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1 Introduction

The simplest version of the Gauss-Bonnet theorem probably goes back
to the time of Thales, stating that the sum of the interior angles of
a triangle in the Euclidean plane equals π. This evolved to the nine-
teenth century version which applies to a compact surface M with Euler
characteristic χ(M) given by:∫

M
K dA = 2πχ(M)

where K is the Gaussian curvature of the surface M .
This thesis will focus on Gaussian curvature, being an intrinsic property
of a surface, and how through the Gauss-Bonnet theorem it bridges the
gap between differential geometry, vector field theory and topology,
especially the Euler characteristic. For this, a short introduction to
surfaces, differential forms and vector analysis is given.
Within the proof of the Gauss-Bonnet theorem, one of the fundamental
theorems is applied: the theorem of Stokes. This theorem will be proved
as well.
Finally, an application to physics of a corollary of the Gauss-Bonnet
theorem is presented involving the behaviour of liquid crystals on a
spherical shell.

2 Introduction to Surfaces

This section presents the basics of the differential geometry of surfaces
through the first and second fundamental forms.

2.1 Surfaces

Definition 2.1 A non-empty subset M ⊂ R3 is called a regular surface
if for every point p ∈M there exists a neighbourhood V ⊂ R3, an open
subset U ⊂ R2 and a differentiable map φ : U → V ∩M ⊂ R3 with the
following properties:

(i) φ : U → φ(U) ⊂M is a homeomorphism.

(ii) For every q ∈ U , the differential Dφ(q) : R2 → R3 is one-to-one.

The map φ is called a local parametrization of the surface M and the
pair (φ,U) is called a local chart for M .
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Definition 2.2 Given a regular surface M , a k-differentiable atlas A
is a family of charts {(φi, Ui), i ∈ I} for some index set I, such that:

1. ∀i ∈ I , φi(Ui) ⊆ R3.

2. The Ui cover M , meaning

M =
⋃
i∈I

Ui.

3. For i, j ∈ I , the map

(φj ◦ φ−1i )|φi(Vi∩Vj) : φi(Vi ∩ Vj)→ φj(Vi ∩ Vj)

is k-differentiable.

M is now called a 2-dimensional manifold with differentiable atlas A.

Definition 2.3 A curve in M through a point p ∈M is a differentiable
map γ : (−ε, ε)→M, ε ∈ R+ and γ(0) = p.

It holds that

γ̇(0) =
d

dt
γ(0) ∈ R3

is a tangent vector to M at the point p = γ(0).

Definition 2.4 The set

TpM = {γ̇(0) | γ is a curve in M through p ∈M} ⊂ R3

is called the tangent space to M in p.

Proposition 2.1 Let (φ,U) be a local chart for M and let q ∈ U with
φ(q) = p ∈M . It holds that

TpM = (Dφ(q))(R2).

This implies that (∂φ∂u(q), ∂φ∂v (q)) forms a basis for TpM , with (u, v) co-
ordinates in U .

By restricting the natural inner product 〈·, ·〉 on R3 to each tangent
plane TpM , we get an inner product on TpM . We call this inner product
on TpM the first fundamental form and denote it by Ip.

4



2.2 First Fundamental Form

The first fundamental form tells how the surface inherits the natural
inner product of R3.

Definition 2.5 Let M be a regular surface in R3 and let p ∈ M . The
first fundamental form of M at p is the map:

Ip : TpM × TpM → R
(X,Y ) → 〈X,Y 〉.

We will, for convenience, use the notation fx = ∂f
∂x for the partial deriva-

tive of a function f with respect to a variable x.

We want to write the first fundamental form in terms of the basis
associated with the local chart (φ,U). Remember that an element of
TpM is a tangent vector at a point p = γ(0) ∈ M to a parametrized
curve γ(t) = φ(u(t), v(t)), t ∈ (−ε, ε).
It holds that:

Ip(γ
′, γ′) = 〈φu ·

du

dt
+ φv ·

dv

dt
, φu ·

du

dt
+ φv ·

dv

dt
〉

= 〈φu, φu〉(
du

dt
)2 + 2〈φu, φv〉

du

dt

dv

dt
+ 〈φv, φv〉(

dv

dt
)2

= E(
du

dt
)2 + 2F

du

dt

dv

dt
+G(

dv

dt
)2,

where we define

E = 〈φu, φu〉,
F = 〈φu, φv〉,
G = 〈φv, φv〉.

The first fundamental form is often written in the modern notation of
the metric tensor:

(gij) =

(
g11 g12
g21 g22

)
=

(
E F
F G

)

2.3 Orientation and Gauss map

Orientability is a property of surfaces measuring whether is it possible
to make a consistent choice for a normal vector at every point of the
surface.
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Definition 2.6 A regular surface M is orientable if it is possible to
cover it with an atlas A, so that

∀i, j ∈ I, ∀p ∈ Ui ∩ Uj : det(φj ◦ φ−1i )(φi(p)) > 0.

A choice of an atlas that satisfies this condition is called an orientation
of M , and M is then called oriented. A local chart (φ,U) is then called
a positive local chart. If no such atlas exists, M is called non-orientable.

The differential geometry of surfaces frequently involves moving frames
of reference. Before going any further, we distinguish two frames used:
the Frenet-Serret and the Darboux-Cartan frames of reference. The first
one depends on a regular curve γ : (−ε, ε) → R3, that is, ||γ̇(t)|| > 0
for every t ∈ (−ε, ε). Let γ be parametrized by arc length ds, then the
frame of reference is constructed by vectors T,N,B where T = dγ

ds is a

unit speed vector, N =
dT
ds

|| dT
ds
|| and B = N × T .

The Darboux-Cartan frame of reference depends on a regular curve
γ on a regular surface M and is constructed by orthonormal vectors
(e1, e2, e3) = (T, n × T, n) where T = γ̇, n is a unit normal vector to
the surface M at p ∈ γ.
An oriented surface in R3 yields a pair (M,n) where M ⊂ R3 is a reg-
ular surface and n : M → S2 ⊂ R3 a differentiable map such that n(p)
is a unit vector orthogonal to TpM for each p ∈M as defined below.

Definition 2.7 Let (M,n) be an oriented surface in R3 and (φ,U) a
local chart for M with basis (φu, φv) for TpM , with (u, v) coordinates
in U . The Gauss map is the map:

n : M → S2 ⊂ R3

p → n(p) =
φu × φv
||φu × φv||

(p).

The Gauss map is a differentiable map. Its differential induces the
Weingarten-map.
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2.4 Second Fundamental Form

The Weingarten map is a linear map related to the Gauss map as
follows:

Definition 2.8 The Weingarten map is the map

Lp : TpM → TpM

v 7→ −Dn(p)(v) = − d

dt
(n ◦ γ)(0)

with γ(0) = p ∈M and v = γ̇(0) ∈ TpM .

Definition 2.9 The second fundamental form of a regular oriented
surface M at a point p ∈M is the map:

IIp : TpM × TpM → R
(X,Y ) → 〈Lp(X), Y 〉 .

Theorem 2.2 Lp is self-adjoint, meaning that 〈Lp(X), Y 〉 = 〈X,Lp(Y )〉.

Proof It holds that Lp is linear thus we only have to check the above
claim for the basis vectors φu, φv.
It holds that: 〈

n ◦ φ, ∂φ
∂u

〉
= 0.

From this it follows that:

0 =
∂

∂v
〈n ◦ φ, φu〉 =

〈
∂

∂v
(n ◦ φ), φu

〉
+ 〈n ◦ φ, φuv〉 .

Using the chain rule we get:

Lp(φv) = −Dn(φv) = − ∂

∂v
(n ◦ φ).

Thus it holds that

〈Lp(φv), φu〉 = −
〈
∂

∂v
(n ◦ φ), φu

〉
= 〈n ◦ φ, φuv〉 .

This is symmetric in u and v. �

This also shows that the differential Dn(p) : TpM → TpM of the Gauss
map is self-adjoint.

7



As with the first fundamental form, it is useful to write the second
fundamental form in terms of the basis (φu, φv) associated with the
local parametrization φ.
It holds that:

IIp(γ
′) = −〈Dn(p)(γ′), γ′〉

= −〈Dn(p)(φu)
du

dt
+Dn(p)(φv)

dv

dt
, φu

du

dt
+ φv

dv

dt
〉

= −〈nu
du

dt
+ nv

dv

dt
, φu

du

dt
+ φv

dv

dt
〉

= e(
du

dt
)2 + 2f

du

dt

dv

dt
+ g(

dv

dt
)2,

where

nu = Dn(p)(φu) nv = Dn(p)(φv)

and

e = −〈nu, φu〉 = −〈n, φuu〉,
f = −〈nv, φu〉 = −〈n, φuv〉 = −〈nu, φv〉,
g = −〈nv, φv〉 = −〈n, φvv〉.

3 Gaussian Curvature

The fundamental idea behind the Gaussian curvature is the Gauss map,
as defined in definition 2.7. The Gaussian curvature can be defined as
follows:

Definition 3.1 The Gaussian curvature of the regular surface M at a
point p ∈M is

K(p) = det(Dn(p)),

where Dn(p) is the differential of the Gauss map at p.

It holds that for a local parametrization φ(u, v) and a curve
γ(t) = φ(u(t), v(t)) with γ(0) = p ∈M , the tangent vector to the curve
γ at t = 0 equals

γ̇(0) = φu(u(0), v(0))
du

dt
(0) + φv(u(0), v(0))

dv

dt
(0),

and thus

Dn(γ̇(0)) = nu
du

dt
(0) + nv

dv

dt
(0).
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Since nu and nv lie in the tangent plane TpM , we can write them in
terms of the basis (φu, φv) as

nu = α11φu + α21φv,

nv = α12φu + α22φv,

for some (αij)i,j=1,2 ∈ R, which gives the matrix of the linear map
Dn(p): (

α11 α12

α21 α22

)
.

We can now link the coefficients of the first fundamental form to those
of the second fundamental form.
Since 〈n, φu〉 = 〈n, φv〉 = 0 it holds that

−e = 〈nu, φu〉 = 〈α11φu + α21φv, φu〉 = α11E + α21F,

−f = 〈nu, φv〉 = 〈α11φu + α21φv, φv〉 = α11F + α21G,

−f = 〈nv, φu〉 = 〈α12φu + α22φv, φu〉 = α12E + α22F,

−g = 〈nv, φv〉 = 〈α12φu + α22φv, φv〉 = α12F + α22G,

which, written in matrix form, gives

−
(
e f
f g

)
=

(
α11 α21

α12 α22

)(
E F
F G

)
.

It holds that EG − F 2 > 0 since the inner product is positive definite
and that det(A ·B) = det(A) · det(B). Thus we get:

K = det(αij)i,j=1,2 =
eg − f2

EG− F 2
.

4 Theorema Egregium

The following theorem represents one of the most important theorems
within the field of differential geometry and the study of surfaces. Gauss
called it Theorema Egregium, meaning ”remarkable theorem”, since it
tells us that the curvature of a surface can be measured without knowing
how the surface is embedded in space.

Theorem 4.1 Theorema Egregium The Gaussian curvature K(p)
of a surface M at a point p ∈ M is an intrinsic value of the surface
itself at this point, that is, it only depends on the metric tensor g on
M.
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For the purpose of the proof of this theorem, we are going to denote
φu, φv as φu1 and φu2 . In general it will be written as φui and φuj with
i, j = 1, 2.

Proof Let (φ,U) be a local chart for M with coordinates (u, v) in U ,
q ∈ U and p = φ(q). It holds that (φu, φv, n) forms a basis for R3,
where n is a unit normal vector to M at p = φ(q). This means that
every a ∈ R3 can be written as:

a =
2∑
i=1

aiφui + 〈a, n〉n

for some a1, a2 ∈ R.
Computing the second derivative of φ yields:

∂2φ

∂ui∂uj
(q) =

2∑
k=1

Γkij .
∂φ

∂uk
(q) +

〈
∂2φ

∂ui∂uj
(q), n

〉
n, (∗)

where Γkij are coefficients called the Christoffel symbols.

It holds by symmetry that ∂2φ
∂ui∂uj

(q) = ∂2φ
∂uj∂ui

(q) and thus Γkij = Γkji.

We can now compute the derivative of the first fundamental form
(gij)i,j=1,2:

∂gij
∂uk

(q) =
∂

∂uk

〈
∂φ(q)

∂ui
,
∂φ(q)

∂uj

〉
=

〈
∂2φ(q)

∂ui∂uk
,
∂φ(q)

∂uj

〉
+

〈
∂φ(q)

∂ui
,
∂2φ(q)

∂uj∂uk
(q)

〉
.

The same computation for ∂gki
∂uj

(q) and
∂gjk
∂ui

(q) gives:

1

2

(
∂gki
∂uj

(q) +
∂gjk
∂ui

(q)− ∂gij
∂uk

(q)

)
=

〈
∂2φ

∂ui∂uj
,
∂φ

∂uk

〉
. (∗∗)

The inner product of (∗) with ∂φ
∂ul

gives via (∗∗):

1

2

(
∂gki
∂uj

(q) +
∂gjk
∂ui

(q)− ∂gij
∂uk

(q)

)
=
∑
k

Γkijgkl,

and thus

Γkij =
1

2

∑
l

(
∂gki
∂uj

(q) +
∂gjk
∂ui

(q)− ∂gij
∂uk

(q)

)
gkl,
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where gkl is the inverse of gij .

We can now compute the third derivative of φ:

∂3φ

∂ui∂uj∂ul
=

∑
k

∂Γkij
∂ul
· ∂φ
∂uk

+
∑
k

Γkij ·
∂2φ

∂uk∂ul
+
∂gij
∂ul
· n+ gij ·

∂n

∂ul
.

It is obvious that
(φuu)v − (φuv)u = 0.

Furthermore, combining this with (∗) we deduce:
Γ1
11φuv + Γ2

11φvv + e nv + (Γ1
11)vφu + (Γ2

11)vφv + ev n

= Γ1
12φuu + Γ2

12φvu + f nu + (Γ1
12)uφu + (Γ2

12)vφv + fv n,

with e, f the coefficients we defined for the second fundamental form. If
we substitute all second-order derivatives using (∗) again and equating
the coefficients of φv we get

Γ1
11Γ

2
12 + Γ2

11Γ
2
22 + e α22 + (Γ2

11)v = Γ1
12Γ

2
11 + Γ2

12Γ
2
12 + f α12 + (Γ2

12)u,

with α21, α22 the coefficients given in the matrix of Dn(p) introduced
earlier. Solving the Dn(p) matrix for these coefficients gives:

α21 =
eF − fE
EG− F 2

α22 =
fF − gE
EG− F 2

.

Replacing these coefficients we obtain

(Γ2
12)u − (Γ2

11)v + Γ1
12Γ

2
11 + Γ2

12Γ
2
12 − Γ1

11Γ
2
12 − Γ2

11Γ
2
22 = e α22 − f α21

= −E eg − f2

EG− F 2

= −EK,

which gives the desired formula for the Gaussian curvature in terms of
the first fundamental form and its first and second derivatives. �

This shows that the Gaussian curvature is independent of the embed-
ding of the surface in R3. Thus, it is an intrinsic value of the surface
itself since it depends only on the metric tensor g.

5 Gauss-Bonnet Theorem

In this section, the Gauss-Bonnet theorem is proved, through the Gauss-
Bonnet formula. To do this, some elementary tools from differential
geometry are needed: differential forms.
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5.1 Differential Forms

Definition 5.1 A 1-form on R3 is a map

ω : R3 → tp∈R3(R3
p)
∗

p → ω(p),

where (R3
p)
∗ is the dual space of the tangent space

R3
p = {v|v = q − p, q ∈ R3}, that is, the set of linear maps ϕ : R3

p → R.
It holds that ω can be written as

ω(p) =
3∑
i=1

ai(p)(dx
i)p,

where ai are real functions in R3 and the set {(dxi)p; i = 1, 2, 3} is the
dual basis of {(ei)p}, that is

(dxi)p(ej)p =
∂xi
∂xj

=

{
0 if i 6= j
1 if i = j.

This map should be compatible with the projection map
P1 : tp∈R3(R3)∗ → R3, that is, P1 ◦ ω = idR3 . If the functions ai are
differentiable, ω is called a differential 1-form.

Let Λ2(R3
p)
∗ be the set of maps ϕ : R3

p × R3
p → R that are bilinear

and alternating, meaning ϕ(v1, v2) = −ϕ(v2, v1) for (v1, v2) ∈ R3
p ×R3

p.
This is a vector space. The set {(dxi ∧ dxj)p, i < j} forms a basis for
Λ2(R3

p)
∗. It holds that

(dxi ∧ dxj)p = −(dxj ∧ dxi)p, i 6= j

and
(dxi ∧ dxi)p = 0.

Definition 5.2 A 2-form on R3 is a map

ω : R3 → tp∈R3Λ2(R3
p)
∗.

It can be written as:

R3 3 p→ ω(p) =
∑
i<j

aij(p)(dx
i ∧ dxj)p, i, j = 1, 2, 3,

where aij are real functions in R3.
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Here again, the map should be compatible with the projection map
P2 : tp∈R3(R3)∗ → R3, that is, P2 ◦ ω = idR3 . If the functions aij are
differentiable then ω is called a differential 2-form.

The above definitions are for 1- and 2-forms on R3. From here on we
are going to work with 1- and 2-forms on the regular surface M .

Let (φ,U) be a local chart for M with coordinates (u, v) and let

~x = (x, y, z) = (φ1(u, v), φ2(u, v), φ3(u, v))

be a moving point through M . Its differential yields

d~x(p) = (dφ1(u, v), dφ2(u, v), dφ3(u, v))

=

(
∂φ1
∂u

(p)du+
∂φ1
∂v

(p)dv,
∂φ2
∂u

(p)du+
∂φ3
∂v

(p)dv,
∂φ3
∂u

(p)du+
∂φ3
∂v

(p)dv

)
=

(
∂φ

∂u
(p)du+

∂φ

∂v
(p)dv

)
.

It holds that (∂φ∂u ,
∂φ
∂v ) forms a basis for the tangent space TpM . Thus,

d~x(p) ∈ TpM∗.
Now let (e1, e2, e3) be a Darboux-Cartan frame for the regular surface
M with e1, e2 tangential and e3 = e1 × e2 normal to M . It holds that
we can write d~x as

d~x(p) = ω1(p) · e1 + ω2(p) · e2

for some ω1, ω2 ∈ TpM∗ since (e1, e2) forms a basis for TpM as well.
At each point p ∈M , the basis {(ωi)p} is the dual of the basis {(ei)p}.
The set of differential 1-forms {ωi} is called the coframe associated to
{ei}.
It also holds that each vector field ei is a differentiable map
ei : R3 → R3. Its differential at p ∈ U, (dei)p : R3 → R3, is a linear
map. Thus, for each p and each v ∈ R3 we can write

(dei)p(v) =
∑
j

(ωij)p(v) · ej .

It holds that (ωij)p(v) depends linearly on v. Thus (ωij)p is a linear form
on R3 and since ei is a differentiable vector field, wij is a differential
1-form. For convenience, we abbreviate the above expression to

dei =
∑
j

ωij · ej .
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We can now work with these expressions. Differentiating 〈ei, ej〉 = δij
gives

0 = 〈dei, ej〉+ 〈ei, dej〉 = ωij + ωji

and thus ωij = −ωji and in particular ωii = 0.
The three forms (ωij)i<j are called the connection forms of R3 in the
moving frame {ei}.
Cartan’s structural equations give an expression for the exterior
differential of these 1-forms.

Theorem 5.1 The structural equations are given by:

• dω1 = ω12 ∧ ω2 and dω2 = ω1 ∧ ω12,

• dωij =
∑3

k=1 ωik ∧ ωkj .

Proof To prove the first statement, we use the fact that d(d~x) = 0:

0 = d(d~x) = d(ω1 · e1 + ω2 · e2)
= dω1 · e1 − ω1 ∧ de1 + dω2 · e2 − ω2 ∧ de2.

Using the fact that dei =
∑

j ωij · ej , this yields:

0 = d(d~x) = dω1 · e1 − ω1 ∧ (ω12 · e2 + ω13 · e3) + dω2 · e2 − ω2 ∧ (ω21 · e1 + ω23 · e3)
= (dω1 − ω2 ∧ ω21) · e1 + (dω2 − ω1 ∧ ω12) · e2 − (ω1 ∧ ω13 + ω2 ∧ ω23) · e3.

To prove the second statement we use the fact that d(dei) = 0:

0 = d(dei) = d(

3∑
j=1

ωij · ej)

=
3∑
j=1

d(ωij · ej)

=

3∑
j=1

(dωij · ej − ωij ∧ dej)

=
3∑
j=1

(
dωij · ej − ωij ∧

3∑
k=1

ωjk · ek

)
.

From here we see that in front of a basis vector el we have the coefficient:

dωil −
3∑
j=1

ωij ∧ ωjl,

which gives the desired result. �

14



It holds that the differential of the normal vector n = e3 = e1 × e2 is
contained in the plane spanned by (e1, e2) and given by:

dn = de3 = ω31 · e1 + ω32 · e2.

Since ω1 and ω2 form a basis for 1-forms, we can write

ω13 = h11ω1 + h12ω2,

ω23 = h21ω1 + h22ω2.

Thus the matrix of the Weingarten map with respect to the orthonormal
basis (e1, e2) is given by:

L =

(
h11 h12
h21 h22

)
.

Indeed we have

dn(e1) = −(ω13 · e1 + ω23 · e2)(e1)
= −(ω13(e1) · e1 + ω23(e1) · e2)
= −(h11e1 + h12e2)

and

dn(e2) = −(ω13 · e1 + ω23 · e2)(e2)
= −(ω13(e2) · e1 + ω23(e2) · e2)
= −(h21e1 + h22e2)

and since L = −dn, we get the wanted entries for the matrix form.
From the proof of the first statement of the previous theorem we know
that 0 = ω1 ∧ ω12 + ω2 ∧ ω23. This means that h12 = h21 and shows
again the symmetry of the Weingarten map.
This also gives the Gaussian curvature, that is:

K = detL = h11h22 − h12h21 = h11h22 − h212.

We now use Cartan’s structural equations. It holds that:

dω12 = ω13 ∧ ω32 = −ω13 ∧ ω23.

We have:

ω13 ∧ω23 = (h11ω1 + h12ω2)∧ (h21ω1 + h22ω2) = (h11h22− h212)ω1 ∧ω2.

This can be written as:

dω12 = −K dA.
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Remark It can be easily shown that dA = ω1∧ω2, even if the notation
dA is a bad notation for the surface element. It holds that ω1 ∧ ω2 can
never be an exact form, that is, the differential of a 1-form. But the
notation above is tolerated and widely used.
For the orthonormal basis (e1, e2), it holds that

(ω1 ∧ ω2)(e1, e2) = ω1(e1)ω2(e2)− ω1(e2)ω2(e1)

= 1 · 1− 0 · 0 = 1.

Hence, ω1 ∧ ω2 is the volume element.

5.2 Gauss-Bonnet Formula

The Gauss-Bonnet formula (also called local Gauss-Bonnet theorem)
relates the Gaussian curvature of a surface to the geodesic curvature of
a curve and leads to the Gauss-Bonnet theorem. The geodesic curvature
measures how far a curve on a surface is away from being a geodesic,
that is, a curve on the surface for which its acceleration is either zero
or parallel to its unit normal vector for each point on that curve.

Definition 5.3 Let γ be a regular curve on the regular surface M . The
geodesic curvature of γ at a given point p ∈ γ is defined as

κγ(p) := 〈γ̈, N × γ̇〉 .

Proposition 5.2 Let M be a regular surface. For each p ∈M , it holds
that the Gaussian curvature K(p), by choosing a moving orthonormal
frame (e1, e2, n = e1 × e2) around p, satisfies

dω12(p) = −K(p) dA(p) = −K(p)(ω1 ∧ ω2)(p).

Since dω12 and dA do not depend on e3 = n = e1 × e2, we see that K
is an intrinsic value, as proven in Theorema Egregium earlier.

We can now state the Gauss-Bonnet formula.

Lemma 5.3 Gauss-Bonnet Formula: Let (M,n) be an oriented
surface with M ⊂ R3 and let (φ,U) be a coordinate patch with φ :
U → R3, φ(U) ⊂M . Let γ be a piecewise regular curve on M enclosing
a region R ⊂ M . Let {γi}ni=1 be the regular curves that form γ and
denote by {αi}ni=1 the jump angles at the junction points (exterior an-
gles).
It holds that: ∫

R
K dA+

∫
γ
κγ ds = 2π −

n∑
i=1

αi,
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where K is the Gaussian curvature of M and dA is its Riemannian
volume element.

Proof Let (e1, e2, n = e1 × e2) be an oriented orthonormal moving
frame on a regular curve γi on M . Let (ω1, ω2) be the associated
coframe with connection forms ωjk, j, k = 1, 2. Choose another ori-
ented orthonormal frame (ẽ1 = γ̇i, ẽ2) on M with associated coframe
(ω̃1, w̃2) and connection forms ω̃jk, j, k = 1, 2. Changing from the first
frame to the second is done by a rotation of angle θ. It holds that
(ẽ1, ẽ2) is written in the (e1, e2) basis as:

ẽ1 = cos θ · e1 + sin θ · e2,
ẽ2 = − sin θ · e1 + cos θ · e2.

Furthermore

dẽ1 = ω̃12 · ẽ2 + ω̃13 · ẽ3,
ω̃12 = 〈dẽ1, ẽ2〉

= 〈dẽ1, − sin θ · e1 + cos θ · e2〉
= 〈− sin θdθ · e1 + cos θ · de1 + cos θdθ · e2 + sin θ · de2,− sin θ · e1 + cos θ · e2〉
= ω12 + dθ.

It holds that

κγi ds = 〈γ̈i, n× γ̇i〉 ds
= 〈dT, n× T 〉ds,

dT = dẽ1 = ω̃12 · ẽ2 + ω̃13 · ẽ3
= ω̃12 · n× T + w̃13 · ẽ3.

Thus taking the inner product of dT with n× T to get κγi gives:

ω̃12 = κγi ds.

Going back to proposition 5.2, we get:∫
R
K dA = −

∫
R
dω12

(∗)
= −

∫
γ
ω12

= −
∑
i

∫
γi

(ω̃12 − dθ)

= −
∫
γ
(ω̃12 − dθ)

= −
∫
γ
κγ ds+

∫
γ
dθ.
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In (∗) we used the theorem of Stokes, which we will prove later. It
holds that dθ is the change of angle. Integrated over a closed curve this
gives the total rotational angle of the tangent vector starting in a point
p ∈M (and ending there again). If the curve is simple, according to the
Turning Tangent Theorem, this is equal to 2π. If there are singularities,
thus kinks, in the curve γ, we can decompose γ into {γi}i=1,...,n simple
curves. The exterior angle αi can be defined as the jump angle between
the tangent vector at the curve γi and the curve γi+1. It holds that the
total rotational angle is (according to the Turning Tangent Theorem)
2π minus the sum over the ‘added angles’, namely the exterior angles.
This gives

∫
γ dθ = 2π −

∑
i αi and thus∫

R
K dA+

∫
γ
κg ds = 2π −

∑
i

αi.

�

The Gauss-Bonnet formula leads to the Gauss-Bonnet Theorem with
the aid of triangulations. This is a construction borrowed from algebraic
topology.

Definition 5.4 A triangulation of a compact regular surface M con-
sists of a finite family of closed subsets {T1, . . . , Tn} and homeomor-
phisms {φi : T ′ → Ti ∈ R2} where T is a triangle in R2 such that:

1.
⋃
i Ti = M .

2. For i 6= j, Ti ∩ Tj 6= ∅ implies Ti ∩ Tj is either a single vertex or
a single edge.

Every compact regular surface possesses a triangulation. In fact, it
was proved by Tibor Radó in 1925 that every compact topological 2-
manifold possesses a triangulation.

Theorem 5.4 (Radó) Every compact surface M admits a triangula-
tion. Equivalently, M can be constructed, up to homeomorphism, by
taking finitely many copies of the standard 2-simplex ∆, that is, trian-
gles, and gluing them together appropriately along edges.

5.3 Euler Characteristic

The Euler characteristic is a topological invariant of a 2-manifold which
describes its shape regardless of the way it is bent. It moreover gives
a simple way to determine topologically equivalent manifolds. It is
defined as follows:
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Definition 5.5 If M is a triangulated 2-manifold, the Euler charac-
teristic of M with respect to the given triangulation is defined as

χ(M) = V − E + F,

with V, E and F the number of vertices, edges and faces of the given
triangulation.

It holds that the Euler characteristic is independent of the chosen tri-
angulation.
We can examine what happens to the Euler characteristic if we add a
hole to the surface, by attaching a handle. This can be done by remov-
ing two ‘triangles’ of the triangulation and gluing the handle. Then the
original triangulation will be reduced by two faces and the new triangu-
lation gains the triangulation of the handle, which can be triangulated
into 6 triangles, thus having 6 new edges, and 6 faces, with the vertices
coinciding with the vertices of the removed triangles.
Computing the Euler characteristic we get

χ(M) = V ′−E′+F ′ = V − (E−6+12)+(F −2+6) = V −E+F −2.

We see that χ(M) has been lowered by 2.

It holds that the Euler characteristic is related to the genus of the
surface. The genus of a connected, orientable regular surface M is
the maximum number of cuttings along non-intersecting closed simple
curves without rendering the resultant manifold disconnected. It is
equal to the number of holes in it. Alternatively, it can be defined
for closed surfaces in terms of the Euler characteristic χ, through the
relationship

χ(M) = 2− 2g,

where g is the genus.
This is consistent with the fact that χ(M) has been lowered by 2 by
adding a hole.
To further illustrate the Euler characteristic, choose the following tri-
angulation for the torus:
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This triangulation is composed of 2 triangles with 1 vertex, 3 edges and
2 faces which gives an Euler characteristic of χ(torus) = 1− 3 + 2 = 0,
which correponds to a genus g = 1.

5.4 Gauss-Bonnet Theorem

Theorem 5.5 Gauss-Bonnet Theorem: Let M ∈ R3 be an oriented
compact regular surface, K its Gaussian curvature and χ its Euler char-
acteristic. Then ∫

M
K dA = 2πχ(M).

Proof Let {Ri, i = 1, ..., F} denote the triangles of the triangulation
of M , and for each i let {γij : j = 1, 2, 3} be the edges of Ri.
Let {θij : j = 1, 2, 3} denote its interior angles. Since each exterior angle
is π minus the corresponding interior angle, applying the Gauss-Bonnet
formula to each triangle and summing over the amount of triangles F
gives:

F∑
i=1

∫
Ri

K dA+

F∑
i=1

3∑
j=1

∫
γij

κγ ds+

F∑
i=1

3∑
j=1

(π − θij) =

F∑
i=1

2π. (1)

It holds that each edge appears twice in the above sum, with opposite
directions, therefore the integrals of κγ cancel out. Thus (1) becomes;

∫
M
K dA+ 3πF −

F∑
i=1

3∑
j=1

θij = 2πF. (2)

At each vertex, the sum of the interior angles of the surrounding trian-
gles is equal to 2π and thus∫

M
K dA = 2πV − πF. (3)

Since each edge appears in exactly two triangles, and each triangle has
exactly three edges, the total number of edges counted with multiplicity
is 2E = 3F where we count each edge once for each triangle in which
it appears. This means that F = 2E − 2F , and thus (3) becomes:∫

M
K dA = 2πV − 2πE + 2πF = 2πχ(M).

�
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6 Gaussian Curvature and the Index of a Vec-
tor Field

6.1 Change of frames

Equip the tangent space of the regular surface M with the standard
inner product of R3 and let X be a vector field on M with isolated
singularity p ∈M , that is X(p) = 0, and let Up be a neighbourhood of
p containing no other singularities than p. Define e1 = X/|X| on
Up \ {p} and complete e1 to an oriented orthonormal moving frame
(e1, e2) on Up. Let (ω1, ω2) be the associated coframe with connec-
tion forms ωij , i, j = 1, 2. Choose another oriented orthonormal frame
(ẽ1, ẽ2) on Up. This arbitrary frame has to be different from (e1, e2)
since e1 is not defined at p. Let’s investigate what happens to the con-
nection form ω12 if we change the local orthonormal frame. For each
q ∈ Up, denote by A the change of basis matrix from (e1, e2) to (ẽ1, ẽ2).
Since the transformation is a rotation of angle θ (between e1 and ẽ1),
it is clear that the matrix A is orthogonal and equals:

A =

(
f g
−g f

)
=

(
cos θ sin θ
− sin θ cos θ

)
.

Thus the angle of rotation between the two orthonormal frames θ equals
arctan g

f . This is not well-defined since it is multi-valued. But it turns
out that its 1-form

dθ = d

(
arctan

g

f

)
=
fdg − gdf
f2 + g2

= fdg − gdf := τ

is well-defined.
Now let (ω̃1, ω̃2) be the coframe associated with (ẽ1, ẽ2) and let ω̃12, ω̃21

be its corresponding connection forms.
It holds that:

ω̃12 − ω12 = τ,

where τ = fdg − gdf is called the (e1, e2)→ (ẽ1, ẽ2) change of frame.
Thus, if (ẽ1, ẽ2) is another orthonormal frame we have

ẽ1 = cos θ e1 + sin θ e2,

ẽ2 = − sin θ e1 + cos θ e2.

Therefore ω̃1 ∧ ω̃2 = ω1 ∧ ω2 and ω̃12 = ω12 + dθ.

21



6.2 The Index of a Vector Field

Let C be a simple closed curve that bounds a region D in Up, where
D is homeomorphic to a unit disk in R2 and contains p in its interior
and think of (ẽ1, ẽ2) as the reference frame, then τ = ω12 − ω̃12 is the
(ẽ1, ẽ2) → (e1, e2) change of frame (which is the opposite change of
frame of what we defined earlier). The index of a vector field at an
isolated singularity p is defined as follows:

Definition 6.1 Let M be a regular surface and X a smooth vector field
on M with an isolated singularity p ∈ M , that is X(p) = 0, and let C
be a simple closed curve in M . The number

IndX(p) =
1

2π

∫
C
τ

is called the index of X at p.

The index of X at the singularity p is an integer representing how many
full turns the vector field makes around p, when moving along the curve
C. We can illustrate that with the following example:

Example Consider the smooth vector field

X(x, y) = x
∂

∂x
− y ∂

∂y
.

The only singularity X has is the origin (0, 0). Let ( ∂
∂x ,

∂
∂y ) be the

reference frame and let C be the unit circle. We obtain

τ = d

(
arctan

−y
x

)
=
−xdy + ydx

x2 + y2
,

so

IndX((0, 0)) =
1

2π

∫
C
−xdy + ydx =

1

2π

∫ 2π

0
(− cos2 t− sin2 t)dt = −1.

Lemma 6.1 The index of a smooth vector field X at a point p is in-
dependent of the choice of the curve C.

Proof Let C1, C2 be two simple closed curves. First, assume they do
not intersect. Let B be the region bounded by C1 and C2.

22



Thus ∂B = C1 ∪ (−C2). Then:∫
C1

τ −
∫
C2

τ =

∫
C1∪(−C2)

τ

=

∫
∂B
τ

(∗)
=

∫
B
dτ

= 0.

In (∗) we used the theorem of Stokes. If C1 and C2 intersect, take a
simple closed curve C0 that does not intersect C1 and C2 and apply the
previous argument to show that

∫
Ci
τ =

∫
C0
τ for i = 1, 2. �

Lemma 6.2 The index of a smooth vector field X at a point p does
not depend on the Riemannnian metric.

Proof Let r0, r1 be two Riemannian metrics on M . Define

rt = (1− t)r0 + t · r1, 0 ≤ t ≤ 1.

Then rt is a family of Riemannian metrics connecting r0 with r1. Denote
the index of X at p with respect to rt by Ind[t]. From the definition of
the index it holds that Ind[t] is a continuous function of t. Since it has
integer values, it follows that Ind[t] is constant, so Ind[0] = Ind[1]. �

6.3 Relationship Between Curvature and Index

Theorem 6.3 For every compact orientable regular surface M and
every smooth vector field X on M with only isolated zeros p1, . . . , pn,
we have ∫

M
K dA = 2π

n∑
i=1

IndX(pi).

Proof Let U = M \ {p1, . . . , pn}, then X is non-vanishing on U . Thus
we can define e1 = X/|X| and complete it to an oriented orthonormal
frame of reference on U by constructing e2 as a unit vector field or-
thogonal to e1. Let (ω1, ω2) be the associated coframe with connection
forms (ωij)i,j=1,2.
For each 1 ≤ i ≤ n, choose a small open disk Bi, with respect to the
Riemannian distance on the regular surface M , centered at pi, in a
way that Bi contains no other singularities of X other than pi. Let
V = M \ (

∑n
i=1Bi). It is clear that V is a 2-manifold with boundary
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the union of ∂Bi, 1 ≤ i ≤ n. The orientation of each ∂Bi as a boundary
element of V is always the opposite of the orientation of ∂Bi as the
boundary of Bi.
We now compute the integral over the Gaussian curvature. This gives:∫

V
K dA = −

∫
V
dω12

(∗)
= −

∫
∂V
ω12

=
n∑
i=1

∫
∂Bi

ω12.

In (∗) we used the theorem of Stokes again.

To compute this we need the following lemma:

Lemma 6.4 If Br is the disk of radius r centered at p ∈M then:

lim
r→0

1

2π

∫
∂Br

ω12 = IndX(p).

Proof By the Cauchy criterion it holds that the above limit exists if
and only if

lim
r,s→0

∣∣∣∣∫
∂Br

ω12 −
∫
∂Bs

ω12

∣∣∣∣ = 0.

If s < r, denote the annulus bounded by ∂Br and ∂Bs by Ars. Then
∂Ars = ∂Br − ∂Bs. We get∫

∂Br

ω12 −
∫
∂Bs

ω12 =

∫
∂Br−∂Bs

ω12

=

∫
∂Ars

ω12

(∗)
=

∫
Ars

dω12

= 0

as r, s→ 0 since the area of Ars goes to zero. In (∗), Stokes is applied.
This shows that the limit exists. We now have to show that this limit is
the index of the vector field on M . It holds that dω12 = dω̃12 = −K dA
and that ω12 = ω̃12 + τ . This gives:∫

∂Br

ω12 −
∫
∂Bs

ω12 =

∫
Ars

dω12.
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Letting s→ 0, we see that Ars → Br and thus we get:∫
∂Br

ω12 − 2πI =

∫
Br

dω12

= −
∫
Br

K dA.

This can be done since dω12 = −K dA is globally defined on M .
It holds that

∫
∂Br

ω12 = −
∫
Br
K dA. This gives:∫

∂Br

ω12 =

∫
∂Br

(ω̃12 + τ)

= −
∫
Br

K dA+

∫
∂Br

τ

= −
∫
Br

K dA+ 2πIndX(pi).

This shows that the limit indeed equals the index of the vector field on
M .
Thus, letting the radii of Bi go to zero and using the above lemma we
get: ∫

M
K dA = 2π

n∑
i=1

IndX(pi).

�

From this we can see how vector field theory relates to topology through
differential geometry.

Corollary 6.5 (Poincaré-Hopf) Let M be a regular orientable surface
and X a smooth vector field on M with only isolated singularities p1, . . . , pn.
Then:

n∑
i=1

IndX(pi) = χ(M).

7 Stokes’ Theorem

Another example to see how differential forms relate to the mathematics
of vector fields is the theorem of Stokes.
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Theorem 7.1 Let ω denote a differential (n − 1)-form on a compact
oriented n-manifold M . Suppose that M has a smooth and compact
boundary ∂M with the induced orientation. Then∫

M
dω =

∫
∂M

ω.

We are going to prove Stokes in the general case, for an n-manifold.
Since we are not working on a surface now, we denote a manifold by
X.
First we need some definitions we have not encountered before.

Definition 7.1 Let X be a smooth oriented manifold. The support of
a function f : X → R is the closure of the set of p ∈ X such that
f(p) 6= 0, that is

supp(f) := {p ∈ X|f(p) 6= 0}.

Definition 7.2 Let X be a manifold with open cover U =
⋃
i(Ui)i∈I .

A partition of unity subordinate to U is a family (ρj)j∈J of smooth
functions ρj : X → [0, 1] with compact supports such that

1. for each j ∈ J , there exists an ij ∈ I such that supp(ρj) ⊂ Uij ,

2. for every compact subset K ∈ X, we have K ∩ supp(ρj) 6= ∅ for
only finitely many j ∈ J ,

3.
∑

j∈J ρj = 1 on X.

It holds that if U is an open cover of a manifold X then such a partition
of unity subordinate to U exists.

Proof of the theorem of Stokes

Let A be an oriented atlas of charts (φi : Ui → Vi)i∈I , with the corre-
sponding orientation on X. Let (ρj)j∈J be a partition of unity subor-
dinate to the open cover Ui of X. Then

ω =
∑
j∈J

ρj ω.

It holds that:

∑
j

∫
Uij

d(ρj ω) =
∑
j

(∫
Uij

dρj ∧ ω +

∫
Uij

ρj(dω)

)
.
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Since
∑

j ρj = 1 then
∑

j dρj = 0 and thus (since it is a finite sum) it

holds that
∫
Uij

∑
j dρj = 0.

The fact that we can write ω as

ω =
∑
j∈J

ρj ω

and due to the linearity of the integral, we can resume the proof to the
case of the manifold X with boundary ∂X being the half-space

Hn = {(x1, . . . , xn) ∈ Rn|x1 ≤ 0}

with boundary ∂Hn = {(x1, . . . , xn) ∈ Rn|x1 = 0}. This boundary ∂Hn

can be viewed as Rn−1. This means that we only need to prove Stokes’
theorem for forms with support in a coordinate neighbourhood, that is,
for differential forms with a compact support in Hn.
Let ω be a differentiable (n− 1)-form with compact support in Hn.
For n = 1,we have 0-forms, that is, functions. The result follows directly
from the Fundamental Theorem of Calculus. In this case ω is a smooth
function of compact support on (−∞, 0] and thus∫

H1

dω =

∫ 0

−∞
ω′(x)dx = ω(0) =

∫
∂H1

ω.

For n ≥ 2, we can write ω as

ω =
n∑
i=1

fi dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

with smooth functions f1, . . . , fn, where the hat marks a missing term.
Thus we get

dω =
n∑
i=1

(−1)i−1
∂fi
∂xi

dx1 ∧ . . . ∧ dxn.

For i ≥ 2, since fi has compact support in Hn, and for every
c1, . . . , ci−1, ci+1, . . . , cn in R with c1 ≤ 0 it holds that∫

R

∂fi
∂xi

(c1, . . . , ci−1, t, ci+1, . . . , cn)dt = 0

by the Fundamental Theorem of Calculus. Thus it holds that∫
Hn

∂fi
dxi

dx1 . . . dxn = 0.
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The pullback of ω, defined by the inclusion i : ∂Hn ↪→ Hn, is
i∗ω = f1dx2 ∧ . . . ∧ dxn and thus∫

Hn

dω =

∫
Hn

∂fi
∂xi

dx1 . . . dxn

=

∫
Rn−1

(∫ 0

−∞

∂f1
∂x1

dx1

)
dx2 . . . dxn

=

∫
Rn−1

f1(0, x2, . . . , xn)dx2 . . . dxn

=

∫
∂Hn

ω.

using the Fundamental Theorem of Calculus again. This completes the
proof of the theorem. �

In vector calculus, operations involving the gradient of a function and
curl or divergence of a vector field are commonly used. The exterior dif-
ferential is similar to these actions when working on differential forms.
We restrict ourselves to R3 to establish the following correspondence:
Differentiable scalar functions correspond to 0-forms in R3.
Let f(x, y, z) be a differentiable scalar function in R3. The gradient of
f corresponds to the 1-form df :

∇f(x, y, z)↔ df = ω1
∇f =

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

Let F be a vector field in R3. It corresponds to the 1-form:

F = (Fx, Fy, Fz)↔ ω1
F = Fx dx+ Fy dy + Fz dz.

The curl out of F corresponds to the exterior differential of ω1
F , which

gives a 2-form:

∇× F ↔ ω2
F = Fx dy ∧ dz − Fy dx ∧ dz + Fz dx ∧ dy.

The divergence of F corresponds to the 3-form:

∇ · F ↔ dω2
F =

(
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

)
dx ∧ dy ∧ dz.

This correspondence allows us to formulate the classical version of the
theorem of Stokes in R3:

Theorem 7.2 Let M be an oriented regular surface with smooth bound-
ary C, F be a differentiable vector field on M and n be the outward-
pointing normal vector to M . Then:∫∫

M
(∇× F) · n dA =

∮
C

F · dr.
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8 Application to Physics

The Poincaré-Hopf theorem can be visualised through the following
experiment including nematic liquid crystals [6, 7]. A nematic liquid
crystal is a distinct phase observed between the crystalline (solid) and
isotropic (liquid) states of matter. It is characterized by molecules hav-
ing no positional order but tending to self-align in the same direction
to have a long-range directional order with their long axes roughly par-
allel. We can then talk about a nematic direction vector, a director.
Most nematic liquid crystals (referred to as nematics) are uni-axial:
they have one axis which is longer and preferred. In the following dia-
gram, we see a distribution of nematics:

Light is an electromagnetic wave and thus exhibits polarization: its
waves can oscillate in more than one direction. When unpolarized light,
that is, light with no defined polarization, passes through a polarizer,
only waves of a certain polarization are transmitted (the waves that
are in the plane of polarization) and waves of different polarizations
are blocked. Two polarizers used together transmit light differently de-
pending on their relative orientation. For example, when the polarizers
are arranged so that their planes of polarization are perpendicular to
each other, the light is blocked. When the second filter (called the an-
alyzer) is parallel to the first, all of the light passed by the first filter is
also transmitted by the second.
The behaviour of a nematic liquid crystal, which, due to the align-
ment of the molecules, can be seen as a vector field, is studied through
the following experimental system, a nematic double emulsion droplet:
a nematic liquid crystal droplet of radius R (yellow) encapsulates a
smaller water droplet of radius a (white) as seen in the figure below:
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Schematic of a nematic double emulsion droplet of radius R. The
inner water droplet of radius a is displaced by an amount ∆ along the

vertical direction, which makes the top of the shell thinner.

Since a nematic liquid crystal has one preferred long axis, it holds that
this molecule, when rotated, returns to its preferred position after a
rotation of only π. This means that we can have a singularity with
index 1

2 .
Experimental model systems of spherical nematics have shown that the
thickness of the shell plays a crucial role in the distribution and in-
dex of the singularities of a field of nematics. As an example, for a
field of nematics with two singularities, there are two possible configu-
rations depending on the homogeneity of the thickness of the shell. If
the shell is rather thick and homogeneous over the whole sphere, then
the singularities tend to align in such a way that the distance between
them is maximized, that is, diametrically. But, when increasing the
thickness inhomogeneity towards a critical value, one defect migrates
towards the other one such that the singularities are all confined on the
thinnest part of the shell.
The link to the mathematics of surfaces comes from the theorem of
Poincaré-Hopf which tells us that the sum of the indices, that is, the
singularities of a vector field on a sphere is always equal to two. This
means that the following configurations can theoretically occur:

• 1× index 2,

• 2× index 1,

• 1× index 1 + 2× index 1
2 ,

• 1× index 3
2 + 1× index 1

2 .

• 4× index 1
2
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The cases involving an index of 2 or 3
2 are not likely to occur, due to

energetical reasons. The possible configurations are shown in the fol-
lowing figure.

The first row shows different configurations of a nematic shell with
four defects of charge 1

2 . The second row shows different
configurations of a nematic shell with three defects (one with charge 1

and two with 1
2 . The last row shows different configurations of a

nematic shell with two defects of charge 1.

In the experiment above, unpolarized light is sent through a polarizer
and an analyzer positioned with their axes of polarization perpendicular
to each other. The nematic droplet is used as an intermediate medium
between the two polarizers. The nematic director of the nematic is uni-
form and makes an angle θ with the axis of the first polarizer.
If the angle θ is 0, the nematic does not change the polarization of the
light and thus the light is blocked. If the angle θ is π

2 the polarized light
is blocked by the nematic and no light passes. Finally, if θ is some other
angle different from 0, π2 (mod π), the nematic changes the polarization
of the light and light passes through the second polarizer and can be
detected.
Using this last setup, simply counting the ‘number’ of ‘brushes’ (en-
lightened parts) at each defect and dividing it by 4 gives its index. (We
get two brushes at a defect of index 1

2 and four brushes at a defect of
index 1).
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