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Introduction

In 1934, the famous mathematician Hans Julius Zassenhaus classified the sharply
triply transitive permutation groups in his dissertation. This would lead to an
attempt to also classify a closely related class of doubly transitive permuta-
tion groups, these days known as Zassenhaus groups. Michio Suzuki, Walter
Feit and Noburu Ito made the most important contributions to this endeavour.
Eventually, Michio Suzuki would finish this classification in 1962.

In his pursuit for this classification, Suzuki discovered a new family of finite
simple groups. Nowadays, these groups are known as the Suzuki groups and are
often denoted as Suz(22n+1). Suzuki defined his groups as a subgroup of the
matrix group of invertibele 4×4 matrices over F , with F a well chosen field. He
defined his groups by giving three generators. As these generators were matrices
the calculations involved to prove that Suz(22n+1) is a Zassenhaus group are
not very insightfull. Another way to construct these groups is by means of Lie
Algebras. This contruction however would require too much machinery for our
purposes. In 2009, Robert Wilson published a new construction of the Suzuki
groups which is rather elementary, and in his own words: “in time it will come
to be regarded as the standard construction. ”

In this bachelor thesis I will review the different Zassenhaus groups with a
special emphasis on the Suzuki groups using Wilson’s construction.
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1 Zassenhaus groups

Definition 1.1. A group G that acts on a set X is said to be k-transitive if
#X ≥ k and the following condition is satisfied:
For all sequences (x1, ..., xk) and (x′1, ..., x

′
k) in X, each consisting of k distinct

elements there is an element σ ∈ G such that:

σxi = x′i ∀i ∈ {1, ..., k}

Definition 1.2. A group action of G on a set X is said to be regular if for all
α, β ∈ X there is a unique g ∈ G such that g · α = β.

Remark. A group action is regular if it is both free and transitive.

Definition 1.3. A permutation group G that acts on a finite set X is said to
be a Zassenhaus group if the following conditions are satisfied:

1. G is 2-transitive.

2. Every non-trivial element in G fixes at most 2 points of X.

3. G has no regular normal subgroup.

Remark. If G is simple then G has no regular normal subgroup.

Another thing worth mentioning is the following: If G is a Zassenhaus group
it acts faithfully on X. Hence the induced homomorfism G→ Sym(X) is inject-
ive. Because X is finite it follows that G is finite.

The third condition in the definition of a Zassenhaus group seems a bit artificial
and needs some explanation. In order to do so we need these definitions.

Definition 1.4. Let G be a group acting on a finite set X. Then the degree of
G is defined to be the number of elements of X.

Definition 1.5. A transitive permutation group G on a finite set is said to be
a Frobenius group if it satisfies the following conditions:

1. Every non-trivial element in G fixes at most 1 point.

2. There exists a non-trivial element in G which fixes a point.

If we omit the third Zassenhaus condition the only extra groups we get are
Frobenius groups or groups that are not of the Frobenius kind and have a normal
regular subgroup. Feit proved the following theorem about the latter case:

Proposition 1.6. Suppose that G is a permutation group of degree n+ 1 such
that:

1. G is 2-transitive.

2. Every non-trivial element in G fixes at most 2 points.

3. G has regular normal subgroup.

4. G is not a Frobenius group.

Then n + 1 = 2p for certain prime p and G is the group of all semilinear
mappings x 7→ a ·α(x) + b with a, b ∈ Fq (q = 2p), a 6= 0 and α an automorfism
of Fq. In particular #G = 2p(2p − 1)p and G is solvable.

A proof can be found in [3], Chapter 11. To conclude, the third Zassenhaus
condition is meant to eliminate the cases just mentioned.
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1.1 Iwasawa’s lemma

Definition 1.7. Let G act on a set X. Let {Xi}i∈I be a partition of X. This
partition is said to be G-stable if G maps each Xi to Xj for some j.
That is:

∀g ∈ G ∀i ∈ I ∃j ∈ I such that g ·Xi = Xj

Definition 1.8. Let G act transitively on X with #X ≥ 2. The action of G on
X is said to be primitive if there are precisely two G-stable partitions.

Remark. If G acts doubly transitively on X then its action is also primitive.

Proposition 1.9. Let G act transitively on X with #X ≥ 2. Then the following
are equivalent:

1. The action of G on X is primitive.

2. For all x ∈ X holds: Stab(x) ⊂ G is maximal.

Proof. Let x ∈ X. Suppose {Xi}i∈I is a G-stable partition of X. Then G acts
in the obvious way on {Xi}i∈I and there is a j ∈ I such that x ∈ Xj . Thus we
have that Stab(x) ⊂ Stab(Xj). Hence we have the following map:

{G-stable partitions of X} → {K ⊂ G : Stab(x) ⊂ K ⊂ G}

{Xi}i∈I 7→ Stab(Xj)

We will show that the map above is a bijection. In order to prove this, we will
construct its inverse. Therefore let K ⊂ G with Stab(x) ⊂ K ⊂ G and consider
the set Kx ⊂ X. We will show that {gKx}g∈G is a partition of X.

By the transitivity of G it is clear that:⋃
g∈G

gKx = X

For g ∈ G consider gKx ∩Kx. Suppose a ∈ gKx ∩Kx then we have:

a = gk′x = kx for some k, k′ ∈ K

From this follows that k−1gk′x = x and thus k−1gk ∈ Stab(x). Since Stab(x) ⊂
K we see g ∈ K. Hence for all g ∈ G holds gKx = Kx or gKx ∩Kx = ∅ (†).

Now let g1, g2 ∈ G and consider g1Kx ∩ g2Kx. Suppose g1Kx ∩ g2Kx 6= ∅
and thus take a ∈ g1Kx ∩ g2Kx. From this follows g−12 a ∈ g−12 g1Kx ∩ Kx.
Using (†) we see that g−12 g1Kx = Kx and finally g1Kx = g2Kx. This means
that elements of {gKx}g∈G are pairwise disjoint. Consequently {gKx}g∈G is a
partition of X and by definition it is G-stable. Combining all this we get the
following map:

{K ⊂ G : Stab(x) ⊂ K ⊂ G} → {G-stable partitions of X}

K 7→ {gKx}g∈G
It is clear that this map is the inverse of the map above. Hence the G-stable
partitions of X are in one-to-one correspondence with the subgroups K between
Stab(x) and G. This immediately gives the equivalence of 1. and 2.
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Definition 1.10. A group G is said to be perfect if [G,G] = G.

Lemma 1.11. Let G,G′ be a groups and f : G → G′ a homomorfism. Then
f([G,G]) ≤ [G′, G′].

Proof.

f

(
n∏
i=1

[gi, hi]

)
=

n∏
i=1

f [gi, hi] =

n∏
i=1

[f(gi), f(hi)] ⊂ [G′, G′]

Lemma 1.12. Let G be a group and N a normal subgroup. Then G is solvable
if and only if N and G/N are solvable.

A proof can be found in [2]. The following proposition is due to Iwasawa and
will give us the instrument to prove simplicity of several groups.

Proposition 1.13. Let G be a group that acts faithfully on a set X such that:

• The action of G on X is primitive.

• The group G is perfect.

• There is a point stabilizer H ⊂ G which has a normal solvable subgroup A
such that the conjugates of A in G, generate G.

Then G is simple.

Proof. Suppose G is not simple. Then there exists a normal K ⊂ G such that
{1} < K < G. By assumption, the action of G on X is faithful. So if we take
k1, k2 ∈ K distinct then there is an s ∈ X such that k1s 6= k2s. Hence K does
not fix all the points.

Now suppose there is an x ∈ X such that K ⊂ Stab(x). By transitivity of
G there is a g ∈ G such that gx = s. Hence follows:

{gx} = gKx = Kgx = Ks 6= {gx}

For the second equality we use the normality of K. This contradiction guaran-
tees that K does not fix any point.

Let H be the given point stabilizer. We see K 6⊆ H. Since G is primitive H
is maximal by proposition 1.9 and thus HK = G. So if g ∈ G we have g = hk
with h ∈ H and k ∈ K. Consequently:

g−1Ag = k−1h−1Ahk = k−1Ak ⊂ AK

So every conjugate of A is contained in AK, hence AK = G. Thus we now have:

G/K = AK/K ∼= A/(A ∩K)

By lemma 1.12 we see that A/(A∩K) is solvable. Thus G/K is solvable. How-
ever, this contradicts the perfectness of G by the following argument:

Define f : G→ G/K to be the qoutient map. By the lemma above we have:

[G/K,G/K] ⊃ f([G,G]) = f(G) = G/K

And thus G/K is not solvable.
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1.2 Linear groups

Definition 1.14. Let F be a field and n ∈ Z>0. The group of invertible n× n
matrices over F is called the general linear group of degree n over F ; It is
denoted GL(n, F ).

Definition 1.15. Let F be a field and n ∈ Z>0. Let Z(n, F ) denote the center
of GL(n, F ). The projective general linear group of degree n over F , denoted
PGL(n, F ), is defined to be:

PGL(n, F ) := GL(n, F )/Z(n, F )

Since Z(n, F ) is normal in GL(n, F ) the resulting PGL(n, F ) is a group.

Definition 1.16. Let F be a field and n ∈ Z>0. The group of n × n matrices
over F having determinant 1 is called the special linear group of degree n over
F ; It is denoted SL(n, F ).

Definition 1.17. Let F be a field and n ∈ Z>0. Let SZ(n, F ) denote the center
of SL(n, F ). The projective special linear group of degree n over F , denoted
PSL(n, F ), is defined to be:

PSL(n, F ) := SL(n, F )/SZ(n, F )

Let V be a vector space over a field F of dimension n and let GL(V ) be
the group of automorfisms of V . Then an element of GL(n, F ) naturally cor-
responds to a linear isomorfism of V (with respect to a certain basis). Hence
we have GL(V ) ∼= GL(n, F ). Let SL(V ) be the group of automorfisms of V
with determinant 1. Remark that the determinant of a matrix does not depend
on the choice of basis, hence we also have SL(V ) ∼= SL(n, F ). In an analog-
ous manner we also have Z(n, F ) ∼= Z(V ) and SZ(n, F ) ∼= SZ(V ). Hence also
PGL(n, F ) ∼= PGL(V ) and PSL(n, F ) ∼= PSL(V ).

Definition 1.18. Let V be a vector space of dimension n over a field F . An
element f ∈ SL(V ) is said to be a transvection if it is not the identity but it
fixes all elements of a certain hyperplane H of V .

Lemma 1.19. The group SL(V ) is generated by transvections.

A proof can be found in [1].

Proposition 1.20. Suppose z ∈ GL(V ), then the following are equivalent:

1. The element z commutes with all transvections.

2. The element z fixes every one-dimensional subspace of V .

3. There exists a λ ∈ F such that z(v) = λv for all v ∈ V .

4. The element z lies in the center of GL(V ).

Proof. (1) ⇒ (2) Let U be a one-dimensional subspace of V . There is a trans-
vection t such that (t− 1)V = U . Hence:

U = (t− 1)V = (ztz−1 − 1)V = z(t− 1)z−1V = z((t− 1)V ) = z(U)

(2)⇒ (3), (3)⇒ (4) and (4)⇒ (1) are evident.
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Corollary 1.21. Z(V ) = {λ · Id : λ ∈ F ∗} and SZ(V ) = SL(V ) ∩ Z(V ).

Consider the map i : PSL(V )→ PGL(V ) with x·SZ(V ) 7→ x·Z(V ). It is easy
to see that this map is well-defined. Now suppose we have x, y ∈ SL(V ) such that
x ·Z(V ) = y ·Z(V ). Then we have y−1x ∈ Z(V ) and obviously y−1x ∈ SL(V ). As
a consequence we have that y−1x ∈ SZ(V ) and thus x · SZ(V ) = y · SZ(V ). We
conclude that i is injective. By means of this injection we can consider PSL(V )
as a subgroup of PGL(V ).
Define (F ∗)n := {xn : x ∈ F ∗}. Then we also have a map det : PGL(V ) →
F ∗/(F ∗)n with x 7→ det(x). If y ∈ Z(V ) then y = λId for a certain λ ∈ F ∗

and thus det(y) = λn. As a result this map is well-defined. Furthermore, this
homomorfism is obviously surjective.

Proposition 1.22. Let V be an n-dimensional vector space over F . Then we
have the following exact sequence:

0 −→ PSL(V )
i−→ PGL(V )

det−→ F ∗/(F ∗)n −→ 0

Proof. Remark that every element in the image of i is contained in the kernel of
det. Let x ∈ ker(det), then we have that det(x) ∈ (F ∗)n. We have det(x) = λn

for a certain λ ∈ F ∗. Hence follows that det(λ−1 ·Id·x) = 1 and thus λ−1 ·Id·x ∈
SL(V ). Now remark that λ−1 · Id · x · Z(V ) = x · Z(V ). We see that x ∈ Im(i)
and as a result Im(i) = ker(det).

Suppose F = Fq with q a prime power and n = 2. Since F is a finite field F ∗

is cyclic and thus F ∗ = 〈c〉 for a certain c ∈ F ∗. Remark that c has order q− 1.
If q is a power of 2 we have that q − 1 and 2 are coprime. Hence follows that
(F ∗)2 = F ∗. If q is a power of an odd prime we have that q − 1 is divisible by
2. Then (F ∗)2 has index 2 in F ∗. By the exact sequence above it follows that
PGL(2,Fq) contains PSL(2,Fq) with index 1 or 2.

Proposition 1.23. Let F be a field and n ∈ Z≥2. Then PSL(n, F ) acts doubly
transitively on Pn−1(F ).

Proof. Since all the elements in SZ(n, F ) are of the form λ · Id the canonical
action of PSL(n, F ) on P(Fn) is well-defined. Let P1 and P2 be two different
points in P(Fn). Then Pi = 〈vi〉 with vi ∈ Fn \{0}. Hence v1 and v2 are linearly
independent. Let Q1, Q2 be two different points in P(Fn) induced by linearly
independent vectors w1 and w2. For all λ ∈ F ∗ there is a σ ∈ GL(n, F ) such
that σ(v1) = w1 and σ(v2) = λw2. Now choose λ such that det(σ) = 1. Then
σ ∈ SL(n, F ). Note that this σ does not need be unique. We conclude that
PSL(n, F ) is 2-transitive.

Corollary 1.24. Let F be a field and n ∈ Z>1. Then PGL(n, F ) acts doubly
transitively on the points of Pn−1(F ).

We introduce the following notation. For PGL(n,Fq) and PSL(n,Fq) we
write PGL(n, q) and PSL(n, q), respectively.

Proposition 1.25. PSL(2, q) is simple for q > 3.
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Proof. By proposition 1.23 we have that the action of PSL(2, q) on P1(Fq) is
doubly transitive and thus primitive. Define H := Stab(1:0). One easily sees that
A ⊂ H with A as follows:

A :=

{(
1 λ
0 1

)
: λ ∈ F

}
Remark that A is abelian and thus solvable. The non-trivial elements from A are
induced by transvections and these matrices encode elementary row operations.
Since all elements in PSL(2, q) have determinant 1 they are the product of these
row operations. Thus the conjugates of A generate the entire group.

Since the polynomial X2 − 1 can have at most 2 distinct roots in Fq and q > 3
there is a non zero element x ∈ F such that x2 6= 1. Now remark that:[(

1 y
0 1

)
,

(
x−1 0

0 x

)]
=

(
1 (x2 − 1)y
0 1

)
We conclude that all the transvections are contained in the commutator of
PSL(2, q) and thus PSL(2, q) is simple by Iwasawa’s Lemma (Proposition 1.13).

Proposition 1.26. PGL(2, q) acting on P1(Fq) is a Zassenhaus group for q > 3.

Proof. We already showed that PGL(2, q) acts doubly transitively.
Since PGL(2, q) contains PSL(2, q) with index 1 or 2 and PSL(2, q) is simple it
follows that PSL(2, q) is the only non trivial normal subgroup within PGL(2,Fq).
As a consequence PGL(2, q) does not contain a regular normal subgroup.

Now suppose an element f ∈ PGL(2, q) fixes three different points in P1(Fq).
These points lie in general position and as a consequence f = Id. Therefore
PGL(2, q) is a Zassenhaus group.

PGL(2, 2) and PGL(2, 3) are not Zassenhaus groups. This can be seen in the
following way:

PGL(2, 2) ∼= GL(2,F2) ∼= S3 and P1(F2) = {(1 : 0), (1 : 1), (0 : 1)}

Since the subgroup isomorfic toA3 within PGL(2, 2) does act regularly on P1(F2)
it follows that PGL(2,F2) is not a Zassenhaus group.

Furthermore we see that:

PGL(2, 3) ∼= S4 and P1(F3) = {(1 : 0), (0 : 1), (1 : 1), (1 : 2)}

Within S4 we have a normal subgroup isomorfic to V4 given by the following
set:

{(1), (12)(34), (13)(24), (14)(23)}
This subgroup acts regularly on {1, 2, 3, 4}. As a consequence the correspond-
ing subgroup within PGL(2, 3) acts regularly on P1(F3). Hence PGL(2, 3) does
contain a regular normal subgroup and is not a Zassenhaus group.

Suppose q > 3 such that q is a power of 2. Then PSL(2, q) = PGL(2, q) by
proposition 1.22. We now prove that PSL(2, q) is a Zassenhaus group if q > 3
and not a power of 2.
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Proposition 1.27. If p > 2 and q = pk > 3 then PSL(2, q) acting on P1(Fq)
is a Zassenhaus group.

Proof. We already showed that PSL(2, q) is simple and that it is 2-transitive.
In the proof of the previous proposition we showed that every non trivial ele-
ment in PGL(2, q) fixes at most 2 points. Since PSL(2, q) can be regarded as a
subgroup of PGL(2, q) the non trivial elements in PSL(2, q) fix at most 2 points
of P1(Fq). We conclude that PSL(2, q) is a Zassenhaus group for q > 3.

1.3 Semilinear groups

In order to construct another Zassenhaus group it is not enough to look at
projective special/general linear groups. In the following we will construct the
(projective) semilinear group.

Definition 1.28. Let V , W be vector spaces over a field K. Let θ be an auto-
morfism of K. A function f : V → W is said to be θ-semilinear, or simply
semilinear, if for all x, y ∈ V and λ ∈ K the following holds:

1. f(x+ y) = f(x) + f(y)

2. f(λx) = θ(λ)f(x)

Lemma 1.29. Let V and W be K vector spaces. Suppose that f : V → W is
θ-semilinear. Then θ fixes the prime subfield k of K, i.e. θ ∈ Autk(K).

Proof. For all non-negative integers n and x ∈ V we have:

θ(n)f(x) = f(nx) = nf(x)

It follows that θ fixes the prime subfield of K.

Definition 1.30. Suppose V is a K vector space. The set of all invertible
semilinear maps of V is defined to be the general semilinear group, denoted
ΓL(V ).

Definition 1.31. Let V be vector space over a fieldK. The projective semilinear
group of V , denoted PΓL(V ), is defined to be:

PΓL(V ) := ΓL(V )/Z(V )

Proposition 1.32. Suppose V is a vector space over a field K. Let k be
the prime subfield of K. Then ΓL(V ) decomposes as the following semidirect
product:

ΓL(V ) = GL(V ) o Autk(K)

Proof. Let B be a basis of V . We identify an element θ ∈ Autk(K) with the
map

∑
b∈B λbb 7→

∑
b∈B θ(λb)b.

Let f ∈ ΓL(V ) be θ-semilinear. Define g : V → V by:

g

(∑
b∈B

λbb

)
:=
∑
b∈B

λbf(b)

8



Remark that the image of B under f is again a basis of V . As a consequence g
is linear and invertible, i.e. g ∈ GL(V ). Let h := fg−1. For v =

∑
b∈B λbb ∈ V

we see that:
fg−1v =

∑
b∈B

θ(λb)b

In other words: fg−1 ∈ Autk(K).

Since GL(V ) is normalized by Autk(K) it follows that ΓL(V ) decomposes as
the given semidirect product.

Corollary 1.33. Suppose V is a vector space over a field K. Let k be the prime
subfield of K.Then PΓL(V ) decomposes as the follwing semidirect product:

PΓL(V ) = PGL(V ) o Autk(K)

Remark that elements from ΓL(V ) map 1-dimensional subspaces (of V ) to
1-dimensional subspaces. As a consequence PΓL(V ) acts on P(V ).

We introduce the following notation. If V is an n-dimensional vector space over
Fq, then we write PΓL(n, q) and ΓL(n, q) for PΓL(V ) and ΓL(V ), respectively.

We will now construct another Zassenhaus group. Let p be a prime such that
p > 2 and m ∈ Z≥1. Now consider the field Fq with q = p2m. This field
has an automorfism of order 2. That is: α : Fq → Fq with α(x) = xp

m

. Let
H := PGL(2, q) o 〈α〉. This group H can be viewed as a subgroup of PΓL(2, q)
via the previous corollary. Since p > 2 we have that [PGL(2, q) : PSL(2, q)] = 2
by proposition 1.22. Thus within H we already have two subgroups of index
2, namely PSL(2, q) o 〈α〉 and PGL(2, q). Remark that H/PSL(2, q) has 4 ele-
ments. Combining this with the fact that H has at least two different subgroups
of index 2, we must have that H/PSL(2, q) ∼= V4. From this follows that H must
have another subgroup of index 2, different from PSL(2, q)o 〈α〉 and PGL(2, q).
We call this subgroup M(q). This gives the following diagram:

PGL(2, q) o 〈α〉

M(q) PSL(2, q) o 〈α〉PGL(2, q)

PSL(2,q)

Proposition 1.34. M(q) with q = p2m, p > 2 and m ∈ Z≥1 acting on P1(Fq)is
a Zassenhaus group.

Proof. Since PSL(2, q) < M(q) it follows that M(q) is doubly transitive. Be-
cause PSL(2, q) is simple, M(q) does not contain a regular normal subgroup.
In order to prove the third Zassenhaus property we need to comprehend M(q)
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a little bit better. Remark that every element in M(q) is of the form: h · β with
β ∈ {1, α} and h ∈ PGL(2, q).

We already noted that (PGL(2, q) o 〈α〉)/PSL(2, q) ∼= V4. Let f ∈ PGL(2, q) \
PSL(2, q) then f is the non trivial element in PGL(2, q)/PSL(2, q). We see that
α is the non trivial element in (PSL(2, q) o 〈α〉)/PSL(2, q). As a consequence,
the non trivial element in M(q)/PSL(2, q) is f · α. Hence:

M(q) = PSL(2, q) ∪ PSL(2, q) · f · α

Using propositin 1.22 we thus find that for every h ·β ∈M(q) we have det(h) ∈
F2
q and β = 1 or det(h) 6∈ F2

q and β = α. (†)

Now we will consider the stabilizer of the points (1 : 0) and (0 : 1) within M(q).

Remark that α leaves these points fixed. Suppose an element h =

(
a b
c d

)
∈

PGL(2, q) fixes (1 : 0) and (0 : 1) then b = c = 0. Furthermore, we may assume
that d = 1 by definition of PGL. As a consequence this stabilizer consists of all

maps of the form h · β with h =

(
a 0
0 1

)
and β ∈ {1, α}.

Suppose we have another point (x : 1) with x 6= 0. Let h · β be in the sta-
bilizer of {(1 : 0), (0 : 1), (x : 1)}. As a consequence we need to have x = a ·β(x).
If β = 1 then a = 1. This implies that h · β = 1. If β = α we have the following:

a = x · α(x)−1 = x1−p
m

Since p > 2 we see that 1−pm is divisible by 2. This means that a = x1−p
m ∈ F2

q.
This however contradicts (†) and as a result this three point stabilizer is trivial.
By the 2-transitivity all the 2-point stabilizers are conjugate. This fact combined
with our discussion above gives that every three-point stabilizer is trivial.

Theorem 1. Every Zassenhaus group is either one of the groups mentioned in
Propositions 1.26 , 1.27 , 1.34 or one of the Suzuki groups.

The proof of this theorem is beyond the scope of this bachelor thesis and
can be found in [3], Chapter 11.

As stated in the introduction, the proof of this classification contained work
from Feit, Ito and Suzuki. The proof contained three essential steps. Firstly,
Feit showed that the degree of a Zassenhaus group is always of the form q + 1,
with q a prime power. Next, Ito showed that for q odd the Zassenhaus group in
question has to contain a normal subgroup isomorfic to PSL(2, q) with index 1
or 2. To conclude, Suzuki dealt with the case where q is even.

10



2 Wilson’s approach to Suzuki groups

2.1 Definition of the group and action

Definition 2.1. Let V be a vector space over a field F . A bilinear form f :
V × V → F is said to be a symplectic form if it is:

1. Alternating: f(v, v) = 0 for all v ∈ V .

2. Nondegenerate: f(u, v) = 0 for all v ∈ V implies u = 0.

Definition 2.2. Let V be a vector space over F with a symplectic form f . The
symplectic group of (V, f) is defined to be:

Sp(V, f) := {g ∈ End(V ) : ∀v, w ∈ V f(g(v), g(w)) = f(v, w)}

Lemma 2.3. If dim(V ) < ∞ then the symplectic group of (V, f) is a group
under composition and thus a subgroup of Aut(V).

Proof. Suppose g ∈ Sp(V, f) and v ∈ ker(g). For all u ∈ V we have:

f(u, v) = f(g(u), g(v)) = f(g(u), 0) = 0

Since g is nondegenerate we have v = 0. Because V is of finite dimension g must
be an automorphism. The remainder of the claim is trivial to prove.

Definition 2.4. Let V be a vector space over a field F . Let • be a product
defined on V , that is a map • : V ×V → V . Write v•w for •(v, w). This product
is called a bi-semilinear commutative product if the following conditions are
satisfied:

1. v • w = w • v for all v, w ∈ V .

2. (v + w) • z = v • z + w • z for all v, w, z ∈ V .

3. There is a σ ∈ Aut(F ) such that (λv) •w = σ(λ)(v •w) for all λ ∈ F and
v, w ∈ V .

If v ∈ V \ {0}, denote the linear subspace generated by v by 〈v〉.

Definition 2.5. Let V be a vector space over a field F of finite dimension.
Furthermore, let f be a symplectic form on V and • a bi-semilinear commutative
product on V . Define:

G(V, f, •) :=

{
g ∈ End(V ) :

∀v, w ∈ V f(g(v), g(w)) = f(v, w)
and f(v, w) = 0 ⇒ g(v) • g(w) = g (v • w)

}
X(V, f, •) := {〈v〉 : v ∈ V \ {0} and ∃w ∈ V with v = v • w and f(v, w) = 0}

Remark. We see that G(V, f, •) is a subgroup of the symplectic group of (V, f)
and that it acts on X(V, f, •).

11



For n ∈ Z≥0 take F = Fq with q = 22n+1. For this particular field there is a

σ ∈ Aut(F ) such that σ2(x) = x2. This is σ : F → F with σ(x) = x2
n+1

. We see

that σ2(x) = x2
2n+2

=
(
x2

2n+1
)2

= x2. One could say that σ is a square root of

the Frobenius map on F . Now let τ be the inverse of σ. If n ≥ 1 then τ is the
following map τ : F → F with τ(x) = x2

n

. From now we will write xσ for σ(x)
and xτ for τ(x).

Define V to be the 4-dimensional vector space over F with basis {e−2, e−1, e1, e2}.

Now we define a bilinear form f : V × V → F such that f(e−i, ei) = 1
and f(ei, ej) = 0 otherwise. Remark that this f is a symplectic form since
char(F ) = 2.

Futhermore, let θ be the order preserving bijection from {−3,−1, 1, 3} to {−2,−1, 1, 2}.
Now define a commutative product: • : V × V → V in the following way;
First on the basis:

ei • ej =

{
0 if i = ±j
eθ(i+j) otherwise

Extend this by the following rule:(∑
i

λiei

)
•

∑
j

µjej

 =
∑
i,j

σ−1(λiµj) (ei • ej)

We see that this product is bi-semilinear and commutative.

Definition 2.6. For n ∈ Z≥0 define F = Fq with q = 22n+1 as above. Further-
more, let V , f and • be as above. Then we define the Suzuki group (for this n),
denoted as Suz(22n+1), in the following way:

Suz(22n+1) := G(V, f, •)

The Suzuki groups will act on Ov(22n+1) := X(V, f, •).

In the remainder of this chapter V , F , f and • will keep this definition and
q = 22n+1 for a certain n ∈ Z≥0.

We will show for all n ∈ Z≥1 that Suz(22n+1) is a Zassenhaus group.

2.2 The elements of Suz(q)

Lemma 2.7. Let g ∈ Aut(V ). Suppose g satisfies the following conditions:

1. g preserves our form f with respect to the given basis of V . That is:

f(g(ei), g(ej)) = f(ei, ej) ∀i, j ∈ {−2,−1, 1, 2}

2. g preserves our product • with respect to all perpendicular basisvectors.
That is:

f(ei, ej) = 0 ⇒ g(ei) • g(ej) = g(ei • ej)

12



Then g ∈ Suz(q).

Proof. Since f is bilinear 1. clearly implies that f(g(v), g(w)) = f(v, w) for all
v, w ∈ V . Remark that • induces a map π : V ∧ V → V with π(u ∧ w) = u • w
and extending linearly. In order to show that g leaves π invariant it suffices to
check this on a basis of V ∧ V . Hence 2. implies that g(u • v) = g(u) • g(v) for
all perpendicular vectors.

In order to understand Suz(q) we need to have some key elements in Suz(q).

• Consider the map that extends the following basis permutation in a linear
way: ei 7→ e−i. Remark that the construction of Suz(q) is symmetric in
ei, e−i and thus this map is certainly contained in Suz(q). We will denote
this map by W and with respect to the basis {e−2, e−1, e1, e2} it can be
written in the following way:

W :=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


• Now we will look for maps in Suz(q) which can be identified with diagonal

matrices. These are maps of the following form:∑
i

αiei 7→
∑
i

λiαiei

In order to preserve f we need to have that λ−i = λ−1i . We also need to
preserve the dotproduct so there has to hold that: (λ1e1) • (λ2e2) = λ2e2,
or equivalently (λ1λ2)τ = λ2. From this follows that λ1 = λσ−12 . So if we
fix one λi the entire map is fixed by the following rules.

λ−i = λ−1i and λ1 = λσ−12

One now easily checks that the rest of the dotproducts on the basis are
also preserved. So for every λ ∈ F ∗ there is a diagonal element in Suz(q),
therefore there are q − 1 diagonal elements in Suz(q). Remark that this
subgroup of Suz(q) is cyclic because F ∗ is cyclic. These diagonal maps
h(λ) can be written in matrix form:

h(λ) =


λ−1 0 0 0

0 λ−σ+1 0 0
0 0 λσ−1 0
0 0 0 λ


• The following element is a bit of a surprise:

e−2 7→ e−2

e−1 7→ e−1 + e−2

e1 7→ e1 + e−1

e2 7→ e2 + e1 + e−1 + e−2

13



We shall call this map x. By lemma 2.7 It suffices to check on the basis that
this map preserves f and the dotproduct (for perpendicular basisvectors).
This is a straightforward check. This map has the following matrix rep-
resentation:

x =


1 1 0 1
0 1 1 1
0 0 1 1
0 0 0 1

 and x2 =


1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1


For our future endeavours it is convenient to calculate the following con-
jugates of x and x2:

h(λ)−1x2h(λ) =


1 0 λσ λ2

0 1 0 λσ

0 0 1 0
0 0 0 1



h(λ)−1xh(λ) =


1 ... ... ...
0 1 ... ...
0 0 1 λ2−σ

0 0 0 1


For our purposes it is sufficient to have the matrix h(λ)−1xh(λ) partially.
We do not need the dotted entries.

Let ω be a generator for F ∗ then 〈h(ω)〉 contains all diagonal matrices within
Suz(q). Thus we have:

〈W,h(ω), x〉 ⊂ Suz(q)

2.3 The elements of Ov(q)

Definition 2.8. Let v ∈ V \ {0} with v =
∑
i λiei then:

deg(v) := max{i : λi 6= 0} and deg〈v〉 := deg(v)

Remark. We see that deg〈v〉 is well defined.

Proposition 2.9. If 〈v〉 ∈ Ov(q) then deg〈v〉 = ±2.

Proof. Because 〈v〉 ∈ Ov(q) there exists w ∈ V with f(v, w) = 0 and v •w = v.
Hence we have deg(v • w) = deg(v) and w 6= 0. We would like to show that
deg(v • w) = θ(deg(v) + deg(w)). Considering the definition of the • and
the fact that θ is order preserving it is clear that this equality holds unless
deg(v) = ±deg(w). We now show that we may assume that deg(v) 6= ±deg(w).

If deg(w) = deg(v) take λ ∈ F such that deg(w′) < deg(v) with w′ := w + λv.
Remark that f(v, v) = 0 and v • v = 0. As a consequence:

f(v, w′) = f(v, w + λv) = f(v, w) + λf(v, v) = 0

v • w′ = v • (w + λv) = v • w + λτ (v • v) = v • w = v

14



Hence f(v, w′) = 0 and v • w′ = v. Thus without loss of generality we may
assume deg(w) 6= deg(v).

Now suppose that deg(v) = − deg(w). Then it follows that f(v, w) 6= 0. This can
be seen by just working out the different cases. Hence we may assume, without
loss of generality, that deg(v) 6= ±deg(w).

Thus we have:

θ(deg(v) + deg(w)) = deg(v • w) = deg(v)

Assume deg〈v〉 = ±1, then we would have that deg(v) + deg(w) = deg(v) since
θ is the identity on {−1, 1}. As a result we must have that deg(w) = 0. This
contradicts the fact that w is non zero.

If deg〈v〉 = −2 we have that 〈v〉 = 〈e−2〉. Therefore it is more interesting to
look at the case of: deg〈v〉 = 2. We characterise the points of degree 2 with the
following proposition.

Proposition 2.10. (i) For all α, β ∈ F there is a unique γ ∈ F such that:

〈e2 + αe1 + βe−1 + γe−2〉 ∈ Ov(q).

(ii) The group Suz(q) acts transitively on Ov(q).

Proof. Suppose 〈v〉 ∈ Ov(q) with deg〈v〉 = 2. Thus we can write v = e2 +αe1 +
βe−1 + γe−2 with α, β, γ ∈ F .
We claim that 2 − σ is a bijection from F to F . To see this, remark that:
2− σ = σ(σ− 1). Furthermore (σ− 1) is an automorfism because (σ+ 1) is it’s
inverse. Hence 2− σ is, as composition of two bijections, a bijection.

If α 6= 0, take λ ∈ F such that λ2−σ = α. Hence follows:

h(λ)−1xh(λ) · v = e2 + β′e−1 + γ′e−2 := v′

If β′ 6= 0, take κ ∈ F such that κσ = β′. Then we see:

h(κ)−1x2h(κ) · v′ = e2 + γ′′e−2 := v′′

Consequently we see that the vector v′′ is of the form e2+µe−2 and 〈v′′〉 ∈ Ov(q).
This means that there exists w ∈ V with f(v′′, w) = 0 and v′′ • w = v′′. As
we saw in the proof of the previous proposition, w can be chosen such that
deg(w) 6= deg(v) and thus w has no term in e2. So w is of the following form:
w = e1 + δe−1 + ξe−2. We have that 0 = f(v′′, w) = ξ. Thus w = e1 + δe−1. As
a consequence we see:

v′′ • w = e2 + δ2
n

e1 + µ2ne−1 + (µδ)2
n

e−2

We conclude that µ = 0 and thus 〈v′′〉 = 〈e2〉. Remark that 〈e2〉 goes to 〈e−2〉
under the element W of Suz(q). Hence all elements of Ov(q) are in the orbit of
〈e2〉 and thus Suz(q) works transitively on Ov(q). We also see that, given α and
β there is at most one γ ∈ F such that 〈e2 + αe1 + βe−1 + γe−2〉 ∈ Ov(q).
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Let α, β be given and consider e2 + αe1 + βe−1 + γe−2. By the process above
there is a k ∈ 〈h(ω), x〉, independent of the choice of γ, such that k maps
e2 + αe1 + βe−1 + γe−2 to e2 + µe−2 for some µ ∈ F . Since k is an automorph-
ism we have that the following restriction of k is a bijection:

k′ : {e2 + αe1 + βe−1 + γe−2 : γ ∈ F} → {e2 + µe−2 : µ ∈ F}

v 7→ k(v)

Hence there is a γ ∈ F such that e2 + αe1 + βe−1 + γe−2 is mapped to e2 by k
and it follows that 〈e2 + αe1 + βe−1 + γe−2〉 ∈ Ov(q). This proves that for all
α, β ∈ F there is a unique γ ∈ F such that:

〈e2 + αe1 + βe−1 + γe−2〉 ∈ Ov(q)

Corollary 2.11. For all α, β ∈ F there is a unique γ ∈ F such that there exists
an element in 〈h(ω), x〉 that sends e2 to e2 + αe1 + βe−1 + γe−2.

We conclude that there are q2 points of degree 2 and one point of degree −2
if F = Fq and thus Ov(q) consists of q2 + 1 elements.

2.4 2-transitivity

There is a well known theorem about 2-transitivity which immediately gives
that Suz(q) works 2-transitively on Ov(q).

Lemma 2.12. Let G act on X with #X ≥ 2. Fix x0 ∈ X. The action is 2-
transitive if and only if it is transitive and Stabx0 acts transitively on X \ {x0}.

Proof. Suppose the action is 2-transitive. Then is clear that Stabx0 acts trans-
itively on X \ {x0} and the action is obviously transitive. This proves the first
implication.

Now suppose that the action is transitive and Stabx0
acts transitively on

X \ {x0}. If #X = 2 then every non-trivial action of G is doubly transitive.
Since transitive actions are non-trivial, the action is doubly transitive if #X = 2.
Hence we may and do assume that #X ≥ 3. Firstly, we will show that for every
y ∈ X the action of Staby acts transitively on X \ {y}. The 2-transitivity will
follow from this.

Therefore, let y ∈ X. By the transitivity there is a g ∈ G such that gx0 = y.
As a consequence we have that Staby = gStabx0

g−1. Let a, b ∈ X \{y} then the
elements g−1a and g−1b are distinct from g−1y = x0. By assumption there is an
element h ∈ Stabx0 such that hg−1a = g−1b. From this follows that ghg−1a = b.
Now remark that ghg−1 ∈ g Stabx0 g

−1 = Staby. This shows that Staby acts
transitively on X \ {y}.

Let (x1, x2), (y1, y2) ∈ X × X such that x1 6= x2 and y1 6= y2. If y2 6= x1
there is an element in Stabx1

which maps (x1, x2) to (x1, y2). Now there is an
element in Staby2 which maps (x1, y2) to (y1, y2). Thus we can map (x1, x2) to
(y1, y2). If x1 = y2, then we choose z ∈ X such that z is not equal to x1 or y1.
Here we use that #X ≥ 3. Now use elements from Stabz, Stabx1

and Staby1 to
obtain:

(x1, x2) 7→ (x1, z) 7→ (y1, z) 7→ (y1, y2)

We conclude that the action is doubly transitive.
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Theorem 2. Suz(q) acts doubly transitively on Ov(q).

Proof. We already saw that Suz(q) acts transitively on Ov(q). Fix 〈e−2〉 ∈ Ov(q)
and remark that 〈h(ω), x〉 ⊂ Stab〈e−2〉. We also saw that every element of degree
2 can be mapped to 〈e2〉 by an element from 〈h(ω), x〉 and thus Stab〈e−2〉 acts
transitively on Ov(q) \ {〈e−2〉}. By the previous lemma, Suz(q) acts doubly
transitively on Ov(q).

Proposition 2.13. Suppose we have g ∈ Suz(q) such that g is contained in the
stabilizer of 〈e2〉 and 〈e−2〉 then g ∈ 〈h(ω)〉.

Proof. Let g be in the stabilizer of the points 〈e2〉 and 〈e−2〉. At first remark
that 〈e2〉⊥ = {v ∈ V : f(v, e2) = 0} is linear subspace of V . Since g fixes 〈e2〉
we have that g(e2) = λe2 for a certain λ ∈ F . If v ∈ 〈e2〉⊥ we have that:

0 = f(v, e2) = f(g(v), g(e2)) = f(g(v), λe2) = λ · f(g(v), e2)

And thus g(v) ∈ 〈e2〉⊥. Hence we see that 〈e2〉⊥ = 〈e1, e−1, e2〉 is fixed by g.

Consider the following set:

e2 • V = {e2 • v : v ∈ V and f(e2, v) = 0} = 〈e1, e2〉

Hence follows:

g(e2 • V ) = {e2 • g(v) : v ∈ V and f(e2, g(v)) = 0} = 〈e1, e2〉

Therefore, 〈e1, e2〉 is also fixed by g. Now g must also fix the intersection of the
sets 〈e1, e2〉 and 〈e1, e−1, e−2〉. We conclude that 〈e1〉 is fixed by the two-point
stabilizer. With an analogous argument, one sees that 〈e−1〉 is fixed by g. Hence
the elements in this two-point stabilizer are precisely the diagonal elements in
Suz(q).

Corollary 2.14. Suz(q) consists of (q − 1)q2(q2 + 1) elements if F = Fq.

Proof. This follows from the previous proposition together with the 2-transitivity.

Corollary 2.15. Suz(q) = 〈W,h(ω), x〉

Proof. Let g ∈ Stab〈e−2〉. There is an element d ∈ 〈h(ω), x〉 such that gd sta-
bilizes 〈e2〉. By proposition 2.13 gd must lie in 〈h(ω)〉. Hence g ∈ 〈h(ω), x〉.
Consequently we have 〈h(ω), x〉 = Stab〈e−2〉. By proposition 1.9 Stab〈e−2〉 is
maximal. Since W 6∈ Stab〈e−2〉 we conclude that:

Suz(q) = 〈W,h(ω), x〉
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2.5 Three-point stabilizers

Theorem 3. Non-trivial elements in Suz(q) fix at most 2 points of Ov(q).

Proof. By the 2-transitivity all 2-point stabilizers within Suz(q) are conjugate.
Consider the stabilizer of (〈e2〉, 〈e−2〉). We already saw that this stabilizer is
precisely the group of diagonal elements in Suz(q). Let z ∈ Ov(q) be a point
different from 〈e2〉 and 〈e−2〉. We will now show that the 3-point stabilizer of
(〈e2〉, 〈e−2〉, z) is trivial. This implies that every three-point stabilizer is trivial
because all 2-point stabilizers are conjugate.

Since z is a different point we must have that z = 〈e2 + αe1 + βe−1 + γe−2〉
with α or β non zero. An element in this three-point stabilizer must be diagonal,
thus suppose that h(λ) stabilizes these three points. As we know h(λ) acts in
the following way on the points e2, e−2, e2 + αe1 + βe−1 + γe−2:

e2 7→ λe2 (1)

e−2 7→ λ−1e−2 (2)

e2 + αe1 + βe−1 + γe−2 7→λe2 + λσ−1αe1 + λ1−σβe−1 + λ−1γe−2 (3)

Suppose α is non zero. Because 〈e2 + αe1 + βe−1 + γe−2〉 is also fixed by h(λ)
we need to have that:

λ = λσ−1

From this follows that 1 = λσ−2. In section 2.3 we saw that σ − 2 is an auto-
morfism of F and thus λ = 1. With an analogous argument the same can be
proven if β is non zero.

Consequently, the only element contained in this 3-point stabilizer is the trivial
element of Suz(q). Therefore, non trivial points in Suz(q) fix at most 2 points
of Ov(q).

Corollary 2.16. Suz(q) acts faithfully on Ov(q).

2.6 Simplicity of Suz(q)

Theorem 4. Suz(q) is simple for q > 2.

Proof. We will show that Suz(q) satisfies the conditions in Proposition 1.13.

• Suz(q) acts faithfully on Ov(q) by corollary 2.16.

• Since Suz(q) acts doubly transitively on Ov(q) it follows that the action
of Suz(q) on Ov(q) is primitive.

• Since q > 2 we see that 〈h(ω)〉 is not just the trivial element. Hence follows:

W−1h(λ)−1Wh(λ) = Wh(λ)−1Wh(λ) = h(λ2)

As a consequence 〈h(ω)〉 is contained in [Suz(q),Suz(q)]. As we already
saw, the point stabilizer of 〈e−2〉 is generated by conjugates from 〈h(ω)〉.
Hence this point stabilizer is contained in [Suz(q),Suz(q)]. Now we need to
make a commutator which lies outside 〈h(ω), x〉. Remark that all matrices
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contained in〈h(ω), x〉 are upper traingular. When we calculate [W,x] we
see that this matrix is not upper traingular and thus not contained in
〈h(ω), x〉. Since Stab〈e−2〉 = 〈h(ω), x〉 is maximal it follows that [Suz(q),Suz(q)] =
Suz(q).

• Consider the point stabilizer H := Stab〈e−2〉. As we saw, the elements
in H are upper traingular matrices. Hence H is solvable. Remark that
W−1x2W 6∈ H. By the maximality of H we conclude that the conjugates
of H generate Suz(q).

We conclude that Suz(q) is simple for q > 2.

Combining theorems 2, 3 and 4 we find:

Theorem 5. Suz(q) is a Zassenhaus group for q > 2.

If q = 2 there is only one diagonal element contained in Suz(q) and thus
〈h(ω)〉 = {1}. As a consequence Stab〈e−2〉 = 〈x〉 ∼= C4. From this follows that
Suz(2) = C5 o C4 and thus contains Suz(2) a regular normal subgroup.

One should remark that definition 2.6 of the Suzuki group does not require
that the field, F , over which we work is finite. Assume that F is a field such
that:

• The characteristic of F is 2.

• The Frobenius map λ 7→ λ2 is an automorfism.

• F has an automofism σ which is a square root of the Frobenius automor-
fism.

Then we can define a Suzuki group for this F and this σ according to definition
2.6. The resulting group Suz(F ) would still act doubly transitively on Ov(F )
such that every non-trivial element fixes at most 2 points. Iwasawa’s lemma is
still applicable if the group in question is infinite and as a result Suz(F ) is still
simple.
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