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Introduction

Let C be the category of finite groups. Let Ob(C) denote the class of objects of
C and let Ob(C)/∼= = {[G] : G ∈ Ob(C)} denote the set of isomorphism classes.
The Grothendieck group G of C with respect to short exact sequences is the group
generated by Ob(C)/∼= subject to the relations [G] = [H][N ] ∈ G if there exists a
short exact sequence

1→ H → G→ N → 1.

Let p be zero or a prime number and let Ep be the collection of all pairs (K,L)
where K is a field of characteristic p and L/K is a finite field extension. We call
(K,L) ∈ Ep normal, Galois or separable if the field extension L/K is normal, Galois
or separable. Let Dp : Ep → G be given by Dp(L/K) = [AutK(N)][AutL(N)]−1,
where N is a finite extension of L that is normal over K. We will call the map Dp

the Galois degree. In Section 5 we show that the Galois degree is well-defined, as
well as the following result.

Theorem 1. Suppose that (K,L) ∈ Ep and (L,M) ∈ Ep. Then

Dp(L/K) ·Dp(M/L) = Dp(M/K).

We call a field extension L′/K ′ a base extension of a field extension L/K if there
exists a field homomorphism ψ : L → L′ with ψ(K) ⊂ K ′ such that for each basis
B of L as a K-vector space, ψ(B) is a basis for L′ as a K ′-vector space. In Section
5 the following result will be shown.

Theorem 2. Assume that (K,L) ∈ Ep is normal and L′/K ′ is a base extension of
L/K. Then Dp(L/K) = Dp(L

′/K ′).

Let A be a multiplicatively written abelian group. A map d : Ep → A is called a
degree with values in A if it satisfies the following two conditions:

(i) if (K,L), (L,M) ∈ Ep then d(M/K) = d(M/L) · d(L/K) and

(ii) if (K,L) ∈ Ep is normal and L′/K ′ is a base extension of L/K then d(L/K) =
d(L′/K ′).

We let Deg(p,A) denote the set of all degrees d : Ep → A. A degree d : Ep → A is
called universal if for each abelian group B the mapping Hom(A,B)→ Deg(p,B)
sending f to f ◦ d is a bijection.

The main results of this thesis are the following two theorems, which will be proven
in Section 5.

Theorem 3. The Galois degree D0 : E0 → G is universal.
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Theorem 4. Let p be prime and pZ = {pn : n ∈ Z} ⊂ Q>0. Then the map
D : Ep → G × pZ given by D(L/K) = (Dp(L/K), [L : K]i), where [L : K]i is the
inseparability degree of L/K, is a universal degree.

In Section 4, a simplification of a degree, called a basic degree will be studied. This
simplification consists of removing the condition that (K,L) is normal in (ii). In
other words a basic degree is a degree that satisfies the following condition instead
of (ii) above: (ii’) if (K,L) ∈ Ep and L′/K ′ is a base extension of L/K then
d(L/K) = d(L′/K ′).
We let bdeg(p,A) denote the set of all basic degrees d : Ep → A and call a basic
degree d : Ep → A universal if for each abelian group B the map Hom(A,B) →
bdeg(p,B) sending f to f ◦ d is a bijection.

Results from Section 2 will show that Dp is not a basic degree, which gives rise to
the question if there is a universal basic degree. In Section 4 this question will be
answered with the following two theorems.

Theorem 5. The basic degree d : E0 → (Q>0, ·) given by d(L/K) = [L : K] is
universal.

Theorem 6. Let p be prime. Then the basic degree d : Ep → (Q>0, ·) × pZ given
by d(L/K) = ([L : K]s, [L : K]i), where [L : K]s is the separability degree of L/K,
is universal.

In the first two sections we will develop, mainly using Galois theory, some theory
on linear disjointness and base extensions. In Section 3 the group G will be studied
and the following result will be proven.

Theorem 7. Let S be the set of isomorphism classes of finite simple groups. Then
G is the free abelian group on S.
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1. Linear disjointness

Definition 1.1. Let L/K be a field extension and let R,S be K-subalgebras of L.
Then R and S are called K-linearly disjoint in L if the canonical ring homomor-
phism R⊗K S → L is injective.

Proposition 1.2. Let L/K be a field extension and R,S be K-subalgebras of L.
If R and S are K-linearly disjoint in L then R ∩ S = K.

Proof. Suppose K ( R ∩ S and let x ∈ (R ∩ S)\K. Then there exists a K-basis A
of R and a K-basis B of S such that {1, x} ⊂ A∩B. Note that the elements 1⊗ x
and x⊗1 are K-linearly independent in R⊗K S. However under the canonical ring
homomorphism ι : R⊗K S → L the images of 1⊗ x and x⊗ 1 are the same. Hence
ι is not injective. �

Proposition 1.3. Let L/K be a field extension and R,S be K-linearly disjoint
K-subalgebras of L. If R′ (resp. S′) is a K-subalgebra of R (resp. of S) then R′

and S′ are K-linearly disjoint in L.

Proof. Let ι : R⊗K S → L be the canonical ring homomorphism. Note that R′⊗K
S′ ⊂ R ⊗K S and the canonical ring homomorphism κ : R′ ⊗K S′ → L is equal to
ι|R′⊗KS′ . Since R and S are K-linearly disjoint ι is injective. Hence κ is injective
making R′ and S′ linearly disjoint over K in L. �

Proposition 1.4. Let L/K be a field extension and R,S be K-subalgebras of L.
Let I be a directed set. Suppose that R = lim−→Ri is a direct limit of a directed

system {Ri, fij}, where Ri is a subalgebra of Rj and fij is the inclusion of Ri in
Rj if i ≤ j, of K-subalgebras of L over I. Then R and S are K-linearly disjoint in
L if and only if for all i ∈ I, the K-algebras Ri and S are K-linearly disjoint in L.

Proof. Recall that direct limits and tensor products commute, so lim−→(Ri ⊗K S) ∼=
(lim−→Ri) ⊗K S. Let fj : Rj → lim−→Ri. Recall that direct limits have the following
universal mapping property. If C is a K-algebra with for each i ∈ I a K-algebra
homomorphism ψi : Ri → C such that ψi = ψj ◦ fij if i ≤ j. Then there exists a
unique K-algebra homomorphism ψ : lim−→Ri → C such that for all i ∈ I one has

ψ ◦ fi = ψi. One can find these properties of a directed system in chapter 2 of [1].
Extend the directed system {Ri, fij} to the directed system {Ri ⊗K S, fij ⊗ idS}
and for each i ∈ I let ψi : Ri ⊗ S → L be the canonical ring homomorphism. Note
that ψi satisfies the condition of second property hence one obtains a unique K-
algebra homomorphism ψ : lim−→Ri ⊗K S → L satisfying for each i ∈ I the equality

ψ ◦ (fi ⊗ idS) = ψi. Note that fi ⊗ idS is an inclusion hence injective. Therefore ψ
is injective if and only if ψi is injective for each i ∈ I. The result now follows from
applying the first property. �

Proposition 1.5. Let L/K be a field extension and R,S be K-subalgebras of L.
Then R and S are K-linearly disjoint in L if and only if the subfields they generate,
say E and F , are K-linearly disjoint in L.

Proof. Assume that R and S are K-linearly disjoint. It suffices to show that if
x1, . . . , xn ∈ E are K-linearly independent and y1, . . . , ym ∈ F are K-linearly
independent then {xiyj}1≤i≤n,1≤j≤m are K-linearly independent in L. There exist
r1 . . . , rn, r ∈ R and s1, . . . , sm, s ∈ S, with r 6= 0 6= s, such that xi = ri/r
and yj = sj/s for all i and all j. Let αi,j ∈ K such that

∑
i,j αi,jrisj/rs = 0.
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Multiplication by rs yields
∑
i,j αi,jrisj = 0 hence αi,j = 0 for all i and all j. The

converse is immediate from Proposition 1.3. �

Definition 1.6. Let K be a field and R and S be K-algebras that are domains. We
call R and S somewhere K-linearly disjoint if there exists a field extension L/K and
K-algebra embeddings of R and S into L such that R and S are K-linearly disjoint
in L. We call R and S everywhere K-linearly disjoint if for all field extensions L/K
and all K-algebra embeddings of R and S into L, the embeddings of R and S are
K-linearly disjoint in L.

Proposition 1.7. Let K be a field and R,S be K-algebras that are domains and
let Frac(R), Frac(S) denote the fraction fields of R and S. Then the following hold:

(i) R and S are somewhere K-linearly disjoint if and only if R⊗K S is a domain.

(ii) R and S are everywhere K-linearly disjoint if and only if Frac(R)⊗K Frac(S)
is a field.

Proof. (i). If R and S are somewhere K-linearly disjoint then R⊗K S can be em-
bedded in a field hence it is a domain. Conversely if R ⊗K S is a domain then it
can be embedded in its fraction field.
(ii). SupposeR and S are everywhereK-linearly disjoint. Note that T = Frac(R)⊗K
Frac(S) ⊃ K. In order to show that T is a field it suffices to show that (0) is the
only maximal ideal of T . Let m ⊂ T be a maximal ideal, then E = T/m is a
field containing Frac(R) and Frac(S). Note that the induced map ι : T → E is
the quotient map T → T/m. From the assumption that R and S are everywhere
K-linearly disjoint and Proposition 1.5 it follows that ι is injective hence m = (0).
Conversely suppose that Frac(R)⊗K Frac(S) is a field. Let A be an arbitrary non-
trivial ring, then any ring homomorphism Frac(R) ⊗K Frac(S) → A is injective.
Hence any ring homomorphism from Frac(R)⊗KFrac(S) to a non-trivial K-algebra
is injective. Since any field extension of K is a non-trivial K-algebra it follows that
Frac(R) and Frac(S) are everywhere K-linearly disjoint and so from Proposition
1.3 it follows that R and S are everywhere K-linearly disjoint. �

Proposition 1.8. LetK be a field and E,F field extensions ofK that are contained
in a field Ω. If E/K is finite then the following are equivalent:

(i) E and F are K-linearly disjoint in Ω;

(ii) E ⊗K F is a field;

(iii) [E : K] = [EF : F ].

Proof. (iii) ⇔ (i). Let ι : E ⊗K F → EF be the canonical ring homomorphism.
Note that ι is a surjective F -linear map between finite dimensional F -vector spaces.
Hence dimF ker(ι) = [E : K]− [EF : F ] and so ι is injective if and only if [E : K] =
[EF : F ].
(ii) ⇔ (i). Suppose E and F are K-linearly disjoint in Ω. Then E and F are
somewhere K-linearly disjoint. From Proposition 1.7 it follows that E ⊗K F is a
domain. Note that dimF (E⊗KF ) ≤ [E : K] hence E⊗KF is a finitely generated F -
vector space. Let x ∈ E⊗KF be an arbitrary non-zero and let λx : E⊗KS → E⊗KS
be given by λx(y) = xy. Since E⊗K S is a domain λx is injective and since E⊗K S
is finitely generated as an F -vector space it follows that λx is surjective. From this
it immediately follows that E ⊗K S is a field.
The converse is immediate from Proposition 1.7. �
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Theorem 1.9. Let K be a field and K ⊂ E,F be field extensions. Then the
following hold:

(i) Suppose E and F are everywhere K-linearly disjoint. Then at least one of E
and F is algebraic of K.

(ii) Suppose at least one of E and F is algebraic over K. Then E and F are
somewhere K-linearly disjoint if and only if E and F are everywhere K-
linearly disjoint.

Proof. (i). Suppose that both E and F are not algebraic over K. Assume that
E and F are everywhere K-linearly disjoint. Then it follows from Proposition
1.8 that E ⊗K F is a field. There exist transcendental subextensions K(a) ⊂ E
and K(b) ⊂ F . Let X be a variable. Let K(X) → K(a) and K(X) → K(b) be
given by X → a and X → b respectively. Let φ : E ⊗K F → E ⊗K(X) F be the
canonical ring homomorphism. Since E ⊗K F is a field and E ⊗K(X) F 6= {0}
it follows that φ is injective. Note that dimK(b)(K(a) ⊗K K(b)) = ∞ and that
dimK(b)(K(a) ⊗K(X) (K(b)) = 1. Since φ(K(a) ⊗K K(b)) = K(a) ⊗K(X) K(b) it
follows that φ is not injective. This is a contradiction. Hence E and F are not
everywhere K-linearly disjoint.
(ii). Suppose E is algebraic over K and that E and F are K-linearly disjoint in
some field L. Let L′ be a field and let E → L′ and F → L′ be embeddings that
are equal on K. It needs to be shown that E and F are K-linearly disjoint in
L′. Note that every algebraic extension is a direct limit of finite extensions. Hence
by Proposition 1.4 it is no loss of generality to assume that E/K is finite. From
Proposition 1.8 it follows that E ⊗K F is a field and so from Proposition 1.7 it
follows that E and F are everywhere K-linearly disjoint. The converse is clear. �

Proposition 1.10. Let K be a field and E,F be field extensions of K that are
contained in a field Ω. If E/K is finite Galois then the following hold:

(i) EF is Galois over F and Gal(E/(E ∩ F )) ∼= Gal(EF/F );

(ii) E and F are K-linearly disjoint in Ω if and only if E ∩ F = K.

Proof. (i). It is well known from basic Galois theory that EF is Galois over F .
Define

φ : Gal(EF/F )→ Gal(E/(E ∩ F )), ψ 7→ ψ|E .
Note that φ is well defined since each ψ ∈ Gal(EF/F ) is the identity on F and so it
is the identity on E∩F . By definition ψ|F= idF hence if ψ|E= idE then ψ = idEF .
Hence φ is injective. Note that Eim(φ) = E ∩ F hence im(φ) = Gal(E/(E ∩ F )).
Therefore φ is surjective and thus bijective. Hence from Galois theory it follows
that [EF : F ] = [E : E ∩ F ].
(ii). If E ∩ F = K then by part (i) one has [E : K] = [EF : F ] and so from
Proposition 1.8 it follows that E and F are K-linearly disjoint. The converse is
direct from Proposition 1.2. �

Notation. Let G be a group and H ⊂ G be a subgroup. Then IndG(H) denotes
the index of H in G.

Proposition 1.11. Let G be a finite group and let H, I ⊂ G be subgroups. Then
IndG(H ∩ I) ≤ IndG(H) · IndG(I) with equality if and only if G = HI.

Proof. Note that although HI need not be a group the number of cosets of I in
HI is still well-defined hence IndHI(I) is well-defined. First we show IndHI(I) =
IndH(H ∩I). Let H act on G/I by left multiplication and let x = I/I ∈ G/I. Note
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that H ∩ I = Stab(x) and HI/I is the orbit of x. Corollary 4.8 of [3] states that
if a group acts on a set, then for any element of the set the index of the stabilizer
is equal to the cardinality of the orbit. Hence #(HI/I) = #(H/(H ∩ I)) and so
IndHI(I) = IndH(H ∩ I). To prove the statement observe:

IndG(H ∩ I) = IndG(H) · IndH(H ∩ I) = IndG(H) · IndHI(I) ≤ IndG(H) · IndG(I).

�

Proposition 1.12. Let L/K be finite Galois with G = Gal(L/K) and let H, I ⊂ G
be subgroups. Then LH and LI are K-linearly disjoint if and only if G = HI.

Proof. From Proposition 1.8 it follows that LH and LI are K-linearly disjoint if
and only if [LH : K] = [LHLI : LI ] which is equivalent to [LHLI : K] = [LH :
K][LI : K] since L/K is finite. From Galois theory one has LHLI = LH∩I and
[LS : K] = IndG(S) for each subgroup S of G. Hence LH and LI are K-linearly
disjoint if and only if IndG(H ∩ I) = IndG(H) · IndG(I) and so from Proposition
1.11 one obtains that LH and LI are K-linearly disjoint if and only if G = HI. �

2. Base extensions

Definition 2.1. A field extension L′/K ′ is called a base extension of a field ex-
tension L/K if there exists a field homomorphism ψ : L → L′ with ψ(K) ⊂ K ′

satisfying the following two equivalent conditions:

(i) for every basis B of L as a K-vector space, ψ(B) is a basis of L′ as a K ′-vector
space;

(ii) the canonical map L⊗K K ′ → L′ is an isomorphism.

Remark 2.2 (Transitive property of base extensions). If L′/K ′ is a base extension
of L/K and L′′/K ′′ is a base extension of L′/K ′ then L′′/K ′′ is a base extension
of L/K.

Definition 2.3. A set {Li/Ki}ni=0 of field extension is called a chain of base ex-
tensions if Li+1/Ki+1 is a base extension of Li/Ki or Li/Ki is a base extension of
Li+1/Ki+1 for each 0 ≤ i < n.
The number n of base extensions in a chain (of base extensions) is called the length
of the chain.
Two field extension L/K and L′/K ′ are called connected if there exists a chain of
base extensions containing L/K and L′/K ′.

Proposition 2.4. Let K be a field and K ⊂ L,M be two field extensions that
are everywhere K-linearly disjoint. Then L⊗K M/M is a base extension of L/K.
Moreover if L and M are contained in a larger field Ω then LM/M is a base
extension of L/K.

Proof. From Proposition 1.7 it follows that L ⊗K M is a field. It is immediate
from the definition that L ⊗K M/M is a base extension of L/K. Suppose L and
M are contained in a larger field Ω. Let ι : L ⊗K M → LM be the canonical
homomorphism. Note that ι is surjective. Moreover since L ⊗K M is a field and
LM 6= {0} it follows that ι is injective. Hence ι is a isomorphism and thus LM/M
is a base extension of L/K. �

Proposition 2.5. Let L/K be a finite Galois extension and let L′/K ′ be a base
extension of L/K. Then L′/K ′ is finite Galois and Gal(L/K) ∼= Gal(L′/K ′).
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Proof. Since L′/K ′ is a base extension of L/K there is an field homomorphism
ψ : L → L′. Identify L and K with their images under ψ and take Ω = L′. Note
that L and K ′ are K-linearly disjoint in L′. Hence from Proposition 1.2 it follows
that L ∩K ′ = K. From Proposition 1.8 it follows that [L : K] = [LK ′ : K ′] hence
it follows that LK ′ = L′. The result follows from Proposition 1.10. �

Definition 2.6. Let G and H be groups, let X be a G-set and Y be a H-set. Let
φ : G → H be a group homomorphism and ψ : Y → X be a map. The actions of
G and H are called compatible through φ and ψ if for all g ∈ G and all y ∈ Y the
equality ψ(φ(g)y) = g(ψ(y)) holds.

Theorem 2.7. Let E and F be fields with the same characteristic. LetG ⊂ Aut(F )
and S ⊂ Aut(E) be finite subgroups and let T ⊂ S be a subgroup. Let φ : G→ S
be a group homomorphism and let ψ : E → F be an field homomorphism. Suppose
that the actions of G and S are compatible through φ and ψ and that G acts
transitively on S/T through φ, and let H = Stab(T/T ) ⊂ G. Then FH/FG is a
base extension of ET /ES .

Proof. Since the actions of G and S are compatible so are the actions of φ(G) and S.
Since G acts transitively on S/T so does φ(G), which is equivalent to S = Tφ(G).
Hence from Proposition 1.12 it follows that ET and Eφ(G) are linearly disjoint over
ES . From the definition of H one has φ(H) = T ∩ φ(G) and from Galois theory it
follows that ETEφ(G) = Eφ(H). Applying Proposition 2.4 with K = ES , L = ET

and M = Eφ(G) yields that Eφ(H)/Eφ(G) is a base extension of ET /ES . Note that
ψ : E → ψ(E) is an isomorphism and that the composition of an isomorphism with
a base extension is again a base extension. With the compatibility of the actions
it follows that ψ(E)H/ψ(E)G is a base extension of ET /ES . Since ψ(E)/ψ(E)G is
Galois one obtains from Proposition 1.10 that ψ(E) and FG are linearly disjoint
over ψ(E) ∩ FG = ψ(E)G. From Proposition 1.3 it follows that ψ(E)H and FG

are ψ(E)G-linearly disjoint. Note ψ(E)HFG ⊂ FH and by Proposition 1.8 and the
assumption that G acts transitively on S/T one has

[ψ(E)HFG : FG] = [ψ(E)H : ψ(E)G] = [G : H] = [FH : FG].

Hence ψ(E)HFG = FH . By the transitive property of base extensions FH/FG is
a base extension of ET /ES .

E E ψ(E) F

S φ(G) G G

T φ(H) H

ET

ES

FH

FG

Eφ(H)

Eφ(G)

ψ(E)H

ψ(E)G

S/T

⋂ ⋂ ⋂
⊃φ⊃

⊂ ψ ⊂

�

Notation. Let K be a field and let X = {Xi : i ∈ I} be a set of independent
variables. Then K(X ) denotes the field of rational functions in the variables Xi ∈ X
over K.
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Theorem 2.8. Let K, K ′ be fields with the same characteristic and let n ∈ Z>0.
Suppose L/K, L′/K ′ are finite separable field extensions of degree n. Then there
exists a chain of base extensions of length 4 connecting L/K with L′/K ′.

Proof. Let M be a Galois closure of L and let G = Gal(M/K). Let HomK(L,M)
denote the set of field homomorphism L → M that are the identity on K. Note
that G acts naturally on HomK(L,M) by composition. Let H ⊂ G be the stabilizer
of the inclusion ι ∈ HomK(L,M) of L into M , then MH = L. Let X = {Xα :
α ∈ HomK(L,M)} be a set of independent variables. The group G acts on M(X )
by its action on M and its action on X . Note that this action is compatible with
the action of G on M . Hence from Theorem 2.7 it follows that M(X )H/M(X )G

is a base extension of MH/MG = L/K. Let S be the symmetric group of the set
HomK(L,M) and let T ⊂ S be the stabilizer of ι. Let F be the prime field of K
and let S act on F(X ) by its action on X . Note that the action of G on M(X ) is
compatible with the action of S on F(X ). Through its action on HomK(L,M) the
group G is a subgroup of S. Since G acts transitively on HomK(L,M) and T is
a stabilizer it follows that S = GT which is equivalent to G acting transitively on
S/T . Hence from Theorem 2.7 it follows that M(X )H/M(X )G is a base extension
of F(X )T /F(X )S , hence one obtains the following chain of base extensions of length
two: {

L/K,M(X )H/M(X )G,F(X )T /F(X )S
}
.

Repeating the argument above for L′/K ′ yields a similar chain of base extensions
of length two. Note that n = #HomK(L,M) = #HomK′(L′,M ′) hence the sym-
metric groups are isomorphic. It is clear that by identifying the inclusion of L in
M with the inclusion of L′ in M ′ one obtains a group isomorphism φ : S → S′ such
that φ(T ) = T ′. Hence M ′(X ′)H′

/M ′(X ′)G′
is a base extension of F(X )T /F(X )S .

Therefore one obtains the following chain of base extensions connecting L/K to
L′/K ′ of length four:{

L/K,M(X )H/M(X )G,F(X )T /F(X )S ,M ′(X ′)H
′
/M ′(X ′)G

′
, L′/K ′

}
.

�

Definition 2.9. A base extension L′/K ′ of L/K is called trivial if there exists a
field isomorphism ψ : L→ L′ that satisfies the conditions of Definition 2.1.

Example 2.10. Let Q be an algebraic closure of Q and let ζ5, ζ8 ∈ Q be a 5th and
an 8th primitive root of unity. Then it follows from Galois theory that Q(ζ5)/Q and
Q(ζ8)/Q are finite Galois extensions with Gal(Q(ζ5)/Q) ∼= C4 and Gal(Q(ζ8)/Q) ∼=
V4, where C4 is the cyclic group of order 4 and V4 is the Klein four-group. From
the above theorem it follows that there exists a chain of base extensions of length
4 connecting Q(ζ5)/Q with Q(ζ8)/Q. In this example we show that there does
not exist a shorter such chain. Since V4 6∼= C4 it follows from Proposition 2.5
that Q(ζ5)/Q is not a base extension of of Q(ζ8)/Q. Hence there is no chain of
length equal to one. Suppose that Q(ζ5)/Q is a base extension of L/K. Then it
immediately follows that K = Q and L ∼= Q(ζ5). Hence Q(ζ5)/Q is not a non-
trivial base extension of a field extension L/K. It is clear that this argument also
applies to Q(ζ8)/Q. Form this it follows that a chain of length 3 can be shortened
using the transitive property of base extensions to a chain of length equal to 2 or
1. It remains to show that there is no chain of length two. Suppose that there is
such a chain. Then there exists a field extension L/K such that L/K is a base
extension both of Q(ζ5)/Q and of Q(ζ8)/Q. From Proposition 2.5 it follows that
L/K is Galois and that V4 ∼= Gal(L/K) ∼= C4. This is a contradiction hence there
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is no chain of length two. Hence there is no chain of base extensions connecting
Q(ζ5)/Q with Q(ζ8)/Q of length shorter than four.

Proposition 2.11. Let p be prime and K a field of characteristic p and let f ∈
K[X] be irreducible. Write f(X) = g(Xpm) with m ≥ 0 maximal. Then g is
irreducible and separable over K and each root of f has multiplicity equal to pm.

Proof. Since deg f = pm deg g there is a largest possible m that can be used. Note
that since f(X) = g(Xpm), any non-trivial factorisation of g gives a non-trivial
factorisation of f hence g is irreducible in K[X]. Since g is irreducible it follows
that g is separable if and only if its derivative is non-zero. By the maximality of
m it follows that g is not a polynomial in Xp, hence its derivative is non-zero. Let
M/K be a splitting field of g and factor g over M as

g(X) = c(X − a1)(X − a2) · · · (X − an).

Note that the ai are distinct since g is separable. Take b1, . . . , bn in a sufficiently

large field extension of M such that ai = bp
m

i . It follows from the distinctness of
the ai that the bi are distinct. From this it follows that

f(X) = g(Xpm) = c(Xpm − a1) · · · (Xpm − an) = c(X − b1)p
m

· · · (X − bn)p
m

,

which shows that the roots of f have multiplicity equal to pm. �

Corollary 2.12. Let p be prime and K a field of characteristic p. Suppose that
f ∈ K[X] is irreducible with exactly one root in a splitting field over K. Then f is
of the form Xpm − a for some m ≥ 0.

Corollary 2.13. Let p be prime, K a field of characteristic p and L/K a finite
purely inseparable field extension. Then [L : K] = pn for some n ≥ 0 and there
exists a tower of field extensions K = Ln ⊂ Ln−1 ⊂ . . . L1 ⊂ L0 = L such that
Li/Li+1 is purely inseparable of degree p.

Theorem 2.14. Let p be prime and let K, K ′ be fields of characteristic p. Suppose
that L/K and L′/K ′ are purely inseparable field extensions such that [L : K]i =
[L′ : K ′]i = p. Then there exists a chain of base extensions of length 2 connecting
L/K with L′/K ′.

Proof. Since [L : K]i = p there exists α ∈ L such that L = K(α) and αp ∈ K.
Similarly there exists α′ ∈ L′ such that L′ = K ′(α′) and (α′)p ∈ K ′. Note that
α and α′ are transcendental over Fp. Let T be a variable. Let φ : Fp(T ) → L
be the field homomorphism such that φ(T ) = α and let φ′ : Fp(T ) → L′ be the
field homomorphism such that φ′(T ) = α′. It is clear that φ and φ′ make L/K
and L′/K ′ into base extensions of Fp(T )/Fp(T p). Hence one obtains the following
chain of base extensions of length 2 connecting L/K with L′/K ′:

{L/K,Fp(T )/Fp(T p), L′/K ′}.

�

Definition 2.15. A chain of base extensions {Li/Ki}ni=0 is called group preserving
if each Li/Ki is finite Galois.

Remark 2.16. Let {Li/Ki}ni=0 be a group preserving chain of base extensions.
Then it follows from Proposition 2.5 that Gal(Li/Ki) ∼= Gal(Lj/Kj) for 0 ≤ i, j ≤
n.
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Theorem 2.17. Let K, K ′ be fields with the same characteristic. Suppose L/K,
L′/K ′ are finite Galois extensions such that Gal(L/K) ∼= Gal(L′/K ′). Then there
exists a group preserving chain of base extensions of length 4 connecting L/K with
L′/K ′.

Proof. Set G = Gal(L/K) and let X = {Xσ : σ ∈ G} be a set of independent
variables. Let G act on L(X ) by its action on L and its action on X . The action
of G on L(X ) is compatible with the action of G on L. Hence from Theorem 2.7 it
follows that L(X )/L(X )G is a base extension of L/K. Let F be the prime field of K
and let G act on F(X ) by its action on X . The action of G on L(X ) is compatible
with the action of G on F(X ). Hence Theorem 2.7 shows that L(X )/L(X )G is a base
extension of F(X )/F(X )G. Let G act on L′(X ) by its action on L′ and its action
on X . Applying the arguments above to L′(X ) one obtains, using Proposition 2.5,
the following group preserving chain of base extensions of length 4:

{L/K,L(X )/L(X )G,F(X )/F(X )G, L′(X )/L′(X )G, L′/K ′}.

�

Example 2.18. Let F be a prime field and let L/F be a Galois extension such
that Gal(L/F) ∼= C4. Let F ⊂ K ⊂ L be the fixed field of C2 / C4. Then is K/F
is Galois and C2

∼= Gal(L/K) ∼= Gal(K/F). From the theorem above it follows
that there exists a group preserving chain of base extensions connecting K/F with
L/K of length four. In this example we show that there does not exist a shorter
such chain. First note that L/K is not a base extension of K/F hence there does
not exist a chain of length one. Using similar arguments as in Example 2.10 it
follows that K/F is not a non-trivial base extension. Suppose that L/K is a base
extension of M/N . From Gal(K/F) ∼= C2 it follows that either L/K is a trivial
base extension of M/N or N = F and M ∼= K. Since L/K is not a base extension
of K/F it follows that L/K is not a non-trivial base extension of M/N . It follows
from this that a chain of length 3 can be shortened using the transitive property
of base extensions to a chain of length equal to 2 or 1. Hence to show that there
does not exist a chain of length shorter than 4 it suffices to show that there is no
chain of length 2. Suppose that M/N is a base extension of L/K and of K/F. Let
HomF(K,M) be the set of field homomorphisms L → M which are the identity
on F and let φ ∈ HomF(K,M) be arbitrary. Note that AutF(M) acts transitively
on HomF(K,M) by composition. It follows from the fact that K/F is normal that
σ(φ(K)) = φ(K) for all σ ∈ AutF(M). Let ψ : L → M be as in the definition
of a base extension. Note that ψ|K∈ HomF(K,M) and that ψ(K) ⊂ N . Hence
it follows that φ(K) ⊂ N for all φ ∈ HomF(K,M). Therefore M/N cannot be a
base extension of K/F. Hence there does not exist a group preserving chain of base
extensions connecting K/F with L/K of length shorter than 4.

3. The Grothendieck group of finite groups

Definition 3.1. Let G be a group. A series

{1} = Gn ⊂ Gn−1 ⊂ . . . ⊂ G1 ⊂ G0 = G

of subgroups of G is called subnormal if Gi / Gi−1 for 0 < i ≤ n.

Definition 3.2. Let

(∗) {1} = Gn ⊂ Gn−1 ⊂ . . . ⊂ G1 ⊂ G0 = G

(∗∗) {1} = Hm ⊂ Hm−1 ⊂ . . . ⊂ H1 ⊂ H0 = G
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be two subnormal series of a group G. The subnormal series (∗∗) is called a refine-
ment of (∗) if (∗∗) = (∗) or (∗∗) is obtained from (∗) by insertion of subgroups.
The subnormal series (∗) and (∗∗) are called equivalent if there exists a bijection

σ : {0, 1, . . . , n− 1} → {0, 1, . . . ,m− 1}

such that Gi/Gi+1
∼= Hσ(i)/Hσ(i)+1 for each i.

Definition 3.3. A subnormal series

{1} = Gn ⊂ Gn−1 ⊂ . . . ⊂ G1 ⊂ G0 = G

of a group G is called a composition series if each Gi+1 is a maximal normal
subgroup in Gi.

Remark 3.4. A subnormal series

{1} = Gn ⊂ Gn−1 ⊂ . . . ⊂ G1 ⊂ G0 = G

of a group G is a composition series if and only if Gi/Gi+1 is simple for all i.

Remark 3.5. Let G be a finite group. Then G has a composition series.

Theorem 3.6 (Jordan-Hölder-Schreier). Let G be a group. Then any two subnor-
mal series of G have refinements that are equivalent. Moreover any two composition
series of G are equivalent.

Proof. See [2]. �

Definition 3.7. Let G be a group with a composition series

{1} = Gn ⊂ Gn−1 ⊂ . . . ⊂ G1 ⊂ G0 = G.

The factor groups Gi/Gi+1 are called the composition factors of G.

Remark 3.8. From Theorem 3.6 it follows that two composition series of a group
G are equivalent. Therefore the composition factors of a group are well-defined.

Definition 3.9. Let C be the category of finite groups. Let Ob(C) denote the
class of objects of C and let Ob(C)/∼= denote the set of isomorphism classes. The
Grothendieck group G on C with respect to short exact sequences is the group
generated by Ob(C)/∼= subject to the relations [G] = [H][N ] ∈ G if there exists a
short exact sequence

1→ H → G→ N → 1.

Remark 3.10. The Grothendieck group G satisfies the following universal mapping
property. For each groupB and each map φ : Ob(C)/∼=→ B which satisfies φ([G]) =
φ([H])φ([N ]) if there exists as short exact sequence

1→ H → G→ N → 1

there exists a unique group homomorphism h : G → B such that h ◦ idOb(C)/∼= = φ.

Proposition 3.11. Let B be a group with a map ψ : Ob(C)/∼=→ B that satisfies
ψ([G]) = ψ([H])ψ([N ]) if there exists a short exact sequence

1→ H → G→ N → 1.

Suppose that B and ψ satisfy the universal mapping property of G. Then there
exists a unique group isomorphism h : G → B such that h◦idOb(C)/∼= = ψ. Moreover

h satisfies h−1 ◦ ψ = idOb(C)/∼=.
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Proof. Since G satisfies the universal mapping property there exists a unique group
homomorphism h : G → B such that h◦ idOb(C)/∼= = ψ. Furthermore since B and ψ
satisfy the universal mapping property there exists a unique group homomorphism
h′ : B → G such that h′◦ψ = idOb(C)/∼=. From this it follows that ψ = h◦idOb(C)/∼= =

(h ◦ h′) ◦ ψ hence h ◦ h′ = idG and similarly h′ ◦ h = idB . Hence h′ = h−1. �

Proposition 3.12. Let B be an arbitrary group with a map φ : (Ob(C)/∼=) → B
such that φ([G]) = φ([H])φ([N ]) if there exists a short exact sequence

1→ H → G→ N → 1.

Then the following hold:

(i) φ([{1}]) = 1 ∈ B;

(ii) the image of φ generates an abelian subgroup of B;

(iii) let G be a finite group with a subnormal series {1} = Gn ⊂ . . . ⊂ G1 ⊂ G0 =
G and let Qi = Gi−1/Gi. Then the equality φ([G]) =

∏n
i=1 φ([Qi]) holds in

B.

Proof. (i). Let G be an arbitrary finite group. Then the following short sequence
is exact:

1→ G
id−→ G→ 1→ 1.

Therefore φ([G]) = φ([G])φ([{1}]) hence φ([{1}]) = 1 ∈ B.
(ii). Let G and H be finite groups. Note that the following short sequences are
exact:

1→ G
g 7→(g,1)−−−−−→G×H (g,h) 7→h−−−−−→ H → 1,

1→ H
h 7→(1,h)−−−−−→G×H (g,h) 7→g−−−−−→ G→ 1.

Hence it follows that [G][H] = [G×H] = [H][G] ∈ B.
(iii). Note that for 0 < i ≤ n the short sequence

1→ Gi → Gi−1 → Qi → 1

is exact, hence φ([Qi]) = φ([Gi−1])φ([Gi])
−1 in B. From part (i) and part (ii) it

follows that
n∏
i=1

φ([Qi]) =

n∏
i=1

(
φ([Gi−1])φ([Gi])

−1) = φ([G0])φ([Gn])−1 = φ([G]).

�

Theorem 3.13. Let S ⊂ Ob(C)/∼= be the set of isomorphism classes of simple
groups. Then G is the free abelian group on S.

Proof. Let A be the free abelian group on S. Define the map ψ : (Ob(C)/∼=) → A
by ψ([G]) =

∏n
i=1[Qi] where Q1, . . . , Qn are the composition factors of G. From

Remark 3.8 it follows that ψ is well-defined. Let

1→ H
f−→ G

g−→ N → 1

be a short exact sequence of finite groups. Then H ∼= f(H) / G and N ∼= G/f(H).
Hence {1} / H / G is a subnormal series which can be extended to a composition
series

{1} = Gn ⊂ Gn−1 ⊂ . . . ⊂ Gk = f(H) ⊂ . . . ⊂ G0 = G.
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Take Qi = Gi−1/Gi for 0 < i ≤ n. Since {0} = Gn ⊂ . . . ⊂ Gk = f(H) is a
composition series it follows that Qk+1, . . . Qn are the composition factors of H.
Moreover Q1, . . . , Qk are the composition factors of N . Hence it follows that

ψ([G]) =

n∏
i=1

[Qi] =

(
n∏

i=k+1

[Qi]

)(
k∏
i=1

[Qi]

)
= ψ([H])ψ([N ]).

LetB be a group and φ : (Ob(C)/∼=)→ B a map that satisfies φ([G]) = φ([H])φ([N ])
if there exists a short exact sequence

1→ H → G→ N → 1.

Define h : S → B by h([S]) = φ([S]). From Proposition 3.12 it follows that without
loss of generality it can be assumed that B is abelian. By the universal mapping
property of a free abelian group it follows that h can be extended uniquely to a group
homomorphism h̄ : A → B. Let [G] ∈ Ob(C)/∼= be arbitrary and let Q1 . . . , Qn be
the composition factors of G. Then from Proposition 3.12 it follows that

φ([G]) =

n∏
i=1

φ([Qi]) =

n∏
i=1

h̄([Qi]) = (h̄ ◦ ψ)([G]).

�

4. Basic degrees

Definition 4.1. Let p be zero or a prime number and let Ep be the collection of
all pairs (K,L) with K a field of characteristic p and L a finite field extension of
K. Let A be a multiplicatively written abelian group. A basic degree with values
in A is a map d : Ep → A such that:

(i) if (K,L) ∈ Ep and (L,M) ∈ Ep then d(M/K) = d(M/L) · d(L/K),

(ii) if (K,L) ∈ Ep and (K ′, L′) is a base extension of (K,L) then d(L/K) =
d(L′/K ′).

Let bdeg(p,A) denote the set of basic degrees d : Ep → A.
A basic degree d : Ep → A is called universal if for each multiplicatively written
abelian group B the mapping Hom(A,B) → bdeg(p,B) sending f to f ◦ d is a
bijection.

Remark 4.2. If d : Ep → A and d′ : Ep → B are two universal basic degrees then
there exists a unique group isomorphism h : A→ B such that h ◦ d = d′. Moreover
h satisfies h−1 ◦ d′ = d.

Example 4.3. Let p be zero or a prime number. Then the following are examples
of basic degrees:

(i) Ep → {1}, (K,L) 7→ 1;

(ii) Ep → (Q>0, ·), (K,L) 7→ [L : K];

(iii) If d : Ep → A a basic degree and B is a group with a group homomorphism
f : A→ B then f ◦ d is a basic degree.

Proposition 4.4. Let p be zero or a prime number. Then for all n,m ∈ Z>0

there exists a tower of field extensions K ⊂ L ⊂ M such that Char (K) = p and
([L : K]s, [M : L]s) = (n,m). Moreover if p is prime then for all n ∈ Z>0 there
exists a field extension L/K such that [L : K]s = n and [L : K]i = p.
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Proof. Let n,m ∈ Z>0 be arbitrary and let X be a variable. Note that Q(Xnm) ⊂
Q(Xm) ⊂ Q(X) is a tower of separable field extensions such that [Q(Xm) :
Q(Xnm)]s = n and [Q(X) : Q(Xm)]s = m. Assume that p is prime. Let Fp
be an algebraic closure of Fp and let F ∈ AutFp

(Fp) be the Frobenius map. From

Galois theory it follows that Fpn = {α ∈ Fp : Fn(α) = α} is a separable field
extension of Fp of degree n. Hence it follows that Fp ⊂ Fpn ⊂ Fpnm is a tower
of separable field extensions such that [Fpn : Fp]s = n and [Fpnm : Fpn ]s = m.
Note that Fpn(Xp)/Fp(Xp) is a base extension of Fpn/Fp hence Fpn(Xp)/Fp(Xp)
is a separable extension of degree n. It is clear that Fpn(X)/Fpn(Xp) is a purely
inseparable field extension such that [Fpn(X) : Fpn(Xp)]i = p. Hence it follows
that Fpn(X)/Fp(Xp) is a field extension such that [Fpn(X) : Fp(Xp)]s = n and
[Fpn(X) : Fp(Xp)]i = p. �

Theorem 4.5. The basic degree d : E0 → (Q>0, ·) given by d(K,L) 7→ [L : K] is
universal.

Proof. Let B be an arbitrary multiplicatively written abelian group and d′ : E0 → B
an arbitrary basic degree with values in B. Let (K,L), (K ′, L′) ∈ E0 be such that
[L : K] = [L′ : K ′]. Then from Theorem 2.8 it follows that d′(L/K) = d′(L′/K ′).
Define the map φ : Z>0 → B by φ(n) = d′(L/K) where [L : K] = n. From
Proposition 4.4 and the above it follows that φ is well-defined and multiplicative
hence φ can be extended to a group homomorphism φ̄ : Q>0 → B. Note that φ̄
is unique since every group homomorphism on Q>0 is uniquely determined by its
values on Z>0. Moreover it follows in a straightforward way from the definition of
φ that φ̄ ◦ d = d′. This proves that d is universal. �

Notation. Let L/K be a field extension. Then SepL(K) denotes the separable
closure of K in L.

Theorem 4.6. Let p > 0 be prime and pZ = {pn : n ∈ Z} ⊂ Q>0. Then the basic
degree d : Ep → (Q>0, ·)× pZ given by d(L/K) = ([L : K]s, [L : K]i) is universal.

Proof. Let B be an arbitrary multiplicatively written abelian group and d′ : E0 → B
an arbitrary basic degree with values in B. Let (K,L), (K ′, L′) ∈ Ep be such that
[L : K]s = [L′ : K ′]s and [L : K]i = [L′ : K ′]i. Then from Theorem 2.8 it fol-
lows that d′(SepL(K)/K) = d′(SepL′(K ′)/K ′). From Corollary 2.13 and Theorem
2.14 it follows that d′(L/SepL(K)) = d′(L′/SepL′(K ′)). Therefore it follows that
d′(L/K) = d′(L′/K ′). Define φ : Q>0 × pZ → B by

φ (a/b, pn) = d′(La/Ka)(d′(Lb/Kb))
−1(d′(L′/K ′))n

where La/Ka (resp. Lb/Kb) is a separable field extension of degree a (resp. degree
b) and L′/K ′ is a purely inseparable field extension of degree p. It follows from
Proposition 4.4 that φ is a well-defined group homomorphism. Let (K,L) ∈ Ep
be arbitrary. Then from Theorem 2.14 and Corollary 2.13 it follows that if [L :
K]i = pn then d′(L/SepL(K)) = d′(L′/K ′)n where L′/K ′ is a purely inseparable
extension of degree p. Hence the following holds:

d′(L/K) = d′(SepL(K)/K)d′(L/SepL(K)) = φ([L : K]s, [L : K]i) = (φ ◦ d)(K,L).

Hence φ satisfies φ ◦ d = d′. It is clear that φ is unique. This shows that d is a
universal basic degree. �
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5. Degrees of field extensions

Definition 5.1. Let p be zero or prime and A be a multiplicatively written abelian
group. A degree with values in A is a map d : Ep → A such that:

(i) if (K,L), (L,M) ∈ Ep then d(M/K) = d(M/L) · d(L/K);

(ii) if (K,L) ∈ Ep is normal and L′/K ′ is a base extension of L/K then d(L/K) =
d(L′/K ′).

Let Deg(p,A) denote the set of all degrees d : Ep → A.
A degree d : Ep → A is called universal if for each multiplicatively written abelian
group B the mapping Hom(A,B)→ Deg(p,B) sending f to f ◦ d is a bijection.

Definition 5.2. Let K be a field of characteristic p > 0 and let L/K be a
field extension. Let α ∈ L. If αp

n ∈ K for some n ∈ Z≥0 then α is called
purely inseparable. The inseparable closure of K in L is InsL(K) = {α ∈ L :
α is purely inseparable over K}.

Proposition 5.3. Let K ⊂ L ⊂ M be a tower of field extensions such that L/K
is purely inseparable and M/L is normal. Then is M/K a normal extension and
AutK(M) = AutL(M).

Proof. Let M be an algebraic closure of M and let HomK(M,M) be the set of field
homomorphism M → M that are the identity on K. Let φ ∈ HomK(M,M) be
arbitrary. Let α ∈ L arbitrary and let f ∈ K[X] be irreducible such that f(α) = 0.
Then f(φ(α)) = 0 and since L/K is purely inseparable it follows that φ(α) = α.
Hence φ is a L-homomorphism and since M/L is normal it follows that φ(M) = M
making M/K normal. Similar argumentation shows that each ψ ∈ AutK(M) is an
L-homomorphism hence AutK(M) = AutL(M). �

Proposition 5.4. Let L/K be an algebraic extension. Then the following hold:

(i) L = SepL(K)InsL(K) if and only if L is separable over InsL(K).

(ii) if L/K is normal then L is separable over InsL(K).

Proof. (i). If L = SepL(K)InsL(K) then L is obtained by adjoining to InsL(K)
roots of separable polynomials with coefficients in K, hence by polynomials with co-
efficients in InsL(K). Conversely if L/InsL(K) is separable then L/InsL(K)SepL(K)
is separable. Similarly since L/SepL(K) is purely inseparable so is
L/InsL(K)SepL(K). Hence L/InsL(K)SepL(K) is both separable and purely in-
separable hence L = SepL(K)InsL(K).
(ii). Let α ∈ L\InsL(K). Then α is not inseparable over K. Hence the mini-
mal polynomial f of α over K has at least one other distinct root β in an alge-
braic closure. Since L/K is normal it follows that β ∈ L. Note that there exists
σ ∈ AutK(L) such that σ(α) = β. Let g be the minimal polynomial of α over
InsL(K) and let α1, . . . , αr be the distinct roots of g in an algebraic closure. Note
that r =

∏r
i=1(X−αi) is separable and invariant under the action of AutInsL(K)(L).

Hence r ∈ InsL(K)[X] and thus K/InsL(K) is obtained by adjoining roots of sep-
arable polynomials and therefore is L/InsL(K) separable. �

Theorem 5.5. Let p be zero or a prime number. The map Dp : Ep → G given
by Dp(L/K) = [AutK(N)][AutL(N)]−1, where N is a finite extension of L that is
normal over K, is a degree.
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Proof. It first needs to be shown that Dp is well-defined. Let (K,L) ∈ Ep arbitrary.
Let N1, N2 be two finite extensions of L that are normal over InsL(K). It follows
from Proposition 5.3 that N1/K and N2/K are normal hence M = N1 ∩ N2 is
normal over K. From the normality of Ni/K, where i = 1, 2, and M/K it follows
that the short sequences

1→ AutM (Ni)→AutL(Ni)
σ 7→σ|M−−−−−→ AutL(M)→ 1

1→ AutM (Ni)→AutK(Ni)
σ 7→σ|M−−−−−→ AutK(M)→ 1

are exact. Hence from Proposition 3.12 it follows that for i = 1, 2

[AutK(Ni)][AutL(Ni)]
−1 = [AutM (Ni)][AutK(M)][AutL(M)]−1[AutM (Ni)]

−1

= [AutK(M)][AutL(M)]−1.

From Proposition 5.3 it follows that Dp is well defined.
Let (K,L), (L,M) ∈ Ep be arbitrary and let N be a finite extension of M that is
normal over K. Then from the above it follows that:

Dp(L/K) ·Dp(M/L) = [AutK(N)][AutL(N)]−1 · [AutL(N)][AutM (N)]−1

= [AutK(N)][AutM (N)]−1 = Dp(M/K).

Suppose that L/K is normal and that L′/K ′ is a base extension of L/K. From
Proposition 5.4 it follows that L/InsL(K) is separable. Let ψ : L → L′ be as in
the definition of a base extension. It is clear that ψ(InsL(K)) ⊂ InsL′(K ′). Hence
L′/InsL′(K ′) is a base extension of L/InsL(K). Therefore it follows from propo-
sition 5.3 that it is no loss of generality to assume that L/K is separable. Hence
L/K is Galois and from Proposition 2.5 it follows that Dp(L/K) = Dp(L

′/K ′).
Hence Dp is a degree. �

Definition 5.6. Let p be zero or a prime number. We call the degree Dp given in
Theorem 5.5 the Galois degree.

Example 5.7. Let p be zero or prime. Then the following are degrees:

(i) Every basic degree d : Ep → A is a degree;

(ii) The Galois degree Dp;

(iii) Assume p is prime. Then the map D : Ep → G × pZ given by D(L/K) =
(Dp(L/K), [L : K]i) is a degree.

The second statement is proven below.

Proposition 5.8. Let p be prime or zero. Then the following hold:

(i) For all finite groups G and H there exists a tower of Galois extensions K ⊂
L ⊂ M such that Char (K) = p and Gal(M/L) ∼= G, Gal(L/K) ∼= H and
Gal(M/K) ∼= G×H.

(ii) Let G be a finite group with composition factors Q1, . . . , Qn. Then there
exists a tower of Galois extensions L0 ⊂ L1 ⊂ . . . ⊂ Ln−1 ⊂ Ln and a
permutation σ ∈ Sn such that Char (L0) = p and Gal(Ln/L0) = G and
Gal(Li/Li−1) ∼= Qσ(i).

(iii) If p is prime, G, H are finite groups and n,m ∈ Z≥0. Then there exists a
tower of field extensions K ⊂ L ⊂M such that AutK(L) ∼= H, AutM (L) ∼= G,
[L : K]i = pn, [M : L]i = pm and AutK(M) ∼= G×H.
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Proof. (i). Let F be the prime field of characteristic p and let X = {Xσ : σ ∈ G×H}
be a set of independent variables and let G × H act on X by τXσ = Xτσ for all
τ, σ ∈ G ×H. Take M = F(X ) and let G ×H act on M trough its action on X .
Note that G× {1} / G×H hence from Galois theory it follows that

MG×H ⊂MG×{1} ⊂M

is a tower of Galois extensions with

Gal(M/MG×{1}) ∼= G and Gal(MG×{1}/MG×H) ∼= H.

(ii). Let {1} = Gn ⊂ . . . ⊂ G1 ⊂ G0 = G be a composition series of G. Then by
Theorem 3.6 there exists a permutation σ ∈ Sn such that Gi/Gi+1

∼= Qσ(i). From
part (i) it follows that there exists a Galois extension L/K such that Char (K) = p
and Gal(L/K) ∼= G. For 0 ≤ i ≤ n define Li = LGi , then L0 = K and Ln = L.
Since Gi is normal in Gi−1 it follows from Galois theory that Li/Li−1 is Galois
with Galois group isomorphic to Gi/Gi−1.
(iii). Let K ′ ⊂ L′ ⊂ M ′ be a tower of Galois extensions such that Gal(L′/K ′) ∼=
H, Gal(M ′/L′) ∼= G and Gal(M ′/K ′) ∼= G × H. The exists of such a tower
follows from part (i). Let X and Y be two independent variables. Define K =
K ′(Xpn , Y pm), L = L′(X,Y p

m

) and M = M ′(X,Y ). Then [M : L]i = pm and
[L : K]i = pn. Note that L/K ′(X,Y p

m

) is a base extension of M ′/K ′. Hence from
Proposition 2.5 it follows that L/K(X,Y p

m

) is Galois with Gal(L/K(X,Y p
m

) ∼=
Gal(L′/K ′). Note that K(X,Y p

m

) = InsL(K). Hence from Proposition 5.4 it
follows that L/K is normal. Therefore AutK(L) = AutInsL(K)(L) ∼= H. Applying
the same arguments to M/L and M/K yields AutL(M) = AutInsM (L)(M) ∼= G and
AutK(M) = AutInsM (K)(M) ∼= G×H. �

Example 5.9. In this example it will be shown that the Galois degree Dp, where
p is zero or a prime number, is not a basic degree. Hence it will be shown that not
every degree is a basic degree. Consider the groups A5 and G = C3 ×C4 ×C5 and
note that #A5 = #G = 60. Let (K,L), (K ′, L′) ∈ Ep be Galois extensions such
that Gal(L/K) ∼= A5 and Gal(L′/K ′) ∼= G. Proposition 5.8 shows that such L/K
and L′/K ′ exist. Suppose that Dp is a basic degree. Then from Theorem 2.8 it
follows that Dp(L/K) = Dp(L

′/K ′). Theorem 4.33 of [3] states that An is simple
for n ≥ 5. From this and Theorem 3.13 it follows that [A5] 6= [G] = [C3][C4][C5] ∈ G
hence Dp(L/K) 6= Dp(L

′/K ′) contradicting Dp being a basic degree.

Definition 5.10. A Galois extension L/K is called simple if Gal(L/K) is simple.

Notation. Let L/K be a finite separable extension. Then GClK(L) denotes a
Galois closure of L/K.

Theorem 5.11. The Galois degree D0 is universal.

Proof. Let B be an arbitrary abelian group and let d′ : E0 → B be an arbitrary de-
gree. Let (K,L), (K ′, L′) ∈ E0 such that Gal(GClK(L)/K) ∼= Gal(GClK′(L′)/K ′)
and Gal(GClK(L)/L) ∼= Gal(GClK′(L′)/L′). Then it follows from Theorem 2.17
that d′(L/K) = d′(L′/K ′). Let Q1, . . . , Qn be the composition factors of
Gal(GClK(L)/K) and let (Ki, Li) ∈ E0 be Galois such that Gal(Li/Ki) ∼= Qi.
Then from Proposition 5.8 and Theorem 2.17 one obtains that d′(GClK(L)/K) =∏n
i=1 d

′(Li/Ki). From this it follows that d′ is uniquely determined by its restriction
to

S0 = {(K,L) ∈ E0 : L/K is simple Galois} ⊂ E0.
Hence it suffices to show that there exists a unique group homomorphism φ : G → B
such that φ ◦D0|S0= d′|S0 . Define ψ : S → B by ψ([S]) = d′(L/K) where (K,L) ∈



20

S0 such that Gal(L/K) ∈ [S]. From Theorem 2.17 it follows that ψ is well-defined.
Note that the following diagram commutes.

S0

S

B
d′|S0

(K
,L
)7→

[G
al
(L

/
K
)]

ψ

From the universal mapping property of free abelian groups follows that ψ uniquely
extends to a group homomorphism φ : G → B that satisfies φ ◦D0|S0= d′|S0 . This
shows that the Galois degree D0 is universal. �

Theorem 5.12. Let p be prime. Then the degree D : Ep → G × pZ given by
D(L/K) = (Dp(L/K), [L : K]i) is universal.

Proof. LetB be an arbitrary multiplicatively written abelian group and let d′ : Ep →
B be an arbitrary degree. Let (K,L), (K ′, L′) ∈ Ep. If [L : K]i = [L′ : K ′]i then it
follows from Theorem 2.14 and Corollary 2.13 and the fact that purely inseparable
extensions are normal that d′(L/SepL(K)) = d′(L′/SepL′(K ′)). If

Gal(GClK(SepL(K))/K) ∼= Gal(GClK′(SepL′(K ′))/K ′) and

Gal(GClK(SepL(K))/SepL(K)) ∼= Gal(GClK′(SepL′(K ′))/SepL′(K ′))

then it follows from Theorem 2.17 that d′(SepL(K)/K) = d′(SepL′(K ′)/K ′). Hence
if (K,L) and (K ′, L′) satisfy both the above conditions then d′(L/K) = d′(L′/K ′).
Define φ : Ob(C)/∼= × {pn : n ∈ Z≥0} → B by φ([G], pn) = d′(L/K) where L/K
is a field extension such that [L : K]i = pn and SepL(K)/K is Galois with
Gal(SepL(K)/K) ∈ [G]. It follows from the above and Proposition 5.8 that φ
is well-defined and multiplicative. Hence it follows that φ extends to a group ho-
momorphism φ̄ : G×pZ → B. Note that φ̄ is unique since Ob(C)/∼=×{pn : n ∈ Z≥0}
generates G × pZ. It remains to show that φ̄ satisfies φ̄ ◦D = d′. Let (F,E) ∈ Ep
be arbitrary. Then the following holds

d′(E/F ) = d′(SepE(F )/F ) · d′(E/SepE(F ))

= d′(GClF (SepE(F ))/F )(d′(GClF (SepE(F ))/SepE(F )))−1d′(E/SepE(F ))

= φ̄([Gal(GClF (SepE(F ))/F )][Gal(GClF (SepF (E))/SepF (E))]−1,

[E : F ]i)

= φ̄(Dp(E/F ), [E : F ]i) = (φ̄ ◦D)(E/F ).

This shows that the degree D is universal. �
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