each multiplicatively written abelian
group B the mapping Hom(A4, B) — Deg(p, B) sending f to f od is a bijection.

Definition 5.2. Let K be a field of characteristic p > 0 and let L/K be a
field extension. Let a € L. If a?" € K for some n € Z>o then « is called
purely inseparable. The inseparable closure of K in L is Insp(K) = {a € L :
« is purely inseparable over K }.

Proposition 5.3. Let K C L C M be a tower of field extensions such that L/K
is purely inseparable and M /L is normal. Then is M/K a normal extension and
AutK(M) = AutL(M).

Proof. Let M be an algebraic closure of M and let Homg (M, M) be the set of field
homomorphism M — M that are the identity on K. Let ¢ € Homg (M, M) be
arbitrary. Let a € L arbitrary and let f € K[X] be irreducible such that f(«) = 0.
Then f(¢(«)) = 0 and since L/K is purely inseparable it follows that ¢(a) = a.
Hence ¢ is a L-homomorphism and since M /L is normal it follows that ¢(M) = M
making M /K normal. Similar argumentation shows that each 1 € Autg (M) is an
L-homomorphism hence Autg (M) = Auty,(M). O

Proposition 5.4. Let L/K be an algebraic extension. Then the following hold:
(i) L =Sepy,(K)Insy(K) if and only if L is separable over Insy, (K).

(ii) if L/K is normal then L is separable over Insy, (K).

Proof. (i). If L = Sepy (K)Insy,(K) then L is obtained by adjoining to Insy(K)
roots of separable polynomials with coefficients in K, hence by polynomials with co-
efficients in Insy, (K). Conversely if L/Insy, (K) is separable then L/Insz, (K)Sep; (K)
is separable. Similarly since L/Sep; (K) is purely inseparable so is

L/Insy (K)Sep; (K). Hence L/Insy(K)Sepy (K) is both separable and purely in-
separable hence L = Sep;, (K)Insy, (K).

(ii). Let o € L\Insp(K). Then « is not inseparable over K. Hence the mini-
mal polynomial f of a over K has at least one other distinct root § in an alge-
braic closure. Since L/K is normal it follows that 8 € L. Note that there exists
o € Autg (L) such that o(a) = 8. Let g be the minimal polynomial of a over
Insy, (K) and let ayq, ..., «, be the distinct roots of g in an algebraic closure. Note
that r = [];_, (X —ay) is separable and invariant under the action of Autyy, (x)(L).
Hence r € Insg (K)[X] and thus K/Insy(K) is obtained by adjoining roots of sep-
arable polynomials and therefore is L/Insy, (K) separable. O

Theorem 5.5. Let p be zero or a prime number. The map D,: & — G given
by D,(L/K) = [Autx(N)][Aut,(N)]~!, where N is a finite extension of L that is
normal over K, is a degree.
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Proof. Tt first needs to be shown that D, is well-defined. Let (K, L) € &, arbitrary.
Let Ny, Ny be two finite extensions of L that are normal over Insy (K). It follows
from Proposition 5.3 that N;/K and Ny/K are normal hence M = N; N Ny is
normal over K. From the normality of N;/K, where i = 1,2, and M/K it follows
that the short sequences

) 0"—>O“]\4

1— AutM(Ni) —>AutL(Ni AutL(M) —1

0‘*—)0“1\/1

1— AutM(Ni) —>AutK(Ni) AutK(M) —1

are exact. Hence from Proposition 3.12 it follows that for i = 1,2
[Aut g (N)][Autr, (N:)] 7! = [Autag (N;)][Aut g (M)][Auty, (M)~ [Aut (N;)] 1
= [Autg (M)][Auty (M)] 1.
From Proposition 5.3 it follows that D, is well defined.

Let (K,L),(L,M) € &, be arbitrary and let N be a finite extension of M that is
normal over K. Then from the above it follows that:

Dy(L/K) - Dp(M/L) = [Aut g (N)][Autz (N)] 7! - [Autz (N)][Auta (N)] 7!
= [Autx (N)][Autp (N)] ™! = D,(M/K).

Suppose that L/K is normal and that L'/K’ is a base extension of L/K. From
Proposition 5.4 it follows that L/Ins; (K) is separable. Let ¢»: L — L' be as in
the definition of a base extension. It is clear that ¢ (Insy(K)) C Insy/(K'). Hence
L' /Tnsy (K') is a base extension of L/Insy(K). Therefore it follows from propo-
sition 5.3 that it is no loss of generality to assume that L/K is separable. Hence
L/K is Galois and from Proposition 2.5 it follows that D,(L/K) = D,(L'/K").
Hence D, is a degree. O

Definition 5.6. Let p be zero or a prime number. We call the degree D,, given in
Theorem 5.5 the Galois degree.

Example 5.7. Let p be zero or prime. Then the following are degrees:
(i) Every basic degree d: £, — A is a degree;
(ii) The Galois degree D,;

(iii) Assume p is prime. Then the map D: &, — G x p” given by D(L/K) =
(Dp(L/K),[L : K];) is a degree.

The second statement is proven below.
Proposition 5.8. Let p be prime or zero. Then the following hold:

(i) For all finite groups G and H there exists a tower of Galois extensions K C
L C M such that Char (K) = p and Gal(M/L) = G, Gal(L/K) = H and
Gal(M/K)= G x H.

(ii) Let G be a finite group with composition factors Q1,...,Q,. Then there
exists a tower of Galois extensions Lo € Ly € ... C L,_1 C L, and a
permutation ¢ € S,, such that Char(Lg) = p and Gal(L,/Lo) = G and
Gal(Li/Li—1) = Qo)

(iii) If p is prime, G, H are finite groups and n,m € Z>q. Then there exists a
tower of field extensions K C L C M such that Autg (L) = H, Autpy (L) 2 G,
[L:K];=p", [M:L]; =p™ and Autg (M) =G x H.
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Proof. (i). Let F be the prime field of characteristic pand let X = {X, : 0 € GxH}
be a set of independent variables and let G x H act on X by "X, = X, for all
7,0 € G x H. Take M = F(X) and let G x H act on M trough its action on X.
Note that G x {1} <G x H hence from Galois theory it follows that

MGXH C MGX{l} cM
is a tower of Galois extensions with
Gal(M/ME 1) >~ G and Gal(ME NG Hy ~ |,

(ii). Let {1} = G, C ... C G1 C Gy = G be a composition series of G. Then by
Theorem 3.6 there exists a permutation o € S,, such that G;/G;11 = Qo(i)- From
part (i) it follows that there exists a Galois extension L/K such that Char (K) =p
and Gal(L/K) = G. For 0 < i < n define L; = L%, then Ly = K and L, = L.
Since G; is normal in G;_; it follows from Galois theory that L;/L;_; is Galois
with Galois group isomorphic to G;/G;_1.

(iii). Let K’ ¢ L' C M’ be a tower of Galois extensions such that Gal(L'/K’) &
H, Gal(M'/L’) &2 G and Gal(M'/K') 2 G x H. The exists of such a tower
follows from part (i). Let X and Y be two independent variables. Define K =
K'(XP" ) yP™), L = L'(X,Y?") and M = M'(X,Y). Then [M : L]; = p™ and
[L: K]; = p". Note that L/K’(X,Y?") is a base extension of M’/K’. Hence from
Proposition 2.5 it follows that L/K(X,Y?") is Galois with Gal(L/K(X,Y?") =
Gal(L'/K"). Note that K(X,Y?") = Ins;(K). Hence from Proposition 5.4 it
follows that L/K is normal. Therefore Auty (L) = Autyys, (x)(L) = H. Applying
the same arguments to M /L and M /K yields Auty (M) = Autyy,,()(M) = G and
AutK(M):AutInSM(K)(M)%GXH. O

Example 5.9. In this example it will be shown that the Galois degree D,,, where
p is zero or a prime number, is not a basic degree. Hence it will be shown that not
every degree is a basic degree. Consider the groups As and G = C3 x C4 x C5 and
note that #A4s = #G = 60. Let (K,L),(K',L") € £, be Galois extensions such
that Gal(L/K) = As and Gal(L'/K') = G. Proposition 5.8 shows that such L/K
and L'/K’ exist. Suppose that D, is a basic degree. Then from Theorem 2.8 it
follows that D,(L/K) = D,(L'/K’). Theorem 4.33 of 3] states that A,, is simple
for n > 5. From this and Theorem 3.13 it follows that [A5] # [G] = [C5][C4][C5] € G
hence D,(L/K) # D,(L'/K') contradicting D,, being a basic degree.

Definition 5.10. A Galois extension L/K is called simple if Gal(L/K) is simple.

Notation. Let L/K be a finite separable extension. Then GClg (L) denotes a
Galois closure of L/K.

Theorem 5.11. The Galois degree Dy is universal.

Proof. Let B be an arbitrary abelian group and let d': & — B be an arbitrary de-
gree. Let (K,L),(K',L") € & such that Gal(GClk(L)/K) = Gal(GClg/(L")/K")
and Gal(GClg(L)/L) = Gal(GClg/(L')/L"). Then it follows from Theorem 2.17
that d'(L/K) =d'(L'/K'). Let Q1,...,Q, be the composition factors of
Gal(GClg (L)/K) and let (K;,L;) € & be Galois such that Gal(L;/K;) = Q.
Then from Proposition 5.8 and Theorem 2.17 one obtains that d’'(GClg (L)/K) =
[17_, d'(L;/K;). From this it follows that d’ is uniquely determined by its restriction
to

So={(K,L) €& : L/K is simple Galois} C &.

Hence it suffices to show that there exists a unique group homomorphism ¢: G — B
such that ¢ o Dy|s,= d'|s,. Define ¢: S — B by ¢([S]) = d'(L/K) where (K,L) €
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Sp such that Gal(L/K) € [S]. From Theorem 2.17 it follows that ¢ is well-defined.
Note that the following diagram commutes.

d/‘So

From the universal mapping property of free abelian groups follows that ¢ uniquely
extends to a group homomorphism ¢: G — B that satisfies ¢ o Dg|s,= d'|s,. This
shows that the Galois degree Dy is universal. O

Theorem 5.12. Let p be prime. Then the degree D: &, — G x p? given by
D(L/K) = (D,(L/K),[L : K];) is universal.

Proof. Let B be an arbitrary multiplicatively written abelian group and let d': £, —
B be an arbitrary degree. Let (K, L), (K',L") € &,. If [L: K]; = [L' : K']; then it
follows from Theorem 2.14 and Corollary 2.13 and the fact that purely inseparable
extensions are normal that d'(L/Sep; (K)) = d' (L' /Sep,(K")). If

Gal(GClk (Sepy(K))/K) = Gal(GClk/(Sepy, (K'))/K') and
Gal(GClg (Sepy, (K))/Sep, (K)) = Gal(GClg- (Sep., (K"))/Sep. (K"))
then it follows from Theorem 2.17 that d’(Sep; (K)/K) = d'(Sep.(K')/K'). Hence
if (K, L) and (K’, L") satisfy both the above conditions then d'(L/K) = d'(L'/K").
Define ¢: Ob(C)/= x {p™ : n € Z>o} — B by ¢(|G],p") = d'(L/K) where L/K
is a field extension such that [L : K]; = p" and Sep;(K)/K is Galois with

Gal(Sep; (K)/K) € [G]. It follows from the above and Proposition 5.8 that ¢
is well-defined and multiplicative. Hence it follows that ¢ extends to a group ho-
momorphism ¢: G xp? — B. Note that ¢ is unique since Ob(C)/2x {p" : n € Zxo}
generates G x p”. It remains to show that ¢ satisfies po D = d’. Let (F,E) € &,
be arbitrary. Then the following holds

d(E/F) = d'(Sepp(F)/F) - d' (E/Sepg(F))
= d'(GClp(Sepp(F))/F)(d (GClr(Sepy(F))/Sepp(F))) ™ d' (E/Sep(F))
= &([Gal(GClp (Sepg (F))/ F)][Gal(GClp (Sepp (E)) /Sepp (E))] ™,

= ¢(Dp(E/F),[E: F);) = (¢ o D)(E/F).
This shows that the degree D is universal. U
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