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A differential equation approach to the solution of
non-linear equations of a static physical system

Tijmen P.F. Blankevoort, Student, Leendert Blankevoort, Associate Professor and Barry Koren, Professor

Abstract—This thesis investigates the Newton-Raphson solution
routine used in the quasi-static multibody model of diarthrodial
joints (Kwak et al. 2003). We suggest a more reliable method for
solving non-linear systems of equations that is based on numerical
methods for solving differential equations, and show, given the
physical nature of the model, that it will find a solution more
reliably. This new method is called the Taylored Backward Euler
method. It is very reliable, but takes more time to find a solution
than the Newton-Raphson algorithm.

I. INTRODUCTION

THIS thesis investigates methods by which a physical
system of non-linear equations can be solved. This is

done within the context of the Joint Model software, created
by Kwak et al. (2000). The techniques that will be described
are more generally applicable to any system of non-linear
equations with certain physical properties.
The Joint Model program is a piece of software that is
used to simulate the mechanical behaviour of human joints.
It is a multibody model that can quite accurately represent
any diarthrodial joint. With it, it is possible to calculate the
forces on bones and ligaments for a given joint pose and
external loads. Because the model is specifically tailored to
finding only equilibrium positions of joints, it is very fast at
calculating the forces in such situations. Several researchers
in the field of Orthopaedics, including for example Cohen et
al. (2003), Borotikar (2009) and Dvinskikh et al. (2011), have
succesfully used the software and its underlying mathematical
model for practical research purposes. Models of joints have
succesfully helped researchers evaluate orthopaedic surgical
procedures and could possibly be used to calculate the effects
of surgery on individual patients as well (Cohen et al. 2003).
This thesis will give a brief introduction to this model in order
to place the remainder of this thesis in a suitable context. For
a thorough description of the model, we refer to the article by
SD Kwak et. al. (2000). Their ”Quasi-Static Multibody Model
of Diarthrodial Joints” will hereafter simply be referred to as
the joint model.
Along with other researchers, Cohen (2001) reported problems
with the algorithm that finds the equilibrium state in a given
model with initial values. Sometimes the algorithm does
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not converge automatically to the required equilibrium state,
meaning the model parameters have to be adjusted in such a
way that the algorithm does converge. This can be a very
tedious process, especially when the calculations are done
on very large datasets which can take hours to complete.
The existing program uses a damped Newton-Raphson root
finding algorithm. The question was raised if the damped
Newton-Raphson algorithm could be improved such that it
would converge better and be more stable, while keeping a
comparable rate of convergence. This is the research question
for this thesis.
In this paper we will explain why the Newton-Raphson method
does not converge sometimes, after which we will introduce
a different approach to root finding that works specifically for
physical equations in which stable equilibria have to be found.
The problem is cast into a system of first order differential
equations, after which numerical differential equation methods
are used to follow the direction of the force and find a stable
equilibrium.
The algorithm found this way is derived from backward Euler.
We will show that this ‘Taylored Backward Euler method’ is
preferred over the Newton-Raphson method due to its stability
and reliability for this specific application, although it has a
higher computation time.

II. THE MODEL

The joint model distinguishes between material bodies,
which have six degrees of freedom (DOFs), three rotations and
three translations, and particles with only three translational
DOFs. Material bodies can represent bones of a diarthrodial
joint, while particles are typically embedded in soft tissue
structures, such as tendons and ligaments, to allow the
wrapping around articular or bony surfaces. The bones and
articular surfaces are represented by 3D-mesh models. The
bodies are connected to each other with elastic links. These
links come in different flavors; surface-to-surface contact,
particle-to-surface contact, ligament links and tendon links.
In essence these links are the structures that apply the forces
on the bodies in the model. For surface-to-surface contact
the applied force is calculated from the overlap of the
surfaces. These are compressive forces. In ligament links the
ligament force is calculated from the link length, by means
of a specified function. These forces can be compressive or
tensile. In tendon links the force is constant, as supplied by
the user. External forces and moments can also be applied
to any body in the model, both relative to the body-fixed
coordinate system and relative to the ground-fixed coordinate
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Fig. 1. The 3D multibody model prescribes the bones of a joint as material
bodies (6 DOFs); the interactions between the bones include articular contact
links, and ligament and tendon links. Wrapping of tendons or ligaments around
bone or articular surfaces is modeled by imbedding particles (3 DOFs) within
these soft tissue structures (Kwak 2000).

system. As most models only use the ground-fixed coordinate
system for external forces we can limit our perspective to
this. The geometry of the model is defined by the surfaces of
the articular and bony surfaces, the insertions of the ligament
links and tendon links and the point of application of the
external forces. See figure 1 for a schematic overview of the
model and the terminology used.

By using the positional and rotational information, we can
calculate the forces that the ligaments, tendons and contact
forces apply on the bodies. The forces and moments on the
body are decomposed into 3 forces along the coordinate axes
and 3 moments about the coordinate axes. These forces change
by motion of the body, making them dependent on the DOFs of
motion. The model will calculate the rotations and translations
of the bodies in the multi-body system for given external
forces and/or moments. Hence, the DOFs of motion are the
dependent variables. The system as a whole is at rest, i.e. in an
equilibrium position, if the sum of all forces and the moments
for each DOF, is equal to zero for each body. This results in a
system of non-linear equations as for every body β is required
that

fβ(θ,a) =
∑
i

fβi (θ,a) = 0, (1)

with i a counter for the links attached to body β and f the
three-dimensional vector with all forces that act on the body.
The force-vector depends on the translations a and rotations
θ of body β and the bodies connected to β. In the same way
we have

mβ(θ,a) =
∑
i

mβ
i (θ,a) = 0, (2)

with m the three-dimensional moment vector. For notational
simplicity we will define a generalized force vector f where

[f ] = [f1 m1 f2 m2 . . . fnmn]T , (3)

with n the total number of bodies.
The fundamental question is: Given a starting configuration

of the bodies, what are the positions and orientations of
the bodies in which the sum of the six separate forces and
moments equals zero for each body. The model only works
with these equilibrium positions, which give the necessary
information for medical purposes. The forces and moments
are calculated by the software from the translation and rotation
vectors. Because of the complexity of modelling the surface-
to-surface contacts, no explicit functions are given for the
forces and moments. Rather, they are calculated on an ad-hoc
basis given the position and orientation of the bodies.

III. THE PROBLEM WITH THE CURRENT SOLUTION
METHOD

The aforementioned question seems an easy problem, as
we only have a set of non-linear equations that have to be
solved. What is often the case with such practical problems is
that the Newton-Raphson iteration procedure is applied to find
solutions. With this idea in mind the original solution method
was programmed as a standard Netwon-Raphson solution
method. Newton-Raphson does converge fast when the initial
position values are close to the projected equilibrium, but
when starting farther away it may fail to converge. To remedy
this, a relaxation factor α was introduced to adjust the step-
size of the iterations by a set scaling factor. This gave the
following relaxed Newton-Raphson iteration step that is used
in the existing joint model:

xnew = xold − α J(xold)−1 f(xold), (4)

with x the vector that contains the rotations θ and translations
a of every body, f the generalized force vector that contains
the forces and moments in each direction for every body, and
J the Jacobian df

dx . This alleviates the convergence problem
somewhat, but it introduces a parameter α that has to be
chosen for every run. If the parameter is not chosen correctly
the algorithm will either take longer to converge or will not
converge at all. For some problems, when the initial position
is taken farther away from the equilibrium the algorithm also
does not converge, no matter what α is chosen. We proceed
by considering a specific problem for which (4) does not
converge. This will later on be used as a benchmark for the
new solution method.

A. The knee model

We will consider the model used by Borotikar (2009, Fig
10b, 10c) to simulate the machanics of the knee, for the
purpose of predicting the forces in the ligaments with certain
activities. It is a rather simplified model of the human knee
joint with only 12 DOFs. When running this model from its
initial position, it converges in 16 steps to the equilibrium
solution. When looking at the graph of the residual sum of
squares of the generalized force vector a small caveat becomes
apparent already (Fig. 2).

On the first iteration the residual shoots up high, indicating
that the algorithm moves large distance away from the
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Fig. 2. The behavior of the residuals of the force vector for each Newton-
Raphson iteration made on the initial configuration for the Borotikar (2009)
knee model. We can see that the force first increases by a great amount before
the solution converges in 14 steps to the equilibrium position. This behavior
is caused by the Jacobian matrix to be close to singular.

solution at first, before eventually converging. This is usually
unwanted behavior as it might interfere with finding an
equilibrium solution that is close to the starting configuration.
Newton-Raphson ignores the distance to the original solution,
although in practice a knee move to a equilibrium position
that is close. Moving far away from the equilibrium would
also be counterproductive to the speed of the algorithm. Later
on we will see why the Newton-Raphson algorithm causes
solutions to sometimes shoot away radically. For this simple
example this is only a minute problem, as the algorithm
converges nonetheless, but there are also cases when there is
no convergence at all.

Upon choosing this new equilibrium position as a starting
point, we flex the femur 90 degrees. From this new position the
algorithm does not converge, no matter what relaxation factor
is chosen. The residual graph is very spiky and oscillates a lot
(Fig. 3). This is a very typical situation for the joint model,
as any time it does not converge this same type of behavior
can be perceived in the residual graph. The only way to make
the algorithm converge properly is by increasing the flexion
by small steps at a time and making the algorithm converge to
those positions subsequently, gradually making it to the full 90
degrees flexion. Letting the algorithm converge this way is a
tedious trial-and-error process. An approach - for problems for
which an equilibrium solution exists - that always converges
without fidgeting around with any parameter would greatly
improve the applicability of the software.

B. Problems with Newton Raphson

The Newton Raphson algorithm, albeit widely used for
solving systems of non-linear equations, has some general
problems associated with it. The significant problems that
relate to its joint model application will be sketched here
by two simple examples. The first example is a third degree
polynomial function. (Fig. 4). We can clearly see that there is
one equilibrium, i.e. the position where the force is equal to
0. This single equilibrium is located next to a small hill and

Fig. 3. The resdiuals for the first 50 out of 1000 iterations of the Borotikar
(2009) knee model when the Femur is flexed 90 degrees. For the full 1000
iterations this spiky and oscillatory behavior persists and the solution does
not converge.

a following concavity on the left of the equilibrium position.
If we start the Newton-Raphson algorithm to the left of this
concavity, the algorithm gets stuck in the local minimum
(Fig. 4). Although the exact numbers differ each iteration,
the oscillatory behavior persists, and the algorithm does not
converge. This oscillatory pattern also appeared previously in
the residual graph of the knee-model (Fig. 3), and we believe
the cause of the problem is the same.

There is a second algorithmic problem associated with this
example. The Jacobian for a one-dimensional problem like
this is simply the differential of the function f(x). At the
bottom part of the concavity, a local minimum, the derivative
is zero. This means that when the solution starts very close to
the local minimum, the derivative is very small, and hence the
inverse is very large. This causes the algorithm’s solution path
to jump away excessively from its current location, causing
a spike in the residual count. The same happens in higher
dimensions, where the Jacobian can become singular and
inverting it gives very large values in the matrix. This same
sort of spike behavior was observed in the initial convergence
of the knee-model in the previous paragraph. We think that
the same underlying mechanism causes the non-convergence
in both cases. Local minima disrupt the convergence of the
Newton-Rahpson method.

The second example used to illustrate the third problem
with Newton-Raphson is that of a pendulum attached to a
fixed point with a particle on the other end. A vertical force
is applied to the particle, resulting from simulated gravity.
Instead of the pendulum being infinitely stiff, we use a spring
to connect the particle to the fixed point. Thus we get a
spring-pendulum setup (Fig 5). The functions and constants
that define this example are given in Appendix A. There are
two equilibrium positions for this problem, the obvious one
where the pendulum is at rest below the fixed point, and the
unstable one where the pendulum rests directly above the fixed
point. Now when we place the starting position of the Newton-
Raphson method close to the unstable fixed point, it will
converge to it (Fig. 6). Thus when there are unstable equilibria
in systems of equations of a physical system, coupled with the
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(a) Function of the force against the y-value of the
particle

(b) y-value of particle as function of Newton-
Raphson iteration

Fig. 4. (a) The function f(y) = −y3 + 1
2
y + 2. Starting the Newton-Raphson algorithm from around y = −1 there is a small area with a local minimum

and maximum that the solution has to cross before arriving at the equilibrium position. This causes problems with the Newton-Raphson method as can be
seen in (b). The solution heavily oscillates around the local minimum. although only the first 30 iterations are shown here, the same behavior persists for all
subsequent iterations that were checked. It is important to note that the initial value of −1 is not of particular significance, as starting from almost all values
close to the points that the oscillation comes close to gives the same behavior.

Fig. 5. The spring pendulum setup. The particle at the bottom can move
around the whole two-dimensional space while the spring exerts a force on it
dependent on the current length of the spring and its resting length. The spring
is attached to one fixation point that is kept constant. An external gravitational
force is applied to the particle so that there is one stable equilibrium (shown)
and one unstable equilibrium (straight above the fixation point). The equations
for this example can be found in Appendix A.

sometimes spiking behavior of the Newton-Rahpson algorithm
as described above, it is very well possible that it will converge
to one of such unstable equilibria. In any setup where a
physically meaningfull solution to a systems of equations like
this has to be found, convergence to an unstable equilibrium
may occur. We have yet to confirm the existence of such
unstable equilibria in any of the models of real joints that
were made, but the possibility itself is of great concern.

It is of importance that all three of these problems; the
spiking behavior, oscillatory behavior around minima and con-
vergence to unstable equilibria are corrected, whilst keeping
a good speed of convergence. We will now turn to the main
focus of this thesis, a novel differential equation approach to
find the equilibrium of a physical system that is represented
by a system of non-linear equations

Fig. 6. The iteration steps for the Newton-Raphson method as applied
to the spring-pendulum problem. The initial position of the particle is
(x, y) = (1, 1). It took 8 steps before the algorithm converged to the
equilibrium within 10−4. In this case the equilibrium position is the one
above the point where the spring is fixed. Since gravity works in the negative-
y direction this equilibrium position is unstable; the force points away from
it.

IV. DIFFERENTIAL EQUATION METHODS FOR SOLVING
PHYSICAL NON-LINEAR SYSTEMS OF EQUATIONS

A very important observation is that the joint model repre-
sents a system with inherent physical properties. This makes a
more specific root-finding algorithm possible. When bodies in
the model are far from their prospective equilibrium position,
the forces on the body will be directed towards that same
position. Moving a knee cap far out of the knee, without the
ligaments breaking, will force it back in. Furthermore, it is
expected that if we slowly move a body in the direction of
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the force that is exerted on it, it will gradually move to an
equilibrium position. This is all due to the elastic nature of the
ligaments and the articular contacts. If we turn the system of
equations into a first order system of differential equations, we
can make use of these properties, and use numerical methods
that exist for solving systems of differential equations to find
our solution. To simplify notation we will use the general force
vector (3) to write our problem in the form

f(x) = 0,

with f a vector-valued function and x containing all translations
and rotations. The differential equations approach to solving
this system simply requires us to add a first order time
derivative term to the equation:

dx
dt + f(x) = 0, starting with x = x0. (5)

At an equilibrium position of this system dx
dt and hence

f(x) will be zero. It is possible so scale this dependance by
multiplying f by a matrix with constants on the diagonal, but
for simplicity we assume this to be the identity matrix.

It is important to note that the time variable introduced here
has no correlation to actual physical time. The function f is
also independent of the time variable. This means that we are
not interested in the time-accuracy of the differential equation
solving method we will use. We are only interested in finding
the equilibrium position that the solution starting at x0 will
converge to.

We noted earlier that the physical nature of the equations
dictates that any body, or combination of bodies that moves
too far away from the ground will have a force exerted on
it that pulls it back. This is simply because all ligaments that
govern the forces have a resting length on which the ligaments
exert no force. The more is deviated from this resting length,
the more force the ligament links will exert on the connected
bodies in the direction of its resting length. In the joint model
the ligaments also do not break, so all solutions are bounded.
On top of this, if we do not use forces that are relative to any
of the body-fixed coordinate systems, we get a Jacobian with
no imaginary eigenvalues. This makes sure that there are no
limit cycles that our solution can get stuck in. The Bolzano-
Weierstrass theorem tells us that for our bounded solution there
must be an accumulation point, which can only be a stable
equilibrium when no limit cycles exist. Thus a solution started
anywhere in the solution-space will eventually converge to
a stable equilibrium if we follow the direction of the force,
given that the solution method stays stable and no body-fixed
coordinates are used for the external forces.

We will try to find such a stable equilibrium by applying
numerical integration methods. There are two types of such
methods, implicit and explicit.

A. Explicit methods: Forward Euler

The explicit methods have an upside in that they are compu-
tationally inexpensive, as they describe a preset function that
calculates the the solution position from the previous position.

Fig. 7. The stability regions in the complex number domani, in which
the eigenvalues of the Jacobian, multiplied by step size have to be for the
numerical method to be stable. The four stability regions increase in size as
the order of the method goes up. The smallest region corresponds to Runge-
Kutta of order 1, which is equal to forward Euler.

Calculating the next position only requires the evaluatin of the
generalized force function a few times at each time level. There
are a lot of different flavors to explicit methods, but the only
differences between them are time-accuracy of the path and
stability of the solution. For our application we do not require
time-accuracy, as we are only interested in the end point of
the path and not the precise road it travels towards it. As the
Jacbian will have no imaginary eigenvalues, we can take an
explicit method for which the stability region does not contain
a finite part of the imaginary axis (stability regions 1 and 2 in
Fig. 7). For this context it suffices to simply pick the easiest
method, that of Forward Euler, which has stability region 1 in
Fig. 7. The update rule for this method is:

xnew = xold + h f(xold). (6)

In words, what this update rule does is taking a small step
in the direction of the force vector from the starting position.
This is very intuitive. When a net-force is exerted on a mass
in a certain direction, it will move in that direction. Here
h is the step size. With it we can control the stability of
the solution. Naturally a large step-size will mean that the
numerical approximation of our solution will move to the
equilibrium point faster, however the larger the steps we take
the less stable our approximation may become. Theory dictates
that h should be chosen small enough so that the eigenvalues
of the Jacobian multiplied by h all lie within the stability
region of the Forward Fuler method (region 1 in Fig. 7).

Initial test results with this method on the previously in-
troduced simple problems described in Section III seemed
very promising. For the pendulum problem the approximation
converges to the equilibrium point at a speed comparable to
that of the Newton-Raphson algorithm (Fig. 8a). On top of
this there are a few pleasant characteristics of this method as
compared to Newton-Raphson. The solutions will exhibit no
spiking behavior as long as the method remains stable. This
is because the solutions follow a stable path defined by the
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continuous system of differential equations. We have argued
before that no limit-cycles exist in the model, so the solutions
will also not oscillate in such a way that no solution can be
found. Convergence to unstable solutions is also impossible, as
the force vectors close to such unstable equilibria point away
from them, and Forward Euler follows their direction. As a
bonus, the approximation moves somewhat like you would
expect a physical solution of the system to behave, meaning
that if there are multiple equilibria it will more likely converge
to the one that an actual joint would move to. This is no
surefire trait, but more than the Newton-Raphson method it
does take the proximity of the equilibria and the forces of
the system into account when finding a solution. Choosing h
through trial and error is possible, but the process is easily
automated by calculating the Jacobian every few steps and
determining its most negative, i.e. largest in absolute value,
eigenvalue. This can then be used for the following update
rule to decide what h should be:

h = − c

mini(λi)
, 0 < c < 2 (7)

with λi the eigenvalues. This update rule ensures the stability
of the Forward Euler algorithm (Vuik et al. 2006) The parame-
ter c can be chosen to scale h relative to the in absolute value
largest eigenvalue. When c = 2 the Forward Euler update
rule is on the edge of stability. This is not advised as (7) is
only a linear approximation of its stability. The closer h is
chosen to the upper bound of stability, the more the solution
will show unstable oscillatory behavior. For our experiments
we used c = 1.5. Note that if there would be only positive
eigenvalues, the physical problem itself would be unstable,
which is what cannot occur here. Positive eigenvalues do
occur, but the solution algorithm will rapidly move away into
a region where only negative eigenvalues occur. The choice
c = 1.5 also places h close to its highest possible value,
which can increase the speed of convergence of the algorithm,
although expensive computations have to be done in order to
find the Jacobian and its eigenvalues.

This Forward Euler method with stability stability rule (7)
was implemented in the joint model. The new algorithm took
many millions of iterations to converge even for the simplest of
problems. This took an impractical amount of time, making the
Forward Euler method no good alternative. The problem lies
in the stiffness of the articular contact links and the particle-
to-surface contacts of the model. The Jacobian represents the
stiffness of the system. The larger the ratio of the largest over
the smallest eigenvalues is in absolute value (the condition
number), the larger the stiffness.

For the articular contact links, slight overlap between two
bodies causes the force exerted on both to be very large. The
eigenvalues of the Jacobian become very large in absolute
value as a large disparity in position causes a large difference
in force. We know from the aforementioned stability crite-
rion that in absolute value very large eigenvalues make the
approximation unstable unless a very small h is chosen. If
we increase the stiffness of the spring in the pendulum-spring
example, and apply the same Forward Euler algorithm we can

show how this stiffness affects the speed of the solution (Fig.
8b). Even for such a simple problem the stiffness increases the
amount of iterations needed for convergence to an impractical
amount. So the explicit family of algorithms will not function
well for our problem.

B. Implicit methods: Backward Euler

As we have seen, explicit methods are impractical due to
the stiff nature of joint models. This is a very well-known
problem of explicit integration methods. To make this more
mathematically formal we introduce the concept of A-stability.
We can analyze general stability for stiff problems by means
of the test equation y′ = k y with k ∈ C. The solution for
this equation is y(t) = ek t. This solution approaches zero as
t → ∞ for all k for which <(k)isfiniteandnegative. Any
numerical method that also exhibits this behavior is called
A-stable. The stability domain of A-stable methods contain
the entire left half of the complex number domain. For A-
stable methods we know that they do not show the problem
with stiffness in equations, thus from our practical point of
view any method we implement has to be A-stable. Explicit
methods, like Forward Euler, are not A-stable. But an implicit
method, like Backward Euler is A-stable (Dalhquist 1963).

The Backward Euler method seems like a good candidate
as the method is stable for all negative eigenvalues, no matter
how large they are in absolute value. The update rule for the
Backward Euler method reads:

xnew = xold + h f(xnew). (8)

The implicitness of this method lies in the fact that f now has to
be evaluated in the new position vector instead of the old. For
non-linear vector functions f this requires an algorithm that can
solve non-linear systems of equations. Usuallyis the Newton-
Rahpshon method is used for this, precisely the algorithm we
are trying to find an alternative for. Also, specifically for the
joint model software, the function f is not explicitly known.
This makes solving (8) implicitly hard. Thus we have to find
an estimate for the f(xnew) term in (8). We can make a Taylor
expansion of f (xnew) around f (xold) and presume that the
function is smooth enough for this to be a good approximation
for small changes of x. Taking the first two terms of the Taylor
expansion gives us the following update rule.

xnew = xold + h (I− h J (xold))−1 f (xold). (9)

with I the identity matrix. This rule can also be found by
taking (8) and running one iteration step of Newton-Raphson
on it to solve it (see Appendix B). A more informative way
of looking at this rule is as a hybrid method combining the
backward Euler method and the Newton-Raphson method. If
we take 0 < h� 1 then (I− h J) ≈ I and the update rule is
similar to forward Euler with a small step size h. On the other
hand if we take h � 1 then I − h J ≈ −h J and the update
rule reverts back to the Newton-Rapshon method (4) with
parameter α = 1. By changing h we can hence continuously
combine both methods.
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(a) Forward Euler normal spring-pendulum (b) Forward Euler stiff spring-pendulum

Fig. 8. (a) Solution trajects of the Forward Euler algorithm applied on the spring-pendulum problem. Values chosen were Fg = 3, L0 = 3 and K = 10.
The solid curve starts on (1,1), the dashed curve starts on (1,4) and the dashdot curve starts on (-3,0.1). All three converge to the equilibrium within 10−4

distance in less than 100 steps.The computing time is comparable to that of the Newton-Raphson algorithm. (b). The same problem but stiff, with K = 1000.
Here, for these solutions to get within 10−4 distance of the equilibrium around 100.000 iterations are needed. Because of the stiffness of the spring, the
solution oscillates a couple of times before it is at the point where the spring is at resting length. From there on the algorithm takes very small steps, as the
stiffness causes the force to increase a lot when the position deviates a small bit from the resting length of the spring.

This linearized Backward Euler update rule is more than
just a convenient way of alternating between both methods.
When h is fixed at a reasonably small value, making the
update rule behave similarly to a Forward Euler method, for
stiff directions the terms in the Jacobian become large and
(9) behaves more like Newton-Raphson. This mitigates the
problems the Forward Euler method has with stiffness. The
other way around, choosing a high h makes the Backward
Euler rule resemble the Newton-Raphson method along with
the problems of converging to unstable equilibria. The con-
dition of the identity matrix I to −hJ has a regularizing
effect; it eliminates possible zero eigenvalues of the Jacobian
J. For Jacobians with no positive real eigenvalues, our case,
no new zero eigenvalues can be introduced by the addition.
The parameter h is used to tune the regularization.

Because the method for large h resembles the original
Newton-Raphson method, the Taylored Backward Euler up-
date rule (9) is best used with small h, mimicking the
behavior of Forward Euler, but balancing the solution path
with Newton-Raphson when the difference in forces forces
become relatively high.

We applied this algorithm to the spring-pendulum problem
(Fig. 9). The algorithm converged to the target stable equi-
librium in about 30 steps from many of different positions in
the solution space. This is quite comparable to the Newton-
Raphson algorithm that converged in 5 to 10 steps on average.
However, the Backward Euler update rule makes sure that for
small h it always converges to the stable equilibrium. The
speed of the algorithm can be increased by choosing larger h
as the force residual goes down. The solution is expected to be
close to the target equilibrium when the force residual is low,
which means that changing the update rule into a Newton-
Raphson method by increasing h could be profitable.

Fig. 9. Results for the backward Euler method applied on the stiff spring-
pendulum problem. We chose h = 0.3 so the method would be more similar
to Forward Euler than to Newton-Raphson. As in Fig. 8b we take K = 1000.
We see from the figure that the algorithm preforms very well, despite the high
stiffness. The moment the solution deviates from the resting length path of
the spring, the Jacobian becomes larger and compensates for the difference.
The algorithm converges to within 10−4 of the equilibrium solution in 30
steps.

C. Implementation in the joint model software

The Taylored backward Euler method was implemented in
Joint Model the software and a few initial tests were ran (Fig.
10). For all of the runs done with the algorithm we took h =
0.1 a small parameter. When the force residual became smaller
than 1 we switched the parameter to h = 100, so the method
would behave like Newton-Raphson. Taylored backward Euler
was tested on the knee model for flexion degrees between 10
and 90. For all of the tests that were done with the algorithm,
it converged very smoothly (Fig. 10d).

V. DISCUSSION

In this article we have described the joint model and the
issues it had with the Newton-Raphson method that solves the
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(a) Schematic drawing of the knee (b) Knee model in extension

(c) Knee model converged in 90 degrees flexion (d) Residual graph

Fig. 10. (a) Schematic model of the knee (Seif Medical Graphics). (b) Borotikar (2009) knee model that we use as a benchmark for the algorithm. This
picture shows the knee from its initial extended state. The picture was taken directly from the joint model software. (c) The same knee, but now converged
to the 90 degrees flexion situation. (d) Residual graph of the Taylored backward Euler method, as applied to the knee flexon problem. This shows how
the algorithm behaves when it gets from situation (b) to situation (c). It converges to within 10−4 residual close to the equilibrium in 283 steps. A great
improvement over the Newton-Raphson algorithm shown in Fig. 2.

model. Newton-Raphson only reliably converges when it starts
close to equilibrium solution. We also argued that Newton-
Raphson might converge to unstable equilibria without warn-
ing, although for practical purposes of the joint model only
stable equilibria are of interest. In this light we introduced a
new method, the Taylored Backward Euler method for solving
non-linear systems of equations. Taylored Backward Euler
relies heavily on the physical properties of the equations that
are inherent to the modelling of joints. The force needs to stand
roughly in the direction of the equilibria on points far away,
making sure the solutions of the differential equations are
bounded. Also, if the differential system of equations defines
limit-cycles in the space, it is possible that the algorithm
converges to these and goes into an oscillatory loop. This can
only occur if the Jacobian has imaginary eigenvalues, which
we do not expect if no external body-fixed coordinates are
used. If these conditions are met, the algorithm is sure to
converge to a stable equilibrium.

The smoothness with which Taylored Backward Euler con-
verges comes from the fact that it roughly follows a solution
of the systems of differential equations, which defines a
smooth path. The stability comes from the stability of the
Backward Euler method, that always remains stable, even for
stiff equations. Some care has to be taken into interpreting this
however, as we do not use the full Backward Euler method,
but a taylored version of it. The theory also shows in practice
if we look at the results of the spring-pendulum problem
and the knee model (Fig. 9 and 10d). From these results
we can argue that this new algorithm outpreforms Newton-
Raphson in terms of reliability. We have proven that it will
converge to a stable equilibrium, and because it follows the
direction of the force, the solution is also one that is more
likely to be physically feasible. There is a cost attached to
this however, as we do take more iterations to converge to an
equilibrium than Newton-Raphson. For the spring-pendulum
problem Newton-Raphson often converges in 4-5 steps as
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opposed to 30 steps. When applied on lower flexions in the
knee model, the Taylored Backward Euler algorithm also took
about 4-5 times more steps to converge than Newton-Raphson.
The calculation cost of the iterations are roughly the same. If
the high reliability of the Taylored Backward Euler method
is not needed, i.e. when the initial values are expected to be
close to an equilibrium, the Newton-Raphson algorithm will
still outpreform it. In some cases when stiffness is not an issue
the Forward Euler algorithm we described might be faster than
both other methods. Because every step of the Forward Euler
algorithm we only needs one evaluation of the force vector. We
have payed no further attention to this method as all models of
joints have too high a degree of stiffness. This article has by
no means thoroughly shown that the Taylored Backward Euler
algorithm works with the joint model for all cases. We merely
proved that the concept of the algorithm can work, and argued
why theoretically the algorithm is oft a good idea. More testing
is needed with different and more complex models to show
that it works. It will also be informative to find a more accurate
estimate of the trade-off between reliability and speed between
this method and Newton-Raphson. An argument was made
about the stability of the algorithm based on the non-Taylored
version of the Backward Euler method, but it is unsure how
the Tayloring of the implicit term affects the stability. More
research has to be done to investigate this. Other improvements
over Newton-Raphson, like line-search (Box et al. 1969) or the
quasi-Newton methods like Broyden’s method (Broyden 1965)
and SR1 algorithm (Conn et al. 2003) were also not discussed
as they more or less exhibit the same problems that Newton-
Rhapson has with initial values that start far away from the
solution.

VI. CONCLUSION

The Taylored Backward Euler method to solve the non-
linear system of equations of the joint model is a better alter-
native to the Newton Raphson method. We have proven theo-
retically that it will always converge and that its convergence
path is more stable. The trade-off is a higher computation time
compared to the Newton-Raphson algorithm.

APPENDIX A
EQUATIONS FOR SPRING-PENDULUM PROBLEM

The equations of the forces on the particle in the spring
pendulum in terms of the x and y position are:

Fx(x, y) =
sign(y)x

y
√
1 + x2

y2

K (L0 −
√
x2 + y2), (10)

Fy(x, y) =
sign(y)√
1 + x2

y2

K (L0 −
√
x2 + y2)− Fg. (11)

K is the spring constant, indicating the stiffness of the spring.
The higher it is, the stiffer the spring. L0 is the resting length
of the spring and Fg is the gravitational force that acts on the
particle.

APPENDIX B
DERIVATION OF THE TAYLORED BACKWARD EULER

SCHEME

We collect all terms of (8) on one side and define:

N(xnew) ≡ xold − xnew + h f(xnew) = 0. (12)

We can apply Newton-Raphson iteration to N(xnew), with
l the counter for each iteration. This gives us the following
iteration protocol for solving the above system of equations:

xl+1
new = xlnew −

(
dN(xl

new)
dxnew

)−1
N(xlnew), l = 0, 1, 2, . . . . (13)

Now the Jacobian of N can be calculated from its definition:

dN(xl
new)

dxnew
= −I+ h

df(xl
new)

dxnew
. (14)

Taking xl=0
new = xold we get equation (9).
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