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1 Introduction

In this thesis we discuss Poisson matchings, which can be seen as ’random
graphs’ with an infinite set of random vertices U ⊂ R. The set ’U ’ is the set
of ’arrival times’ in a Poisson process. It is our goal to gain more insight in
a specific matching type called the ’stable multi-matching’, which has some
extra nice properties. We are mainly concerned with the question whether
infinite components exist in these random graphs . In this paper we will study
this question for the stable multi-matching with a specific degree distribution.
Showing the existence of an infinite component in this matching is still an open
question, but an overwhelming amount of simulation results seems to suggest
a positive answer. We will also add our simulation results in support of the
conjecture that such an infinite component does exist (with probability 1). We
will mainly use and study the work of Alexander Holroyd and for many results
will refer to his papers on this subject.

Also, we try to give the reader some impression of the arguments involved
in proving statements about geometric properties of the Poisson matchings.
Intuitively some of these problems can seem misleadingly simple, but often
there’s many subtleties and difficult mathematics involved in proving statements
about geometric properties. So, don’t be misleaded by easy questions with
difficult answers!
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2 What is Poisson Process ?

In this section we give a small introduction to Poisson processes, and give some
of its basic features. For more extensive studies in Poisson processes we refer to
[4].

Definition 1. A point process {C(t), t ∈ R} is a integer-valued stochastic pro-
cess satisfying the following properties:

(1) C(t) ≥ 0 for all t,

(2) C(t) is an integer,

(3) C(t) is non-decreasing in t, i.e., if s ≤ t then C(s) ≤ C(t).

If s < t then C(t) − C(s) denotes the number of events that occured in the
time-interval (s, t].

The most important examples of counting processes are Renewal processes,
and Poisson processes. A Poisson process is a special case of a Renewal process.

Definition 2. A Poisson process {N(t), t ∈ R} is a point process with the fol-
lowing additional properties:

(i) N(0) = 0,

(ii) The process has independant increments,

(iii) P(N(t + s)−N(s) = k) = e−λt(λt)k

k! , k = 0, 1, 2, · · · .

A stochastic process has independant increments if the number of events in
disjoint intervals are independant. This means that N(t)−N(s) and N(v)−N(u)
are independant variables for disjoint intervals (s, t] and (u, v]. Property (iii)
states that the number of events in any interval with length t follows a Poisson
distribution with mean λt. Here λt is the expected number of events in an in-
terval of length t.
It follows that the process has stationary increments, meaning that the number
of events in any interval (s, s + t] only depends on the length t, and not on the
particular position in time s. The parameter λ > 0 is called the intensity-rate
of the process. In the case that that λ changes over time, that is λ = λ(t) is
a non-constant function of t, the process is called a non-homogenous Poisson
process. We will only deal with homogenous Poisson processes here.

Each realization of the process {N(t), t ∈ R} is an integer valued step-function
(Fig. 1). Let P denote a realization of a Poisson process. We are interested in
the set of jump times

[P] :=
{

t ≥ 0 : lim
ε↑0

Nt−ε 6= Nt

}
,
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Figure 1: sample process N(t)

which we call the support of P. The set of jump times in (0, t) follows a uniform
distribution. To see this, note that any subinterval of (0, t) of equal length has
the same probability to contain the event due to property (ii). Formally, we
show this by conditioning on one event in the interval (0, t], and proving that
the time upto the occurance follows a uniform distribution on (0, t).

Lemma 3. Let P a Poisson-process with finite intensity λ. Then the set of
jump times in (0, t) follows a uniform distribution.

Proof. Denote by T1 the time upto the first event. Let 0 ≤ s ≤ t, then we have:

P(T1 ≤ s|N(t) = 1) =
P(one event in (0, s],no event in (s, t])

P(N(t) = 1)

=
P(N(s) = 1)P(N(t− s) = 0)

P(N(t) = 1)

=
e−λs(λs) · e−λ(t−s)

e−λt(λt)

=
s

t
.

We see that T1 is indeed uniformly distributed on (0, t). This property is used
for computer simulations that will be discussed later.

To avoid ambiguity we will now call the events from a Poisson process ’oc-
curances’. We like to add that a Poisson process can be characterized in many
but equivalent ways. An alternative definition is the following. Denote by W
the inter-arrival time, which is the elapsed time between 2 consecutive arrivals.
Keep conditions (i),(ii) and replace (iii) by ’W obeys an Exp(λ) distribution
with mean 1

λ ’.
We show these sets of conditions to be equivalent.
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Theorem 4. Impose conditions (i),(ii) on a counting process, then conditions
(iii) and W ∼ Exp(λ) are equivalent.

Proof. Consider a counting process {N(t), t ≥ 0} with conditions (i),(ii),(iii).
Let Tk be the time uptil the k-th arrival for k = 0, 1, 2, · · · , and Wk = Tk−Tk−1

for k = 1, 2, · · · . Then clearly the number of arrivals before some fixed time t
is less then k if and only if the waiting time uptil the k-th arrival is more then
t. Therefore the event [Tk > t] happens if and only if the event [N(t) < k]
happens, and consequently the probabilities are the same. That is

P(Tk > t) = P(N(t) < k).

Note that the set interarrival-times {Wk}k≥1 follow the same distribution. In
particular consider W1 = T1−T0, which is the waiting time until the first arrival.
We have

P(W1 > t) = P(N(t) = 0) = P(N(t)−N(0) = 0) =
e−λt(λt)0

0!
= e−λt.

We see that W is indeed exponentially distributed with mean 1
λ . Therefore the

2 different sets of conditions are equivalent, and both characterise a Poisson
process. �

Another interesting fact is that no 2 arrivals may take place on the same
point in time. This is an immediate consequence from the fact that W follows
an Exp(λ) distribution. Note that P(W > 0) = e−λ·0 = 1, therefore the inter-
arrival time is strictly bigger then 0 with probability 1.
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3 Poisson matching

In this thesis we discuss Poisson matchings which are constructed graphs with
vertex set [P]. Connected points are here viewed as ’partners’ or ’matched pairs’.
Our primary focuss will be on the cluster-forming, and component structure re-
sulting from these matching processes, and we will study geometric properties
of the resulting graphs. We present some major results by A. Holroyd, and
either refer to proofs, or study some in more detail. We then move on to the
concept of stable matching. First, we give a formal definition of the objects we
will work with.

Let P be a Poisson process with intensity-rate 1. Let µ be a measure on the
strictly positive integers. We consider the family of N-valued random variables
{Dx : x ∈ [P]} with joint law µ. Interpret Dx as the number of stubs of the
vertex x. In this thesis we restrict our attention to the case µ({1, 2}) = 1, in
particular Dx = 1 or Dx = 2 for all x ( i.e. µ ({1}) = 1 or µ ({2}) = 1 respec-
tively). These cases are of special interest, as they result in planar graphs for
the stable multi-matching on R (See section 6).
A matching scheme on [P] is a point process M on the space of unordered
pairs of points in R, with the property that almost surely for every pair {x, y} ∈
[M] we have x, y ∈ [P]. We say that the matching scheme M is translation-
invariant if the law of the joint process (P,M) is invariant under translations
of R. We are only interested in the case that M is a perfect matching, that is,
every vertex x in the resulting graph G = G([P], [M]) has degree Dx. Also, the
matchings under consideration are simple, i.e., G is a simple graph (meaning G
almost surely has neither self-loops nor multiple edges).
The idea of Poisson matching can be generalised to Poisson processes in arbi-
trary dimension d ≥ 1. We will restrict our attention to d = 1. Furthermore, we
make a distinction between 2 kinds of matching schemes; if M = f(P) for some
deterministic function f , then M is called a factor matching, and otherwise
M is referred to as randomized. The focus of the present work is on factor
matchings.

4 The one stub case

Let P be a Poisson process with intensity λ = 1, and assign to every x ∈ [P]
one stub, i.e. D ≡ 1. We will give an example of a matching scheme M that is
translation-invariant, and another matching which is not. For a factor matching
translation-invariant means that applying M after translating the points in [P]
by some θ ∈ R, results in the same graph as first applying M and then trans-
lating by θ. This may seem like a very natural property, but a simple matching
for which this is not the case is the following.
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Example 1.
Match the first point in [P] left from the origin to the first point right from
the origin, and match the rest of the matching adjacent. By adjacent we mean
that for any edge {x, y} ∈ [M] there’s no point of [P] in (x, y). Translate the
Poisson points in figure 2 by some θ > 0 such that the first point left from zero
becomes the first right point from zero. Apply the matching described above.
Clearly we find a different graph from the one in figure 2 after translation by θ.
Therefore the matching is not translation-invariant.

Figure 2:

In the case of D ≡ 1 it’s not obvious that a translation-invariant factor
matching exists. The stable (Gale-Shapely) matching is one example of a trans-
lation invariant matching for any degree distribution µ. We will come back to
this later.

Example 2.
For D ≡ 2 adjacent matchings are translation-invariant. Note that adjacent
matchings only exist for degree distributions with µ ({1, 2}) = 1 (one or 2 stubs
per vertex). There exists exactly 1 adjacent matching in the case D ≡ 2 which
is obtained by either connecting every point to its closest left neighbor, or con-
necting every point to its closest right neighbor. Again, it’s an easy verification
that the matching is independent of any translation θ.

5 Some results on Poisson matching

The first result we present is for translation-invariant factor matchings with
degree distribution µ ({1}) = 1. (one stub per vertex). Let P be the probability
measure governing (P,M) and E be the associated expectation operator. We
are interested in the typical distance between matched pairs. Denote by M(x)
the partner of x for any x ∈ [P].

Assume without loss of generality that P has intensity 1. For r ∈ [0,∞)
consider the following quantity

F (r) = E# {x ∈ [P] ∩ [0, 1) : |x−M(x)| ≤ r} .

Lemma 5. F defines a distribution function.

Proof. Clearly F (r) → E# {x ∈ [P] ∩ [0, 1)} = 1 as r → ∞. Furthermore
F (r) = 0 for r ≤ 0. Let 0 < r1 < r2. For any x ∈ [P]∩ [0, 1), if |x−M(x)| < r1

9



then |x−M(x)| < r2 implying F (r1) ≤ F (r2), and showing that F is monotone
non-decreasing. �

By lemma 5 we may introduce a random variable X with

P∗(X ≤ r) = F (r).

We can think of X as the typical (expected) distance between matched pairs.

Theorem 6. Let P be a Poisson process of intensity 1. Any translation-
invariant matching scheme satisfies E∗[X] = ∞.

This is a remarkable result, as it is impossible to make translation-invariant
matching schemes with a bound on the expected edge length. Leaving out
translation-invariance, it becomes quite easy to make matching schemes with
finite expected edge length. An example is the matching scheme described in
example 1. The expected edge length is here equal to the expected distance be-
tween 2 Poisson points, which is (as described in the introduction) the expected
waiting time E[W ] = 1/λ = 1 < ∞. We shall see, as in the proof of Theorem
6, that translation-invariance is quite a strong condition.

We postpone the proof of Theorem 6 and give a lemma that states we can
not achieve an adjacent matching without randomization. One may find this
not very surprising. In a factor matching, to achieve an adjacent matching one
has to make one choice for an edge {x, y} for 2 adjacent points x, y ∈ [P], then
the rest of the matching is determined. One can imagine this is hard (actually
impossible) to do in a translation-invariant way. In example 1 we saw that mak-
ing the choice for the first edge (first points left and right from zero), directly
sacrificed translation-invariance. Still, there might exist clever and sophisticated
ways to make this choice. The following lemma proves that this is not the case;
making any choice for an edge with 2 adjacent points by some deterministic
function of [P] will be at the expense of the translation-invariance condition.
In what follows we say that an edge {x, y} ofM crosses a site z ∈ R if z ∈ (x, y).

Lemma 7. Let P be a homogenous Poisson process on R. There does not exist
a translation-invariant factor matching scheme where the matching is almost
surely adjacent.

Proof. Suppose on the contrary that M is such matching scheme. Write FS

for the σ-algebra generated by the restriction of P to S ⊂ R, and consider the
event

A := { 0 is crossed by some edge } .

Since A is contained in FR, we have that for every ε > 0 exists r = r(ε) < ∞ and
an event Aε ∈ F[−r,r] such that P(A∆Aε) < ε. This is a consequence of Levy’s
zero-one Law. (See Appendix). By translation-invariance of M, we can find
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Bε ∈ F[−2r,0] such that P({−r is crossed by some edge }∆Bε) < ε. Further-
more, an adjacent matching is fully determined by whether some deterministic
point x ∈ R is crossed or not. Hence there exists Lε ∈ F[−2r,0] ⊂ F(−∞,0] with
P(A∆Lε) < ε. Since this is true for all ε > 0, we have A ∈ F(−∞,0], where
the bar denotes the completion under P. The same arguments can be used to
show that A ∈ F[0,∞). Now, since A is contained in 2 independant σ-algebra’s,
A must be independant of itself. That is P(A) = P(A ∩ A) = P(A)2, and it
follows that A has probability 1 or 0. But then we arrive at a contradiction
since neither of the 2 matching schemes is translation-invariant. �

In the following lemma we use the fact that Poisson processes are Ergodic.
Define a shift-operator Ts : P → P by

Tsν(t) = ν(s + t)− ν(s), s ≥ 0.

Let T−1
s B = {ν ∈ P : Ts(ν) ∈ B}. A set B is said to be (translation) invari-

ant if T−1
s (B) = B for all s. A stationary point process is called Ergodic if

P(B) = 0 or 1 for all invariant sets. More on ergodicity of the Poisson process
can be found in [4].

Lemma 8. Let P be a Poisson process of intensity 1, and M be a translation-
invariant factor matching scheme. The number of edges crossing 0 is infinite.

Proof. Let P, and M be as given. Define

B = [0 is crossed by a finite number of edges].

Our aim is to prove P(B) = 0. Suppose by contradiction P(B) > 0. On the
event that 0 is crossed by a finite number of edges, a.s. the same is true for
any other r ∈ R, since the difference of the number of edges crossing r and the
number of edges crossing 0 is at most the number of Poisson points between 0
and r (which is finite). This shows that B is an invariant set; by translation-
invariance of the matching, for any point configuration ν ∈ P we have ν ∈ B
if and only if Ts(ν) ∈ B. It follows by ergodicity that B either has probability
1, or 0. Since we assumed P(B) > 0 we must have P(B) = 1. Then define a
new matching scheme M′ as follows: Match 2 adjacent points x, and y if and
only if the points r ∈ (x, y) are crossed an odd number of times in the matching
M. The maching M′ is an (translation-invariant) adjacent factor matching
contradicting lemma 7. �

We almost have the tools to prove Theorem 6. The actual proof of Theorem
6 makes use of Palm measures. In the Palm process P∗ the origin is added
uniformly to the support of P. If the typical edge length X is defined as the
distance from the origin to its partner

X := |M∗(0)|,
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it turns out this yields a measure with the same CDF as defined above. For
more on this topic see [5].

proof of Theorem 6
We have the following inequalities

E# {edges crossing 0 } ≤ E# {x ∈ [P] ∩ [0,∞) : |x−M(x)| > |x|}

=
∞∑

r=0

E# {x ∈ [P] ∩ [r, r + 1) : |x−M(x)| > |x|}

≤
∞∑

r=0

E# {x ∈ [P] ∩ [r, r + 1) : |x−M(x)| > r}

=
∞∑

r=0

E# {x ∈ [P] ∩ [0, 1) : |x−M(x)| > r}

=
∞∑

r=0

(E# {x ∈ [P] ∩ [0, 1)} − E# {x ∈ [P] ∩ [0, 1) : |x−M(x)| ≤ r})

=
∞∑

r=0

(1− P∗(X ≤ r))

=
∞∑

r=0

P∗(X > r)

= 1 +
∞∑

r=1

P∗(X > r)

≤ 1 +
∫ ∞

0

P∗(X > r)dr

= 1 + E∗[X].

Therefore Lemma 8 implies E∗[X] = ∞. Note that we used translation-invariance
of M in step 4. In the last inequality we used that X is a continuous stochastic
variable on [0,∞).
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6 Stable Matching

In this section we introduce a particular natural kind of matching scheme, called
the stable multi-matching. The concept of stable matching goes back to
the stable marriage problem introduced by Gale and Shapely. We start by
defining stable multi-matching, and give an algorithm yielding the unique stable
multi-matching. Also, we collect relevant results for the case µ({1, 2}) = 1.

Definition 9. Let P be a Poisson process of intensity 1. A matching M is
called stable multi-matching on R, if a.s. for any 2 distinct points x, y ∈ [P] we
either have an edge {x, y}, or x and y have no incident edges longer then |x−y|.

Definition 10. Let U ⊂ Rd. A sequence {xi} ⊂ U is called a descending chain
if |xi − xi−1| is strictly decreasing.

It is proven in [1] that [P] can not contain descending chains. This property is
relevant for showing the existence of the stable multi-matching on R.

In the set [P] call 2 distinct points x, y ∈ [P] mutually closest if x is the
closest point to y in [P] \ {y}, and vice versa. For a Poisson process P on R
and any degree distribution µ, the following algorithm exhausts all stubs, and
yields the unique stable multi-matching in the sense of definition 9.

Gale-Shapely algorithm

Step 1. Consider the set [P] of all points. An edge is created between each
mutually closest pair in this set, and one stub is removed from each of these
points.

Step 2. Consider the set of points that still at least have one stub after
step 1. Two points are called compatible if no edge was created between them
in step 1. An edge is created between each two compatible mutually closest pair
in this set, and one stub is removed from each of these points.

...

Step n. Consider the set of points that still at least have one stub. Two
such points are called compatible if no edge has been created between them. An
edge is created between each compatible mutually closest pair in this set, and
one stub is removed from each of these points.

...

It is clear from the from the steps in the algorithm, the limiting graph will
not contain any loops or multiple edges. The process is also clearly translation-
invariant. We will not deal with all the details here, but a full proof for existence
and uniqueness of the stable multi-matching can be found in [2].
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We shall give an argument as to why the limiting graph is perfect. This is an
argument by contradiction. Suppose that the limiting graph is not perfect, and
consider the set of vertices [P ′] with at least one unused stub on them after the
above matching procedure is completed. The set [P ′] a.s. contains no points,
or infinitely many points. In the first case the matching was already perfect.
To rule out the second case, call 2 points in [P ′] compatible if they don’t have
an edge between them in the configuration obtained from the matching proce-
dure. Then create a directed graph G′ with [P ′] as vertex set, by connecting
every point to its nearest compatible point. Clearly no cycles with more then
2 points exist in G′. If C = (x1, x2, · · · , xn, x1) with x1 < x2 < · · · < xn was
such a cycle, then either x1 has xn as nearest compatible point, or xn has x1

as nearest compatible point which is clearly a contradiction. A cycle C = (x, y)
corresponds to 2 mutually closest compatible points, which can not be present
in G′ as the edge (x, y) would have been created at some stage in the algorithm.
But then [P ′] contains an infinite descending chain, which is impossible.

The following results relate the existence of an infinite component to a certain
property concerning edge lengths. Again, the Palm process P∗ is considered
here. We state these results without proof. Let Mx denote the length of the
longest edge incident to x ∈ [P]. We say that x desires a site y ∈ R if |y−x| <
Mx, and write N for the number of points that desire the origin.

Theorem 11. For a Poisson process on R, consider the stable multi-matching.

(i) For any degree distribution, if there is no infinite component, then N = ∞
almost surely.

(ii) If µ({1, 2}) = 1, and there is an infinite component, then N < ∞ almost
surely.

This means that for degree distributions with µ ({1, 2}) = 1, the existence
of an infinite component is hence equivalent to N < ∞. Furthermore, assuming
the existence of an infinite component, as N < ∞ we may expect only a finite
number of edges crossing 0. The proof of Theorem 11, and Lemma 12 can be
found in [3]. Let M = M0.

Lemma 12. For any translation-invariant matching scheme, we have that E∗[M ] <
∞ if and only iff E[N ] < ∞.

Combining these two results, it follows that the existence of an infinite compo-
nent in the stable multi-matching with D ≡ 2 implies E∗[M ] < ∞. Therefore
the expected edge length is finite. We will come back to this later.

Definition 13. Edges (a, b) and (c, d) are crossing if a < c < b < d.

We now show that any stable multi-matching with µ({1, 2}) = 1 is a planar
graph. That is, we have no crossing edges. This is an immediate consequence of
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Figure 3: unstable

the stability property (definition 9). We shall illustrate this with the following
picture.

Observe that edges (a, b) and (c, d) give rise to edges (a, c), (c, b) and (b, d)
(according to the stability property), which means that vertices c, b have degree
(at least!) 3, which is impossible. This shows that the situation in figure 3 can
not occur in any stable multi-matching with µ({1, 2}) = 1.

The following theorem states that we can have at most one infinite compo-
nent in the stable multi-matching.

Theorem 14. For any Poisson process on R and any degree distribution µ,
there is at most one infinite component in the stable multi-matching.

This result is proven using the mass-transport principle, to show that an infinite
component in any translation-invariant matching scheme must be unbounded in
2 directions. Furthermore, 2 distinct components can not have crossing edges.
This is also easily seen from figure 9. Since the edge (c, b) must be present we see
that crossing edges must be part of the same component. This shows there can
be at most one infinite component, since 2 distinct infinite components would
necessarily have crossing edges.

In the next result we show that if we have percolation in the stable multi-
matching on R, there must be a strictly positive probability p∗ to be part of the
infinite component. That is

p∗ := P∗( 0 is in the infinite cluster)
= E# {x ∈ [0, 1) ∩ [P] : x is in the infinite cluster} .

> 0.

This follows from the bound on the expected edge length (Lemma 11). By
boundedness of the expected edge length, we may also obtain a bound on the
expected number of Poisson points under the edges of the infinite component.
That is, for any edge {x, y} the number of Poisson points between x, and y must
be smaller then some finite number N . Therefore the probability that a given
vertex belongs to the infinite component is bigger then 1/N . Let C∞ denote
the infinite component. We will prove last observation more rigorously in next
theorem.
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Theorem 15. For any stable multi-matching on R, if there exists an infinite
component, then P∗(0 ∈ C∞) > 0.

Proof. Assume there exists an infinite component C∞. We will show that this
implies the following

|C∞ ∩ (0, N ]|
N

→ p > 0 a.s. for N →∞.

Define Xi := |C∞ ∩ (i − 1, i]|, a random variable that counts the total number
of points of the infinite cluster in the interval (i− 1, i]. Then we have

|C∞ ∩ (0, N ]|
N

=
1
N

N∑
i=1

Xi → E[X1] a.s. ,

according to Birkhoff’s Ergodic Theorem ( see Appendix). Also, we have

E[X1] ≥ E[I{X1>0}] = P(X1 > 0).

In case of percolation, we have an infinite component and the last probability
must be strictly positive since

0 <P ( an infinite component exists )

= P

(⋃
i∈Z

{Xi > 0}

)
≤
∑
i∈Z

P(Xi > 0).

Since all the probabilities P(Xi > 0) are equal (because of translation-invariance)
they must all be greater then 0. In particular P(X1 > 0) > 0. �

7 Stable multi-matching D ≡ 2

Let P a Poisson process of finite intensity with Dx = 2 for all x ∈ [P] and apply
the Gale-Shapely matching. In an effort to understand the component structure
that arises, we try to answer several questions. How do local structures look
like? Can we make predictions about component size? But most importantly,
does there exist an infinite component? Although the answer to the last ques-
tion seems affirmative, which is heavily supported by computer simulations, a
rigorous proof has not yet been found. We will first give some extra insight into
this problem, and give a statistical proof of this fact later. But first, what do
we expect to see?
Recall that the resulting matching is a planar graph. This directly gives a lot
of insight into its behaviour. For instance, since we have no crossing edges, all
finite components must be of the form figure 4 (consisting of at least 3 points).
We already have quite a clear picture now of what we can expect to see in the
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Figure 4: Stable cluster with 4 points. Any finite cluster is of this form, but
may consist of an arbitrary number of points.

stable multi-matching with D ≡ 2. If there is an infinite component, it must
be a double infinite path consisting of degree 2 vertices. Also, by the planarity
of the graph, all finite components are literally trapped under the edges of the
infinite component. Every finite component is either trapped under an edge
of another finite component, or only under an edge of the infinite component.
One can imagine how this looks like. Still it’s unclear how the vertices are
distributed among cluster sizes, and what edge length we may expect. In the
next section we present simulation results in support of the conjecture that an
infinite component indeed does exist, and we try to get a better picture of the
resulting graph.

8 Simulations

Take a sample of N points X1, · · · , XN uniformly on the 1-dimensional torus
S1 equiped with its canonical distance

d(x, y) = min {|x− y|, 1− |x− y|} .

Apply the Gale-Shapely matching and denote by SN the corresponding simu-
lation with N points. Let CN denote the maximal cluster in SN . If in fact an
infinite component does exist, by Theorem 16 there’s a strictly positive proba-
bility p that a given vertex belongs to this component, and we expect to see the
following happen:

|CN |/N → p ∈ (0, 1) as N →∞.

Thus, we expect the largest component CN to grow linearly with the system
size. At the same time we expect the fraction |C(2)

N |/N , where C
(2)
N is the second

largest component, to decrease. To be more precise,

|C(2)
N |/N → 0 as N →∞.
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Note that every finite cluster must be locked in between 2 points of the infinite
cluster (if it exists!). That’s why we expect all clusters smaller then CN to be
locked in between points of CN , and expect to see C

(2)
N increase exponentially

slow. Results of these computer simulations are summarised in the next table.

Number of points |CN |/N |C(2)
N |/N

12.500 0.2679 ± 0.0254 0.0086 ± 0.0049
25.000 0.2930± 0.0185 0.0036± 0.0014
50.000 0.2899± 0.0071 0.0023± 0.0012
100.000 0.2818± 0.0064 0.0021 ± 0.00073959
200.000 0.2930 ± 0.0038 0.00066± 0.0001342

The proportion of points in the largest and second largest component are indi-
cated as ”Sample mean ± standard deviation” for a sample of size 5. Note that
these results are consistant with our expectations, suggesting the existence of
an infinite component with p ≈ 0.3. Indeed, the fraction of points comprised by
the largest component CN seems to be relatively consistant. As expected we see
the standard deviation of |CN |/N decrease as the number of points is increased,
while its value floats around 0.3. At the same time we see the fraction of points
comprised by the second largest component C

(2)
N drop to zero.

Also, it would be interesting to understand how local structures are formed.
For example, how are vertices distributed among different cluster sizes?. Is there
a linear or exponential relation between cluster-size and fraction of points?. For
large N , the behaviour in distribution seems relatively consistant. Thus to get
a good idea, we set out the rounded average percentages against component size
in the next table for N = 200.000 (from a sample of size 5).

cluster-size pecentage of points
CN 30
3 42
4 11
5 3

remaining 14

We see there’s a big explosion of small clusters, and we can already see there’s
a slim probability to be taken up by a larger cluster (CN being an exception).
This is may be somewhat surprising. We shall give an appeal to intuition in
an effort to explain this behaviour. If we examine the stability property a little
closer, it’s not hard to imagine that small clusters are easily formed. Also,
suppose somewhere in the matching process the next situation occurs.

Now, these 6 points can become a cluster if the edge {x, y} is added. But
this means that there’s no available point to match x with, on a distance larger
then |x−y| left from x. The same must hold for y in the right direction. This is
very good possible, but since the points are uniformly distributed we may rather
expect the opposite (and find at least one available point for x or y). In this case
the component will be one point larger, and becoming a closed component will
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Figure 5:

be even harder. The larger |x− y| becomes (as more points added), the harder
this becomes. Still, this is only an appeal to intuition, as many of the points
left from x, or right from y may be already organised configurations. That is,
we may find many small groups with relatively small distances to eachother.
Still, we may expect pre-organised configurations not to be very large. One
can understand that the probability of having a very large pre-organised group
points is quite small. To create a picture, we may filter out all pre-organised
figurations of small groups, and apply the matching procedure to the remaining
points. Distances between points will now be larger, and one might expect new
pre-organised groups to form. Repeating this procedure, at some point pre-
organised configurations must cease to exist. The remaining points will form
the infinite cluster (CN in the simulation). Exactly how this happens remains
a mysterie.

Also, this doesn’t fully explain why so little larger finite components ex-
ist, absorbing the vertices in between (already) organised smaller configura-
tions. The best thing we can say about this, is that small configurations easily
form, and comprise a high percentage of the points. In fact, so many points
that there’s simply not many points left to be absorbed in larger components.
Picture 5 may not extremely convincing, but if it was a very large number
of points, intuitively we may understand that it’s not at all easy (examin-
ing the stability property) to become a closed component. Loosely speaking,
we expect a sequence (x1, x2), (x2, x3), · · · , (xn−1, xn) of edges with vertices
x1 < x2 < · · · < xn−1 < xn having increasingly more difficulty becoming a
closed component for increasing n. In the next section this idea will be formal-
ized in a constructive statistical proof.
Note that (from table 2) the distribution of vertices among finite clusters (clus-
ters smaller then CN ) seems to exhibit exponential behaviour. This is further
supported by the computer simulations. Let P(|C| > n) denote the conditional
probability that a vertex is absorbed in a finite cluster larger then n points.
We set P(|C| > n) = e−c(p)·n where c(p) is a constant to be retrieved (esti-
mated) from the simulation data. A sample of size 5 with N = 100.000 gave an
estimation c(p) = 0.2901± 0.0074 which is around the same value as p.
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9 A statistical proof

In the last section we saw that simulations on large cycles indicate the existence
of an infinite component with p ≈ 0.3. But we like to stress this is only an
indication since convergence of |CN |/N may happen very slow. In this section
we present more compelling statistical evidence of percolation for the 2-stub
stable multi-matching. In order to do so, we will present a theorem by A.
Holroyd wich allows us to give statistical proof of this fact.

The idea is to show that percolation in the 2-stub stable multi-matching
follows from the assumption that a certain finite event has sufficiently large
probability. There is also overwhelming statistical evidence for this assumption
(also from simulations). This approach is very different from the one in the
last section, as we’re not approximating an infinite event with an finite event.
Instead the problem is brought down to proving something about a finite event.

Theorem 16. Let P be a Poisson process of intensity 1 on R. If for some L
we have P([0, L] is good ) > 0.968, then the 2-stub stable multi-matching has
an infinite component.

Simulation results that suggest P([0, 13000] is good ) > 0.968 can be found
in [3].

We give a small outline of the proof. We are interested in the Gale-Shapely
matching on I ∩ [P] for some bounded interval I = [a, b], but only with those
edges that are also present in the stable multi-matching on R. This matching is
called the core (stable) multi-matching on I. The idea of the proof is to show
that if the probability of the core multi-matching having a connected component
from the first quarter of I to the last quarter of I is large enough, then the 2-
stub stable multi-matching on R has a infinite component. All of this will be
made precise below.

Figure 6: Example of a core multi-matching on some bounded interval I =
[a, b]. Note that if a blue point is closer to a boundary point then to its closest
neighbour in I, we can not connect the 2, for there may be closer (available)
points behind the boundary points. The edges depicted are the only ones that
can be added without knowing the configuration outside I.

The core multi-matching in the general setting of arbitrary dimensions and
number of stubs is defined as follows. Let S ⊂ Rd be a bounded set, let P ⊂ S
be a finite set of points, and let (Dx)x∈P be the positive numbers representing
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numbers of stubs. Let P̃ = P ∪ {Sc}. Assume that all distances of P̃ are
distinct. Assign Dx stubs to each point x ∈ P and one stub to Sc. Repeat the
following operations:

From each point x ∈ P that currently has an unused stub, assign an arrow
pointing to the closest other element of P̃ among those that have at least one
unused stub and do not allready have an edge to x. Then, for every x, y ∈ P
whose arrows point to each other, connect them with an edge and remove one
stub from each. Erase all arrows and repeat. After a finite number of such
iterations, no more edges are added. The core multi-matching of (P,D) in S is
defined to be the resulting graph. Note that the degree of x ∈ P is at most Dx

but may be strictly less.

Lemma 17. Let P be any discrete set of points in R, let (Dx)x∈P be positive
integers, and S be a bounded set. Every edge in the core multi-matching of
(P ∩ S, D) in S is present in every stable multi-matching of (P,D) on R.

Lemma 17 is a straightforward verification that all edges in the core stable
multi-matching are indeed present in the stable multi-matching on R. We now
restrict our attention to the case of main interest, that is d = 1, S = I = [a, b],
a bounded interval. Before we can prove Theorem 16, we need some lemma’s
and definitions.

Let P a Poisson process of intensity 1 on R with 2 stubs per vertex, i.e. D ≡ 2.
From this point we refer to the core matching on I as the core multi-matching
of ([P] ∩ I,D) on I.

Definition 18. The interval I = [a, b] is called good if the core matching on I
has a connected component with a point in the first quarter [a, 3

4a + 1
4b] and a

point in the last quarter [ 14a + 3
4b, b].

Definition 19. A monotone path in the multi-matching is a sequence of
vertices x1 < x2 < · · · < xk with the edges (x1, x2), (x2, x3), · · · , (xk−1, xk) all
present.

Recall that we have no crossing edges in the 2-stub stable multi-matching, and
therefore the same must hold in a core multi-matching. If I is good, it follows
that I contains a monotone path from the first quarter to the last quarter. Such
path is called spanning path of the good interval.

The following 2 lemma’s are the building blocks for Theorem 16. The second
lemma is a corollary of the first and is the key point in the proof. It provides
a way of showing the existence of spanning paths in arbitrary large bounded
intervals by assuming the existence of a certain number of smaller paths.
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Lemma 20. Let a < b < c < d be points of P, and suppose that the intervals
[a, b] and [c, d] are both longer then [b, c]. If the 2-stub stable multi-matching
has a monotone path α from a to b, and a monotone path δ from c to d, then
it has a monotone path from a to d which contains α and δ.

The proof of lemma 20 can be found in [3, lemma 4.3]. The idea is to extend α
as far as possible to the right, idem for δ to the left. Then we get endpoints b′

for α and c′ for δ. (See fig. 4). A simple argument then shows that if there’s no
edge (b′, c′), they must form an unstable pair. Therefore the edge (b′, c′) must
be present, and we obtain a monotone path from a to d.

Figure 7: α is the monotone path on the left, δ on the right. Here b′, and c′

form an unstable pair, therefore the edge (b′, c′) must be present.

Lemma 21. If at least 8 of the 9 intervals [0, x], [x, 2x], · · · , [8x, 9x] are good,
then so is [0, 9x]. Furthermore, under the same assumption, given any spanning
paths, one of each of the good short subintervals, there is a spanning path of
the long interval containing all of them.

Let the configuration outside I := [0, 9x] be arbitrary and consider the stable
multi-matching. Write Ik = [(k − 1)x, kx]. Note that any 2 consecutive good
intervals Ik, Ik+1 contain monotone paths longer then x/2 with a gap of less
then x/2 in between. Thus, applying lemma 4 we obtain a spanning path for
Ik ∪ Ik+1. So, for any sequence of consecutive good intervals Ia, Ia+1, · · · , Ib,
we obtain a monotone path, containing all spanning paths from Ia, Ia+1 · · · , Ib

and reaching to within distance x/4 of each end of
⋃b

k=a Ik. This means that
the union of any number of consecutive good intervals is another good interval.
Now, suppose 1 out of the 9 intervals I1, I2, · · · , I9 is bad. If I3, I4, I5, I6, I7 are
all good, then the resulting path reaches to within distance 2x + x/4 = 9x/4
of each end of I, as required. On the other hand, if one of I3, I4, I5, I6, I7 is
bad (but the other 8 subintervals are good) then we have 2 monotone paths of
length at least 3x/2 on either side of the bad subinterval, with a gap of less then
3x/2 in between. Again we may apply lemma 4 to obtain the desired spanning
path.
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Proof of Theorem 16. Let

Ik :=
[
−9kL

2
,
9kL

2

]
,

and let pk the probability that Ik is good. By Lemma 21 we have pk+1 ≥ f(pk),
where

f(p) = p9 + 9p8(1− p).

First, we show
∑

k(1 − pk) < ∞. The derivative f ′(p) = 72p7(1 − p) is
decreasing on the interval [0.99, 1]. By the mean value theorem it follows that

f ′(c) =
f(1)− f(pk)

1− pk
≥ 1− pk+1

1− pk
,

for some c with pk < c < 1. Hence for pk > 0.99 we have

1− pk+1 < f ′(0.99)(1− pk) < 0.7(1− pk).

Let p0 ∈ [0.968, 1]. Since f is increasing on [0.968, 1] and p = 1 is the only
fixpoint of f in this interval, we have fN (p0) > 0.99 for some finite number N .
Hence, for some constant r the following bound holds∑

k

(1− pk) < r ·
∑

k

0.7k < ∞.

By the Borel-Cantelli lemma it follows that a.s. Ik is good for all sufficiently
large k. That is, for some K and k > K we have pk = 1. Moreover, it follows
that ∑

k

(1− f(pk)) <
∑

k

(1− pk+1) < ∞.

Hence, by the same lemma, for all sufficiently large k we have f(pk) = 1. This
means that the interval Ik can be divided into 9 equal intervals of which at least
8 are good. By Lemma 21 it follows that for some (random) K we may find
monotone paths πK , πK+1, πK+2, · · · , each contained in the next, where πk is
a spanning path of Ik for each k. Then

C∞ :=
⋃

k≥K

πk

is an infinite connected component in the stable multi-matching.
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A Ergodic Theory

A set B is said to be T -invariant if T−1(B) = B.
A filtration of a measure space (Ω,F) is a sequence of σ-algebra’s {Ft}t≥0 with
Ft ⊂ F and such that t1 < t2 implies Ft1 ⊂ Ft2 .

Levy’s zero-one law.

Let (Ω,F , P) a probability space and let X a random variable in L1. Let
(Fk)k∈N be any filtration of F , and define F∞ as the minimal σ-algebra gener-
ated by (Fk)k∈N. Then

E[X | Fk] → E[X | F∞] as k →∞.

Birkhoff’s Ergodic Theorem.

Let (Ω,F , P) a probability space and let T : Ω → Ω be a measure-preserving
transformation. Let I denote the σ-algebra of T -invariant sets. Then for every
f ∈ L1(Ω,F , P), we have

1
n

n−1∑
j=0

f(T jx) → E(f | I).

for P-a.e. x ∈ X.

B simulation code

The following matlab code was used for the simulations in section 8. The sim-
ulations were done in Matlab R2010b.

clear all
clc

tic;

N = 1*(1e4);
P = 100;

A = sort(rand(1,N));
B = zeros(1,2*P);
C = zeros(N,2*P);
voorkeur = zeros(N,P);
E = zeros(1,2*P);
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for i = 1:P
I = [1:i-1 i+1:i+P N-P+i:N];
B = min(abs(A(I)-A(i)),1-abs(A(I)-A(i)));
[C(i,:),E] = sort(B);
voorkeur(i,:) = I(E(1:P));
favoriet(i)=voorkeur(i,1);

end
for i = P+1:N-P

I = [i-P:i-1 i+1:i+P];
B = abs(A(I)-A(i));
[C(i,:),E] = sort(B);
voorkeur(i,:) = I(E(1:P));
favoriet(i)=voorkeur(i,1);

end
for i = N-P+1:N

I = [i-P:i-1 i+1:N 1:P-N+i];
B = min(abs(A(I)-A(i)),1-abs(A(I)-A(i)));
[C(i,:),E] = sort(B);
voorkeur(i,:) = I(E(1:P));
favoriet(i)=voorkeur(i,1);

end

C(:,P+1:end) = [];
toc;

tic;
M=zeros(N,2);
graad=zeros(1,N);
locatie=ones(N,1);
b=-1;

try
while sum(graad)<2*N; %Gale-Shapely algorithm

if sum(graad)> b
b=sum(graad);
else error(’meer voorkeuren nodig’)
end;

for i=1:N
if graad(i)<2&& locatie(i)<P;

while graad(favoriet(i))==2&&locatie(i)<P;

locatie(i)=locatie(i)+1;
favoriet(i)=voorkeur(i,locatie(i));
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end
end

if graad(i)<2&& i==favoriet(favoriet(i))&&graad(favoriet(i))<2
&&locatie(i)<=P&&locatie(favoriet(i))<P;

if M(i,1)==0;
M(i,1)=favoriet(i);

else M(i,2)=favoriet(i);
end

if M(favoriet(i),1)==0;
M(favoriet(i),1)=i;

else M(favoriet(i),2)=i;
end

graad(i)=graad(i)+1;
graad(favoriet(i))=graad(favoriet(i))+1;

locatie(i)=locatie(i)+1;
locatie(favoriet(i))=locatie(favoriet(i))+1;

if locatie(i)<=P
favoriet(favoriet(i))=voorkeur(favoriet(i), locatie(favoriet(i)));
favoriet(i)=voorkeur(i,locatie(i));
end

end
end

end
catch error

disp(error.message)
end
toc

tic;

z=find(graad<2);
m=numel(z);
locatiez=ones(m,1);

for i=1:m;
k=min(abs(A(z)-A(z(i))),1-abs(A(z)-A(z(i)))); % new sortation for vertices with d<2.
[Y,I]=sort(k);

%
for j=1:m-1
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voorkeurz(i,j)=I(j+1);
favorietz(i)=I(2);
end

end

try
while sum(graad)<2*N; %Gale-Shapely algorithm for leftover vertices.

for i=1:m
if graad(z(i))<2;

while graad(z(favorietz(i)))==2;

locatiez(i)=locatiez(i)+1;
favorietz(i)=voorkeurz(i,locatiez(i));

end
end

if graad(z(i))<2&& i==favorietz(favorietz(i));
if M(z(i),1)==0;

M(z(i),1)=z(favorietz(i));
else M(z(i),2)=z(favorietz(i));
end

if M(z(favorietz(i)),1)==0;
M(z(favorietz(i)),1)=z(i);

else M(z(favorietz(i)),2)=z(i);
end

graad(z(i))=graad(z(i))+1;
graad(z(favorietz(i)))=graad(z(favorietz(i)))+1;

locatiez(i)=locatiez(i)+1;
locatiez(favorietz(i))=locatiez(favorietz(i))+1;

favorietz(favorietz(i))=voorkeurz(favorietz(i), locatiez(favorietz(i)));
favorietz(i)=voorkeurz(i,locatiez(i));

end
end

end
catch error

disp(error.message)
end
toc;
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tic
T=ones(N,1);
h=1;
k=1;

while sum(T)>0 % finding cluster lengths

lengte=1;
STOP=0;

while STOP==0

if T(M(k,1))==1
T(k)=0;
k=M(k,1);
lengte=lengte+1;

elseif T(M(k,1))==0&& T(M(k,2))==1;
T(k)=0;
k=M(k,2);
lengte=lengte+1;

else T(k)=0; STOP=1; cluster(h)=lengte;
h=h+1;

end

end

k=1;
while T(k)==0 && k<N

k=k+1;
end
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