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Introduction
In this thesis we study a group, defined in 1929 by Richard Brauer (1901–1977), that classifies
central simple algebras (see Definition 1.38) over a given field. Examples of central simple
algebras over a field k are division rings for which a ring isomorphism between the center
and k is given and the underlying k-vector space is finite-dimensional, as are the n × n-
matrix rings over these division rings for n ∈ Z>0. The ring of quaternions H, introduced
by William Hamilton (1805–1865), is a central simple algebra over R, but C is not, since its
center is not R.

Let k be a field. Define CSA(k) as the class of all central simple algebras over k, and observe
that CSA(k) is not empty, since k and the matrix rings Mn(k), for n ∈ Z>0, are central
simple over k. We say that two central simple algebras A and B over k are similar if there
exist positive integers m and n such that Mm(A) is isomorphic as a k-algebra to Mn(B).
This defines an equivalence relation on CSA(k), which reduces to k-algebra isomorphism
when the two central simple algebras have the same k-dimension.

Theorem 1. Let k be a field. Then there exists a pair (G, s) consisting of a group G and
a surjective map s : CSA(k) → G that for every two central simple k-algebras A and B

satisfies: (i) the equality s(A⊗k B) = s(A) · s(B) holds; (ii) the equality s(A) = s(B) holds
if and only if A and B are similar. Moreover, the pair (G, s) is uniquely determined up to
isomorphism, that is, if (G′, s′) is another pair satisfying the above, then there is a unique
group isomorphism σ : G→ G′ such that we have s′ = σ ◦ s.

The group of the uniquely determined pair (G, s), written multiplicatively, is called the
Brauer group of k, denoted by Br(k). Moreover, for a central simple algebra A over k we
denote s(A) by [A]. For the proof of Theorem 1 see section 1 of Chapter 2.

The Brauer group of a finite field is trivial, as shown by Joseph Wedderburn (1882–
1948). The Brauer group of an algebraically closed field is also trivial. Moreover, a theorem
of Ferdinand Frobenius (1849–1917) showed that R and H are the only central simple alge-
bras over R that are division rings. Consequently, the Brauer group of R is isomorphic to
Z/2Z.

For an algebra A over k we define the opposite algebra Ao as the opposite ring of A (see
Definition 1.4) with the same k-structure map as A. If A is a central simple algebra over k,
then the opposite algebra Ao of A is also central simple over k.

Theorem 2. Let k be a field. Then the following statements hold.
(i) The unit element of Br(k) is [k].
(ii) For every A in CSA(k) the equality [Ao] = [A]−1 holds in Br(k).
(iii) The group Br(k) is abelian.
(iv) All elements of Br(k) have finite order.
(v) If k is perfect of characteristic p with p a prime number, then every element of Br(k)

has order not divisible by p.

For a proof of (i), (ii) and (iii) see section 1 of Chapter 2, and for a proof of (iv) see section
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introduction

Chapter 3. A proof of (v) can be found in section 1 of Chapter 3.

Let f : k → l be a field homomorphism, and let A be a central simple algebra over k. Then
the extended algebra A⊗k l is the l-algebra obtained by extension of scalars via f , usually
denoted by Af , or by Al when the map f is understood. If k is of characteristic p, with p

a prime number, an important example is the k-algebra A⊗k k obtained via the Frobenius
endomorphism Frobk : k → k given by x 7→ xp, denoted by AFrobk .

Furthermore, we let Fld denote the category of fields with the morphisms given by
field homomorphisms, and let Ab denote the category of abelian groups with morphisms
given by group homomorphisms. Then the following theorem shows that the Brauer group
is covariantly functorial.

Theorem 3. The following statements hold.
(i) For each field homomorphism f : k → l there is a unique group homomorphism

Br(f) : Br(k) → Br(l) that satisfies [A] 7→ [Af ].
(ii) The Brauer group defines a covariant functor Br: Fld → Ab that maps a field k to

Br(k) and maps a field homomorphism f to Br(f).
(iii) Let k be a field of characteristic p, with p a prime number. Then the group homomor-

phism Br(Frobk) : Br(k) → Br(k) is given by b 7→ bp.

For a proof of (i) and (ii) see section 3 of Chapter 2, and for a proof of (iii) see section 1 of
Chapter 3.

The proof of Theorem 2(iv) uses a cohomological description of the Brauer group. This
description is obtained via so-called relative Brauer groups.
Let f : k → l be a field extension. The kernel of Br(f) is called the relative Brauer group of
the field extension l ⊃ k, denoted by Br(l/k). If A is a central simple algebra over k such
that [A] is contained in Br(l/k), then we say that l splits the central simple k-algebra A

or that l is a splitting field for A. In the case that l ⊃ k is a Galois field extension, then
Br(l/k) is isomorphic as a group to the second Galois cohomology group H2(Gal(l/k), l∗)

of the field extension l ⊃ k with coefficients in l∗. In particular, a separable closure ksep
of k splits all central simple algebras over k. Hence, Br(k) is isomorphic as a group to
H2(Gal(ksep/k), k

∗
sep). This will be shown in section 4 of Chapter 2.

We define the degree of an arbitrary field homomorphism f : k → l as the dimension of l as
a vector space over im(f), denoted by deg(f). Furthermore, we let Fldf denote the category
of fields with the morphisms given by the field homomorphisms of finite degree.

Theorem 4. There exists a contravariant functor Bro : Fldf → Ab that maps a field k

to Br(k) such that for every morphism f : k → l in Fldf and every b ∈ Br(k) the equality
(Cor(f) ◦ Br(f)) (b) = bdeg(f) holds.

An outline of the proof of this theorem will be given in Chapter 3.

This thesis is organized as follows.
In Chapter 1 our focus is the theory of central simple algebras over a field. We begin

by introducing algebras over arbitrary commutative rings and some examples of algebras,
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namely endomorphism algebras and matrix algebras, and study tensor products of algebras.
Moreover, a brief explanation of the theory of semisimple rings and modules, and its con-
nection with central simple algebras is given. The technique of changing the base ring of
an algebra is introduced, and more properties of central simple algebras are proven. Then
splitting fields are studied, including strictly maximal subfields of a central simple algebra.
We will conclude the chapter with the Skolem-Noether theorem.

In Chapter 2 we will construct the Brauer group in the classical way. Furthermore,
examples of Brauer groups are given, including the Brauer group of a quasi-algebraically
closed field (Definition 2.6). The functorial property of the Brauer group is treated briefly,
which is followed by the study of relative Brauer groups. Then crossed product algebras are
studied, and we conclude the chapter by giving the cohomological description of the Brauer
group.

In Chapter 3 our goal is to prove that the Brauer group is torsion. We study the
corestriction map for finite separable field extensions, and extend it to arbitrary finite field
extensions. This will include the study of the p-power of elements of the Brauer group, for
p a prime number. We use this map to prove that the Brauer group is torsion. We will
conclude the chapter by a brief study of the exponent and index of an element of the Brauer
group, and give a decomposition theorem for central division algebras.

The assumed knowledge in this thesis includes a firm understanding of the tensor product
theory of modules and the basics of category theory. For the first we refer to [Lan02, Chapter
6] or [AM69, Chapter 2], as for the second we refer to [Mac98, Chapter 1 and Chapter 2]
or [Lan02, Chapter 1, section 11]. For section 5 of Chapter 2 the reader is required to have
a basic understanding of group cohomology, for which we refer to Chapter 2 of [Mil11] or
Chapter 4 of [CF67].
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Chapter 1
Algebras

Let R be a commutative ring. An algebra over R, or R-algebra, is a pair (A,φ) consisting
of a ring A and a ring homomorphism φ : R → Z(A) called the structure map of A over R,
where Z(A) = {x ∈ A : xa = ax for all a ∈ A} is called the center of A, which is a subring
of A. One usually refers to A as the R-algebra, and keeps the structure map in mind. If A
is an R-algebra that is a division ring, we say that A is a division algebra. Furthermore, a
simple ring is a ring with exactly two two-sided ideals. An R-algebra is called simple if it
is simple as a ring.

An algebra homomorphism f : A→ A′ between two R-algebras is a ring homomorphism
such that the diagram

A
f

// A′

R

__????????

>>~~~~~~~~

commutes. This defines the category AlgR of R-algebras, in which we denote the set of
R-algebra homomorphisms by AlgR(−,−).

1. Endomorphism and matrix algebras

If A is any ring, then by an A-module we mean a left A-module, leaving the right A-modules
disregarded. However, the theory about left modules can easily be obtained for right modules
by replacing the base ring with its opposite ring (see Definition 1.4). Furthermore, if A and
B are two rings such that the additive group B+ of B is given an A-module structure, then
we often write AB to denote the A-module B+.

Let R be a commutative ring, and observe that the additive group A+ of an R-algebra
(A,φ) is an R-module by restriction of scalars, i.e., by the composed map

R
φ

// Z(A) i // A
f

// End(A+) ,

where i is the inclusion map, and f defines the usual A-module structure on A+.
Now let A be any ring, and let M be a A-module. Then the endomorphism ring

EndA(M) is the ring consisting of A-linear endomorphisms of M , where multiplication
and addition are given by composition and pointwise addition, respectively. For a ∈ A,
let λa denote the A-linear endomorphism of M given by left-multiplication by a, and
note that λa is clearly in the center of EndA(M) if a ∈ Z(A). Observe that the map
g : Z(A) → Z (EndA(M)) given by a 7→ λa is a ring homomorphism, which in particu-
lar gives EndA(M)+ the usual Z(A)-module structure. Let R be a commutative ring, and
suppose a ring homomorphism h : R → Z(A) is given. Then the composed map

R
h // Z(A)

g
// Z (EndA(M))

defines an R-algebra structure on EndA(M). An algebra of this form is often referred to as
an endomorphism algebra.
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chapter 1. algebras

Definition 1.1. Let R be a commutative ring, and let A be an R-algebra. Then EndR(A)

is defined as the R-algebra EndR(RA).

Let A be any ring, and let n ∈ Z>0. Then the n×n-matrix ring Mn(A) is the ring consisting
of the n× n-matrices with coefficients in A, where multiplication and addition are given by
the usual matrix multiplication and addition. An elementary linear algebra computation
shows that the ring homomorphism Z(A) → Z(Mn(A)) given by a 7→ aIn, where In is the
n× n-identity matrix, is an isomorphism. This implies that if R is a commutative ring and
a ring homomorphism R → Z(A) is given, then the ring Mn(A) is an R-algebra. An algebra
of this form is often referred to as a matrix algebra.

Proposition 1.2. Let A be a ring, and let n ∈ Z>0. Then there is a bijection between the
set of two-sided ideals of A and the set of two-sided ideals of Mn(A) that sends an two-sided
ideal I of A to the two-sided ideal Mn(I) of Mn(A).

Proof. See [Row88, Proposition 1.1.5].

Corollary 1.3. Let A be a simple ring, and let n ∈ Z>0. Then Mn(A) is a simple ring.

Definition 1.4. Let R be a ring. The opposite ring Ro of R is the additive group R+

endowed with a multiplication operation ‘⋆’ defined for x, y ∈ R+ by x ⋆ y = y · x, where ‘·’
is the multiplication operation of R.

Definition 1.5. Let R be a commutative ring, and let (A,φ) be an algebra over R. A
k-algebra (B,ψ) is called the opposite algebra of A if B is Ao as a ring, and φ is equal to ψ.

Proposition 1.6. Let R be a commutative ring, and let A be an R-algebra. Then there
is an R-algebra isomorphism between Ao and EndA(AA) that maps an element x in Ao to
the A-linear endomorphism of A given by right-multiplication with x.

Proof. For an element a in A, we let ρa denote the A-linear endomorphism of A given by
right-multiplication with a. Define the map f : Ao → EndA(AA) by x 7→ ρx, and observe
that f is a ring homomorphism.

Let r ∈ R and a ∈ Ao, then the equality f(r ⋆ a) = ρr ◦ ρa holds. Since r commutes
with any element of A, the equality λr = ρr holds, where λr is the A-linear endomorphism
of A given by left-multiplication with r. As the action of R on EndA(AA) is given by left-
multiplication, we have the equalities f(r ⋆ a) = rρa = rf(a), that is, f is an R-algebra
homomorphism.

Observe that AA is a faithful A-module, since 1 ∈ A is only annihilated by 0 ∈ A;
hence, f is injective. Moreover, since elements of EndA(AA) are A-linear, it is easy to see
that these elements are given by right-multiplication with an element of A. It follows that
f is surjective. Thus, f is an R-algebra isomorphism.

Let R be a commutative ring, and let A be an R-algebra. Let M be a A-module, and let
n ∈ Z>0. Then it is easy to check that we have the R-algebra isomorphism EndA(M

n) ∼=
Mn (EndA(M)). In particular, if M is a free A-module of rank n, that is, if M is isomorphic
to An as an A-module, then there is an R-algebra isomorphism EndA(M) ∼= Mn(A

o) by the
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2. algebras and tensor products

above proposition.

2. Algebras and tensor products

Theorem 1.7. Let R be a commutative ring, and let A and B be two R-algebras. Then
there is a unique R-algebra structure on A⊗R B that for any a, c ∈ A and b, d ∈ B satisfies

(a⊗ b) · (c⊗ d) = ac⊗ bd.

Proof. Given (a, b) ∈ A× B we have an R-bilinear map Ma,b : A× B → A⊗R B defined
by (x, y) 7→ xa ⊗ yb. Hence, Ma,b induces a unique R-linear homomorphism ma,b : A ⊗R

B → A ⊗R B satisfying x ⊗ y 7→ xa ⊗ yb. Thus, for any pair (c, d) ∈ A × B we have
a unique R-linear homomorphism mc,d : A ⊗R B → A ⊗R B, i.e., there is a bilinear map
F : A × B → EndR(A ⊗R B) defined by (x, y) 7→ mx,y. It is easy to check that F is
R-bilinear, since R maps in the center of A and in the center of B, and the universal
tensor product map A×B → A⊗R B is R-bilinear. This gives an R-linear homomorphism
f : A ⊗R B → EndR(A ⊗R B) satisfying a ⊗ b 7→ ma,b. Now, define the multiplication
map φ : A ⊗R B × A ⊗R B → A ⊗R B by (x, y) 7→ f(x)(y), and observe that φ satisfies
(a ⊗ b, c ⊗ d) 7→ ac ⊗ bd. It is easy to check that φ is R-bilinear, since f and the elements
of EndR(A⊗R B) are R-linear.

The bilinearity of φ implies that the multiplication on A⊗R B is distributive over the
addition. By this distributivity and the bilinearity of the universal tensor product map it
suffices to show the remaining R-algebra properties for the pure tensors. This makes it
easy to check that 1 ⊗ 1 is the identity element and that the multiplication is associative.
Furthermore, we have a commutative diagram

R
f

//

g

��

Z(A)

α

��

Z(B)
β

// Z (A⊗R B)

where f and g are the structure maps for A and B, and α and β are the natural homomor-
phisms given by α(a) = a ⊗ 1 and β(b) = 1 ⊗ b, respectively. It follows that A ⊗R B has
a unique R-algebra structure such that (a ⊗ b)(c ⊗ d) = ac ⊗ bd holds for all a, c ∈ A and
b, d ∈ B.

As the tensor product of algebras inherits the universal mapping property of modules, it
also obtains a universal mapping property of algebras. This mapping property, to be stated
in the proposition below, is often used to construct algebra homomorphisms from the tensor
product to another algebra.

Proposition 1.8. Let R be a commutative ring, and let A and B be two R-algebras.
Then for every R-algebra C there is a bijection f between

AlgR(A⊗R B,C)

and the set

{(φ, ψ) ∈ AlgR(A,C)× AlgR(B,C) : φ and ψ have centralizing images in C}

3



chapter 1. algebras

given by
f(m) = (m ◦ α,m ◦ β) for m ∈ AlgR(A⊗R B,C),

where α : A→ A⊗RB and β : B → A⊗RB are the natural R-algebra homomorphisms given
by α(a) = a⊗ 1 for a ∈ A and β(b) = 1⊗ b for b ∈ B.

Proof. First, observe that the images of α and β clearly centralize each other in A⊗R B.
Hence, the multiplicativity of m implies that the images of m ◦ α and m ◦ β centralize each
other in C. Thus, the map f is well-defined.

Let m,n ∈ AlgR(A ⊗R B,C) and suppose f(m) = f(n) holds. Let i and j be the
structure maps of A and B over R, respectively. Then we have the following commutative
diagram

R
i //

j

��

A

φ

��

α

��

B
β

//

ψ //

A⊗R B
n

$$H
HH

HH
HH

HH

m
$$H

HH
HH

HH
HH

C

from which it follows that m and n are equal when restricted to the pure tensors {a ⊗ b :

a ∈ A, b ∈ B}. As the pure tensors generate A⊗R B, it follows that m and n are equal on
their whole domain. Thus, the map f is injective.

For the surjectivity of f , suppose we have a pair (φ, ψ) ∈ AlgR(A,C) × AlgR(B,C)

such that the images of φ and ψ in C centralize each other. Observe that the map M : A×
B → C given by (a, b) 7→ φ(a)ψ(b) is R-bilinear. Hence, M induces a unique R-linear
homomorphism m : A ⊗R B → C satisfying a ⊗ b 7→ φ(a)ψ(b) for all a ∈ A and b ∈ B.
Observe that m is also multiplicative, since the images of φ and ψ centralize each other
in C. Moreover, it holds that m(1 ⊗ 1) = 1. Hence, m is an R-algebra homomorphism.
Furthermore, it is clear that m ◦ α = φ and m ◦ β = ψ hold; hence, f is surjective.

Notation. Let R be a commutative ring, and let A and B be two R-algebras. Let A⊗R 1

denote the subalgebra {a ⊗ 1 : a ∈ A} of A ⊗R B, and let 1 ⊗R B denote the subalgebra
{1 ⊗ b : b ∈ B} of A ⊗R B. Often we will reduce notation to A1 for A ⊗R 1 and 1B for
1⊗R B.

Definition 1.9. Let A be a ring, and let X be a subset of A. Then CA(X) = {a ∈ A :

xa = ax for all x ∈ X} is called the centralizer of X in A.

It is easy to check that the centralizer of a subset of a ring A, is a subring of A as well.

Theorem 1.10. Let k be a field, and let A and B be two k-algebras. Then Z(A⊗kB) and
Z(A)⊗k Z(B) are isomorphic as k-algebras.

Proof. First, observe that if A = {0} or B = {0} hold, the statement clearly holds. Thus,
assume A and B are unequal to {0}. Consider the sequence

0 // Z(A) i // A
f

// Endk(A)

of k-algebras, where i is the natural inclusion and f is given by x 7→ [a 7→ ax− xa], and

4



2. algebras and tensor products

observe that it is clearly exact. Since k-modules are flat, the sequence

0 // Z(A)⊗k B
i⊗idB // A⊗k B

f⊗idB // Endk(A)⊗k B

is exact too, where idB is the identity on B. Let g : Endk(A) ⊗k B → Homk(A,A ⊗k B)

be given by f ⊗ b 7→ [a 7→ f(a) ⊗ b], and observe that g is clearly a well-defined k-linear
homomorphism. It is easy to check that g maps im(f⊗ idB) injectively to Homk(A,A⊗kB).
Hence, the composed map (g ◦ f) ⊗ idB has the same kernel as f ⊗ idB. Seeing that
ker ((g ◦ f)⊗ idB) is obviously CA⊗kB(A1), we have the equality CA⊗kB(A1) = Z(A) ⊗k B.
In the same manner we can show that CA⊗kB(1B) = A⊗k Z(B) holds.

Now, clearly the inclusions Z(A⊗kB) ⊂ CA⊗kB(A1) and Z(A⊗kB) ⊂ CA⊗kB(1B) hold.
Hence, Z(A⊗kB) ⊂ CA⊗kB(A1)∩CA⊗kB(1B) holds. Moreover, we have that (Z(A)⊗k B)∩
(A⊗k Z(B)) = Z(A)⊗k Z(B) holds by elementary linear algebra arguments. Thus Z(A⊗k

B) ⊂ Z(A)⊗k Z(B) holds.
At last, observe that the flatness of A and B as k-modules showed that the inclusions

Z(A) ⊗k B ⊂ A ⊗k B and A ⊗k Z(B) ⊂ A ⊗k B hold. In particular, their intersection
Z(A)⊗k Z(B) is also contained in A⊗k B. Moreover, it is easy to check that Z(A)⊗k Z(B)

is contained in Z(A⊗k B).

Below we prove the commutativity of the tensor product of two algebras with the help of
the Yoneda lemma.

Definition 1.11. Let C be a category. Then C∧ is the opposite category of the category
Funct(C,Set) of functors from C to Set.

Lemma 1.12. Let C be a category. Then h∧ : C → C∧ given by X 7→ HomC(X,−) for every
object X ∈ C is a contravariant functor.

Proof. See [Dor08, §2.4.2].

Theorem 1.13 (Yoneda). Let C be a category. The functor h∧ is fully faithful, i.e.,
for every X, Y ∈ C the natural homomorphism HomC(X, Y ) → HomC∧(h∧(X), h∧(Y )) is a
bijection.

Proof. See [Dor08, Proposition 2.4.9].

Proposition 1.14. Let R be a commutative ring, and let A and B be R-algebras. Then
there is a unique R-algebra isomorphism A⊗R B → B ⊗R A that satisfies a⊗ b 7→ b⊗ a.

Proof. First, observe that the symmetric property of Proposition 1.8 implies that the
functors AlgR(A ⊗R B,−) and AlgR(B ⊗R A,−) are naturally isomorphic. Consequently,
Theorem 1.13 implies that there is a unique isomorphism between A⊗RB and B⊗RA that
satisfies a⊗ b 7→ b⊗ a.

Proposition 1.15. Let R and S be commutative rings. Let A be an R-algebra, B be an
R-algebra and an S-algebra and C be an S-algebra. Then there is a unique R⊗Z S-algebra
isomorphism (A⊗R B)⊗S C → A⊗R (B ⊗S C) satisfying (a⊗ b)⊗ c 7→ a⊗ (b⊗ c).

Proof. See [Bou73, Chapter 3, §4, section 1].
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chapter 1. algebras

Lemma 1.16. Let R be a commutative ring, and let A be an R-algebra. Let m,n ∈ Z>0.
Then the R-algebra isomorphism Mm(Mn(A)) ∼= Mmn(A) holds.

Proof. Write Aopp = B. By the isomorphism below Proposition 1.6, we have the following
R-algebra isomorphisms

Mmn(A) ∼= EndB(B
mn)

∼= EndB((B
n)m)

∼= Mm(EndB(B
n))

∼= Mm(Mn(EndB(B)))

∼= Mm(Mn(A))

that prove the lemma.

Proposition 1.17. Let R be a commutative ring, and let A be an R-algebra. Then the
R-algebra isomorphism A⊗R Mn(R) ∼= Mn(A) holds for any n ∈ Z>0.

Proof. First, observe that f : A→ Mn(A) given by a 7→ aI, where I is the identity matrix
in Mn(A), is an R-algebra homomorphism. Furthermore, the map g : Mn(R) → Mn(A)

given by (aij)
n
i,j=1 7→ (φ(aij))

n
i,j=1 is an R-algebra homomorphism. Clearly the images of f

and g centralize each other in Mn(A). Hence, by Proposition 1.8 there is a unique R-algebra
homomorphism h : A⊗R Mn(R) → Mn(A) satisfying a⊗M 7→ ag(M).

Let S = {eij ∈ Mn(R) : i, j ∈ {1, . . . , n}}, where eij is defined in the proof of the
previous lemma. Observe that A ⊗R Mn(R) has an R-basis {a ⊗ e : a ∈ A, e ∈ S}, which
is mapped under f to the R-basis {ag(e) : a ∈ A, e ∈ S} of Mn(A). It follows that f is an
R-algebra isomorphism.

Corollary 1.18. Let R be a commutative ring, and let A and B be two R-algebras. Then
for any m,n ∈ Z>0 the R-algebra isomorphisms Mm(A)⊗R Mn(B) ∼= Mmn(A⊗R B) hold.

Proof. Let m,n ∈ Z>0 and observe that the R-algebra isomorphisms Mm(R)⊗RMn(R) ∼=
Mn(Mm(R)) ∼= Mmn(R) hold by the previous proposition and Proposition 1.16. Fur-
thermore, we have the R-algebra isomorphisms Mm(A) ∼= A ⊗R Mm(R) and Mn(B) ∼=
B⊗RMn(R). Hence, the commutativity of the tensor product implies that the R-algebra iso-
morphisms Mm(A)⊗RMn(B) ∼= (A⊗RB)⊗R(Mm(R)⊗RMn(R)) ∼= (A⊗RB)⊗RMmn(R) hold.
Thus, the previous proposition implies that the R-algebra isomorphisms Mm(A)⊗RMn(B) ∼=
Mmn(A⊗R B) hold.

3. Semisimplicity

In this subsection we will briefly explain the theory of semisimple rings and modules. This
theory provides information about the underlying module structure of certain simple alge-
bras, which enables us to prove many theorems. Unfortunately it is not in the range of this
text to fully cover this abundant theory; hence, we shall only race our way through parts
of the theory that are of our interest. For a more extensive and complete treatment of this
theory see [Bou73, Chapter 8], [FD93, Chapter 1] or [CR62, Chapter 4].
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3. semisimplicity

Definition 1.19. Let R be a ring, and let M be an R-module. If M has exactly two
R-submodules, then M is called simple.

Proposition 1.20. Let R be a ring, and let M be an R-module. Then the following
statements are equivalent:

(i) M is a simple R-module;
(ii) M is non-zero and is generated by any non-zero element of M ;
(iii) there is a maximal left ideal I of R such that M ∼=R R/I holds.

Proof. See [Bou73, Chapter 8, §3, Proposition 1 and 2].

Example 1.21. A maximal ideal of Z is of the form (p) for some prime number p, and
conversely every ideal in Z generated by a prime number is a maximal ideal. Hence, the
simple Z-modules are the cyclic groups of prime order.

The following lemma is due to Issai Schur (1875–1941) and shows a way to construct a
division ring.

Lemma 1.22 (Schur’s Lemma). Let R be a ring, and let M be a simple R-module. Then
the endomorphism ring EndR(M) is a division ring.

Proof. See [Bou73, Chapter 8, §4, Proposition 2].

Definition 1.23. Let R be a ring, and let M be an R-module. If any exact sequence of
R-modules

0 // K //M // L // 0

splits, then M is called semisimple.

Proposition 1.24. Let R be a ring, and let M be an R-module. Then the following
statements are equivalent:

(i) M is a semisimple R-module;
(ii) M is a direct sum of a family of simple R-submodules;
(iii) M is a sum of a family of simple R-submodules;
(iv) every R-submodule of M has a complement.

Proof. See [Bou73, Chapter 8, §3, Proposition 7].

Corollary 1.25. Let R be a ring, and let M be an R-module. Then every submodule of
M and every quotient module of M is semisimple.

Proof. See [Bou73, Chapter 8, §3, Corollary 1].

Example 1.26. A Z-module is semisimple if and only if it is a direct sum of cyclic groups
of prime order. Equivalently, a Z-module is semisimple if and only if each element has finite
square-free order.

Example 1.27. It is easy to see that all modules over a division ring are free. Corre-
sponding to the case of fields, modules over a division ring are usually called vector spaces.
Now, since every exact sequence of free modules splits, any module over a division ring is
semisimple.

7



chapter 1. algebras

Definition 1.28. A ring R is called semisimple if it is semisimple as a module over itself.

In fact, a semisimple ring as in the definition above is a left semisimple ring. There is also a
notion of a right semisimple ring, which is a ring that is semisimple as a right module over
itself. We will soon see that a ring is left semisimple if and only if it is right semisimple;
hence, a ring R is semisimple if and only if Ro is semisimple, meaning that the use of ‘left’
and ‘right’ is superfluous.

Proposition 1.29. A ring R is semisimple if and only if every R-module is semisimple.

Proof. See [Bou73, Chapter 8, §5, Proposition 1].

Proposition 1.30. Let R be a semisimple ring. Then there are only finitely many simple
R-modules in the unique decomposition of RR in simple R-modules. Moreover, every simple
R-module is isomorphic to a direct summand of this decomposition.

Proof. See [FD93, Theorem 1.9].

Example 1.31. From Example 1.27 it follows that any division ring is semisimple.

Example 1.32. Clearly Z+ is not a finite direct sum of cyclic groups of prime order;
hence, Z is not a semisimple ring.

The following theorem, due to Emil Artin (1898–1962) and Joseph Wedderburn (1882–1948),
classifies semisimple rings. In 1907 Wedderburn first proved a structure theorem for simple
algebras over a division ring, and in 1927 Artin generalized this structure theory to semisim-
ple rings. Nowadays this generalized structure theorem is called the Artin-Wedderburn
theorem and is stated as follows.

Theorem 1.33 (Artin-Wedderburn). Let R be a ring. Then R is semisimple if and only
if there is t ∈ Z>0 such that there are division rings D1, . . . , Dt and n1, . . . , nt ∈ Z>0 such
that R is isomorphic to

∏t
i=1 Mni

(Di) as a ring. The number t is uniquely determined,
as are the division algebras D1, . . . , Dt up to isomorphism. There are exactly t mutually
nonisomorphic simple modules over R.

Proof. See [FD93, Proposition 1.10, Theorem 1.11 and Theorem 1.13].

Corollary 1.34. A ring is left semisimple if and only if it is right semisimple.

Definition 1.35. A ring R is called left (respectively right) artinian if there is no strictly
descending infinite chain I1 ) I2 ) I3 ) . . . of left (respectively right) ideals of R. A ring is
called artinian if it is both left and right artinian.

The following theorem classifies simple semisimple rings, and is in fact the original result of
Wedderburn formulated in a more modern way.

Theorem 1.36. Let R be a ring. Then the following statements are equivalent:
(i) R is a simple artinian ring;
(ii) R is semisimple, and all simple R-modules are isomorphic;
(iii) there exist n ∈ Z>0 and a division ring D such that R is isomorphic to Mn(D) as a

ring.
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4. central simple algebras

Proof. See [FD93, Theorem 1.15].

Corollary 1.37. Let R be a simple artinian ring. Then there is a unique n ∈ Z>0 and
a division ring D that is unique up to isomorphism such that R is isomorphic to Mn(D) as
a ring.

Proof. See [CR62, Theorem 26.4].

4. Central simple algebras

If R is a commutative ring, we say that an R-algebra A is central if the structure map
R → Z(A) is an isomorphism. Observe that any ring is a central algebra over its center.

Let k be a field, and observe that the additive group A+ of a k-algebra A is a k-vector
space. The k-dimension that A+ hereby gets is called the rank of the algebra A, denoted
[A : k]. If [A : k] is finite, we say that A has finite rank over k or that A is of finite rank
over k.

Definition 1.38. Let k be a field. A central simple k-algebra is a central and simple
k-algebra of finite rank over k.

Example 1.39. Every field is a central simple algebra over itself.

Example 1.40. The quaternion ring H is a central simple algebra of rank 4 over R.

Proposition 1.41. The center of a simple ring is a field.

Proof. Let A be a simple ring and let x ∈ Z(A) be non-zero. Then the two-sided ideal (x)
generated by x is equal to A; hence, there is y ∈ A such that xy = 1 holds. It follows that
y is the inverse of x. Now, let z ∈ A and observe that yz = yzxy = yxzy = zy holds, that
is, we have y ∈ Z(A).

Example 1.42. Let A be a simple ring. Then A is a central and simple algebra over its
center Z(A). In particular, for any n ∈ Z>0 the matrix algebra Mn(A) is central and simple
over Z(A). Additionally, if A is of finite rank over Z(A), then for any n ∈ Z>0 the matrix
algebra Mn(A) is central simple over Z(A).

By Theorem 1.10 the tensor product of two central algebras over a field remains central
over the same field. The following theorem shows that the tensor product also preserves
simplicity in a certain case.

Theorem 1.43. Let k be a field. Let A be a central and simple k-algebra and B a simple
k-algebra. Then A⊗k B is a simple k-algebra.

Proof. See [Ker07, 2.6].

Remark 1.44. The condition that A is central over k cannot be omitted from Theorem
1.43. Indeed, suppose l ) k is a field strictly containing k, and observe that the map
idl⊗ idl : l⊗k l → l satisfying x⊗ y 7→ xy is a surjective ring homomorphism. Let x ∈ l \ k,
and observe that x⊗1−1⊗x is a non-zero element of l⊗k l. Since (idl⊗ idl)(x⊗1−1⊗x) = 0

holds, the kernel of idl⊗ idl is a non-zero two-sided ideal of l ⊗k l. It follows that l ⊗k l is
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not simple.

Corollary 1.45. Let k be a field, and let A and B be two central simple k-algebras.
Then A⊗k B is a central simple k-algebra.

Proof. Since A and B are of finite rank over k, their tensor product is too. Hence, Theorem
1.10 and Theorem 1.43 prove the statement.

Proposition 1.46. Any algebra of finite rank over a field is an artinian ring.

Proof. Let A be an algebra of finite rank over a field k, and suppose I1 ) I2 ) I3 ) . . . is a
strictly descending chain of left ideals of A. Each ideal Ii in this chain is obviously a k-vector
subspace of A; hence, dimk(Ii) <∞ for every ideal Ii in the descending chain. As the chain
is strictly descending, it follows that dimk(I1) > dimk(I2) > . . . holds. Since dimk(I1) is
finite and the standard ordering on Z≥0 is a well-ordering, it follows that the chain is not
strictly descending. This contradiction implies that A is left artinian. Analogously we can
show that A is right artinian. Thus A is artinian.

Definition 1.47. Let k be a field, and let D be an algebra over k. If D is a central
algebra of finite rank over k that is also a division ring, then D is called a central division
algebra over k.

Proposition 1.48. Let k be a field, and let A be a k-algebra. Then A is a simple algebra
of finite rank over k if and only if there exist n ∈ Z>0 and a division algebra D of finite
rank over k such that A is isomorphic to Mn(D) as a k-algebra. The integer n is uniquely
determined, as is the division algebra D up to isomorphism.

Proof. By Theorem 1.36 there exist n ∈ Z>0 and a division ring D such that A is
isomorphic to Mn(D) as a ring. Observe that D is a division k-algebra via the k-algebra
structure of A given by the ring isomorphisms Z(A) ∼= Z(Mn(D)) ∼= Z(D). Clearly we now
have the k-algebra isomorphism A ∼= Mn(D). Moreover, we have the equalities [A : k] =

[Mn(D) : k] = n2[D : k], where [A : k] is finite; hence, [D : k] is finite too. It follows that D
is a division algebra of finite rank over k.

Conversely, suppose there exist n ∈ Z>0 and a division algebra D of finite rank over k
such that A is isomorphic to Mn(D) as a k-algebra. Then Corollary 1.3 implies that A is a
simple algebra over k. Furthermore, the rank of D over k is finite; hence, A is also of finite
rank over k. It follows that A is a simple algebra of finite rank over k.

For the last statement see [Ker07, §1.11].

Corollary 1.49. Let k be a field, and let A be a k-algebra. Then A is a central simple
algebra of finite rank over k if and only if there exist n ∈ Z>0 and a division algebra D

of finite rank over k such that A is isomorphic to Mn(D) as a k-algebra. The integer n is
uniquely determined, as is the division algebra D up to isomorphism.

Proof. This follows from the previous proposition and the obvious k-algebra isomorphisms
k ∼= Z(A) ∼= Z(D).

With this structure theorem at hand, we first prove that any central simple algebra over an
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algebraically closed field k is isomorphic as a k-algebra to a matrix algebra with coefficients
in k.

Lemma 1.50. Let k be an algebraically closed field. Then any division algebras of finite
rank over k is isomorphic to k as an algebra.

Proof. Suppose D is a noncommutative division algebra of finite rank over k, and let x
be an element of D. Then x generates the commutative extension k(x) of k, which is finite
for D is of finite rank over k. As finite field extensions are algebraic and k is algebraically
closed, it follows that k(x) = k holds. Consequently, x is an element of k, that is, we have
that D = k holds.

Corollary 1.51. Let k be an algebraically closed field. Then every central simple k-
algebra is isomorphic to Mn(k) as a k-algebra for some n ∈ Z>0.

Proof. By Corollary 1.49 and Lemma 1.16 it suffices to prove the statement for central
division algebras over k. Since central division k-algebras have finite rank over k, the
previous lemma proves this corollary.

A technique that will prove to be very helpful in understanding the structure of central
simple algebras is the extension of the base field of an algebra, also called extension of
scalars or base change of an algebra.

Let f : k → l be a field homomorphism. Then the ring homomorphism φ : l → Z(A)⊗k l

defined by x 7→ 1 ⊗ x gives A ⊗k l an l-algebra structure, since the k-algebra isomorphism
Z(A) ⊗k l ∼= Z(A ⊗k l) holds by Theorem 1.10. The l-algebra A ⊗k l is called the extended
algebra of A via f , and we say that this algebra is obtained by extension of scalars via f
or by base change via f . We often denote this algebra by Af , or by Al when the map f is
understood. For example, in the case of field extensions l ⊃ k, we write Al for the extended
algebra A⊗k l.

Proposition 1.52. Let k be a field, and let A be an algebra over k. Let L ⊃ k be a field
extension of k. Then A is a central simple algebra over k if and only if A⊗k l is a central
simple algebra over l.

Proof. Suppose A is central simple over k, then Theorem 1.10 and Theorem 1.43 imply
that Al is central and simple over l. As [Al : l] = [A : k] holds, we see that Al is a central
simple l-algebra.

Conversely, suppose A ⊗k l is central simple over l. Then Theorem 1.10 implies that
the k-algebra isomorphism Z(A)⊗k l ∼= l holds; hence, we have the k-algebra isomorphism
Z(A) ∼= k. Now, suppose A is not simple, and let I be a two-sided ideal of A. Then I ⊗k 1

is a two-sided ideal of Al, which is simple. This contradiction implies that A is simple as a
ring. As [Al : l] = [A : k] holds, it follows that A is central simple over k.

It is no coincidence that the rank of H over R is a square, and in fact this is a property
all simple algebras of finite rank over a field enjoy. Together with the above technique we
prove this statement below.
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Proposition 1.53. Let k be a field, and let A be a central simple algebra over k. Then
the rank of A over k is a square.

Proof. Let k be an algebraic closure of k, then there is n ∈ Z>0 such that Ak and Mn(k)

are isomorphic as k-algebras. Then we have the equalities

[A : k] = [Ak : k] = [Mn(k) : k] = n2,

which prove the statement.

Definition 1.54. Let k be a field, and let A be a central simple k-algebra. The integer√
[A : k] is called the degree of A over k.

We conclude this section with a lemma that is essential in the construction of the Brauer
group in the next chapter.

Lemma 1.55. Let k be a field, and let A be a central simple algebra over k. Let n be the
degree of A. Then A⊗k A

o is isomorphic to Mn(k) as a k-algebra.

Proof. Let φ : A → Endk(A) be the k-algebra homomorphism given by A 7→ [x 7→ ax].
Furthermore, define the k-algebra homomorphism ψ : Ao → Endk(A) by a 7→ [x 7→ xa] and
observe that ψ and φ have centralizing images in Endk(A). By Proposition 1.8 there is a
unique k-algebra homomorphism f : A⊗kA

o → Endk(A) satisfying a⊗b 7→ φ(a)ψ(b). Since
A ⊗k A

o is simple, f is injective. Moreover, we have the equalities [A ⊗k A
o : k] = n2 and

[Endk(A) : k] = n2; hence, f is surjective. It clearly holds that Endk(A) is isomorphic to
Mn(k) as a k-algebra, which finishes the proof.

5. Splitting fields

We have seen that every central simple algebra over an algebraically closed field is isomorphic
as an algebra to a matrix algebra over the same field, see Proposition 1.51. In particular, for
a central simple algebra A over a field k with algebraic closure k̄, this means that there is
n ∈ Z>0 such that the k̄-algebra isomorphism Ak̄ ∼= Mn(k̄) holds. Moreover, for an arbitrary
field extension l of a field k and every m ∈ Z>0, it holds that Mm(k) ⊗k l is isomorphic to
Mm(l) as an algebra by Proposition 1.17.

In general, if A is a central simple algebra over k and there is n ∈ Z>0 such that Al is
isomorphic to Mn(l) as an l-algebra, then we say that A splits over l or that l is a splitting
field for A.

Proposition 1.56. Let k be a field, and let A be a central simple k-algebra. Let n be
the degree of A, and let l be a field over k that splits A. Then the l-algebra isomorphism
Al ∼= Mn(l) holds.

Proof. By definition of splitting we have that Al is isomorphic to Mi(l) as an l-algebra for
some i ∈ Z>0; hence, it rests to show that i = n holds. Observe that [Al : l] = [A : k] holds,
where [A : k] = n2 and [Al : l] = i2 hold. As i and n are positive integers, the equality i = n

follows.
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Splitting fields make it possible in the next chapter to divide the collection of all central
division algebras over a field into more convenient parts, which are in turn provided with
a transparent description through homological algebra. We will shortly introduce our very
first type of splitting field for a central simple algebra A, but first we are required to look
at the centralizers in A of subalgebras of A, done by the following proposition.

Proposition 1.57. Let k be a field. Let A be a central simple algebra over k, and let B
be a simple k-subalgebra of A. Then

(i) CA(B) is simple;
(ii) [A : k] = [B : k][CA(B) : k].

Proof. See [Bou73, Chapter 8, §10, Theorem 2].

Corollary 1.58. Let k be a field. Let A be a central simple algebra over k, and let B be
a simple k-subalgebra of A. Then CA(CA(B)) = B holds.

Proof. As the first statement of the previous proposition asserts that CA(B) is simple,
we can also apply the second statement of the same proposition to CA(B). This gives
[A : k] = [CA(B) : k][CA(CA(B)) : k]; hence, [CA(CA(B)) : k] = [B : k] holds. Since
B ⊂ CA(CA(B)) clearly holds, we have that B = CA(CA(B)) holds for their dimensions
over k are equal.

Let k be a field, and let A be a central simple algebra over k. Let l be a subfield of A
that is equal to its centralizer in A and suppose m is a field extension of l inside A. Then
m ⊂ CA(l) = l holds. Consequently, l = m holds, that is, l is a maximal subfield of A. These
subfields of A that equal their centralizer in A will henceforth be called strictly maximal
subfields of A.

Proposition 1.59. Let k be a field, and let A be a central simple algebra over k. Let n
be the degree of A, and let l be a subfield of A containing k. Then the following statements
are equivalent:

(i) l is a strictly maximal subfield of A;
(ii) l is of degree n over k;
(iii) l is a maximal commutative k-subalgebra of A.

Proof. First, we prove that (i) and (ii) are equivalent. By the previous proposition we
have that n2 = [A : k] = [l : k][CA(l) : k] holds. Hence, if l = CA(l) holds, it clearly
follows that [l : k] = n holds. On the other hand, if [l : k] = n holds, then we have that
[CA(l) : k] = n holds. As we always have l ⊂ CA(l), it follows that l = CA(l) holds for they
have equal rank over k. This shows that (i) and (ii) are equivalent.

Now we prove that (i) and (iii) are equivalent. Assume l = CA(l) holds and suppose
that there is a commutative k-subalgebra m of A such that l ⊂ m holds. Then clearly
m ⊂ CA(l) holds, that is, we have that l = m holds. On the other hand, assume l is a
maximal commutative k-subalgebra of A and let x ∈ CA(l). Then l[x] is a commutative
k-subalgebra of A; hence, by maximality of l we have that l[x] = l holds. It follows that (i)
is equivalent with (iii).
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The above proposition shows, specifically, that a strictly maximal subfield of A is a maximal
commutative k-subalgebra of A of degree n over k. In particular, if D is a division algebra,
then any commutative k-subalgebra of D is a field. Therefore, any maximal subfield of
a division algebra is strictly maximal. However, this does not hold in general for central
simple algebras, and in fact strictly maximal subfields do not always exist for central simple
algebras.

For example, consider the real matrix algebra A = Mm(H) for some m ∈ Z>0, and
observe that this algebra has rank 4m2 over R. By Proposition 1.59 a strictly maximal
subfield of A is of degree 2m over R. But R and C are the only finite field extensions of R.
Therefore Mm(H) has no strictly maximal subfields for any m ∈ Z>1.

Theorem 1.60. Let k be a field, and let A be a central simple k-algebra. Then any strictly
maximal subfield of A is a splitting field for A.

Proof. Let l be a strictly maximal subfield of A, and observe that the injection i : l → A

gives A an l-module structure by restriction of scalars. Define the maps φ : A → Endl(B)

and ψ : l → Endl(B) by a 7→ [x 7→ ax] and l 7→ [y 7→ yl], respectively, where B denotes the
right l-module A. It is easy to check that these maps are k-algebra homomorphisms, and
that φ and ψ have centralizing images in Endl(B). Now Proposition 1.8 implies that there
is a unique k-algebra homomorphism f : A ⊗k l → Endl(B) satisfying a ⊗ b 7→ φ(a)ψ(b),
and it is easy to check that f is in fact an l-algebra homomorphism.

Since A ⊗k l is simple by Theorem 1.43 and f is non-zero, the map f is injective.
Moreover, let n be the degree of A over k, and observe that the rank of A⊗k l over l is n2

and the rank of Endl(lA) over l is also n2. Consequently, f is an l-algebra isomorphism. As
lA is isomorphic to ln as an l-module, we have the l-algebra isomorphism Endl(lA) ∼= Mn(l).

6. The Skolem-Noether theorem

It is known that any k-linear automorphism of the matrix ring Mn(k) is an inner auto-
morphism (see [GS06, Lemma 2.4.1]), meaning there is an invertible matrix C such that
the k-linear automorphism is given by M 7→ CMC−1. To conclude this chapter, we give
the generalization of this statement to arbitrary central simple algebras, formulated by the
Skolem-Noether Theorem.

Definition 1.61. Let R be a commutative ring, and let A be an R-algebra. Then an
R-algebra automorphism f of A is called inner if there is an invertible element b ∈ A such
that for all a ∈ A the identity f(a) = bab−1 holds.

Theorem 1.62 (Skolem-Noether). Let k be a field. Let A be a simple algebra over k, and
let B be a central simple algebra over k. Suppose f, g : A→ B are k-algebra homomorphisms.
Then f and g differ by an inner k-algebra automorphism of B, i.e., there exists an invertible
element b ∈ B such that for all a ∈ A the identity f(a) = b · g(a) · b−1 holds.

Proof. See [Bou73, Chapter 8, §10, Theorem 1].
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Corollary 1.63. Let k be a field, and let A be a central simple algebra over k. Let B
and C be two simple k-subalgebras of A. Then any k-algebra isomorphism f : B → C is
induced by an inner k-algebra automorphism of A.

Proof. Let i : B → A and j : C → A be the k-algebra inclusion maps of B and C in A.
Consider the k-algebra homomorphisms j ◦ f and i ◦ idB, where idB is the identity map
on B, and apply the previous theorem to these maps. Then there exists a ∈ A∗ such that
for all b ∈ B we have the identity f(b) = aba−1, implying that f is induced by an inner
k-algebra automorphism of A.

Corollary 1.64. Let k be a field, and let A be a central simple k-algebra. Then any
k-algebra automorphism of A is inner.

Proof. Let f : A → A be a k-algebra automorphism and observe that A is a simple k-
subalgebra of itself. Applying the previous corollary to f , we see that f is in fact an inner
k-algebra automorphism of A.
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Chapter 2
The Brauer group

In this chapter we construct the Brauer group of a field without any deep set theoretic detail.
A set theorist is referred to [Bou73, Chapter 8, §10.4] for a more detailed construction of
the Brauer group of a field.

1. Construction

Let k be a field, and let CSA(k) be the class of all central simple algebras over k. We say
that two central simple k-algebras A and B are similar, denoted by A ∼ B, if there are
positive integers m and n such that Mm(A) is isomorphic to Mn(B) as a k-algebra. In the
next lemma we prove that this defines an equivalence relation on CSA(k), which reduces to
k-algebra isomorphism when the two central simple algebras have the same rank over k.

Lemma 2.1. Let k be a field. Then ∼ is an equivalence relation on CSA(k), which reduces
to k-algebra isomorphism when two central simple algebras have the same rank over k.

Proof. Observe that ∼ is clearly reflexive and symmetric on CSA(k). Let A, B and C be
elements of CSA(k) such that A ∼ B and B ∼ C. Then there are m,n, s, t ∈ Z>0 such that
the k-algebra isomorphisms Mm(A) ∼= Mn(B) and Ms(B) ∼= Mt(C) hold. It follows that the
k-algebra isomorphisms

Msm(A) ∼= Ms(Mm(A)) ∼= Ms(Mn(B)) ∼= Mn(Ms(B)) ∼= Mn(Mt(C)) ∼= Mnt(C)

hold; hence, A ∼ C holds. Consequently, ∼ is also a transitive relation on CSA(k), and
therefore an equivalence relation on CSA(k).

Suppose A and B are two elements of CSA(k) of the same rank that are similar. Then
there are m,n ∈ Z>0 such that the k-algebra isomorphism Mm(A) ∼= Mn(B) holds. Observe
that we have that [Mm(A) : k] = m2 · [A : k] = [Mn(B) : k] = n2 · [B : k] holds, from which
the equality [A : k] = [B : k] implies that m2 = n2 holds. Now, it is clear that the k-algebra
isomorphism Mm(A) ∼= Mm(B) holds if and only if the k-algebra isomorphism A ∼= B holds.

The next lemma shows that the tensor product is a class invariant under similarity.

Lemma 2.2. Let k be a field, and let A, B, A′ and B′ be central simple k-algebras such
that A ∼ A′ and B ∼ B′. Then A⊗k B ∼ A′ ⊗k B

′.

Proof. There existm,n, s, t ∈ Z>0 such that the k-algebra isomorphisms Mm(A) ∼= Mn(A
′)

and Ms(B) ∼= Mt(B
′) hold. Observe that we have the k-algebra isomorphism

Mm(A)⊗k Ms(B) ∼= Mn(A
′)⊗k Mt(B

′),

and that Proposition 1.18 implies that we have the k-algebra isomorphism

Mms(A⊗k B) ∼= Mnt(A
′ ⊗k B

′).
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Hence, A⊗k B and A′ ⊗k B
′ are similar.

Observe that for a field k the class CSA(k) is not empty, since for every n ∈ Z>0 the matrix
algebra Mn(k) is an element of CSA(k). We are now ready to prove the main theorem of
this section.

Theorem 2.3. Let k be a field. Then there exists a pair (G, s) consisting of a group G

and a surjective map s : CSA(k) → G that for every two central simple k-algebras A and B
satisfies: (i) the equality s(A⊗k B) = s(A) · s(B) holds; (ii) the equality s(A) = s(B) holds
if and only if A and B are similar. Moreover, the pair (G, s) is uniquely determined up to
a unique isomorphism, that is, if (G′, s′) is another pair satisfying the above, then there is
a unique group isomorphism σ : G→ G′ such that we have the equality s′ = σ ◦ s.

Proof. Let H be a subclass of CSA(k) that is a set such that every element of CSA(k) is
isomorphic as a k-algebra to at least one element of H, and let G be the quotient set of H
by ∼. For those who are interested, it is easy to show that such a set does exist. For an
element A of CSA(k) we let [A] denote the element of G that contains the elements of H
that are similar to A, which gives a surjective map s : CSA(k) → G defined by B 7→ [B].

We will now show that G is an abelian group under the tensor product over k. To this
end, observe that the map · : G×G→ G given by ([A], [B]) 7→ [A⊗k B] is well-defined by
Lemma 2.2; hence, it remains to prove that G satisfies the group axioms and commutativity
with respect to the tensor product. Observe that for any central simple k-algebra A it clearly
holds that A ⊗k k is isomorphic to A as a k-algebra; hence, [k] functions as the identity
element of G under the tensor product over k. Associativity follows from Proposition 1.15,
and commutativity follows from Proposition 1.14. At last, the existence of inverse elements
in G is proven by Lemma 1.55, which states that the inverse of an element [A] of G is given
by the element containing the opposite algebra of A. Thus, we have showed that G is an
abelian group under the tensor product over k.

Furthermore, it is clear that for every A,B ∈ CSA(k) the map s satisfies the equality
s(A⊗kB) = s(A)·s(B); hence, we have a pair (G, s) that satisfies the theorem. Now, suppose
(G′, s′) is another pair that satisfies the theorem, and define σ : G→ G′ by [A] 7→ s′(A). It is
easily checked that σ is a unique group isomorphism; hence, we have the equality s = σ ◦ s′.
It follows that (G, s) is uniquely determined up to isomorphism.

Definition 2.4. Let k be a field. The group of the uniquely determined pair (G, s) is
called the Brauer group of k, denoted by Br(k), and is written multiplicatively. For a central
simple algebra A over k we denote s(A) by [A]. Moreover, an element b of Br(k) is often
denoted by [A], where A is an element of CSA(k) that is similar to an element of b.

Proposition 2.5. Let k be a field. Then every element of Br(k) contains a unique central
division k-algebra up to isomorphism.

Proof. Let [A] be an element of Br(k). By Corollary 1.49 there exist a unique n ∈ Z>0

and a unique central division k-algebra D up to isomorphism such that A is isomorphic
to Mn(D) as a k-algebra. It follows that D and A are similar; hence, D is an element of
[A]. Suppose D′ is another central division algebra over k that is similar to A. Then there
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are m,n ∈ Z>0 such that the k-algebra isomorphism Mm(D) ∼= Mn(D
′) holds. Applying

Corollary 1.49 to Mm(D) and Mn(D
′), it immediately follows that m = n holds and that D

is isomorphic to D′ as a k-algebra .

2. Examples of Brauer groups

We have already seen in Corollary 1.51 of Chapter 1 that there are no non-trivial central
division algebras over an algebraically closed field. Hence, the Brauer group of an alge-
braically closed field is trivial. Furthermore, Wedderburn proved in 1905 that any finite
division ring is a field (see [Bou73, Chapter 8, §11.1, Theorem 1]), implying that the Brauer
group of a finite field is also trivial. There is actually a more general family of fields to
which finite fields and algebraically closed fields belong, and for which the Brauer group is
trivial, the so-called quasi-algebraically closed fields.

Definition 2.6. Let i ∈ Z>0. We say that a field k is Ci if for every n ∈ Z>0 every non-
constant homogeneous polynomial f ∈ k[X1, . . . , Xn] with (deg f)i < n has a non-trivial
zero. In particular, we say that k is quasi-algebraically closed if k is C1.

Remark 2.7. It is clear that if a field is Ci for some i ∈ Z>0, then it is also Cj for all
j ∈ Z≥i.

The statement that a finite field is C1 is a direct corollary of the Chevalley-Warning Theorem
due to Claude Chevalley (1909-1984) and Ewald Warning (1910–1999).

Theorem 2.8 (Chevalley-Warning). Let k be a finite field, and let n,m ∈ Z>0. Let
f1, . . . , fm ∈ k[X1, . . . , Xn] be non-constant polynomials with

∑m
i=1 deg(fi) < n. Then the

zero-locus Z(f1, . . . , fm) ⊂ kn has cardinality divisible by p.

Proof. See [Ax64].

Corollary 2.9. A finite field is C1.

Proposition 2.10. An algebraically closed field is C0.

Proof. See [Lan52, Part I, Theorem 1].

Theorem 2.11. The Brauer group of a C1 field is trivial.

Proof. See [Sta08, Proposition 3.2].

In 1877 Ferdinand Frobenius (1849–1917) showed that a real division algebra is either iso-
morphic to R, H or C, see [FD93, Theorem 3.20] for a proof. Since C is not central over R,
it follows that Br(R) = {[R], [H]} ∼= Z/2Z holds.

3. The Brauer group as a functor

Proposition 2.12. For each field homomorphism f : k → l there is a unique group ho-
momorphism Br(f) : Br(k) → Br(l) that satisfies [A] 7→ [Af ].

Proof. Let f : k → l be a field homomorphism, and let A be a central simple algebra
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over k. By Proposition 1.52 it holds that Af is central simple over l. Define the map
Br(f) : Br(k) → Br(l) by [A] 7→ [Af ], and observe that this is a well-defined function by
Lemma 2.2. Moreover, by associativity and commutativity of the tensor product we have
that

Br(f) ([A] ·k [B]) = [A⊗k l] ·l [B ⊗k l] = [(A⊗k l)⊗l (l ⊗k B)]

= [(A⊗k (l ⊗l (l ⊗k B))]

= [A⊗k (l ⊗k B)]

= [(A⊗k B)⊗k l] = Br(f) ([A⊗k B]) ,

holds, that is, Br(f) is a group homomorphism. It is clear that Br(f) is uniquely determined.

Let Fld denote the category of fields with the morphisms given by field homomorphisms,
and let Ab denote the category of abelian groups with morphisms given by group homo-
morphisms.

Theorem 2.13. The Brauer group defines a covariant functor Br: Fld → Ab that maps
a field k to Br(k) and maps a field homomorphism f to Br(f).

Proof. Observe that Br(idk) = idBr(k) clearly holds for every field k. Furthermore, let
f : k → l and g : l → m be two field homomorphisms, and let [A] be an element of Br(k).
Then we have that Br(g ◦ f)([A]) = [A⊗k m] and (Br(g) ◦ Br(f)) ([A]) = [(A⊗k l)⊗l m] =

[A⊗k m] hold by associativity of the tensor product. It follows that Br is a covariant functor
from Fld to Ab.

Passing to the next section, we first give a name to the kernel of the map Br(f) for every
field homomorphism f : k → l, which is only non-trivial if f : k → l is a non-trivial field
extension. This kernel, containing all classes of central simple k-algebras that are split by l,
will prove to be very useful in studying the Brauer group and is called the relative Brauer
group of the field extension l ⊃ k, denoted Br(l/k).

Lemma 2.14. Let k be a field, and let A be a central simple algebra over k. Let n be the
degree of A, and let l ⊃ k be a field extension. Then l is a splitting field for A if and only
if [A] is an element of Br(l/k).

Proof. Suppose l splits A, and let B be a central simple k-algebra similar to A. Then
there are i, j ∈ Z>0 such that Mi(A) is isomorphic to Mj(B) as a k-algebra. As l splits A,
we have the l-algebra isomorphisms Mi(A) ⊗k l ∼= Mi(Al) ∼= Min(l) by Corollary 1.18 and
Lemma 1.16. Hence, the l-algebra isomorphism Mj(Bl) ∼= Min(l) holds, implying Bl and l

are similar central simple l-algebras. It follows that B is also split by l.
The converse holds by definition of the relative Brauer group.

4. Relative Brauer groups

In this section we show that for every central simple algebra A over a field k there exists a
finite Galois extension of k that splits A. This enables us to write the Brauer group of k as

20



4. relative brauer groups

a union of relative Brauer groups of finite Galois extensions of k.

Theorem 2.15. Let k be a field, and let l ⊃ k be a finite field extension of degree n. If x
is an element of Br(l/k), then x has a representative A of degree n over k that is unique up
to isomorphism and contains l as a strictly maximal subfield.

Proof. See [Mil11, Chapter 4, Corollary 3.6].

The above theorem together with Theorem 1.60 imply the following important theorem.

Theorem 2.16. Let k be a field, and let l ⊃ k be a finite field extension of degree n.
Then an element x of Br(k) is an element of Br(l/k) if and only if x has a representative
A of degree n over k that is unique up to isomorphism and contains l as a strictly maximal
subfield.

Proof. This follows from the above theorem and Theorem 1.60.

Theorem 2.17 (Jacobson-Noether). Let k be a field, and let D be a noncommutative
central division algebra over k. Then there is an element x ∈ D \ Z(D) that is separable
over k.

Proof. See [Ker07, §5.5].

Theorem 2.18. Let k be a field, and let x be an element of Br(k). Then there is a
separable field extension l ⊃ k such that x is an element of Br(l/k).

Proof. If x = [k] holds, then the statement is trivial. Assume x ̸= [k] holds, and let D
be a central division algebra in x. By the previous theorem there are separable subfields
of D containing k. Let l be a subfield of D containing k that is maximal with respect to
the property that l ⊃ k is separable. Observe that the k-subalgebra CA(l) is a division
k-algebra containing l. Moreover, Corollary 1.58 states that l = CA(CA(l)) holds, that is, l
is the center of CA(l). Hence, CA(l) is a central division l-algebra. Assume that l ̸= CA(l).
By Theorem 2.17 there is x ∈ CA(l)\l such that l(x) ⊃ l is a non-trivial separable extension.
Then l(x) is a subfield of D strictly larger than l and separable over k, which contradicts
the maximality of l with respect to separability. It follows that l = CA(l) holds; hence,
Theorem 2.16 asserts that l is a splitting field for x.

Corollary 2.19. Let k be a field, and let x be an element of Br(k). Then there is a
finite Galois field extension l ⊃ k such that x is an element of Br(l/k).

Proof. Let D be a central division algebra in x. By the previous theorem there is a
separable field extension l ⊃ k that splits D. Consider the normal closure of l ⊃ k, say
m, and observe that m ⊃ k is Galois. Let f be the inclusion of k in l, and let g be the
inclusion of l in m. Since f∗(x) = [l] holds, the functoriality of the Brauer group asserts
that (g∗ ◦ f∗) (x) = [m] holds.

Corollary 2.20. Let k be a field. Then the equality Br(k) =
∪
l⊃k finite Galois Br(l/k)

holds.

Proof. Let x be an element of Br(k), and let D be a central division algebra over k in x.

21



chapter 2. the brauer group

Then by Corollary 2.19 there exists a finite Galois extension l ⊃ k such that x is an element
of Br(l/k). This implies that Br(k) is contained in

∪
l/k finite Galois Br(l/k). On the other

hand, the relative Brauer group of any field extension l ⊃ k is by definition a subgroup of
Br(k); hence, the opposite inclusion clearly holds.

5. Crossed product algebras

In this section we will construct central simple algebras over a field k via a finite Galois field
extension of k. With these central simple algebras at hand we then give the cohomological
description of the Brauer group. From this point forward we will assume the reader is
familiar with the basics of group cohomology, for which we refer to Chapter 2 of [Mil11] or
Chapter 4 of [CF67].

Theorem 2.21. Let k be a field, and let l ⊃ k be a finite Galois extension. Let a be a
2-cocycle of G with values in l∗, and let A be the left vector space over L with basis {eσ}σ∈G
for which multiplication is defined by(∑

σ∈G

xσeσ

)
·

(∑
τ∈G

yτeτ

)
=
∑
σ∈G

∑
τ∈G

xσσ(yτ )a(σ, τ)eστ ,

where xσ, yτ ∈ L for σ, τ ∈ G. Then A is a central simple algebra over k that contains l as
a strictly maximal subfield.

Proof. See [Ker07, 7.5].

Definition 2.22. The central simple algebra A over k defined in Theorem 2.21 is called
the crossed product algebra over k of l and G with respect to a, denoted by (l, G, a).

Proposition 2.23. Let k be a field, and let l ⊃ k be a finite Galois extension with Galois
group G. Then two 2-cocycles a and b of G with values in l∗ are cohomologous if and only
if (l, G, a) and (l, G, b) are isomorphic as k-algebras.

Proof. See [Ker07, 7.7].

Theorem 2.24. Let k be a field, and let x be an element of Br(k). Then for each finite
Galois extension l ⊃ k that splits x, there exists a 2-cocycle a of Gal(l/k) with values in l∗

that is unique up to cohomology such that the crossed product algebra (l,Gal(l/k), a) over k
is a representative of x.

Proof. Let k be a field, and let x be an element of Br(k). Let l ⊃ k be a finite Galois
extension that splits x, which exists by Corollary 2.20. By Theorem 2.16 there is a repre-
sentative A of x that is unique up to isomorphism and contains l as a maximal subfield.
Let G be the Galois group of l ⊃ k. By Corollary 1.63 any element σ ∈ G is induced by an
inner k-algebra automorphism of A, that is, for any σ ∈ G there exists an invertible element
eσ ∈ A such that

for all c ∈ l the identity σ(c) = eσce
−1
σ holds. (2.1)

This gives a map e : G→ A∗ defined by σ 7→ eσ that for each σ ∈ G satisfies , which we will
call a basis-map for A. For any basis-map e and any σ ∈ G we usually denote e(σ) by eσ.
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Let e and f be two basis-maps for A, and let σ ∈ G. Then for every c ∈ l the identity
eσce

−1
σ = fσcf

−1
σ holds, implying that f−1

σ eσ centralizes l. As l is a strictly maximal subfield
of A, it is equal to its centralizer in A. Hence, the identity eσ = dfσ holds for some d ∈ l∗,
that is, a basis-map for A is unique up to multiplication by elements of l∗.

Observe that for σ, τ ∈ G the product eσeτ and the element eστ both satisfy () for στ .
Hence, there exists an a(σ, τ) ∈ l∗ such that eσeτ = a(σ, τ)eστ holds. This gives a map
a : G × G → l∗ defined by (σ, τ) 7→ a(σ, τ) that for each σ, τ ∈ G satisfies the equality
eσeτ = a(σ, τ)eστ . Observe that for every ρ, σ, τ ∈ G the map a satisfies the equality
eρa(σ, τ) = ρ(a(σ, τ))eρ. Moreover, for every ρ, σ, τ ∈ G the associativity law on A implies
that the identities

(eρeσ)eτ = a(ρ, σ)eρσeτ = a(ρ, σ)a(ρσ, τ)eρστ

and
eρ(eσeτ ) = eρa(σ, τ)eστ = ρ(a(σ, τ))eρeστ = ρ(a(σ, τ))a(ρ, στ)eρστ

are equal. It follows that for every ρ, σ, τ ∈ G the map a satisfies the equality

a(ρ, σ)a(ρσ, τ) = ρ(a(σ, τ))a(ρ, στ),

hence the map a is a 2-cocycle of G with values in l∗.
Let e be a basis-map for A, then Lemma 1 in section 7.3 of [Ker07] implies that the

image of e defines a basis for A as left vector space over l. For α, β ∈ A write α =
∑

σ∈G xσeσ
and β =

∑
τ∈G yτeτ , where xσ, yτ ∈ l for σ, τ ∈ G. Recall that for each σ, τ ∈ G and a ∈ l

we have the identities eσa = σ(a)eσ and eσeτ = a(σ, τ)eστ . This gives the equality(∑
σ∈G

xσeσ

)
·

(∑
τ∈G

yτeτ

)
=
∑
σ∈G

∑
τ∈G

xσσ(yτ )a(σ, τ)eστ ,

hence A is a crossed product algebra over k of l and G with respect to a.
It now rests to show that different basis-maps for A give isomorphic crossed product

algebras over k. To this end, let e and f be two basis-maps for A, and let a and b be the
corresponding 2-cocycles of G with values in l∗, respectively. Then for σ ∈ G we have that
eσ = φ(σ)fσ holds for some φ(σ) ∈ l∗. This gives a map φ : G → l∗ defined by σ 7→ φ(σ)

that for each σ ∈ G satisfies the equality eσ = φ(σ)fσ. It is easy to check that for every
σ, τ ∈ G the equality

b(σ, τ) =
φ(σ)σ(φ(τ))

φ(στ)
a(σ, τ)

holds; hence, a and b are cohomologous 2-cocycles. It follows by Proposition 2.23 that
(l, G, a) and (l, G, b) are isomorphic as k-algebras. This finishes the proof of Theorem
2.24.

Theorem 2.25. Let k be a field, and let l ⊃ k be a finite Galois extension. Then the map
f : H2(Gal(l/k), l∗) → Br(l/k) given by [a] 7→ [(l,Gal(l/k), a)] is a bijection.

Proof. Let G = Gal(l/k). Observe that for a 2-cocycle a of G with values in l∗ we have
that (l, G, a) is a central simple k-algebra that contains l as a strictly maximal subfield by
Theorem 2.21. Hence, [(l, G, a)] is contained in Br(l/k) by Theorem 2.16. Furthermore, by
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Proposition 2.23 cohomologous 2-cocycles a and b of G with values in l∗ define isomorphic
as k-algebras crossed product algebras (l, G, a) and (l, G, b). It follows that the map f is
well-defined.

Moreover, Proposition 2.23 also implies that two 2-cocycles a and b of G with values
in l∗ with equal images under f are cohomologous; hence, f is injective. By Theorem 2.24
we know that for any element x of Br(l/k) there exists a 2-cocycle a of G with values in
l∗ such that x = [(l, G, a)] holds, which proves that f is surjective. It follows that f is a
bijection.

The next lemma shows that the bijection f in the theorem above is multiplicative, which
implies that f is a group isomorphism.

Lemma 2.26. Let k be a field, and let l ⊃ k be a finite Galois extension. Let a and b be two
2-cocycles of Gal(l/k) with values in l∗. Then the equality [(l,Gal(l/k), a)]·[(l,Gal(l/k), b)] =

[(l,Gal(l/k), ab)] holds in Br(k).

Proof. See [Ker07, 8.2].

Theorem 2.27. Let k be a field, and let l ⊃ k be a finite Galois extension. Then the map
f : H2(Gal(l/k), l∗) → Br(l/k) given by [a] 7→ [(l,Gal(l/k), a)] is a group isomorphism.

Theorem 2.28. Let k be a field, and let ksep be a separable closure of k. Then Br(k) and
H2(Gal(ksep/k), k

∗
sep) are isomorphic as groups.

Proof. See [Ker07, 8.4].
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Chapter 3
The Brauer group is torsion

Let k be a field. Given a finite field extension l ⊃ k and a central simple algebra A over l,
we wish to construct a central simple algebra over k from A. In the case that l ⊃ k is a finite
separable field extension, this is done by the corestriction functor in group cohomology, see
[Bro82, Chapter 3, §9] or [Mil11, Chapter 2, Example 1.29]. We will briefly study this case,
and study the case that l ⊃ k is a finite purely inseparable field extension. Combining these
two cases we define a group homomorphism from Br(l) to Br(k) for any finite field extension
l ⊃ k, which we will use to define a contravariant functor from the category of fields with
morphisms given by finite field extensions to the category Ab. By means of this functor we
will show that the Brauer group is torsion.

1. The corestriction of central simple algebras

Definition 3.1. Let f : k → l be a field homomorphism. Then the degree of f is the
dimension of l as vector space over im(f), denoted by deg(f), or by [l : k] when the map f
is understood.

The following definition defines the algebra-theoretic analogue of the corestriction map Cor

on the second cohomology groups, where the latter is defined in [Bro82, Chapter 3, §9] or
[Mil11, Chapter 2, Example 1.29].

Definition 3.2. Let k be a field, and let f : k → l be a separable field homomorphism of
finite degree. Let ksep be a separable closure of k and l. The corestriction map Cor(f) of f
is the group homomorphism that makes the following diagram

Br(l)
Cor(f)

//

��

Br(k)

��

H2(Gal(ksep/l), k
∗
sep) Cor

// H2(Gal(ksep/k), k
∗
sep)

commute, where the vertical maps are the group isomorphisms associated by Theorem 2.28.

Let k be a field, and let f : k → l be a separable field homomorphism of finite degree. We
will now briefly give a explicit description of the corestriction map of f , and refer to [Dra83,
Chapter 1, §8] or [Ker90, §18] for a more detailed study of this explicit description.

Let ksep be a separable closure of k, and let A be a central simple algebra over l. Let
T(A) denote the tensor product

⊗
φ∈Homk(l,ksep)

Aφ over l of all extended algebras of A via
k-embeddings of l into ksep, and observe that T(A) is central simple over l. For every σ

in the absolute Galois group Gal(ksep/k) we have the k-algebra isomorphism Aσ−1φ → Aφ
induced by σ. This gives an action of Gal(ksep/k) on T(A), viewed as an algebra over k,
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given for each σ ∈ Gal(ksep/k) by

σ (⊗φaφ) = ⊗φbφ, where bφ = σ(aσ−1φ).

By [Ker90, §18] the invariant ring T(A)Gal(ksep/k) is a central simple algebra over k.

Proposition 3.3. Let k be a field, and let f : k → l be a finite separable field extension.
Then the map from Br(l) to Br(k) defined by [A] 7→

[
T(A)Gal(ksep/k)

]
is the corestriction map

of f .

Proof. See [Rie70, Theorem 11].

Proposition 3.4. Let k be a field, and let f : k → l be a finite separable field extension.
Then for every x in Br(k) we have the equality (Cor(f) ◦ Br(f))(x) = xdeg(f).

Proof. See [Ker90, §18].

Remark 3.5. As Br(f) is clearly the analogue of the restriction map in group cohomology
(see [Mil11, Chapter 2, Example 1.27]), the above proposition follows directly from [Mil11,
Chapter 2, Proposition 1.30].

Now, we study the case of central simple algebras over a finite purely inseparable field exten-
sion of a given field. To this end, let k be a field of characteristic p, with p a prime number.
We let Frobk denote the Frobenius endomorphism of k, given by x 7→ xp. The following
theorem shows that the group homomorphism Br(Frobk) is equal to the homomorphism
Br(k) → Br(k) given by x 7→ xp.

Theorem 3.6. Let k be a field of characteristic p, with p a prime number. Then for any
element [A] of Br(k) the identity [A]p = [AFrobk ] holds.

Proof. See [Jac10, Theorem 4.1.2].

A direct corollary of this theorem is that the p-torsion subgroup of the Brauer group of a
perfect field of characteristic p, with p a prime number, is trivial.

Corollary 3.7. Let k be a perfect field of characteristic p, with p a prime number. Then
every element x of finite order in Br(k) has order not divisible by p.

Proof. Write x = [A]. Observe that the equality
[
(AFrobk)Frob−1

k

]
= [A] holds. This means

that [AFrobk ] is not equal to [k] if x is non-trivial, since the extended algebra AFrob−1
k

is
unequal to A if x is non-trivial. Hence, for every non-trivial element [A] in Br(k) we have
that [AFrobk ] = [A]p is unequal to [k] in Br(k).

Definition 3.8. Let k be a field of characteristic p, with p a prime number. Let f : k → l

be a finite purely inseparable field extension, and let pn be the degree of f . Then n is called
the exponent of f , denoted by exp(f), or by exp[l : k] when the map f is understood.

Let f : k → l be a finite purely inseparable field extension. Observe that the image of
Frob

exp(f)
l is contained in k, since l ⊃ k is purely inseparable. Hence, there exists a field

homomorphism α(f) such that we have the equality Frob
exp(f)
l = f ◦ α(f). We define the

map Bro(f) : Br(l) → Br(k) by x 7→ Br(α(f))(x), which is a group homomorphism by
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definition.

Proposition 3.9. Let k be a field of characteristic p, with p a prime number. Let f : k → l

be a finite purely inseparable field extension. Then for each x in Br(k) we have the equality
(Bro(f) ◦ Br(f))(x) = xdeg(f).

Proof. We have the equalities Bro(f) ◦ Br(f) = Br(α(f)) ◦ Br(f) = Br(α(f) ◦ f) by
functoriality of the Brauer group. It is easy to check that α(f) ◦ f is equal to the ho-
momorphism Frob

exp(f)
k . Now, by Theorem 3.6 we have for each x in Br(k) the equality

Br(Frob
exp(f)
k )(x) = xdeg(f).

For each finite field homomorphism f : k → l we will now construct a group homomorphism
Bro(f) : Br(l) → Br(k) by combining the corestriction map and the map defined above.

Definition 3.10. Let k be a field, and let f : k → l be a field extension. Then ls is the
separable closure of k in l. Moreover, the inclusion map of ls in l is denoted by fpi, and the
inclusion map of k in ls is denoted by fs.

Definition 3.11. Let k be a field, and let f : k → l be a finite field extension. Then we
define Bro(f) : Br(l) → Br(k) as the composed map Cor(fs) ◦ Bro(fpi).

Proposition 3.12. Let k be a field, and let f : k → l be a finite field extension. Then
Bro(f) : Br(l) → Br(k) is a group homomorphism that for every x in Br(k) satisfies
(Bro(f) ◦ Br(f)) (x) = xdeg(f).

Proof. First, observe that Bro(f) is a group homomorphism by definition. Now, write
Br(f) = Br(fpi ◦ fs), and observe that Bro(f) ◦ Br(f) = Cor(fs) ◦ Br(α(fpi) ◦ fpi) ◦ Br(fs)

holds. It follows that Bro(f) ◦ Br(f) is equal to Cor(fs) ◦ Br(Frob
exp(fpi)
l ) ◦ Br(fs). Hence,

we have that (Bro(f) ◦ Br(f))(x) = xdeg(fpi) deg(fs) = xdeg(f) holds.

We are now able to state the main result of this section. We let Fldf denote the category
of fields with the morphisms given by field homomorphisms of finite degree.

Theorem 3.13. There exists a contravariant functor Bro : Fldf → Ab that maps a field
k to Br(k) and a morphism f to Bro(f).

An outline of a proof. Observe that for every field k, we clearly have the equality
Bro(idk) = idBr(k).

Now let f : k → l and g : l → m be two field homomorphisms of finite degree. As
the corestriction in group cohomology is functorial, it suffices to show that the following
diagram

Br(l ·m) //

��

Br(m)

��

Br(l) // Br(k)

commutes.
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chapter 3. the brauer group is torsion

2. Index and exponent

We will now prove that the Brauer group is torsion by means of the corestriction functor,
and briefly study the index and exponent of an element of the Brauer group. We conclude
this chapter by giving a decomposition theorem for central division algebras over a field.

Theorem 3.14. Let k be a field. Then Br(k) is a torsion group, and for any field ho-
momorphism f : k → l of finite degree, the relative Brauer group Br(l/k) is annihilated by
deg(f).

Proof. Let f : k → l be a field homomorphism of finite degree, and let x be an element
of Br(l/k). By Proposition 3.9 the equality (Bro(f) ◦ Br(f))(x) = xdeg(f) holds. Let 1Br(k)

and 1Br(l) denote the identity elements of Br(k) and Br(l), respectively. As the equality
Br(f)(x) = 1Br(l) holds, we have that xdeg(f) = 1Br(k) holds. This means that every element
of Br(l/k) has order dividing deg(f), and in particular that x has finite order. Now Corollary
2.20 implies that the Brauer group is torsion.

Definition 3.15. Let k be a field, and let A be a central simple algebra over k. Then the
index of A is the degree of the central division algebra associated to A by Corollary 1.49,
denoted by ind(A).

Definition 3.16. Let k be a field, and let A be a central simple algebra over k. Then
the exponent of A is the order of [A] in Br(k).

Observe that the index and exponent are class invariants under similarity; hence, we may
speak of the index and exponent of an element of the Brauer group, which we will simply
denote by ind(x) and exp(x) for an element x of the Brauer group of some field.

Proposition 3.17. Let k be a field. Then for every element x of Br(k) the exponent of
x divides the index of x.

Proof. Let x be an element of Br(k), and let D be a central division algebra over k
representing x. Then a strictly maximal subfield l of D has degree ind(D) over k, and is in
particular a finite field extension of k. As x is an element of Br(l/k) by Theorem 2.16, the
statement follows from Theorem 3.14.

Proposition 3.18. Let k be a field, and let x be an element of Br(k). Then every prime
divisor of ind(x) is a prime divisor of exp(x).

Proof. See [Ker07, 9.4].

Theorem 3.19. Let k be a field, and let D be a central division algebra over k. Let∏r
i=1 p

di
i and

∏r
i=1 p

ei
i be the prime factorization of ind(D) and exp(D), respectively. Then

D is k-algebra isomorphic to k

⊗r
i=1Di, where Di is a unique central division k-algebra up

to isomorphism with ind(Di) = pdii and exp(Di) = peii for i = 1, . . . , r.

Proof. See [Ker07, 9.5, 9.6].
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