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Abstract

The Wright-Fisher model is a discrete-time model for the genetic evolution of a finite haploid
population of constant size 2N , where each individual is of type say A or a. Time starts at n = 0
and at each unit of time n ∈ N, each individual randomly chooses an individual from the previous
generation and adopts its type. The probability that type a goes extinct equals the initial fraction
of As in the population. The genetic variability Hn at time n is the probability that two different
individuals, randomly drawn from the population at time n, are of diferent type. The expectation
of the time τ it takes for one of the types to go extinct equals E(τ) = 2NH0.

The Moran model is a continuous-time version of the WF-model. Making a space-time rescaling
and sending the population size to infinity leads to a convergence of both the WF-model and the
Moran model to the diffusion limit (Yt)t≥0 known as the WF-diffusion. The latter is dual to a pure
death process (Dt)t≥0 from which the the (Kingman) coalescent (Rt)t≥0, describing the genealogy
of a large (haploid) population, can be constructed. The different states through which (Rt)t≥0
evolves form the jump chain of which the transition probabilities can be calculated.

Consider a population at time t that has been evolving indefinitely in accordance with (Yt)t≥0,
then all the individuals in the population a.s. have a most recent common ancestor (MRCA) that
lived at time At < t. The expectation of the (rescaled) time between the population and its MRCA
equals E(t− At) = 2. At any time t, there are two oldest families in the population. The time Ft

at which one of these families dies out, the other family fixates in the population, which causes a
jump of the MRCA. Using [2] it is possible to conclude that the MRCA-process (At)t≥0 and the
fixation process (Ft)t≥0 are rate-1 Poisson processes.
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1 Introduction

Sewall Green Wright and Ronald Aylmer Fisher are considered to be two of the founders of modern
theoretical population genetics. One specific stochastic model for genetic evolution is named after
them: the Wright-Fisher model. This model captures an important aspect of evolution theory known
as resampling.

The WF-model follows the evolution of two alleles A and a, within a haploid population over
(discrete) time, i.e., every individual of the population carries only one copy of each of its chromosomes,
and therefore only one copy of either allele A or allele a. Consequently, each individual can be identified
with its type (A or a). Humans and most other higher organisms are diploid, carrying two copies of
their genetic material. Doubling each (haploid) individual in the population of the WF-model, and
therefore the whole population size, means identifying each individual and its duplicate with a new
diploid individual. This way, the WF-model can also be applied to the human species.

In the WF-model, the population size is assumed to be finite and constant. At each time unit, each
individual randomly chooses one of the individuals from the previous generation, and adopts its type.
This is a form of random reproduction. There are several interesting questions about the WF-model
to investigate, both forward and backward in time. Some forward questions are:

(1) Given the initial numbers of As and as, what is the probability that type a goes extinct?
(2) What is the expectation of the time it takes for one of the types to fixate in the population?

After a proper space-time rescaling, the WF-model converges to a diffusion limit known as the Wright-
Fisher diffusion. This limiting process describes the evolution of the genetic variability of a large
haploid population over time.

(3) How should this limiting process be identified, and convergence be proven?
The moments of the WF-diffusion can be determined through the duality between the WF-diffusion
and a pure death process on the natural numbers. This death process can be used to investigate the
depth of the “backward family tree” of a large haploid population. At the very root of this tree lies
the most recent common ancestor (MRCA) of the whole population. Some backward questions are:

(4) How long ago did this MRCA live? (Can the expectation of the depth of the family tree be
calculated?)
The MRCA “jumps” to keep up with the current population’s evolution. This jump process is known
as the MRCA process.

(5) What is the distribution of the MRCA process?
Searching for answers to (4) and (5) leads us to defining the (Kingman) coalescent, which gives a full
description of the genealogy of a large haploid population. Coalescent theory is of significant influence
in population genetics.

This bachelor thesis aims to provide answers to these questions, to describe the stochastic processes
that arise along the way, and to illustrate the mathematical stucture that binds all these stochastic
processes together.
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2 Wright-Fisher model

2.1 Random reproduction

The WF-model is a stochastic model for reproduction in population genetics. It considers a population
consisting of N diploid individuals. This can be interpreted as 2N haploid individuals. The population
size 2N is fixed.

The WF-model keeps track of two alleles, A and a, referred to as types and each individual has
one of the two types. We refer to this by saying that each individual is of type A or a. Time starts at
n = 0 and at each time unit n ∈ N, each individual randomly chooses one of the 2N individuals from
the time-(n− 1) generation, and adopts its type.

Figure 1: Example of the random reproduction in the WF-model for n ∈ N. If at time n − 1, individuals 1, 2
and 4 are of type A,A and a, then at time n individuals 1, 2, 3, 4 and 2N are of type A,A, a,A and a.

2.2 Fixation of a type

Let
Xn = the number of As at time n. (2.2.1)

The sequence (Xn)n∈N0 is a discrete-time Markov chain on the state space Ω = {0, 1, . . . , 2N}, and
gives us the opportunity to observe changes in the number of both As and as, until one of the types
fixates in the population, i.e., until only one of the types remains due to extinction of the other.
Since the WF-model describes random reproduction, the probability that an individual at time n+ 1
chooses an individual of type A, given that there are i individuals of type A at time n, equals i

2N .
The complementary probability (the probability that the individual chooses an individual of type a)
equals 2N−i

2N . Taking into account the number of ways to pick j from 2N individuals, it follows that
the transition probabilities are given by

p(i, j) = P(Xn+1 = j | Xn = i) =

(
2N

j

)(
i

2N

)j (2N − i
2N

)2N−j
, i, j ∈ Ω. (2.2.2)

Note that once all individuals are of the same type, they will remain so forever, i.e., p(0, 0) =
p(2N, 2N) = 1. That is why we are interested in the time until fixation,

τ = inf{n ∈ N0 : Xn = 0 or Xn = 2N}. (2.2.3)

But before we say anything about τ , let us use its definition to calculate the probability that allele a
goes extinct given the number of As at time n = 0.

Theorem 2.2.1 P(Xτ = 2N | X0 = i) = i
2N , i ∈ Ω.

Proof. First note that the transition probabilities p(i, ·) are given by the probability distribution func-
tion of the binomial distribution with 2N trials and success probability i

2N , so that X is a martingale,
i.e.,

E(Xn+1 | Xn, . . . , X0) = 2N
Xn

2N
= Xn. (2.2.4)
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Since the state space Ω is finite, we have P(τ < ∞) = 1. From this and the fact that p(0, 0) =
p(2N, 2N) = 1, it follows that

lim
n→∞

Xn = Xτ . (2.2.5)

Taking n iteration steps in (2.2.4), we get

i = E(Xn | X0 = i) = E(Xτ1{τ≤n} | X0 = i) + E(Xn1{τ>n} | X0 = i). (2.2.6)

Now recall (2.2.5) and let n→∞, to obtain

E(Xτ | X0 = i) = i. (2.2.7)

However, a straightforward calculation of the conditional expectation of Xτ gives us

E(Xτ | X0 = i) = 0× P(Xτ = 0 | X0 = i) + 2N × P(Xτ = 2N | X0 = i). (2.2.8)

Combining (2.2.7) and (2.2.8), we get

i = E(Xτ | X0 = i) = 2N × P(Xτ = 2N | X0 = i), (2.2.9)

from which it follows that

P(Xτ = 2N | X0 = i) =
i

2N
. (2.2.10)

�

The probability that two different individuals, randomly drawn from the population at time n, are
of different type is called the genetic variability Hn of the population at time n, written

Hn =
Xn

2N

(2N −Xn)

(2N − 1)
+

(2N −Xn)

2N

Xn

(2N − 1)
=

2Xn(2N −Xn)

2N(2N − 1)
. (2.2.11)

We use Hn to calculate the expectation of τ , so that we have an indication of the time it takes for one
of the alleles to fixate in the population. It is hereby useful to look at the population’s genealogical
history. For any individual k at time n, let its backward ancestral path πnk be given by

πnk = {(πnm(k)) : 0 ≤ m ≤ n}, 1 ≤ k ≤ 2N, (2.2.12)

where πnm(k) is the label of the time-m ancestor of time-n individual k.

Figure 2: Example of three backward ancestral paths, for N = 3 and n = 4, where time runs downwards,
starting at 0.

We are now ready to calculate the expectation of τ .
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Theorem 2.2.2 E(τ) = 2NH0.

Proof. For all time-n individuals i and j with 1 ≤ i < j ≤ 2N , we have

P(πnm−1(i) 6= πnm−1(j) | πnm(i) 6= πnm(j)) = 1− 1

2N
, 1 ≤ m ≤ n. (2.2.13)

Labels πn0 (i) and πn0 (j) are equal if and only if the backward ancestral paths πni and πnj have coalesced
between times n and 0, so it follows that

P(πn0 (i) 6= πn0 (j)) =

(
1− 1

2N

)n
, i 6= j. (2.2.14)

Hence the probability Hn that two different random individuals i and j at time n are of different type
equals the probability that they have two different ancestors at time 0 who also are of different type,
so

E(Hn | H0) =

(
1− 1

2N

)n
H0. (2.2.15)

Since the genetic variability equals Hn = 0 if and only if n ≥ τ , it now follows that

P(τ > n | H0) = P(Hn 6= 0 | H0) =

(
1− 1

2N

)n
H0 (2.2.16)

and therefore we conclude that

E(τ) =
2N∑
n=0

(
1− 1

2N

)n
H0 = 2NH0. (2.2.17)

�

2.3 Moran model

The Moran model is a continuous-time version of the WF-model. In the Moran model, each individual
randomly chooses an ancestor at rate 1 and adopts its type, i.e., each individual lives for an exponen-
tially distributed amount of time, with expectation 1, and afterwards is randomly replaced (possibly
by itself). This phenomenon is known as sequential updating, as opposed to the parallel updating in
the WF-model, where all individuals randomly choose their ancestors at the same time.

As in the WF-model, we keep track of the number of individuals of one of the two types over time.
So, let (Mt)t≥0 be the continuous-time Markov process on Ω, defined as

Mt = the number of As at time t, t ≥ 0. (2.3.1)

Then, as a consequence of the sequential updating in the Moran model, (Mt)t≥0 is a birth-death
process on Ω. A birth occurs when an individual of type a adopts the type of an individual of type
A, and a death occurs in the complementary event. Thus, the transition rates are given by

k → k + 1 at rate (2N − k) k
2N ,

k → k − 1 at rate k(1− k
2N ),

k ∈ Ω. (2.3.2)

Since these rates are equal, we conclude that at any time t ≥ 0, independently of the number of As,
deaths and births are equally likely.

A similarity between the Moran model and the WF-model is that both models have the same
fixation probabilities. In the Moran model, the probability that type A becomes fixed, given that
there are initially i individuals of type A, equals i

2N . For the WF-model, we already proved this in
Theorem 2.2.1. Furthermore, after space-time rescaling, both models have the same diffusion limit,
known as the Wright-Fisher diffusion. The only difference is that the Moran model runs twice as fast
as the WF-model, a result we will show in the next chapter.
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3 Wright-Fisher diffusion

In nature it is often the case that a biological population is large in number. It can therefore be useful
to consider a limiting process where the population size tends to infinity. This limiting process can
then be used to approximate the behaviour of a large population. The WF-diffusion is such a limiting
process. In particular, it is the diffusion limit of the WF-model (Redig [10], Section 2, contains a
general approach to diffusion limits). The WF-diffusion describes changes in allele frequency within
a large population in the WF-model. This also explains the role the WF-diffusion plays in population
genetics; genetic drift can be read off from the WF-diffusion immediately.

3.1 Constructing the WF-diffusion

Recall the Markov process (Xn)n∈N0 = (X
(N)
n )n∈N0 with state space Ω and transition probabilities

pN (i, ·) = BIN(2N, i
2N )(·), as defined in (2.2.1), where we add the upper index (N) to emphasize the

N -dependence. For t ≥ 0 the following space-time rescaling is defined,

Y
(N)
t =

1

2N
X

(N)
b2Ntc. (3.1.1)

The process (Y
(N)
t )t≥0 is a continuous-time Markov process with state space {0, 1

2N , · · · , 1} and (in-
finitesimal) generator LN given by

(LNf)

(
i

2N

)
= 2N

2N∑
j=0

pN (i, j)

(
f

(
j

2N

)
− f

(
i

2N

))
. (3.1.2)

The Wright-Fisher diffusion is constructed from the rescaled process (Y
(N)
t )t≥0 by letting N → ∞.

Define the WF-diffusion to be the continuous-time Markov process (Yt)t≥0 on [0, 1] with generator

(Lf)(y) =
1

2
y(1− y)f ′′(y). (3.1.3)

Then the following theorem gives us the desired convergence, where L stands for law.

Theorem 3.1.1 If there is convergence of initial conditions,

lim
N→∞

L
(
Y

(N)
0

)
= L (Y0) , (3.1.4)

then the whole process (Y
(N)
t )t≥0 converges (in distribution) to the WF-diffusion (Yt)t≥0, i.e.,

lim
N→∞

L
(

(Y
(N)
t )t≥0

)
= L ((Yt)t≥0) . (3.1.5)

Proof. It is enough to prove convergence of generators (see Ethier and Kurtz [5], Chapter 10, Theorem
1.1):

lim
N→∞

(LNf)

(
i

2N

)
= (Lf)(y). (3.1.6)

Here we have to specify which set of test functions f we consider. Let C([0,1]) be the set of real-valued,
continuous functions on the unit interval, and define

C0([0, 1]) = {f ∈ C([0, 1]) : f(0) = f(1) = 0}. (3.1.7)

Since the local speed of the WF-diffusion is given by the diffusion function d : [0, 1] → [0,∞) with
d(y) = y(1 − y), it is clear that the domain D(L) of the generator L of the WF-diffusion must be a
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subset of C0([0, 1]). In general, it is not easy to characterize D(L), so the idea is to restrict D(L) to
a suitable subset K(L) ⊂ D(L) that is large enough to maintain the generality of the arguments. We
refer to K(L) as a core of the generator. We require that K(L) is dense in C0([0, 1]) with respect to
the supremum norm. Then generality is obtained via continuous extension.

In our case it suffices to consider the functions that are infinitely differentiable and have appropriate
boundary conditions,

K(L) = {f ∈ C0([0, 1]) : f is infinitely differentiable}. (3.1.8)

Test functions need only be twice continuously differentiable in the proof that follows below, but K(L)
in (3.1.8) is already dense in C0([0, 1]). This enables us to use the Taylor expansion of any test function
up to any order.

Using the Taylor expansion of f around i
2N up to second order, we obtain

(LNf)

(
i

2N

)
=

2N∑
j=0

pN (i, j)(j − i)f ′
(

i

2N

)
+

1

2

2N∑
j=0

pN (i, j)
(j − i)2

2N
f ′′
(

i

2N

)
+RN , (3.1.9)

where RN consists of third- and higher-order terms. Now put y = Y0 and X
(N)
0 = i = iN , so that

(3.1.4) becomes

lim
N→∞

iN
2N

= y ∈ [0, 1]. (3.1.10)

Let F,G : [0, 1]→ R be given by

F (y) = lim
N→∞

2N∑
j=0

pN (i, j)(j − i), (3.1.11)

G(y) = lim
N→∞

2N∑
j=0

pN (i, j)
(j − i)2

2N
. (3.1.12)

Since third- and higher-order terms of (3.1.9) disappear when N →∞, the limiting generator equals

lim
N→∞

(LNf)

(
i

2N

)

= lim
N→∞

 2N∑
j=0

pN (i, j)(j − i)f ′
(

i

2N

)
+

1

2

2N∑
j=0

pN (i, j)
(j − i)2

2N
f ′′
(

i

2N

)
= F (y)f ′(y) +

1

2
G(y)f ′′(y),

(3.1.13)

where the last equality uses (3.1.10) and the fact that all derivatives of f are continuous. We will
prove that F (y) = 0 and G(y) = y(1− y), so that the limiting generator is indeed equal to (3.1.3).

From the martingale property in (2.2.4) it follows that E(X
(N)
1 ) equals E(X

(N)
0 ), which is iN = i.

We have

E(X
(N)
0 ) = i

2N∑
j=0

pN (i, j), (3.1.14)

while the expectation definition gives us

E(X
(N)
1 ) =

2N∑
j=0

j pN (i, j). (3.1.15)

Combining (3.1.14) and (3.1.15), we get

F (y) = lim
N→∞

2N∑
j=0

pN (i, j)(j − i) = 0. (3.1.16)
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As stated earlier, E(X
(N)
1 ) equals iN = i, from which it follows that

Var(X
(N)
1 ) =

2N∑
j=0

pN (i, j)(j − i)2. (3.1.17)

Since X
(N)
1 follows the binomial distribution BIN(2N, i

2N ), we also have

Var(X
(N)
1 ) = 2N

i

2N

(
1− i

2N

)
. (3.1.18)

Combining (3.1.17) and (3.1.18), we get

G(y) = lim
N→∞

2N∑
j=0

pN (i, j)
(j − i)2

2N
= lim

N→∞

iN
2N

(
1− iN

2N

)
= y(1− y), (3.1.19)

and thus the desired result follows. �

The WF-diffusion can also be constructed from the Moran model. Since the Moran model is
a continuous-time version of the WF-model, we expect the Moran model to converge to the WF-
diffusion as well. But first we have to make the proper space-time rescaling, as we did for the WF-
model in (3.1.1). The rescaled Moran model is characterized by the birth-death Markov process on
{0, 1

2N , · · · , 1} with generator L̂N given by

(L̂Nf)

(
i

2N

)
= 2N

i

2N
(2N − i)

(
f

(
i− 1

2N

)
+ f

(
i+ 1

2N

)
− 2f

(
i

2N

))
. (3.1.20)

The first factor 2N is a consequence of the rescaled time, the second factor i
2N (2N − i) equals both

the birth rate and the death rate in the Moran model. Using the Taylor expansion of f around i−1
2N

and i+1
2N up to second order, we obtain

(L̂Nf)

(
i

2N

)
= (2N)2

i

2N

(
1− i

2N

)(
1

(2N)2
f ′′(

i

2N
) + R̂N

)
, (3.1.21)

where R̂N consists of third- and higher-order terms that will disappear when N → ∞. Assuming
convergence of initial conditions of the rescaled Moran model to the initial condition of the WF-
diffusion Y0 = y, we let

lim
N→∞

iN
2N

= y ∈ [0, 1]. (3.1.22)

Then the limiting generator equals

lim
N→∞

(L̂Nf)

(
i

2N

)
= lim

N→∞

i

2N

(
1− i

2N

)
f ′′
(

i

2N

)
= y(1− y)f ′′(y). (3.1.23)

This is equal to the generator of the WF-diffusion, apart from the factor 1
2 in (3.1.3). From this we

conclude that, after space-time rescaling, the Moran model converges to the WF-diffusion, but runs
at twice the speed of the WF-model. Indeed, if we reverse time, then each collision of two different
lineages in the Moran model is obtained by only one jump, while such a collision requires two jumps
in the WF-model. (Events where three or more lineages collide at the same time can be discarded,
since these events have probabilities of order N−3 and will therefore not appear in the WF-diffusion.)

3.2 Dual to the WF-diffusion

In this section we analyze the WF-diffusion through duality and explain how the dual process is
constructed.

Consider the backward ancestral tree of a population taken from the WF-diffusion, and define

Dt = number of ancestral lineages at time t0 − t, t ≥ 0, (3.2.1)

10



where t0 ∈ R is the observation time. Then it follows from the construction of the WF-model that
(Dt)t≥0 is a pure death process on the natural numbers, where ancestral lineages are killed one by
one. The following theorem enables us to give a more formal definition of this death process.

Theorem 3.2.1 The amount of time τk during which there are k lineages is equal to the amount of
time during which D• equals k, and has an exponential distribution with mean 2/k(k−1), k = 2, 3, . . ..

Figure 3: Part of a backward ancestral tree of a population in the WF-diffusion. In the death process (Dt)t≥0
time is running upwards, while biological time is running downwards. The expectations of the times τ4, τ3 and
τ2 equal, respectively, 1

6 ,
1
3 and 1.

Proof. First we consider a sample of k individuals drawn from a WF-population of finite size 2N � 1.
Later on we make the proper space-time rescaling, after which we send the population size to infinity.
The probability that two (or more) individuals from the sample have the same parent, is

k(k − 1)

2

1

2N
+O

(
N−2

)
. (3.2.2)

Indeed, there are
(
k
2

)
different pairs of individuals in the sample, and in each pair the two individuals

have the same parent with probability 1
2N . The second term takes into account events where there

are two pairs who have the same parents, or there are three or more individuals who all choose the
same parent.

When we follow the ancestral lineages of the k individuals backwards in time, the probability that
the k lineages do not coalesce during the first n generations equals(

1− k(k − 1)

2

1

2N
+O(N−2)

)n
= exp

(
−k(k − 1)

2

n

2N
+O(N−2)

)
. (3.2.3)

Now let λk = k(k − 1)/2, and rescale time by putting t = n/2N . Then in the limit as N → ∞ we
have, for all t ≥ 0,

P(τk > t) = e−λkt. (3.2.4)

From this it follows that, when the population size tends to infinity, τk has an exponential distribution
with mean

λ−1k = 2/k(k − 1). (3.2.5)

�

Theorem 3.2.1 says that we can equivalently define (Dt)t≥0 as the pure death process on N where
transitions from k to k − 1 occur at rate k(k − 1)/2. The process (Dt)t≥0 is dual to the WF-diffusion
(Yt)t≥0 in the following sense:

E([Yt]
n | Y0 = y) = E(yDt | D0 = n) ∀ y ∈ [0, 1], n ∈ N, t ≥ 0. (3.2.6)

11



See Den Hollander [6], Section 2.1.3. To illustrate the use of duality in studying the WF-diffusion, we
will prove the dual representations of Theorem 2.2.1 and (2.2.15) by using (3.2.6). First write

Y∞ = lim
t→∞

Yt and D∞ = lim
t→∞

Dt. (3.2.7)

Then the dual representation of Theorem 2.2.1 becomes

P(Y∞ = 1 | Y0 = y) = y, y ∈ [0, 1]. (3.2.8)

This can be easily proved as follows. First note that Y∞ ∈ {0, 1}, so that

P(Y∞ = 1 | Y0 = y) = E(Y∞ | Y0 = y). (3.2.9)

By the definition of (Dt)t≥0, we have that D∞ = 1, and so it follows from (3.2.6) that the right-hand
side of (3.2.9) equals

E(yD∞ | D0 = 1) = y. (3.2.10)

(Without the notion of duality, this would be a more difficult result to accomplish.)
The dual representation of (2.2.15) is

E(Yt(1− Yt) | Y0 = y) = y(1− y)e−t, t ≥ 0, y ∈ [0, 1]. (3.2.11)

The proof is as follows:

E(Yt(1− Yt) | Y0 = y) = E(yDt | D0 = 1)− E(yDt | D0 = 2)

= y −
[
yP(Dt = 1 | D0 = 2) + y2P(Dt = 2 | D0 = 2)

]
= y(1− y)P(Dt = 2 | D0 = 2)

= y(1− y)e−t.

(3.2.12)

The first equality uses (3.2.6), the second equality holds since 1 is the absorbing state of (Dt)t≥0, the
third equality follows from the fact that P(Dt = 1 | D0 = 2) = 1− P(Dt = 2 | D0 = 2), while the last
equality is a consequence of Theorem 3.2.1.

In most computations, (Dt)t≥0 is an easier process to work with than (Yt)t≥0. The duality gives a
relation between the distribution of Dt and the moments of Yt, so that the distribution of Yt can be
determined.
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4 The coalescent

Kingman’s coalescent, often called the coalescent, is a stochastic process that describes the family tree
of a large haploid population backwards in time, up to the individual called most recent common
ancestor (see Chapter 5). The coalescent is related to the WF-diffusion (Yt)t≥0 (see Section 3.1), and
therefore through duality to the death process (Dt)t≥0 (see Section 3.2). It is a powerful tool in the
study of the most recent common ancestor. Nevertheless, coalescent theory stands on itself as an
important area in population genetics (see Kingman [8]).

In this chapter, the coalescent is constructed from the continuous-time Markov process called n-
coalescent. The transition probabilities and the absolute probabilities of the corresponding jump chain
will be calculated using the death process (Dt)t≥0. Existence and uniqueness of the coalescent will be
established by the Stone-Weierstrass theorem. Finally, one of the coalescent’s most striking features
is shown: it comes down from infinity.

4.1 Constructing the n-coalescent

For n ∈ N, let En denote the set of equivalence relations on the set {1, 2, . . . , n}. Note that every
element of En is a set consisting of pairs (i, j) with i, j ∈ {1, 2, . . . , n} (such that reflexivity, symmetry,
and transitivity hold). The number of equivalence classes of an element R ∈ En is denoted by |R|.

The n-coalescent is a continuous-time Markov process (Rnt )t≥0 with state space En, such that

Rn0 = ∆ = {(i, i) : 1, 2, . . . , n} (4.1.1)

and

pRS =

{
1 if R / S
0 otherwise

, R, S ∈ En, R 6= S, (4.1.2)

where pRS is the transition rate given by

pRS = lim
h↓0

h−1P(Rnt+h = S | Rnt = R) (4.1.3)

and
R / S ⇔ {S ⊂ R and |S| = |R|+ 1}. (4.1.4)

Intuitively, R / S means that S can be obtained from R by merging together two of R’s equivalence
classes.

Now, if we draw a sample of n individuals from a large haploid population at time t0, then the
n-coalescent gives us a full description of all the lineages of the n individuals, backwards in time. To
understand this, let Rnt contain (i, j) with i, j ∈ {1, 2, . . . , n} if and only if the individuals i and j
have a common ancestor that is alive at time t0 − t. With this definition of Rnt , it is easy to check
that Rnt is an equivalence relation for all t ≥ 0. Furthermore, the process (Rnt )t≥0 indeed has the
stochastic structure of an n-coalescent. Note also that there is a one-to-one correspondence between
the equivalence classes of Rnt and the time-(t0 − t) common ancestors involved in the sample.
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Figure 4: Example of the backward ancestral tree of a sample of size n = 4, taken from a large haploid
population at time t0. The jumps of the 4-coalescent are given by

R4
0 = ∆ = {(i, i) : 1, 2, 3, 4},

R4
t = ∆ ∪ {(i, j) : i, j = 3, 4},

R4
t+s = R4

t ∪ {(i, j) : i, j = 2, 3, 4},
R4

t+s+v = Θ = {(i, j) : i, j = 1, 2, 3, 4}.

Write (Dn
t )t≥0 for the natural restriction of the death process (Dt)t≥0 (defined in Section 3.2) to the

set {1, 2, . . . , n}, so that (Dn
t )t≥0 is the death process on {1, 2, . . . , n} with initial value Dn

0 = n and
transitions from k to k− 1 that occur at rate λk = k(k− 1)/2. From (3.2.1), it is clear that Dn

t equals
the number of equivalence classes of Rnt , i.e.,

Dn
t = |Rnt |. (4.1.5)

Indeed, each collision of two equivalence classes of Rnt corresponds to the extinction of one of the
lineages in the genealogy of the sample. Since Theorem 3.2.1 gives us the transition rates of (Dt)t≥0,
it follows from (4.1.5) that the total transition rate of Rn equals

pR = lim
h↓0

h−1P(Rnt+h 6= R | Rnt = R) =
|R|(|R| − 1)

2
. (4.1.6)

So the n-coalescent jumps with transition rates k(k − 1)/2 through a sequence of equivalence relations
<k, with |<k| = k and k = n, n− 1, . . . , 1, such that

∆ = <n / <n−1 / · · · / <1 = Θ, (4.1.7)

where Θ = {(i, j) : i, j = 1, 2, · · · , n} is called the absorbing state.
The jump chain of an n-coalescent is defined as the Markov chain

(<n,<n−1, . . . ,<2,<1), (4.1.8)

which is directly related to its n-coalescent as

Rnt = <Dnt . (4.1.9)

From (4.1.2) and (4.1.6), we can now calculate the transition probabilities of the jump chain. For
R ∈ En with |R| = k ∈ {2, . . . , n}, we have

P(<k−1 = S | <k = R) =
pRS
pR

=

{
2/k(k − 1) if R / S,
0 otherwise.

(4.1.10)

Indeed, exactly one of the
(
k
2

)
coalescence events turns R into S. Finding the absolute probabilities

of the jump chain requires a little more work (see e.g. R. Durrett [4], Section 1.2.2, Theorem 1.5).
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Theorem 4.1.1 Let R ∈ En, and let the number of equivalence classes of R be |R| = k. Then the
absolute probabilities of the jump chain are given by

P(<k = R) =
k!

n!

(n− k)!(k − 1)!

(n− 1)!
λ1!λ2!× · · · × λk!,

where λ1, λ2, . . . , λk are the sizes of the equivalence classes of R.

Proof. We use induction on k, working backwards from k = n.
For k = n we have <k = <n = ∆, so that all equivalence classes are of size 1,

λ1 = . . . = λk = 1. (4.1.11)

Thus we have
k!

n!

(n− k)!(k − 1)!

(n− 1)!
λ1!λ2!× · · · × λk! = 1. (4.1.12)

Since R ∈ En with |R| = n implies that R = ∆, this is indeed equal to the statement that

P(<n = R) = 1. (4.1.13)

Now let k ∈ {2, . . . , n} be arbitrary, and assume that the theorem holds for k (induction hypothesis).
We will prove that then the theorem also holds for k − 1.

Let S ∈ En with |S| = k − 1 and R / S. Then from (4.1.10) it follows that

P(<k−1 = S) =
2

k(k − 1)

∑
R/S

P(<k = R). (4.1.14)

Suppose that the equivalence classes of S have sizes λ1, . . . , λk−1. Then there exist l ∈ {1, . . . , k − 1}
and µ ∈ {1, . . . , λ− 1} such that the equivalence classes of R have sizes

λ1, . . . , λl−1, µ, λl − µ, λl+1, . . . , λk−1. (4.1.15)

From the induction hypothesis it follows that the right-hand side of (4.1.14) equals

2

k(k − 1)

k−1∑
l=1

λl−1∑
µ=1

k!

n!

(n− k)!(k − 1)!

(n− 1)!
λ1!× · · · × λl−1!µ!(λl − µ)!λl+1!× · · · × λk−1!

(
λl
µ

)
1

2
. (4.1.16)

Here
(
λl
µ

)
1
2 equals the number of ways of picking R / S, so that the equivalence classes of R with sizes

µ and λl − µ coalesce to form the l-th equivalence class of S with size λl. From the simple fact that

λ1!× · · · × λl−1!µ!(λl − µ)!λl+1!× · · · × λk−1!
(
λl
µ

)
= λ1!× · · · × λk−1!, (4.1.17)

we conclude that the right-hand side of (4.1.16) equals

k!

n!

(n− k)!(k − 1)!

(n− 1)!
λ1!λ2!× · · · × λk−1!

1

k(k − 1)

k−1∑
l=1

λl−1∑
µ=1

1

=
k!

n!

(n− k)!(k − 1)!

(n− 1)!

(n− (k − 1))

k(k − 1)
λ1!λ2!× · · · × λk−1!

=
(k − 1)!

n!

(n− (k − 1))!((k − 1)− 1)!

(n− 1)!
λ1!λ2!× · · · × λk−1!

(4.1.18)

and thus the theorem holds for k − 1. �
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4.2 Constructing the coalescent

We will now construct the coalescent from the n-coalescent (see also Kingman [7], Section 7). For
2 ≤ m < n, define the restriction ρnm : En → Em given by ρnmR = {(i, j) ∈ R : 1 ≤ i, j ≤ m}.
It is clear that ρnm is well-defined. In fact, if (Rnt )t≥0 is an n-coalescent, then (ρnmR

n
t )t≥0 is an

m-coalescent. Let E be the set of all equivalence relations on N, and let ρn : E → En be given by
ρnR = {(i, j) ∈ R : 1 ≤ i, j ≤ n}. We search for a process (Rt)t≥0 on E such that (ρnRt)t≥0 is an
n-coalescent for all n ≥ 2. Such a process is called a coalescent. The following theorem justifies talking
about the coalescent.

Theorem 4.2.1 There exists a unique coalescent (Rt)t≥0.

Proof. Note that E is a subset of the powerset of N × N, so that we have the inclusion E ⊂ 2N×N,
where E is a closed subset with respect to the (compact) product topology on 2N×N. For E equipped
with the subspace topology, it follows that E is a compact Hausdorff space (a condition needed for
the Stone-Weierstrass theorem).

A coalescent exists if we can consistently specify its finite-dimensional distributions. The consis-
tency between different values of n is a consequence of the fact that ρnm(ρnS) = ρmS for all S ∈ E and
2 ≤ m < n. For fixed n, however, we observe the value of E(f(Rt1 , Rt2 , . . . , Rtk)), for bounded contin-
uous functions f : (E)k → R and times 0 ≤ t1 < t2 < . . . < tk. The requirement that (ρnRt)t≥0 is an
n-coalescent determines the value of E(f(Rt1 , Rt2 , . . . , Rtk)) when there exists a function g : (En)k → R
such that f is of the form f(S1, . . . , Sk) = g(ρnS1, . . . , ρnSk). The Stone-Weierstrass theorem implies
that the collection of functions f of this form lies dense in the set of bounded continuous functions
f : (E)k → R. Continuous extension then determines the value of E(f(Rt1 , Rt2 , . . . , Rtk)) for all f ,
so that the consistent specification of the finite-dimensional distributions is established. Since this is
done uniquely, it follows that every two coalescents have the same finite-dimensional distributions. �

With the above definition, the coalescent (Rt)t≥0 is a Markov process with values in E and trivial
initial condition R0 = {(i, i) : i ∈ N}, such that each pair of equivalence classes of Rt coalesces at rate
1, for all t ≥ 0. The latter is obtained from (4.1.6) by taking |R| = 2. This means that every two
lineages in the coalescent tree coalesce at rate 1, as we go backwards in time.

Where an n-coalescent gives a discription of the ancestral lineages of a sample of size n, taken
from a large haploid population, the coalescent gives a discription of all the lineages of the whole
population, up to the single individual from which the population has descended. In the WF-diffusion
this population is assumed to be infinite. Therefore we have to ask ourselves the question: How is
it possible that the infinite number of lineages in the coalescent tree decreases to a finite number at
positive times? An entrance law can be used to describe how a Markov process “comes from infinity”.
The following section provides an answer to the question.

4.3 Coming down from infinity

Now that we have familiarized ourselves with the construction of both the n-coalescent and the coa-
lescent, we are ready to understand and prove an interesting phenomenon (see Berestycki [1], Section
2.1.2). As before, we let Dt = |Rt| denote the number of equivalence classes of Rt. Then we have
D0 =∞, which corresponds to the statement that there are infinitely many lineages at the beginning
of our coalescent tree. The following theorem says that after any positive time we are left with only
a finite number of lineages. This is expressed by saying that the coalescent comes down from infinity.

Theorem 4.3.1 P(∀ t > 0 : Dt <∞) = 1.
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Proof. We must show that for every t > 0,

∀ ε > 0 ∃ Nε ∈ N : P(Dt > Nε) < ε. (4.3.1)

Let t > 0 and ε > 0 be arbitrary. Furthermore, let Rnt = ρn(Rt) be the natural restriction of the
coalescent to En, and let Dn

t = |Rnt | denote the number of equivalence classes of Rnt . Let τk be
an exponentially distributed random variable with mean λ−1k , where λk = k(k − 1)/2, k = 2, 3, . . ..
Then Theorem 3.2.1 says that we can use τk to represent the amount of time during which Dt = k.
Therefore, using Markov’s inequality, we have that

P(Dn
t > Nε) = P

 n∑
k=Nε

τk > t

 ≤ 1

t
E

 n∑
k=Nε

τk

 ≤ 1

t
E

 ∞∑
k=Nε

τk


=

1

t

 ∞∑
k=Nε

E(τk)

 =
1

t

 ∞∑
k=Nε

2

k(k − 1)

 .

(4.3.2)

Now note that the last sum implies that, independently of n, we can choose Nε large enough to make
sure that

1

t

 ∞∑
k=Nε

2

k(k − 1)

 < ε, (4.3.3)

from which it follows that

lim sup
n→∞

P(Dn
t > Nε) = lim

n→∞

(
sup
m≥n

P(Dm
t > Nε)

)
< ε. (4.3.4)

�
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5 Most recent common ancestor

An object of interest in population genetics, in particular, in coalescent theory, is the most recent
common ancestor (MRCA). Consider a population where all individuals have a common allele (or
locus, or gene). We can trace this allele in the ancestry of the population. As we move backwards
in time, the collection of ancestors starts to shrink, until we are left with the single individual from
which the whole population has descended. This individual is found at the root of the coalescent tree,
and is called the MRCA. It is the most recent individual that has the allele such that it is a common
ancestor of the whole population.

In this chapter we investigate the MRCA of a population in the WF-diffusion. The coalescent
enables us to calculate the expectation of the time between the population and its MRCA. As time
runs forward, the MRCA jumps forward in order to keep up with the population. This jump process
is called the MRCA-process, which we will analyze by means of a particle construction introduced
by Donnelly and Kurtz [2]. This leads to the corresponding fixation process. In particular, we will
determine the distribution of the waiting time between jumps in this process.

5.1 Depth of the coalescent tree

Consider a population in the WF-diffusion where every individual is of type A or of type a. If the
population has a MRCA, then this MRCA is either of type A or of type a, from which it follows that
the whole population is either of type A or of type a. The reverse does not necessarily hold: if a
population descends for example from two individuals instead of one, and these two individuals are
both of the same type, then the whole population is of one type, but does not have a MRCA.

Suppose that the WF-diffusion has been running indefinitely, and observe a population in the WF-
diffusion at some reference time t ∈ R. Then this population has a MRCA a.s. (the MRCA did not
live an infinite amount of time ago). In fact, given the time at which the population lives, we can
predict the time of its MRCA.

Theorem 5.1.1 The expectation of the time Tt between a time-t population in the WF-diffusion and
its MRCA equals E(Tt) = 2.

Note: this theorem is stated in terms of a continuous rescaled time. For example, if we use the
WF-diffusion to approximate the behaviour of a population of size 2N = 50, 000, then according to
the space-time rescaling in (3.1.1), we expect that the MRCA lives 50, 000× 2 = 100, 000 generations
(time units) ago.

Proof. Let τk be the amount of time during which there are k lineages in the coalescent tree of
the time-t population, k = 2, 3, . . .. Then Theorem 3.2.1 states that the expectation of τk equals

E(τk) =
(
k
2

)−1
. Since the time Tt between the time-t population and its MRCA equals the depth of

the coalescent tree, the desired expectation equals

E(Tt) = E

( ∞∑
k=2

τk

)
=
∞∑
k=2

E(τk) =
∞∑
k=2

2

k(k − 1)
= 2. (5.1.1)

�

5.2 MRCA-process and fixation process

Let t ∈ R be the observation time of a population in the WF-diffusion, and let Tt be the depth of
the corresponding coalescent tree. Then At = t − Tt is the time at which the MRCA of the time-t
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population lives. We define the MRCA-process as the process (At)t∈R on state space R. (Donnelly
and Kurtz [3] refer to (At)t∈R as the Eve process.)

Consider the MRCA that lived at time At, and the two individuals directly descended from this
MRCA. The time-t population is then divided into two disjoint parts, where each part consists of the
time-t offspring of one of the two individuals. We refer to these parts as the two oldest families in
the population. The time Ft at which one of these families fixates in the population, a new MRCA is
established. The process (Ft)t∈R on state space R is called the fixation process.

Suppose that the points of (At)t∈R are enumerated as {αi}∞i=−∞. Then the points {βi}∞i=−∞ of
(Ft)t∈R are given by βi = inf{t : At = αi}, and the path of (At)t∈R is constant on each interval
[βi, βi+1):

∀ t ∈ [βi, βi+1) : At = αi. (5.2.1)

At each time βi the MRCA, which lives at time αi, is thus established.

Figure 5: Time is running horizontally to the right. The points αj and βj , i − 2 ≤ j ≤ i + 2, of the MRCA-
process (At)t∈R and the fixation process (Ft)t∈R are drawn for some i ∈ Z. The dotted lines relate each time
αj , at which a MRCA lives, to the time βj , at which the MRCA is established.

5.3 Particle construction

To investigate (At)t∈R and (Ft)t∈R, we use Pfaffelhuber and Wakolbinger [9] and the particle construc-
tion of Donnelly and Kurtz [2], which we will now describe.

Identify each element (t, i) of the set R × N with the individual at time t at level i. To describe
the births of new individuals in the population, define for all levels i < j the look-down process
Pij = (Pij(t))t∈R as a rate-1 Poisson process on R. At each point of Pij , level j looks down to level i,
which means that the individual at level i produces a copy of itself, which is inserted at level j. For
each time t0, when level j looks down to level i, the individuals at levels j, j + 1, . . . are pushed one
level up to make room for the new individual (t0, j). As time runs forward, the new individual is in
turn pushed one level up each time there is a birth at one of the lower levels. To be precise, the new
individual born at level j at time t0 is pushed one level up at all times t1 < t2 < . . ., where tn is a
point of Pik for some 1 ≤ i < k < j + n, for all n ∈ N. The evolution over time of an individual born
at level j at time t0 can thus be described by a line of the form

L = ([t0, t1)× {j}) ∪ ([t1, t2)× {j + 1}) ∪ ([t2, t3)× {j + 2}) ∪ · · · ⊂ R× N. (5.3.1)

See Figure 6 for a graphical illustration. For each individual (t, i) ∈ R × N there is a unique line L
such that (t, i) ∈ L. An individual at level j is pushed one level up at time t if and only if level k
looks down to level i at time t for some 1 ≤ i < k ≤ j. This leaves j(j − 1)/2 possible values for i
and k, and therefore pushing rates increase quadratically in j. Hence, t∞ = limn→∞ tn is finite with
probability 1. We say a line L exits at time t∞. Note that each individual in L is “pushed to infinity”
as L exits.

Thus, for each time t0 when level j looks down to level i an individual (t0, j) is born. As time runs
forward, the individual is pushed up one level at a time until it reaches infinity, where the individual
dies and its (unique) line L exits at some finite time t∞. The random tree consisting of all lines
L ⊂ R×N is known as the look-down graph. The term particle construction for the construction just
described is justified by identifying each individual and its corresponding line with a particle and its
trajectory in R× N.
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Any line L in the look-down graph backwards in time leads to a coalescence with another line L′.
Indeed, the individual (t0, j) in L that lives at the earliest time of all the individuals in L lives at a
time when level j looks down to level i for some i < j. Since individual (t0, i) has a unique line L′

such that (t0, i) ∈ L′, the lines L and L′ coalesce in (t0, i). Thus, the tracing of the evolution of an
individual backwards in time does not stop at the end (or at the beginning in the forward sense) of
its line, but leads to an unambiguous and endless trajectory through different lines in the look-down
graph. We will call this trajectory the ancestral lineage of the individual, which we will now formally
construct.

First note that the look-down graph always contains the immortal line ω = R × {1}. Fix s0 ∈ R.
For each n ∈ N there is a unique line L = Ln of the form (5.3.1) such that (s0, n) ∈ Ln, and a
function ΛLn : [t0, t∞) → {j, j + 1, . . . }, t 7→ i such that (t, i) ∈ Ln. Next, reverse time and let
Xn
t = ΛLn(s0 − t), t ∈ [0, s0 − t0]. As time runs backwards, there comes a time where t > s0 − t0,

so that Xn
t is no longer defined. However, since t0 is a point of Pij for some i < j, there exists an

m < n such that (t0, i) ∈ Lm and such that Xm
t (in particular) is defined for all t ∈ (s0 − t0, s0 − t′0],

where t′0 = inf{t : ∃j′ ∈ N : (t, j′) ∈ Lm}. Now t′0 is a point of Pi′j′ for some i′ < j′. Repeating
this argument, we get a sequence n > m > . . . > 1 and a sequence of intervals In = [0, s0 − t0],
Im = (s0 − t0, s0 − t′0], . . . such that

⋃
i Ii = [0,∞). (Indeed, ((−∞, s0]× {1}) ⊂ L1.) Thus, for any

individual (s0, n) ∈ R× N we can define its backward level process (Φn(t))t≥0 by letting

Φn(t) : [0,∞)→ N, t 7→ Xi
t if t ∈ Ii. (5.3.2)

The ancestral lineage of an individual (s0, n) equals (t,Φn(t))t≥0. Note that the ancestral lineage of
any individual will eventually coalesce with the immortal line, i.e.:

∀ n ∈ N ∃ t∗n ∀ t > t∗n : Φn(t) = 1. (5.3.3)

Figure 6: Part of a look-down graph. Biological time is running upwards and level numbers are running to the
right. Only (parts of) two lines Lm and Ln are drawn. At time t0 level j looks down to level i and individual
(t0, j) is born. Each time an individual in line Lm is pushed one level up, the individual in line Ln that lives
at the same time is pushed one level up. The backward level process of individual (s0, n) jumps from level j to
level i at time t0.

The look-down tree Ts consists of all the ancestral lineages (t,Φn(t))t≥0 of the individuals (s, n),
n = 1, 2, . . ., for some reference time s = s0.

5.4 Particle construction applied

By the definition of the look-down processes Pij , any two ancestral lineages in Ts coalesce with rate 1.
This means that Ts has the same distribution as the coalescent (defined in Chapter 4). The particle
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construction can therefore be used to describe the evolution of a population in the WF-diffusion. To
that end, let the levels of the individuals at any time be ordered by persistence, i.e., i < j if and only if
the offspring of individual (t, i) outlives the offspring of individual (t, j). Note that with the ordering
by persistence, the look-down processes Pij , i < j, suffice to describe each birth in the population in
the WF-diffusion.

Theorem 5.4.1 The MRCA-process (At)t∈R is a rate-1 Poisson process on R.

Proof. It is enough to show that (At)t∈R coincides with P12. First note that a MRCA in the particle
construction must always be at level 1. We will prove that (t, 1) is a MRCA if and only if t is a point
of P12.

“⇒”: Observe a MRCA at time t in the coalescent tree and the two individuals that directly
descended from the MRCA. (We can identify these two time-t individuals as the MRCA and its copy.)
Then t = As for some s > t and the two oldest families in the time-s population have each descended
from one of the two individuals. This means that the other individuals in the population at time
t = As do not have living offspring at time s. The ordering by persistence in the particle construction
implies that these other individuals all have higher levels than the MRCA and its copy. Hence, at
time As the copy of the MRCA is inserted at level 2. i.e., t is a point of P12.

“⇐”: Let t be a point of P12. Then individual (t, 2) is a copy of individual (t, 1). The ordering by
persistence implies that there exists an s > t such that the time-s population has descended from the
individual (t, 1) and its copy (t, 2), i.e., (t, 1) is the MRCA of the time-s population. �

The proof of Theorem 5.4.1 implies that each point t0 of P12 initiates a line LiF of the form (5.3.1)
where j = 2 and t0 = αi for a certain i ∈ Z. Such a line LiF is called a fixation line. Let ξi denote the
exit time of LiF . Note that at time ξi the offspring of individuals (αi, k), k = 3, 4, . . ., goes extinct.
Therefore we have that ξi equals the infimum of times t at which (αi, 1) is the MRCA of the time-t
population, thus it follows that the exit times of the fixation lines coincide with the points of (Ft)t∈R,
i.e., ξi = βi for all i ∈ Z.

Let Ant be the time at which the MRCA of the individuals (t, k), k = 1, . . . , n, lives. Since the
MRCA of the first n+ 1 time-t individuals is a common ancestor of the first n time-t individuals, we
have Ant ≥ An+1

t for all n ∈ N. Define Θn = (Θn(t))t∈R by letting

Θn(t) =

{
1 if Ant > An+1

t

0 if Ant = An+1
t

(5.4.1)

and let Nn(t) denote the number of times that Θn−1 jumps from 1 to 0 during the time interval [0, t],
n > 1. Then Nn = (Nn(t))t∈R is a rate-1 Poisson process (see Donnelly and Kurtz [3], Lemma 3.5).
We will use the particle construction to show that this implies the following theorem.

Theorem 5.4.2 The fixation process (Ft)t∈R is a rate-1 Poisson process on R.

Proof. Define βni = inf{t : Ant = αi}. First we prove that the times {βni }∞i=−∞ coincide with
the jump times of Nn. Note that βni is the time at which the fixation line LiF reaches level n:
βni = inf{t : (t, n) ∈ LiF }. At this time, the MRCA of the first n − 1 individuals equals the MRCA
of the first n individuals, so that Θn−1(t) jumps from 1 to 0 at time t = βni , i.e., Nn jumps at time
βni . On the other hand, if Nn jumps at time t, then Θn−1 jumps from 1 to 0 at time t, so t must
be the infimum of times at which the MRCA of the first n − 1 individuals equals the MRCA of the
first n individuals. This implies that a fixation line LiF reaches level n at time t = βni . It follows that
the times {βni }∞i=−∞ are the jump times of the rate-1 Poisson process Nn. Next, since the points of
(Ft)t∈R are given by βi = limn→∞ β

n
i , the theorem follows. �

A more intuitive, but less formal argument for the fact that (Ft)t∈R is a rate-1 Poisson process is
the following. First note that if (Ft)t∈R is a Poisson process, then its rate equals the rate of (At)t∈R.
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This is a consequence of Theorem 5.1.1: the expected time between a population and its MRCA is
constant. It remains to show that the time between jumps of the MRCA is exponential. Let Xt and
1 − Xt denote the sizes of the two oldest families in the population at time t. Fix t0 ∈ R. There
exists an i ∈ Z such that t0 ∈ [βi, βi+1). The random reproduction in the WF-model implies that Xt0

is uniformly distributed on [0, 1]. This also holds conditioned on At0 = αi. So we have that Xt is
uniformly distributed on [0, 1] for all t ∈ [βi, βi+1). At time βi+1, when the MRCA jumps from αi to
αi+1, one of the oldest families dies out and two new oldest families come into existence. These two
families are again of random size: for t1 ∈ [βi+1, βi+2) we have that Xt1 (conditioned on At1 = αi+1)
is (standard) uniformly distributed. This implies a memoryless waiting time between jumps of the
MRCA, so that the time between jumps of the MRCA is (standard) exponentially distributed.

To derive Theorem 5.1.1 from the particle construction, let i ∈ Z and consider the fixation line LiF
starting at time αi. The infimum Ti of times t for which individual (αi, 1) is a common ancestor of the
population at time αi+ t equals the time it takes for LiF to exit. At any level k ≥ 2 of LiF there are

(
k
2

)
rate-1 Poisson processes to initiate a push to level k + 1, so it follows that E(Ti) =

∑∞
k=2

(
k
2

)−1
= 2.

Now let t ∈ R. Since Ti = βi − αi, Theorem 5.1.1 holds if and only if E(βi − αi) = E(t − At). This
may seem counter-intuitive because At = αi if and only if t ∈ [βi, βi+1), but it can be explained via
the so- called waiting-time paradox: a time point is more likely to fall in a long interval than in a
short interval between Poisson events.
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