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Abstract

We have analyzed a model proposed by Steil et al. [1] for glucose metabolism. The
model consists of 5 differential equations describing the change of a patient’s blood glu-
cose concentration to his/her basal and bolus insulin pump data. This relatively simple
model of 8 parameters was analyzed using measured plasma insulin and blood glucose
concentrations from a study by the Amsterdam Medical Centre of 10 patients of the span
of approximately 43 hours. In this study almost continuous blood insulin measurements
were taken, in addition to insulin pump data and blood glucose measurements. This is
quite difficult to measure, so this gave us a unique opportunity to individually analyze
sections of the model.

We have obtained relatively good fits for the insulin plasma submodel on most pa-
tients. Our optimisation remained inconclusive on the remaining blood glucose submodel,
and alternative formulations to solve this also gave insufficient results. In conclusion, the
linear submodel for insulin plasma concentrationsl described the data, while the remain-
ing submodel for glucose and alternative formulations of it are still in need of further
study.

i D.S. Brown, Leiden University
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2 DIABETES

1. Introduction

The idea of developing an ’artificial endocrine pancreas’, which would be used to aid type 1
diabetes patients, has been an area of increasing interest since the 1970’s. This idea of closed-
loop blood glucose control was pioneered by a number of researchers, such as Albisser et
al. [2] and Pfeiffer et al. [3], leading to the production of the first glucose controlled insulin
infusion system. This approach has been successful, but is in general too invasive due to the
equipment and measurement apparatus neccesary to make it function.

As a promising alternative to these approaches, the idea of model predictive glucose con-
trol has become an increasingly popular methodology amoung researchers and practitioners in
the field over the past years. Instead of being only reactive, model predictive control uses a
mathematical model of the underlying biological dynamics to try and anticipate changes in a
patients glucose levels and try to rectify this accordingly.

In this paper we aim to test the validity of a model concerning insulin dynamics in type 1
diabetes patients, which was previously proposed and studied by Steil et al. He examined a
model describing a patient’s insulin pharmacokinetics and blood glucose appearance follow-
ing meals. This model is of interest as it contains only five equations and eight identifiable
parameters. Furthermore, this model stays relatively simple by allowing for intraday varia-
tion in certian model parameters. Previously studied models typically contain a much larger
number of equations and parameters, eg. Hovorka et al. [4], Cobelli et al. [5]. If we can find
a more simple model which could describe the same behaviour in a satisfactory manner, this
would naturally be preferred.

The data we will be using was obtained from a clinical observational study of 10 patients[6].
Usually only the insulin pump data is measured and not the blood insulin concentration, thus
this gives us a unique opportunity to test different sections of the model. Such measurements
can give better insight into what parts of the pharmacokinetics and -dynamics of this model
are well described, and which parts are in need of further research.

In the following sections we will give a brief introduction to type 1 diabetes for those not
farmiliar with it, introduce the mathematical model in question, show how the parameters were
identified, and finally discuss our results.

2. Diabetes

Diabetes, formally referred to as diabetes mellitus, is the general term for a disease which
manifests itself in different ways, all of which cause high glucose concentration in the blood.
Each manifestation has slightly different mechanics, but all interfere with the bodies natural
closed-loop system for regulating free blood sugar. Due to this glucose builds up in the blood,
and is then disposed of by the body through the urine. The greeks were somewhat aware of
this, as the name diabetes mellitus comes from the greek words diabainein and mel which
respectively mean to pass through and sweet. As this study restricts itself to type 1 diabetes, I
shall only explain the dynamics of this form of diabetes.

2.1. Insulin Feedback Loop

The disrupted closed-loop system I mentioned above starts in the stomach, where ingested
foods are digested and sugars are released into the blood for further use by cells throughout
the body. From this point two substances take over the job, insulin and glucagon. Insulin is

1 D.S. Brown, Leiden University



2.2 Treatment 2 DIABETES

responsible for the storage of glucose, and it also allows cells to use it for energy which they
need to function.

Figure 1: Insulin-glucagon feedback loop. [13]

Insulin is released when blood glucose
levels are high (known as hyperglycaemia)
to reduce this surplus. Glucagon on the
other hand, is responsible for the release
of stored glucose and is released when
glucose levels are low (hypoglycaemia) to
compensate for the shortage. These two to-
gether form part of a feedback loop which
keeps blood glucose at healthy levels.

In a type 1 diabetic patient this cy-
cle is broken due to an auto-immune re-
action in the body which kills off beta-
cells in the pancreas, which are responsi-
ble for producing insulin during hypogly-
caemia. Blood glucose builds up in the
blood, and cells are unable to get the re-
quired energy for their metabolic reactions.
This has short term effects such as fatigue,
increased urination, increased hunger and
thirst, but also serious long term effects
such as multiple organ failure, damage to the nervous system and brain, and death if not
treated. At the moment there is no known cure, so the only option now is to try and simulate
the insulin production of the pancreas.

2.2. Treatment

What we are trying to simulate, namely how insulin is released from the pancreas of a healthy
person, is a complex mechanism. When blood glucose rises, for example after a meal, the beta-
cells rapidly release insulin in response, followed by a slower extended release. Blood sugar
levels naturally oscillate due to the nature of the feedback loop, and meals can cause these
oscillations to be quite large. In addition, this behaviour is determined by highly personal
factors and differs from person to person, and even in the same person biological factors can
vary from day-to-day. Although challenging, ideally we would like to imitate this natural
behaviour in diabetic patients.

Currently two methods of insulin administration are used. Patients can make use of manual
injections, or they can have an insulin pump implanted in the body which can continuously
inject insulin. Although injections are often used, they provide much less thorough control of
blood glucose levels as users typically inject only 3-4 times a day. This means large oscillations
in blood sugar levels and a larger deviation from the bodies’ natural concentrations. Frequent
sampling of glucose levels would allow for much better control using a pump and a sensor, but
this requires an algorithm to administer insulin based on the measurements.

2.3. Closed Loop Control Algorithm

In general these algorithms designed for closed loop control fall into one of two categories,
proportional-integral-derivative control and model predictive control. Proportional-integral-
derivative control algorithms are reactive in nature, responding to changes in glucose levels

D.S. Brown, Leiden University 2



3 MODEL

Figure 2: Glucose and insulin levels in a non-diabetic person. [14]

with adjustment in insulin delivery. This causes time delays due to measurements being dis-
crete instead of continuous like a real pancreas, and is obviously not ideal.

Model predictive control algorithms are based on mathematical models of the human pan-
creas, and because of this can anticipate changes in glucose level. These algorithms are proac-
tive, and are clearly preferable because of how this better mimics the human body. Having an
accurate mathematical model of the behaviour of this feedback loop is an important piece of
the puzzle in making an effective artificial pancreas.

3. Model

The model in question we will be studying is a modified version of the model suggested by
Bergman et al. [7], with other parts being taken from a number of other models proposed by
Sherwin et al. [8] and from work done R. Hovorka[4] and associates. It is a compartmental
model, with the following physiological quantities we are interested in:

• ID(t) [U/min] = insulin pump rate which is used as an input function for the model (U
represents units of insulin);

• Isc(t) [µU/ml] = subcutaneous insulin concentration, signifying the area of insulin in-
jection;

• Ip(t) [µU/ml] = concentration of insulin the patient’s blood plasma;

• Ie f f (t) [dimensionless] = how strong the effect of the plasma insulin concentration is on
the blood glucose level;

• G(t) [mg/dl] = blood glucose concentration in the patient;

• RA(t) [mg/(dl · min)] = increase in blood glucose due to meals consumed.

3 D.S. Brown, Leiden University



3 MODEL

The model in question makes use of a form of model commonly used in mathematical
biology, namely compartmental analysis. Each of the circles below represents an idealized
compartment in which one could imagine the relevant substances being stored. The arrows
between these compartments are then the equations which give the relationships between them
as a function of time. The amounts denoted next to each arrow represents the rate of change at
which these relations occur.

Isc(t)

ID(t)

Ip(t) Ie f f (t) G(t)

RA(t)

1
τ1·CI

1
τ1

1
τ2

− 1
τ1

− 1
τ2 −p2

Figure 3: A schematic representation of Steil’s model.

With this in mind the model is represented by the equations below:

d
dt

Isc(t) = −
1
τ1

Isc(t) +
1
τ1

ID(t)
C1

d
dt

Ip(t) = −
1
τ2

Ip(t) +
1
τ2

Isc(t)

d
dt

Ie f f (t) = −p2 · Ie f f (t) + p2 · S I · Ip(t)

d
dt

G(t) = −
(
GEZI + Ie f f (t)

)
·G(t) + EGP + RA(t)

RA(t) =
∑

i

Ci

VG · τ
2
m,i

· t · e
− t
τm,i

Note that in the equation for RA(t) we take the sum over the i meals consumed during the
time patients are monitored.

The parameters involved are the following:

• τ1,2 [min] = the time constants related to insulin movement between the subcutaneous
delivery site and the blood plasma;

• CI [ml/min] = insulin clearance from the injection to the subcutaneous injection site;

• p2 [min−1] = delay in insulin action following an increase in plasma insulin;

• S I [ml/µU] = insulin sensitivity;

• GEZI [min−1] = the influence the glucose level itself has on the glucose uptake into
cells and on the endogenous glucose production at zero insulin;

D.S. Brown, Leiden University 4



4 PROBLEM DESCRIPTION

• EGP [mg/(dl · min)] = endogenous glucose production estimated at zero insulin.

The parameters involving glucose absorption from meals have the following interpretation:

• Ci [g] = the amount of carbohydrates consumed during meal i;

• VG [dl] = relates to the distribution volume in which glucose equilibrates;

• τm,i [min] = peak time of absorption for meal i.

This is model clearly a simplification of how these processes actually function in the body,
but what we want to find out is if the above model is sufficiently accurate for our needs.

We will also consider an alternative formulation for the initial plasma insulin model,
namely the one proposed in Steil’s paper. He introduces a so called 3-compartment model
which can be formulated as follows:

d
dt

Isc(t) = −
1
τ1

Isc(t) +
1
τ1

ID(t)
C1

d
dt

I2(t) = −
1
τ2

I2(t) +
1
τ2

Isc(t)

d
dt

Ip(t) = −
1
τ3

Ip(t) +
1
τ3

I2(t)

which introduces an extra variable I2 combined with parameter τ3 which both relate to insulin
movement as with the other two already existing variables. This extra equation governs I2 in
the exact same fashion as the first equation governs Isc, so can be seen as an extra identical
compartment being added to the model. We will investigate whether this offers any improve-
ment to the 2-compartment formulation, but will use the first model if possible as this would
give a simpler description method.

4. Problem Description

What we want to achieve in this thesis is to test the validity of the mathematical model against
patient medical data obtained by the AMC (Academisch Medisch Centrum) in Amsterdam
[6]. In order to do this we must first estimate the unknown model parameters for each patient,
as these parameters are patient-specific. We will do this by minimizing the sum square error
(SSE) between the model predicted values and measured concentrations:

arg min
p j

{SSE} = arg min
p j

∑
i

(
yi − y(ti, p j)

)2
 ,

with p j representing our unknown parameters, (ti, yi) our data points, and y(t, p j) being the
insulin plasma predicted by the model. The above expression gives us a fairly good idea of
how close the values predicted are to the ones in our data, so at the same time this also tells us
how close our estimated parameters are to the ideal ones we seek (where the SSE is zero).

At this point we need to make a distinction between model parameters and optimisation
parameters. As we’ve seen the system of differential equations has 8 unknown parameters we
want to estimate. We call these the model parameters. In order to estimate these, we also
need the initial values of each quantity which are only used during the optimisation procedure.
Since we need an initial value for each quantity we have 8 + 4 = 12 optimisation parameters.

5 D.S. Brown, Leiden University



4.1 Patient Data 4 PROBLEM DESCRIPTION

4.1. Patient Data

Patients were hospitalized on day 1 at 6.00 PM. A subcutaneous glucose sensor was placed
in the abdomen and a venous catheter was inserted in the forearm. The administered insulin
was insulin aspart. At 8.00 PM the measurements started. On day 2, three meals with known
carbohydrate content were served at 8.00 AM, 12.00 AM and at 6.00 PM. On day 3 breakfast
was served at 7.30 AM, three hours later followed by an exercise of 30 minutes. After the
exercise lunch was served at 12.00 AM. Three hours after lunch the patients were discharged
home. Venous glucose and insulin concentration were measured during the observation: at
rest every hour, every 10 minutes after a meal the first hour and the last two hours every 20
minutes. During exercise, the measurements were performed every 5 minutes. The exercise of
30 minutes was made by home trainer with an average intensity of 75 ± 5% of the theoretical
heart rate reserve frequency. Heart rate reserve frequency is calculated by the formula (220 -
age - heart rate at rest) multiplied by 75%. Furthermore the amount of administered insulin
was noted. The basal rate of the insulin pump and the mealtime boluses were recorded.

The relevant measurements for our model are the measured insulin pump rate (ID(t)), the
plasma insulin concentration (Ip(t)), the blood glucose concentration (G(t)), and the amount of
carbohydrates consumed during each meal time (Ci). The inuslin pump rate ID(t) consists of
the basal rate of the insulin pump and the mealtime boluses combined. For the blood glucose
concentration, measurements were made using two different methods. One method was a
monitor on the patient in question, which could then measure this quantity in a continuous
fashion. The other method was taking discrete blood samples and then analyzing them in the
lab. Since the lab measurements generally agreed with the glucose monitor data, we used
monitor data as this gave us much more information about the quality of the model fit.

As the measurements were taken in SI units and the model is formulated in terms of Con-
ventional (US) units, the data recieved was converted from SI to Conventional quantities ac-
cording to values given by the Society for Biomedical Diabetes Research [10].

4.2. Splitting into subsystems

One useful fact about the model is that the dependence of our differential equations is unidi-
rectional. To put this into more precise terms, the equation for variable i is independent of i+1
and greater. This means we can evaluate the model sequentially in the form of subsystems,
and we will do this in the following manner. The first subsystem is:

d
dt

Isc(t) = −
1
τ1

Isc(t) +
1
τ1

ID(t)
C1

d
dt

Ip(t) = −
1
τ2

Ip(t) +
1
τ2

Isc(t).

Since we have recorded insulin pump values of each patient, we can identify all the unknown
parameters in this subsystem per patient by minimizing the SSE between what the above model
predicts and the measured blood insulin concentrations. The second subsystem consists of the
remaining equations, namely:

D.S. Brown, Leiden University 6



5 FINDING SOLUTIONS ANALYTICALLY

d
dt

Ie f f (t) = −p2 · Ie f f (t) + p2 · S I · Ip(t)

d
dt

G(t) = −
(
GEZI + Ie f f (t)

)
·G(t) + EGP + RA(t)

RA(t) =
∑

i

Ci

VG · τ
2
m,i

· t · e
− t
τm,i

and for this we can use the recorded Ci and Ip values as input, and fit this to the lab measured
blood glucose concentrations.

There are many advantages to this subsystem approach. Since we split one optimisation
attempt into two seperate ones, we also cut the parameters space for each of these attempts in
half. Since the problem of finding a global minimum becomes significantly harder in larger
dimensional parameter spaces, this greatly increases our chances of finding good fits.

A second advantage is in the case we run into difficulties finding the optimum parameters.
Let us imagine we cannot find good parameters for one fit of the whole model. If we assume
the model is incorrect, we would like to know which part of the model is causing problems.
By splitting it up into subsystems and using measured data as input for subsystem two (instead
of simulated data from subsystem 1) we essentially make their fitting processes independent,
and we can then study them independently.

This does have a negative side as well, since an implementation of this model would be as
a whole system and not as two subsystems. This means that we ideally want to study the fit
of the entire system, therefore any discrepancies between simulated and measured Ip would
result in differences in a fit of the whole system and the fit of the second subsystem. Therefore
we have also kept that in mind during this study.

5. Finding solutions analytically

Although not always possible, solving such problems analytically has numerous advantages to
numerical options. Having exact solutions is obviously more accurate, but the path to finding
these solutions often gives us insight into the nature of the problem and grants us a better
understanding of the underlying mechanics involved.

5.1. Existence of optimum parameters

Recall that our current formulation of the problem of finding the "true" parameters is to mini-
mize the following function cost function C : [0, c1] × [0, c2] × · · · × [0, c5]→ R,

C(c) =

∫
T⊂R

(
yi − y(t, c)

)2 dt

which is integrated over the relevant time interval T . Since we are integrating over a set of
discrete data points in time, namely (ti, yi), this integral can be written as the following sum:

C(c) =
∑

i

(
yi − y(ti, c)

)2 (1)

7 D.S. Brown, Leiden University



5.1 Existence of optimum parameters 5 FINDING SOLUTIONS ANALYTICALLY

with respect to the parameter vector c ∈ R5 with y(t, c) being the second component of the
solution of a differential equation of the form:

y′(t) = f (t, y(t), c) with y ∈ R2 (2)

where we limit the parameter vector to some [0, c1] × [0, c2] × · · · × [0, c5] ⊂ R5. With this
in mind consider the following theorem, which we will use to show that there exists a unique
solution to our problem. Note that we use the notation Bε(x0) := {x ∈ X : d(x, x0) < ε}.

Theorem. (Picard-Lindelöf Existence Theorem). Let f : Bα(t0) × Bβ(y0)→ Rn, and consider
the following initial value problem:

y′(t) = f (t, y(t)) y(t0) = y0 y ∈ Rn.

If f is uniformly Lipschitz continuous in y and continous in t, then there exists a so-
lution to the above initial value problem on [t0, t0 + b], with b = min{α, β/M} and M =

maxy∈Bβ(y0),t∈Bα(t0) | f (t, y)|, and that solution is unique.

We should first note that the form stated in Picard-Lindelöf is exactly the form of our
model. Also considering that (2) is linear in y in our case, this also implies that it is Lipschitz
continuous in y and in particular for any β such that y ∈ Bβ(y0). It is also continuous in t, under
the reasonable assumption that ID(t) is continuous. Thus there exists a unique solution to (2)
on [t0, t0 + b] with b = min{α, β/(maxy∈Bβ(y0),t∈Bα(t0) | f (t, y)|)}.
Now we will show that this solution is continuously dependent on its parameters.

Theorem. (Continuous Dependence on Parameters [11]). Suppose f : Bb(yo) × Br(µo) → Rn

is uniformly Lipschitz dependent on y ∈ Bb(y0) and is a uniformly continuous function of
parameters µ ∈ Br(µ0). Then the ODE y′ = f (y, t, µ) has a unique solution that is a uniformly
continuous function of µ on some interval T .

Since we have already shown that (2) is Lipschitz with respect to y, we only have to show
that it is also uniformly continuous function of µ. Since (2) is not linear with respect to its
parameters, we must be careful how we choose our r. All of the parameters are of the form
1/τ1, so we must choose r and µ0 such that Br(µo) ∩ {0} = ∅. Then f is indeed uniformly
continuous with respect to its parameters on Br(µ0). From this we have that the solution to (2)
is uniformly continuous with respect to its parameters.

Now we have a solution to (2) which is continuous with respect to its parameters. Due to
the form of the cost function (1), which is polynomial in nature, we now have that this too is
continuous with respect to the same parameters.

Then according to the extreme value theorem, any continuous function f : K → R attains
a minimum on K, if K is compact. We are now dealing with the continuous function C :
[0, c1]× [0, c2]× · · · × [0, c5]→ R, and since [0, c1]× [0, c2]× · · · × [0, c5] is a bounded subset
of R5 and therefore compact, we know that C will attain a minimum value on this subspace.

D.S. Brown, Leiden University 8



5 FINDING SOLUTIONS ANALYTICALLY 5.2 Integrating factor

5.2. Integrating factor

Since we are dealing with an array of differential equations, we have a number of solution
techniques available to us to tackle these problems. As we mentioned previously, the system
can be split into two sets of two equations. The first set of equations is then linear, while the
the second set is non-linear. For the first set I used the method of the integrating factor, which
can then be used multiple times as the differential equation for Isc contains no Ip terms.

For ease of notation, we take 1/τ1 = c1 and 1/(τ1 · CI) = c2), giving the following first-
degree differential equation:

I′sc + c1Isc = c2ID(t).

This form of differential equation has a known solution, which is as follows:

Isc = e−
t
τ1

∫ t

0
e

τ
τ1 ·

ID(τ)
τ1CI

dτ + e−
t
τ1 Isc(0).

Since the equation for Ip is of the same form, we can iterate this process to get the following
expression for Ip:

Ip(t) = e−
t
τ2

∫ t

0
e

τ
τ2

1
τ2

e− t
τ1

∫ ζ

0
e

ζ
τ1 ·

ID(ζ)
τ1CI

dζ + e−
τ
τ1 Isc(0)

 dτ + e−
t
τ2 Ip(0)

which can then be expanded to

Ip(t) =
1

τ1τ2CI
e−

t
τ2

∫ t

0

∫ τ

0
e
(
τ
τ2
− τ
τ1

+
ζ
τ1

)
· ID(ζ) dζdτ +

1
τ2

e−
t
τ2

∫ t

0
e
(
τ
τ2
− τ
τ1

)
Isc(0) dτ + e−

t
τ2 Ip(0)

Then we interchange the order of integration of τ and ζ and evaluate the single integral on the
right to obtain

Ip(t) =
1

τ1τ2CI
e−

t
τ2

∫ t

0

∫ t

ζ
e
(
τ
τ2
− τ
τ1

+
ζ
τ1

)
· ID(ζ) dτdζ +

τ1 − τ2

τ1τ
2
2

(
e−

t
τ1 + e−

t
τ2

)
Isc(0) + e−

t
τ2 Ip(0)

and then the integral over τ can be evaluated to give

Ip(t) =
τ1 − τ2

τ2
1τ

2
2CI
·e−

t
τ2

∫ t

0

(
e
(

t
τ2
− t
τ1

+
ζ
τ1

)
− e

ζ
τ2

)
·ID(ζ) dζ+

τ1 − τ2

τ1τ
2
2

(
e−

t
τ1 + e−

t
τ2

)
Isc(0)+e−

t
τ2 Ip(0).

This expression can then be used to find extra information about the optimal solution of our

original problem. Using the shorthand notation A(τ1, τ2, t) := τ1−τ2
τ2

1τ
2
2CI

e−
t
τ2

∫ t
0

(
e

t
τ2
− t
τ1

+
ζ
τ1 − e

ζ
τ2

)
·

ID(ζ) dζ, B(τ1, τ2, t) := τ1−τ2
τ1τ

2
2

(
e−

t
τ1 + e−

t
τ2

)
and C′ := 1/CI we can write the sum square error

as

L =

N∑
i=1

(
yi − Ip(ti)

)2

=

N∑
i=1

(
yi −C′A(τ1, τ2, ti) − Isc(0)B(τ1, τ2, ti) + Ip(0)e−

ti
τ2

)2

9 D.S. Brown, Leiden University



5.2 Integrating factor 5 FINDING SOLUTIONS ANALYTICALLY

Now since we want to minimise L with respect to its parameters, we know that such a set of
parameters must satisfy (∂L)/(∂µ) = 0 for all parameters µ. Consider the following:

∂L
∂C′

= −2
N∑

i=1

(
yi −C′A(τ1, τ2, ti) − Isc(0)B(τ1, τ2, ti) + Ip(0)e−

ti
τ2

)
· A(τ1, τ2, ti)

∂L
∂Isc(0)

= −2
N∑

i=1

(
yi −C′A(τ1, τ2, ti) − Isc(0)B(τ1, τ2, ti) + Ip(0)e−

ti
τ2

)
· B(τ1, τ2, ti)

∂L
∂Ip(0)

= −2
N∑

i=1

(
yi −C′A(τ1, τ2, ti) − Isc(0)B(τ1, τ2, ti) + Ip(0)e−

ti
τ2

)
· e−

ti
τ2

By setting each of these derivatives to zero we get the an array of equations.

C′
N∑

i=1

A(τ1, τ2, ti)2 + Isc(0)
N∑

i=1

A(τ1, τ2, ti)B(τ1, τ2, ti) + Ip(0)
N∑

i=1

e−
ti
τ2 A(τ1, τ2, ti) =

N∑
i=1

yiA(τ1, τ2, ti)

C′
N∑

i=1

A(τ1, τ2, ti)B(τ1, τ2, ti) + Isc(0)
N∑

i=1

B(τ1, τ2, ti)2 + Ip(0)
N∑

i=1

e−
ti
τ2 B(τ1, τ2, ti) =

N∑
i=1

yiB(τ1, τ2, ti)

C′
N∑

i=1

e−
ti
τ2 A(τ1, τ2, ti) + Isc(0)

N∑
i=1

e−
ti
τ2 B(τ1, τ2, ti) + Ip(0)

N∑
i=1

(
e−

ti
τ2

)2
=

N∑
i=1

yie
−

ti
τ2

In order to solve this we can convert this to matrix notation. To save space we use Ai :=
A(τ1, τ2, ti) and Bi := B(τ1, τ2, ti) giving us

∑N
i=1 A2

i
∑N

i=1 AiBi
∑N

i=1 e−
ti
τ2 Ai∑N

i=1 AiBi
∑N

i=1 B2
i

∑N
i=1 e−

ti
τ2 Bi∑N

i=1 e−
ti
τ2 Ai

∑N
i=1 e−

ti
τ2 Bi

∑N
i=1

(
e−

ti
τ2

)2




C′

Isc(0)
Ip(0)

 =


∑N

i=1 yiAi∑N
i=1 yiBi∑N

i=1 yie
−

ti
τ2


which is then solvable if the matrix on the left is invertible, which is the case when its deter-
minant det , 0. If it is not equal to zero, then we can express C′, Isc(0) and Ip(0) in terms of
τ1 and τ2 in the following manner:


C′

Isc(0)
Ip(0)

 =
1

det


∑N

i=1 A2
i

∑N
i=1 AiBi

∑N
i=1 e−

ti
τ2 Ai∑N

i=1 AiBi
∑N

i=1 B2
i

∑N
i=1 e−

ti
τ2 Bi∑N

i=1 e−
ti
τ2 Ai

∑N
i=1 e−

ti
τ2 Bi

∑N
i=1

(
e−

ti
τ2

)2


> 

∑N
i=1 yiAi∑N
i=1 yiBi∑N

i=1 yie
−

ti
τ2


which now reduces the amount of parameters we have to optimise for from 5 to 2, which
should greatly simplify the process.

Unfortunately this process cannot be emulated for the second set of equations, as there
are non-linear terms in the equation for G(t). For such non-linear differential equations there
often no solutions in analytical form, and for those that do have them they are often extremely
complicated. Therefore we will have to solely rely on numerical solution procedures for the
problem at hand.
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6 FINDING SOLUTIONS NUMERICALLY

6. Finding solutions numerically

In this section we try to estimate the optimum parameters by minimizing the SSE, but here we
do it using numerical methods and algorithms. This approach is often advantageous for such
biological problems as their differential equations are often non-linear, complicated, and they
contain many parameters. We sacrifice some accuracy in our parameter estimates in order to
make the problem of fitting easier.

For these numerical simulations MATLAB R© [12] was used, and any command mentioned
in the form command will refer to the corresponding function or command in MATLAB.

6.1. Step-by-step approach

With the techniques used in this paper, namely Levenberg-Marquardt and Nelder Mead opti-
misation techniques, the value at which the optimisation is started has a large impact on what
minimum is found, and how optimal this point is. The second model in particular has a sub-
stantially larger parameter space, which exacerbates this problem considerably. To minimize
this, we tried to hand-tune each parameter to get as close to a reasonable starting point as pos-
sible, and varied around this point. Such hand-tuning is also very limited in larger parameter
spaces, but by doing this we try to reduce the chance of falling into local minima.

Unfortunately this varying of parameters has inherent limitations in larger parameters
spaces. If we would want to evaluate just 3 points per dimension, this would lead to hav-
ing to optimise for 312 = 531, 441 different starting points, which is clearly not feasible. We
try to to still have some variance in inital points, so we evaluated λ · p0, with λ taking different
values in the interval [0, 2]. Since the plasma insulin model has a five-dimensional parameter
space, we can with some confidence say we avoid local minima, but since the blood glucose
model contains 12 or more parameters, there is a much larger chance of getting stuck in local
minima.

Figure 4: An example of the smoothing algorithm used. Blue: unchanged data from insulin sensor.
Red: Insulin data after smoothing.

We started by smoothing the measured blood insulin and blood glucose data using smooth-
ing splines. This was done using the csaps function with a smoothing parameter p = 0.0005.
This was needed as there was noticeable noise in the measurements, which can have any num-
ber of reasons such as measurement errors. This can can significantly lower the fit of otherwise
ideal parameters, and is therefore unwanted. Smoothing in this fashion assumes the error caus-
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6.1 Step-by-step approach 6 FINDING SOLUTIONS NUMERICALLY

ing the noise is one which is centered around the actual (error-free) value, and is not biased.
Considering such an error would be caused by measuring equipment, such as measurement
inaccuracies and not be systematically done, it is valid to assume this error is unbiased. The
results of this smoothing can be seen in figure 4.

First subsystem of equations

Since the insulin pump data was given as two sets of data, the basal insulin rate and the size of
administered insulin boli, these were combined into one data set for insulin delivery. Since the
boluses were given as discrete amounts, these were added to the basal rate as bi · Γ(5, 7) with
bi the value of the insulin bolus and Γ(k, θ) the gamma distribution with shape k and scale θ.
This is justified in that the area under such a curve is equal to the size of its respective insulin
bolus.
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Figure 5: The resulting pump insulin rate from a single bolus of 1U.
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Figure 6: Blue: The combined basal and bolus data used as equation input.
Black: Bolus pump data.

The first subsystem was then made into a function callable by the ordinary differential
equation solver ode45, using the insulin pump rate as input. This in conjunction with the
measured plasma insulin data was used to calculate the SSE. This could then be called on by
a minimization algorithm, since it is a function of our set of parameters τ1,CI , τ2, Isc(0) and
Ip(0). For this we used the Levenberg-Marquardt non-linear least square fitting (lsqnonlin)
algorithm, which is combines the Gauss-Newton algorithm and that of gradient descent. If
this failed to give a satisfactory fit, we also tried the Nelder-Mead optimisation technique
(fminsearch) to see if this gave improved results, which is a downhill simplex method.
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6 FINDING SOLUTIONS NUMERICALLY 6.1 Step-by-step approach

Second subsystem of equations

For the second subsystem the plasma insulin concentration was required as input. For this we
chose to use the measured concentration in contrast to the one predicted by the first subsystem.
This has the advantage that any inaccuracies or errors made during the first fitting process are
not carried over to this one. This improves the chances of finding a good optimisation for the
second subsystem, and allows us to judge its individual accuracy. We however should note that
in any practical situation this model would be applied, one would use the insulin concentration
predicted from the first model as an input for the second model. We use the measured value
only to be able to assess the individual models.

The second system was set up in the same fashion as the first one, using the measured
blood insulin concentration as input to calculate the SSE as a function of the parameters p2,
S I , GEZI, EGP, VG, Ie f f (0), G(0) and τm,i for each meal i. Just as the first subsystem, the
relevant data was smoothed using a smoothing algorithm. Since we are now dealing with
two sets of noisy data, we smoothed both the input plasma insulin, and the blood glucose
concentrations. For the glucose smoothing, we used a smoothing parameter p = 0.00005.

We then interpolated the input plasma insulin data to 1 minute intervals, and used the same
ode45 solver to output the function values for G(t). Then the sum squared error of this and the
measured blood glucose was minimized using the Levenberg-Marquardt, Nelder-Mead and
Simulated Annealing least square fitting algorithms.

If the fits found this way were not deemed satisfactory, we tried the alternative model
proposed in Steil’s paper. First we tried allowing the parameters S I ,GEZI and EGP to vary
during different times of the day. This was modelled using two extra model parameters t1, t2 ∈
[0, tmax] which split the time window our model is simulated on into [0, t1]∪ [t1, t2]∪ [t2, tmax].
We then introduced 2 new copies of S I ,GEZI, EGP, totalling a pair of each for each time win-
dow. As a necessary requirement we made sure that the Isc(t) and G(t) were both continuous
and differentiable at the meeting point of the time windows.

Although this form of intraday variation is interesting to examine, it introduces many ex-
tra parameters which cause the fitting process to be very difficult. As an alternative approach
which tries to remedy this problem, we will also examine a model where each of the parame-
ters S I ,GEZI and EGP are defined as a time dependent p(t) in the manner

p(t) = p0 + p1 · t + p2 · t2

or using a sine function to capture such oscillatory behaviour as

p(t) = p0 + p1 · t + p2 · sin(ωt)

which offers the same flexibility of the parameters being able to change throughout the day,
but with the advantage of introducting less extra parameters compared to the intraday model
proposed by Steil. Then instead of having the single parameter p we now have p0, p1, p2 and
possibly ω.

Seeing as these models, although allowing more flexibility into the model also increase the
parameter space considerably, we also proposed one with a reduced parameters space. In this
we take the non-intraday model and chose to, instead of having a τm,i for each meal, take one
time parameters τm for all the meals and see if this would simplify the fitting process.
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7 RESULTS

7. Results

In this section we will discuss subjects such as how well each of the subjects measurements fit
each model, and this will be approached both qualitative and quantitative point of view.

7.1. Plasma Insulin fits

The methods used to minimize the sum squared error gave good results for the first two equa-
tions. If we look from a qualitative point of view, 6 out of the 9 patients’ plasma insulin was
well described, mimicking the general behaviour of the data. In only one of the six patients
does the model properly predict the peak insulin level, but with the rest of the patients the
model does come quite close, with a maximum difference of only 6.6 µU/ml in 6 of the 9
subjects. We can we an example of this described behaviour in the figure below.

15 20 25 30 35 40 45 50 55 60 65
0

5

10

15

hours

µ
U

/m
l

patient 4

20 25 30 35 40 45 50 55 60 65

5

10

15

hours

µ
U

/m
l

patient 10

Figure 7: Plots of the fitted plasma insulin model of subjects 4 and 10 respectively.
Green: Measured plasma insulin data; Blue: model predicted plasma insulin.

The three patient for which we weren’t able to find a satisfactory fit for, we also tried
Steil’s proposed 3-compartment model to see if this would offer any improvements. These
patients failed to show any improvement from the alternative model, either in terms of the sum
squared error or in terms of the behaviour of the model prediction.

A full summary of the parameters found for each subject, and the related evaluation of fit
can be found in figure 8. Subject 7 was not included due to the fact that the patient data was
corrupt.
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8 DISCUSSION 7.2 Fitting Glucose Levels

Patient τ1 τ2 CI Isc(0) Ip(0) max. residual SSE
(min) (min) (ml/min) (µU/ml) (µU/ml) (µU/ml)

1 290 16 1.97 · 103 18 25 17.6 3.92 · 103

2 118 18 1.79 · 104 1 1 5.0 173

3 108 9 6.60 · 103 2 17 15.5 1.57 · 103

4 235 55 3.73 · 103 7 8 2.3 63

5 328 10 3.44 · 103 5 5 2.9 101

6 75 2 1.28 · 104 8 5 15.9 1.15 · 103

8 743 3 3.03 · 103 2 22 15.2 2.67 · 103

9 63 4 1.30 · 104 0 1 3.0 87

10 104 5 5.48 · 103 8 12 3.0 142

Figure 8: This table shows the parameters found in the fitting process of the first two equations. The
two most right columns show the largest residual out of all the data points and the total sum squared

error respectively.

7.2. Fitting Glucose Levels
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Figure 9: Two simulations of the glucose submodel.

The results for second subsystem were
not nearly as succesful as the first. The
fitting of the non-intraday plasma glu-
cose model gave largely unsatisfactory
results on all the subjects. As we can
see with in figure 9, the model fails
to mimick the peaks and nadirs of the
data, and we have large residuals in the
fits of all the subjects. There are inter-
vals where the residuals are relatively
small, such as in (timespan in figure)
on the right, but on the whole the model
fails to describe the data.

After this the intraday variation
model proposed by Steil was tried, al-
though this failed to give any improve-
ments. The peaks and nadirs of the data
were less apparent in the model predic-
tions, and the total residuals were actu-
ally larger than those in the non-intraday model.

In addition to Steil’s version of intraday variation, we also tested our own variations. Defin-
ing the three concerning parameters as second order polynomial or as a combined polynomial
and sine function also failed to offer any improvement on the basic model.

8. Discussion

From this research it was quickly clear what the inherent limitations are of trying to solve
such complex biological models analytically. Even in the simple case of the first model, where
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9 CONCLUSION

we can find the exact solution to our differential equation, trying to then impliment this in
the framework of finding optimal parameters which minimize the sum squared error quickly
shows limitations of such an approach. This is especially true for the blood glucose model, in
which we can’t find an exact form for the solution of differential equation.

Fortunately numerical methods are better developed and aimed towards solving such prob-
lems. As stated in the methodology, the problem of numerically fitting the first model was far
less problematic than the fitting of the second model. This is partially due to the fact that the
first model describing the plasma insulin is a system of linear ordinary differential equations,
which is much easier to solve for numeric algorithms. The other factor which plays a role here,
as we stated earlier, is that the first model has a five-dimensional optimisation parameter space,
compared to the 12 dimensions and upwards we had to wrestle with in the second model.

The first model shows that the insulin dynamics can be modelled accurately using a second
order ODE, and the higher order model proposed as an alternative seems to be unnecessary,
failing to improve the results found from the first model. This agrees with the results posted
by Steil, who also reports this model to describe the data properly. The difference is that
Steil found the three-compartment model to give improved results on two of the ten patients,
whereas we did not.

Moving to the model for predicting blood glucose, our results were much less conclusive.
With the parameters we found there were large residuals, and the peaks and nadirs of the data
were not emulated either. The problem herein is it is difficult to pinpoint what is the cause of
these bad fits.

One of the possible causes is that the optimisation algorithms we utilized struggled with
the dimensionality of the parameter space, and quickly got stuck in local minima. Especially
with such non-linear differential equations as the second model, the cost as a function of the
parameters often has a very chaotic landscape and is full of such local minima. Since our curve
fitting algorithms converge to local minima, this is probably the cause of our unsatisfactory fits.

If we compare our results of the blood glucose subsystem model to what Steil found, his
results for the non-intraday model largely agree with ours. He found satisfactory fits in only 3
of the 10 patients he analyzed, which clearly indicates problems fitting the model. Where our
results differ, is that he found large improvements by moving to the intraday model he used.
This increased the amount of satisfactory fits to 7 of the 10 patients.

9. Conclusion

Finding positive results gives further evidence for the accuracy of this second-order model for
describing plasma insulin concentrations. We can also conclude that a third-order model is
unnecessary in this case. This model is not a new one to the field of model predictive glucose
control, but such reassuring results will further justify its use in the future.

What we also hoped to achieve in this paper was to provide additional evidence for the
need of implimenting intraday variance in blood glucose modelling. Modelling the intraday
parameters according to time dependant functions is a promising concept as it introduces few
extra parameters and allows continuous variation of these parameters over the span of the
day. Unfortunately we could not give compelling evidence to support this, or to support the
glucose subsystem at all. This also shows that the problem of estimating such parameters in
highly dimensional parameter space (12>) is a non-trivial one, as such biological problems
often have very chaotic cost functions.
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10. Appendix

10.1. Model predicted Blood Insulin

Blue: Model predicted blood insulin; Green: Measured blood insulin.
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10.2. Model predicted Blood Glucose

Blue: Model predicted blood glucose; Green: Measured blood glucose.
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