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Preface

This thesis is written as part of my bachelor assignment in the seminar
Analyse, Stochastiek en Besliskunde and the course Bachelor Onderzoek
Natuurkunde. The contents are accesible to all who have some knowledge in
numerical mathematics and third year bachelor physics.

I will start this thesis by introducing the problem and the experiment which
led to the problem, this will be done in section 1 and 2. In section 3 I will
show the models used for simulating the experiment. Section 4 will be about
the numerical method I used. I will show and discuss the results from the
calculations in section 5, 6 and 7.

I want to thank Barry Koren, for his enthusiasm on this subject which was
also new to him. In addition I want to thank him for his excellent guidance in
the traject of the bachelor project and introducing me at the CWI. I also want
to thank Tjerk Oosterkamp for introducing me to this subject and for never
being out of enthusiasm and useful ideas. At last I want to thank Bas
Edixhoven for introducing me to Pari/GP and for his different view on the
mathematical part of the problem.
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1 Introduction

The goal of my investigation is to calculate the phase difference an electron
gets when traveling from the tip of a nanotube emitter to a screen and to
compare this with the experimental results. This problem came from an
investigation by E.Heeres et al.1 They looked at electron emission from carbon
nanotubes placed in an electric field. In the emission pattern they found
possible interference lines. Numerical simulations by E. Heeres et al. were
done to see whether these fringes are due to Young’s interference, but no
satisfactory results came from this. I am going to simulate the experiment
with a powerful numerical integration rule and based on the results I will look
whether the model needs to be improved.

2 Closed Multiwalled Carbon Nanotubes

E. Heeres et al. studied the effects of a closed cap on field emission from
carbon nanotubes. A nanotube placed in an electric field, of sufficient
strength, emits electrons from the tip. In the experiment the emission was
imaged on a phosphor screen. It was posed that for certain groups of carbon
nanotubes there exist separate electron beams leading to spots on the screen.
These beams would originate from ultra small emission sites at the pentagons
in the cap. These emmission sites are shown in a simplified model in Figure 1.

Figure 1. Simplified model of the tip of a nanotube, with in grey the electron emission spots

The electric field was generated using an extraction voltage Vext. And imaging
with field emission microscopy led to the following figure.
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Figure 2. Field emission microscope pattern of the electron emission of the nanotube. The size of
the scalebar represents 5 nm.

In Figure 2 we see spots due to the emission areas, and we also see lines
between adjacent spots. It was discussed that these lines should be attributed
to Young’s interference between electrons. We can look at this theoretically
and simulate the interference pattern fringes. Thus we can compare the
experimental results to the results with Young’s interference.

Work done by E. Heeres et al, led to a 2-D model of the experiment but not to
satisfactory conclusions. They also showed that at one micrometer from the
screen, the electron posesses 99.6% of its final energy. We will use this result
to estimate the phase an electron gets.

3 Models

3.1 2-D model

For simulating the interference pattern fringes I used the model constructed by
E. Heeres et al. In that model the emitter and the extractor are modeled as
concentric spheres with different radii. Notice that the experimental shapes of
the emitter and the extractor are not exactly spherical, thus the simulated
parameters need not to be equal to the experimental parameters. With this
model we can analytically calculate the trajectories and phases from electrons
emitted from 2 point sources. What I want to calculate is the phase difference
between these electrons when they reach the extractor in the same point.

I use the model in 2 dimensions, thus the spheres will be concentric circles.
And we have coordinates:

x = r cos θ, (1)

y = r sin θ. (2)

The model defines two electron emission sites at angles θ = θ1 and θ = θ2,
both with r = Rtip. We also define a screen position (Rscreen, θ3). The results
of the model are given in relative angles ∆θi = θ3 − θi (i = 1, 2). When an
electron leaves from the emitter, it has an energy which consists of a part
parallel to the surface and a component perpendicular to the surface of the
emitter, Etot = E‖ + E⊥. In the model the component perpendicular to the
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surface is neglected, so Etot = E‖. When we find E‖ we can compute the track
of the electron.

In this model the electric field generated by a voltage on the extractor is

E(r) =
c1
r2

r̂, (3)

where c1 =
RscreenRtip

Rscreen−Rtip
Vext with Vext the voltage which is used to extract the

electrons and r̂ the unit vector in the direction of r. This electric field implies
that the electron is in a central force field. In the derivation the solution of a
mass moving in a central force field is used. The solutions are Kepler Orbits
and the following track was found:

r =
p

−1 + ε cos θ
, (4)

where p and ε are defined as:

pi =
(r0mev0,i)

2

meec1
, (5)

εi = 1 +
r0mev

2
0,i

ec1
, (6)

with r0 = Rtip and v0,i =
√

2E‖,i
me

, the initial speed, e the charge of an electron

and me the electron mass. The transversal energy E‖,i is given by the
following expression:

E‖,i =
ec1Rscreen(1− cos ∆θi)

2RtipRscreen cos ∆θi − 2R2
tip

. (7)

This determines the track of the electron completely. The phase of the
electron also depends on its velocity, which follows from the model as:

v(r)i =

√
2Ekin,i(r)

me
=

√
2

me

√
E‖,i + eVext − ec1

(
1

r
− 1

Rscreen

)
. (8)

To calculate the phase an electron gets when it reaches the screen, we
integrate the wavevector:

ϕi =
me

~

∫ Rscreen

Rtip

v(x(r))i|x′i(r)|dr, (9)

where x(r) is the parametrisation of the electron track and ~ the constant of
Planck. From the equation of the track the model concludes that:

|x′i(r)| =

√
−r2 + ε2i r

2 − 2pir

ε2i r
2 − p2

i − 2pir − r2
. (10)

With this we can numerically integrate and thus find the phase that one
electron gets when traveling to the screen.
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3.2 Linear model

For testing the numerical method I made a model in which the electron track is
not a hyperbolic Kepler orbit but a linear orbit. I made the same assumptions
as in the 2-D model, so we consider the set up as 2 concentric spheres. The
same electric field also applies to this situation. I neglect the initial energy:
E‖ = E⊥ = 0. Because I am modelling a linear track I assume that the
electron has the same velocity as in the 2-D model, but now in the direction of
the endpoint. Then I get the same expression for the phase of an electron.

ϕ =
me

~

∫
v(r)dS. (11)

We parametrize this integral over a line from the emitting point to the point
where the electron reaches the screen, which all have been chosen as in the
previous section. Thus we have for an electron leaving at angle θ1 the
following start and end points,

x(0) = Rtip cos θ1, (12)

x(1) = Rscreen cos θ3, (13)

y(0) = Rtip sin θ1, (14)

y(1) = Rscreen sin θ3. (15)

A linear parametrization for this set up is

x(t) = (1− t)Rtip cos θ1 + tRscreen cos θ3, (16)

y(t) = (1− t)Rtip sin θ1 + tRscreen sin θ3, (17)

t ∈ [0, 1], (18)

which gives us

ϕ =
me

~

∫ 1

0

v(x(t))|x′(t)|dt, (19)

with

|x′(t)| =
√

(sin θ3Rscreen − sin θ1Rtip)2 − (cos θ3Rscreen − cos θ1Rtip)2, (20)

v(x(t)) =

√
2e

me

√
Vext − c1

(
1

r(t)
− 1

Rscreen

)
, (21)

r(t) =
√

(t sin θ3Rscreen + (1− t) sin θ1Rtip)2 + (t cos θ3Rscreen + (1− t) cos θ1Rtip)2.

(22)
This gives us an equation for the phase difference which an electron receives
under these particular assumptions. The main profit of this equation is that
the x′(t) term is not dependent on t.
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3.3 Revisited model

This model was constructed due to the results I got from the previously
discussed models. Here I make the same assumptions as for the 2-D model.
From these assumptions it was concluded in the 2-D model that the electron
travels on a Kepler orbit. In this model I take the following equation for a
Kepler orbit, which follows directly from classical mechanics:

r =
B

AB cos(θ − θ0)− 1
, (23)

where B = mel
2

ec1
=

me(Rtipv0)2

ec1
, A is a constant which is chosen according to

the problem and θ0 = θi is the initial angle of the electron. We know that
r = Rtip when θ = θi, this implies that

A =
mev

2
0Rtip + ec1
R2

tipmev2
0

. (24)

From v0 =
√

2E‖
me

and because we choose the electron to be at Rscreen when

θ = θ3 we find that:

E‖,i = −1

2

eR2
screenVext(cos ∆θi − 1)

cos ∆θiR2
screen −Rscreen cos ∆θiRtip −RscreenRtip +R2

tip

. (25)

We want to calculate

ϕi =
me

~

∫ Rscreen

Rtip

v(r)idS, (26)

with

v(r)i =

√
2Ekin,i(r)

me
=

√
2

me

√
E‖,i + eVext − ec1

(
1

r
− 1

Rscreen

)
. (27)

I parametrize the integral by making use of the equation for the Kepler orbit,
this leads to the integral

ϕi =
me

~

∫ θ3

θi

v(r(θ)i)i|r′(θ)|idθ, (28)

with

r(θ)i =
B

AB cos(θ − θi)− 1
, (29)

and

|r′(θ)i| = |
AB2sin(θ − θi)

(AB cos(θ − θi)− 1)2
|, (30)

to solve for ϕ.
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3.4 Longitudinal Energy

In all the previous models the assumption E⊥ = 0 was made. In the following
model we take E⊥ 6= 0, this implies that Etot = E‖ + E⊥. In this case we have
to take account for tunneling of the electrons, which is shown in Figure 3.

Fig. 3 Illustration of the tunneling of electrons out of the nanotube. The part on (a) shows the
nanotube and the positions the electron leaves from. Rleave indicates the radius at which the

electron leaves in polar coordinates. The transversal energy of the electron is also shown. In (b)
the tunnel barrier is shown. Here r denotes the radius in polar coordinates. In this figure I

assumed that Etot = EF , the Fermi-energy.

In this Figure I illustraded the tunneling of the electrons. This effect leads to a
different radius at which the electron leaves, Rleave. By quantum mechanics,
Rleave is given by

Rleave = Rtip +
E‖R

2
tip

c1
. (31)

In Figure 3(a) the nanotube is illustrated with the different radii from which
the electron can leave. In Figure 3(b) the tunneling barrier is shown which is
responsible for the different radius at which the electron leaves.
In this model we fix the angle at which the electron leaves, θi. Then we know
from (25) and (31)

∆θi = arccos

(
−2

E‖,i
e RscreenRleave + 2

E‖,i
e R2

leave −R2
screenVext

Rscreen(−2Rscreen
E‖,i
e −RscreenVext + 2

E‖,i
e Rleave)

)
, (32)

and the angle at which the electron reaches the screen, θ3, is given by

θ3 = θi ±∆θi. (33)

Now we can use (28),(29) and (30) to calculate ϕi with

A =
mev

2
0Rleave + ec1
R2

leavemev2
0

, (34)
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B =
me(Rleavev0)2

ec1
. (35)

With this I calculate the phase of the electron for each (E‖, E⊥) with
Etot = E‖ + E⊥. I also calculate the angle at which the electron reaches the
screen and Rleave.

4 Numerical Method

The 2-D model leads us to an equation for the phase difference of the
electrons. This is an integral which is recognized as an elliptic integral, which
is computed numerically. For the numerical integration I used the double
exponential method. This method makes use of the Trapezium Rule for
numerical integration.

If we have the problem y =
∫ tm
t0

f(t)dt the Trapezium Rule with stepsize h is
given by:

w1 =
h

2
(f(t0) + f(t1)), (36)

where wn is the approximation of
∫ t1
t0
f(t)dt. The rule is illustrated in the

following figure:

Fig. 4 Illustration of the Trapezium Rule. The Rule divides the interval in subintervals and
approximates the area of each subinterval under the function as a trapezium.

By using the Trapezium Rule, we divide the interval in n subintervals. In each
of these subintervals we approximate the area enclosed as a trapezium. The
truncation of the Trapezium Rule is of order 2, but we can notice by the way
the Trapezium Rule is constructed that there exist functions for which the
Trapezium Rule works extremely well. The functions for which the rule works
well are analytic functions over the real line that approach zero rapidly in the
tails. This is what the Double exponential method makes use of.

Theorem 4.1 (Double exponential). Let f be a function defined on the
interval [−1, 1], holomorphic on D(0, 2) = z ∈ C, |z| < 2, then for every n ≥ 1

|
∫ 1

−1

f(x)dx−
n∑

k=−n

akf(xk)| ≤ (e4supD(0,2)|f |) exp(− 5n

log(5n)
), (37)
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with h = log(5n)
n ,ak = h cos(kh)

cosh(sinh(kh)) and xk = tanh(sinh(kh)).

Proof. Proof by P. Molin et al.4

This theorem shows that the error which is introduced by numerically
integrating reduces exponentially in the stepsize used. With this method we
can calculate integrals in thousands of digits accurately, as long as the
integrand is regular. The domain over which we integrate may be
non-compact, and the end points may have singularities. I used this method
pre-programmed in the open source software Pari/GP to calculate the phase
difference of the electrons.

5 Results

We want to simulate the interference pattern which occurs between the spots
on the screen. To see whether we have interference we fix two emission spots
on the emitter. Then, for 2000 points on the screen, we calculate the phase
difference between electrons leaving from these spots when they reach the
screen. Because we are interested whether the electrons interfere
constructively or destructively we take the phase difference modulo 2π. I
calculated all angles in radians. Doing this I found the following.

Fig. 5 Graph of the phase difference modulo 2π of two electrons being emitted at Rtip and angles

0.1 and π
2 − 0.1 versus the angle where they reach the screen according to the 2-D model

Figure 5 shows the graph of the phase difference of two electrons which were
emitted at Rtip = 4.5nm and angles 0.1 and π

2 − 0.1 versus the angle at which
they reach the screen, Rscreen = 24mm. In this calculation I took Vext = 500V .
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Fig. 6 Graph of the phase difference of two electrons being emitted at Rtip and angles 0.1 and

π
2 − 0.1 versus the angle where they reach the screen according to the 2-D model

I also looked at the phase difference without the modulo 2π taken into
account. Then I get the graph in Figure 6. In Figure 7 I calculated the phase
that one electron gets from leaving at angle 0.1.

Fig. 7 Graph of the phase one electron gets when it is emitted at Rtip and angle 0.1 versus the

angle where they reach the screen according to the 2-D model

I did the same calculation for a small range in the middle of the screen, where
I also discretised this region in 2000 points. This is shown in Figure 8.
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Fig. 8 Graph of the phase difference modulo 2π of two electrons being emitted at Rtip and angles

0.1 and π
2 − 0.1 versus the angle where they reach the screen according to the 2-D model

Using the same model I simulated the screen at a distance of 1 micrometer
instead of 24 millimeter. This is shown in Figure 9 .

Fig. 9 Graph of the phase difference modulo 2π of two electrons being emitted at Rtip and angles

0.1 and π
2 − 0.1 versus the angle where they reach the screen which is at a distance 1 micrometer

according to the 2-D model

Simulations with the model for the linear track were made with the same
set-up and Rscreen = 24mm. The result is shown in Figure 10.
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Fig. 10 Graph of the phase difference modulo 2π of two electrons being emitted at Rtip and angles

0.1 and π
2 − 0.1 versus the angle where they reach the screen. Here the model for the linear track

was used.

These simulations were also done with the screen at a distance of 2 cm and 2
m. The difference between these two graphs is shown in Fig. 11.

Fig. 11 Graph of the difference of ∆ϕ between the simulation with the screen at 2 cm and the
simulation with the screen at 2 m versus the angle where the electrons reached the screen.

According to the linear model

In Figure 12 it is shown which phase an electron gets when reaching the
screen, according to the linear model.
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Fig. 12 Graph of the phase one electron gets, according to the linear model, when it is emitted at
Rtip and angle 0.1 versus the angle where they reach the screen

For the Revisited model I also simulated the experiment with the same set up.
Doing this I found Figure 13.

Fig. 13 Graph of the phase difference modulo 2π of two electrons being emitted at Rtip and angles

0.1 and π
2 − 0.1 versus the angle where they reach the screen according to the Revisited model.

In Figure 14 the phase an electron gets when traveling to the screen, according
to the Revisited model, is shown.
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Fig. 14 Graph of the phase one electron gets when it is emitted at Rtip and angle 0.1 versus the

angle where they reach the screen according to the Revisited model

I did the same for the model with the longitudinal energy included. I used
Etot = EF and θ1 = 0.44 which is the edge of an emission site. The result is
shown in Figure 15.

Fig. 15 Graph of the phase one electron gets when it is emitted at Rtip and angle 0.44 versus the

angle where they reach the screen according to the model with longitudinal energy. In this

simulation Etot = EF .

In Figure 16 the plot of Rleave versus E‖ is shown.
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Fig. 16 Graph of Rleave versus E‖ calculated from the model with longitudinal energy. In this

simulation θ1 = 0.44 and Etot = EF .

6 Discussion

The goal of the simulations is to investigate whether the observed fringes are
because of Young’s interference. The principle of Young’s interference is shown
in Figure 17.

Fig. 17 Illustration of Young’s interference. With d the distance between the openings and y the

distance at which the beam hits the screen.

In this illustration d is the distance between the cracks and y is the distance at
which the beam hits the screen. The phase difference between the two beams
can be calculated by

∆ϕ = d sin θ. (38)

This leads to an interference pattern with maxima if d sin θ = nλ with n ∈ N
and λ the wavelength. The maxima and minima are a result of the path
difference between the beams. The expectation is that the fringes in Figure 2
are also caused by this principle of path difference. This is what I wanted to
investigate by simulating the paths of the electrons.

When we look at Figure 2 we see at most 10 fringes. Though in Figure 5 and
Figure 6, we see thousands of fringes, each time the line passes π. The
simulation gives us a lot more interference fringes than we expect. This can be
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due to the model, or a numerical error. It would also be possible that the
interference we see in the experiment is not because of Young’s interference.

We can expect what phase an electron gets when traveling from the tip to the
screen. We know that at 1 micrometer from the emitter, the energy of the
electron is 99.6% of the energy it has at the screen. We can estimate the
energy at the screen as Efinal = 500eV = 8 · 10−17J. The closer the electron
gets to the screen, the greater the contribution to the phase becomes. So we
estimate the phase as if the electron travels with energy Efinal at the whole
track. Then we get

Efinal =
~2(2π)2

2mλ2
, (39)

so

λ ≈ h√
2mEfinal

≈ 5 · 10−11. (40)

This means we assume a constant wavelength, and so the phase becomes

ϕ =
Rscreen

λ
≈ Rscreen

5 · 10−11
≈ 5 · 108. (41)

This approximation is when the electron travels on the shortest path possible.
The path is linear, thus the actual phase can be an order higher as the
approximation. When we compare this with the results in Figure 7 we see that
a big part of the graph is below our estimation. Also at angle 0.1 the
calculated phase of the electron is identical to zero. This is impossible in the
experimental set up because that would imply that the electron would not
have traveled at all.

The graph in Figure 10 shows us that also in the Linear Model we have a lot
of oscillations. We can explain these oscillations with Figure 11. There we see
the phase of the electron decrease an order 100. This decrease results in the
oscillations modulo 2π. This can also be used to explain the oscillations in
Figure 5. The large increase by an order 109 in Figure 7 is responsible for
most of the oscillations in Figure 5. We can see that this increase comes from
the parametrisation used in the 2-D model, equation (10). If ∆θi = 0 we have
pi = 0 and εi = 1, thus

|x′i(r)| =
√
−r2 + r2

r2 − r2
, (42)

which is modeled as identically zero. Also the parametrisation is an increasing
function of ∆θi. This is responsible for most of the increase in Figure 7.

We take a closer look at the parametrisation by investigating the equation of
the hyperbola, (4). This is derived as a Kepler orbit. In the derivation of the
Kepler orbits the origin of the coordinate system is taken to be the focus of
the ellipse or hyperbola. But the origin of the coordinate system in which we
integrate is not the focus of the hyperbola. This leads to an incorrect
parametrisation of the track of the electron. This might be the reason why we
have this increasing line from zero in Figure 7.

The Revisited model was constructed due to these observations. In this model
the correct origin of the coordinate system is used. Though Figure 13 shows
that this model does not give us a lot of improvement regarding the phase
difference modulo 2π. We still see a lot more oscillations as expected from the

18



experiment. We can see where this comes from by looking at Figure 14. The
phase an electron gets from traveling to the screen increases an amount of
2 · 109. This leads to the oscillations in Figure 14. The Revisited model does
solve the physical problem that occurred with the 2-D model, the phase of one
electron converges to approximately 2 · 109 when ∆θ goes to 0, as shown in
Figure 14. This improvement also implies that a singularity at ∆θ = 0 exists,
because in this case we do not have a hyperbola and the derivation of the
Kepler orbits can not be used. We see this in the model, the integrand goes to
infinity when ∆θ goes to 0.

The graphs in Figure 6,7 and 12 are smooth, so the oscillations in Figure 5 are
not because of oscillations in the numerical solution. We can also check the
numerical method on physical properties. Physically, the interference pattern
should not change in the far field. This is illustrated in Figure 18.

Fig. 18 Illustration of Far Field properties. When Rscreen � Rtip the paths of the electrons are

almost parallel.

As shown in Figure 18, when Rscreen � Rtip the paths of the electrons are
almost parallel. This implies that the pattern does not change in the far field.
To check the method I looked at the far field using the Linear Model, and as
shown in Figure 11 the method conserves this property for Rscreen = 2cm and
Rscreen = 2m. In Figure 9 we can also see this property, if I simulate the screen
at 1 micrometer from the tip we still see heavy oscillations. Thus the pattern
will show heavy oscillations for all Rscreen > 1µm and the part of the path
where the energy is almost constant contributes the least to the pattern.

One could also consider that the pattern is not due to interference between the
electrons, but because of diffraction from the electrons. If the phenomenon
would be diffraction, the electron leaving at the emitter would have diffraction.
This would imply that this is true for every electron leaving the emitter, so we
should expect that the fringes are also very close to the center of the emitting
areas. This is not the case as we have observed, the fringes are mostly between
the spots, and with diffraction one would expect to see the same pattern to
continue at the spots. Thus I would not expect that the fringes are due to
diffraction.

Another possibility to improve the model is considering the longitudinal
energy of the electron. In the 2-D model we neglect the longitudinal energy. If
we do not neglect the longitudinal vector, we get 2-D vectors that determine
the track. This property could reduce the oscillations. I simulated this with
the model with longitudinal energy. Though from Figure 15 we see a decrease
of 2 · 107 which will cause a lot of oscillations modulo 2π. I simulated Figure
15 with θ1 = 0.44 which is at the edge of the emission area and Etot = EF . In
Figure 15 though the electron only reaches θ3 ≈ 0.58 < π

4 . This implies that
the electrons from two emission sites do not interfere with each other when
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Etot ≤ EF , according to the simulations. From quantum mechanics an electron
with energy Etot = E‖ + E⊥ has a chance to leave the nanotube given by,

Pleave(Etot, E‖) =
1

exp[Etot−µ
kBT

] + 1
· e
−E‖
D , (43)

where µ is the chemical potential and D = 0.34 eV is determined
experimentally for Vext = 470V . This implies that for larger Etot the chance to
leave rapidly decreases.

With this model the electrons from different sites do not interfere. This can
also be seen in Figure 1, only at the bottom the electrons overlap. Between all
other sites the electrons do not overlap visibly and from that I expect that
fringes are not because of Young’s interference between two sites. I also expect
that the fringes are because of interference of electrons from the same emission
site. Interference of electrons from the same site is possible with Etot ≤ EF
and will have the same properties as interference from 2 sites. The difference is
that the minimum in the middle of two sites does not exist. This can be shown
by experiments with the nanotube where Vext will be increased. When the
fringe pattern becomes smaller with exception of the middle minimum this
would be a lead to interference of electrons from the same site.

Further investigation can be done on the model with longitudinal energy. One
could investigate whether interference from the same emission site can be
modeled. Doing this one should not only consider the phase an electron gets,
but also the intensity at the screen. When using and summing this over all
electrons leaving from the site one can determine whether the electrons from
one site can interfere. If this does not lead to satisfactory results one could
consider that the interference is due to impurities on the nanotube. This
would also explain why in Figure 1 we do not see visible interference between
all emission sites.

7 Conclusion

The double exponential numerical integration method has an exponentially
decreasing error for regular functions which have a finite amount of
singularities. The results we get from the calculations are qualitatively not
affected by the numerical method. This double exponential method used in
the open source software Pari/GP is a powerful tool for numerical integration
in physical problems.

When simulating the experiment with the 2-D model we see a factor thousand
more fringes as in the actual experiment. This is for a part due to the
parametrisation of the model. In deriving the orbits of the electron traveling
from the emitter to the screen, a coordinate system with the origin in the
focus of the orbit was used. Though the coordinate system we use when
integrating has its origin in the center of the emitter.

The Revisited model has its origin shifted and gives us physically correct
properties around ∆θ = 0. Though this does not result in observing the
expected amount of fringes. Most of the simulated fringes are not due to the
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shifted origin but due to the massive increase in the phase an electron gets,
when traveling to the screen, as the path length increases.

The model with longitudinal energy has the best physical properties. This
model also decreases the amount of fringes, but the amount is still a lot higher
than expected. One can also conclude from this model that the electrons from
two emission sites can not interfere with each other due to Young’s
interference.

Further investigation can be done in this direction. The interference of
electrons is the most probable explanation of the fringes as seen in the
experiment. Looking if it is possible that electrons from the same emission site
can interfere and modeling the interference of this occurrence is very useful in
understanding this problem. Another interesting path is to look if the
interference of the electrons is because of impurities in the nanotube. At least
a next approach should be more experimental to understand the problem.
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A Pari/GP Codes

A.1 Code for calculating the phases with the 2-D model

\p 100

theta_start = 0

theta_end = Pi/2

theta_diff = theta_end - theta_start

n = 2000

chi = 0

e = 1.60217653*10^-19

m_e = 9.1093826*10^-31

h = 6.6260693*10^-34

hbar = h/(2*Pi)

R_screen = 1*10^-6

R_tip = 4.5*10^-9

V_ext = 500

c1 = (R_screen*R_tip*V_ext)/(R_screen-R_tip)

theta_1 = 0.09

theta_2 = Pi/2 - 0.1

E_F = 1.9

for (i = 0,n,theta_0 = theta_start + i*theta_diff/n;

Delta_theta_1 = abs(theta_0 - theta_1);

Delta_theta_2 = abs(theta_0 - theta_2);

E_tr_1 = abs(e*(c1*R_screen*(1-cos(Delta_theta_1)))

/(2*R_tip*R_screen*cos(Delta_theta_1)-2*R_tip*R_tip));

E_tr_2 = abs(e*(c1*R_screen*(1-cos(Delta_theta_2)))

/(2*R_tip*R_screen*cos(Delta_theta_2)-2*R_tip^2));

v_01 = sqrt((2*e*E_tr_1)/m_e);

v_02 = sqrt((2*e*E_tr_2)/m_e);

b_1 = 1 + (R_tip*m_e*v_01^2)/(e*c1);

b_2 = 1 + (R_tip*m_e*v_02^2)/(e*c1);

p_1 = (R_tip*m_e*v_01)^2/(m_e*e*c1);

p_2 = (R_tip*m_e*v_02)^2/(m_e*e*c1);

W_total_1 = e*E_tr_1+e*V_ext;

result_1 = intnum(r = R_tip,R_screen,sqrt(W_total_1-e*c1*(1/r-1/R_screen))*

sqrt((-r^2+b_1^2*r^2-2*p_1*r)/(b_1^2*r^2-p_1^2-2*p_1*r)));

W_total_2 = e*E_tr_2+e*V_ext;

result_2 = intnum(r = R_tip,R_screen,sqrt(W_total_2-e*c1*(1/r-1/R_screen))*

sqrt((-r^2+b_2^2*r^2-2*p_2*r)/(b_2^2*r^2-p_2^2-2*p_2*r)));

phi_1 = m_e/hbar*sqrt(2/m_e)*result_1;phi_2 = m_e/hbar*sqrt(2/m_e)*result_2;

mod_1 = phi_1/(2*Pi);

round_1 = truncate(mod_1);

mod_2 = phi_2/(2*Pi);

round_2 = truncate(mod_2);

final_1 = (mod_1-round_1)*2*Pi;

final_2 = (mod_2-round_2)*2*Pi;

delta_phi = abs(final_1-final_2);

writetex("resultaat",delta_phi);)
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A.2 Code for calculating the phases with the Linear
model

\p 20

theta_start = 0

theta_end = Pi/2

theta_diff = theta_end - theta_start

n = 2000

chi = 0

e = 1.60217653*10^-19

m_e = 9.1093826*10^-31

h = 6.6260693*10^-34

hbar = h/(2*Pi)

R_screen = 2

R_tip = 4.5*10^-9

V_ext = 500

c1 = (R_screen*R_tip*V_ext)/(R_screen-R_tip)

theta_1 = 0.1

theta_2 = Pi/2-0.1

for (i = 0,n,theta_0 = theta_start + i*theta_diff/n;

Delta_theta_1 = abs(theta_0 - theta_1);

Delta_theta_2 = abs(theta_0 - theta_2);

result_1=intnum(t = 0,1,sqrt(2/m_e)*sqrt(e*V_ext-e*c1*(1/sqrt

((t*sin(theta_0)*R_screen+(1-t)*sin(theta_1)*R_tip)^2+(t*cos(theta_0)

*R_screen+(1-t)*cos(theta_1)*R_tip)^2)-1/R_screen))*sqrt((sin

(theta_0)*R_screen-sin(theta_1)*R_tip)^2+(cos(theta_0)*R_screen-cos

(theta_1)*R_tip)^2));

result_2 = intnum(t = 0,1,sqrt(2/m_e)*sqrt(e*V_ext-e*c1*(1/sqrt

((t*sin(theta_0)*R_screen+(1-t)*sin(theta_2)*R_tip)^2+(t*cos(theta_0)

*R_screen+(1-t)*cos(theta_2)*R_tip)^2)-1/R_screen))*sqrt((sin

(theta_0)*R_screen-sin(theta_2)*R_tip)^2+(cos(theta_0)*R_screen-cos

(theta_2)*R_tip)^2));

phi_1 = m_e/hbar*result_1;

phi_2 = m_e/hbar*result_2;

mod_1 = phi_1/(2*Pi);

round_1 = truncate(mod_1);

mod_2 = phi_2/(2*Pi);

round_2 = truncate(mod_2);

final_1 =(mod_1-round_1)*2*Pi;

final_2 =(mod_2-round_2)*2*Pi;

delta_phi = abs(final_1-final_2);

writetex("deltaphiLineair",delta_phi);)

A.3 Code for calculating the phases with the Revisited
model

\p 100

theta_start = 0.1001

theta_end = Pi/2 - 0.1001
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theta_diff = theta_end - theta_start

n = 2000

chi = 0

e = 1.60217653*10^-19

m_e = 9.1093826*10^-31

h = 6.6260693*10^-34

hbar = h/(2*Pi)

R_screen = 24*10^-3

R_tip = 4.5*10^-9

V_ext = 500

c1 = (R_screen*R_tip*V_ext)/(R_screen-R_tip)

theta_1 = 0.1

theta_2 = Pi/2 - 0.1

for (i = 0,n,theta_0 = theta_start + i*theta_diff/n;

Delta_theta_1 =theta_0 - theta_1;

Delta_theta_2 = theta_0 - theta_2;

E_tr_1 = (-1/2)*(R_screen^2*V_ext*(-1+cos(Delta_theta_1)))

/(cos(Delta_theta_1)*R_screen^2-R_screen*cos(Delta_theta_1)*

R_tip-R_screen*R_tip+R_tip^2);

E_tr_2 = (-1/2)*(R_screen^2*V_ext*(-1+cos(Delta_theta_2)))

/(cos(Delta_theta_2)*R_screen^2-R_screen*cos(Delta_theta_2)*

R_tip-R_screen*R_tip+R_tip^2);

v_01 = sqrt((2*e*E_tr_1)/m_e);

v_02 = sqrt((2*e*E_tr_2)/m_e);

b_1 = (m_e*(R_tip*v_01)^2+R_tip*e*c1)/(R_tip*e*c1);

b_2 = (m_e*(R_tip*v_02)^2+R_tip*e*c1)/(R_tip*e*c1);

p_1 = m_e*(R_tip*v_01)^2/(e*c1);

p_2 = m_e*(R_tip*v_02)^2/(e*c1);

W_total_1 = E_tr_1+V_ext;

result_1 = abs(intnum(T = theta_1,theta_0,sqrt(W_total_1-c1*

(1/(p_1/(b_1*cos(T - theta_1) - 1)) - 1/R_screen))*((p_1*b_1*

sin(T - theta_1))/((b_1*cos(T - theta_1)-1)^2))));

W_total_2 = E_tr_2+V_ext;

result_2 = abs(intnum(T = theta_2,theta_0,sqrt(W_total_2-c1*(

1/(p_2/(b_2*cos(T - theta_2) - 1)) - 1/R_screen))*((p_2*b_2*

sin(T - theta_2))/((b_2*(T - theta_2)-1)^2))));

phi_1 = abs(m_e/hbar*sqrt(2*e/m_e)*result_1);

phi_2 = abs(m_e/hbar*sqrt(2*e/m_e)*result_2);

mod_1 = phi_1/(2*Pi);

round_1 = truncate(mod_1);

mod_2 = phi_2/(2*Pi);

round_2 = truncate(mod_2);

final_1 = (mod_1-round_1)*2*Pi;

final_2 = (mod_2-round_2)*2*Pi;

delta_phi = abs(final_1-final_2);

writetex("resultaatextra",delta_phi);

writetex("resultaatphiextra",phi_1);

writetex("resultaatphiextra2",phi_2);)
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A.4 Code for calculating the phases with the model with
longitudinal energy

\p 100

E_par_start = 0

E_par_end = 1.9

E_diff = E_par_end - E_par_start

n = 2000

chi = 0

e = 1.60217653*10^-19

m_e = 9.1093826*10^-31

h = 6.6260693*10^-34

hbar = h/(2*Pi)

R_screen = 24*10^-3

R_tip = 4.5*10^-9

V_ext = 500

c1 = (R_screen*R_tip*V_ext)/(R_screen-R_tip)

theta_1 = 0.44

theta_2 = Pi/2 - 0.1

E_F = 1.9

d = 0.34

for (i = 1,n,E_par_0 = E_par_start + i*E_diff/n;

E_lod_0 = E_par_end - E_par_0;

R_leave = R_tip + E_par_0/(c1/R_tip^2);

Delta_theta_1 = acos((-2*E_par_0*R_leave*R_screen+2*E_par_0*

R_leave^2-R_screen^2*V_ext)/(R_screen*

(-2*R_screen*E_par_0-R_screen*V_ext+2*E_par_0*R_leave)));

theta_0 = theta_1 + Delta_theta_1;

v_01 = sqrt((2*e*E_par_0)/m_e);

b_1 = (m_e*(R_tip*v_01)^2+R_tip*e*c1)/(R_tip*e*c1);

p_1 = m_e*(R_tip*v_01)^2/(e*c1);

W_total_1 = E_par_0 + V_ext;

result_1 = abs(intnum(T = theta_1,theta_0,sqrt(W_total_1-c1*(1/

(p_1/(b_1*cos(T - theta_1) - 1)) - 1/R_screen))*((p_1*b_1*sin(T - theta_1))/

((b_1*cos(T - theta_1)-1)^2))));

phi_1 = abs(m_e/hbar*sqrt(2*e/m_e)*result_1);

;writetex("thetafinal",theta_0);

writetex("phifinal",phi_1);)
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